Comparison of Solvation Packages



1.  Availability of solvation models in the codes developed at the University of Minnesota

2.  Availability of charge models in the codes developed at the University of Minnesota

3.  Availability of solvation models in other (commercial and public) codes

4.  Reaction rates in the condensed phase  

Back to Solvation Home Page



1.  Availability of solvation models in the codes developed at the University of Minnesota

An aq means that the method is present, but can be used for aqueous solvent only.
An E means that the method is present, but cannot be used to optimize geometries in solution.
A G means that the method is present including analytic gradients for both unrestricted and restricted wave functions.
An F means that the method is present including analytic second-order derivatives (frequencies) for both unrestricted and restricted wave functions.
A - means that the method is not available.  
An N/A means that the method is not applicable.

  charge model go to
AMM
go to
AMSOL
go to
DGSOL
go to
 GAMESSPLUS
go to
GESOL
go to  
HONDOPLUS
go to  
MNGSM
go to
OMNISOL
go to  
SMXGAUSS
go to
ZINDOMN
SM5.0 (ref 1) N/A
                   
no quantal Hamiltonian
-
E
-
-
-
-
-
E
-
-
SM5C (ref 2) N/A










AM1, PM3, MNDO/d
G
- - - - - - - - -
SM5.2 (ref 3) class II
                   
AM1, PM3, MNDO

G G - - - - - - - -
MNDO/d
G - - - - - - - - -
SM5.4 (ref 4) CM1
                   
AM1, PM3

- G - - - - - - - -
VEM42 (ref 5)
CM2










INDO/S or S2
-
-
-
-
-
-
-
-
-
E
SM5.42 (ref 6)
CM2










AM1, PM3

- G - G - - -
- -
-
INDO/S or S2

- - - - - - - - - G
DFT or HF

- - E G - G G - G -
SM5.43 (ref 7) CM3
                   
DFT or HF

- - - G - G G - G -
SM6 (ref 8) CM4
                   
DFT or HF
- - - G, aq - G, aq G, aq - G, aq -
SM8 (ref 9)
CM4,CM4M










DFT or HF

- - - G - - G - - -
SM8T (ref 10)
CM4,CM4M









DFT or HF

- - - G, aq - - G, aq - - -
SM8AD (ref 11)
CM4,CM4M









DFT or HF

- - - G - - G - -
-
SMD (ref 12)
N/A










any method

- - - - F - - - - -
VEM(d) (ref 13)
ESP,CM5










TDDFT or CIS

- - - - - - E - -
-
SM12 (ref 14)
ESP,CM5










any method

- - - - - - E - -
-
[1]    Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 1997, 101, 7147; Hawkins, G. D.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. J. Org. Chem. 1998, 63, 4305.
[2]    Dolney, D. M.; Hawkins, G. D.; Winget, P.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. J. Comput. Chem. 2000, 21, 340.
[3]    Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 1998, 102, 3257.
[4]    Chambers, C. C.; Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. 1996, 100, 16385.
[5]    Li, J.; Cramer, C. J.; Truhlar, D. G. Int. J. Quantum Chem. 2000, 77, 264.
[6]    Zhu, T.; Li, J.; Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. J. Chem. Phys. 1998, 109, 9117; Li, J.; Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Chem. Phys. Lett. 1998, 288, 293; Li, J.; Zhu, T.; Hawkins, G. D.; Winget, P.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. Theor. Chem. Acc. 1999, 103, 9; Winget, P.; Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2002, 106, 5160.
[7]    Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6532; Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. Theor. Chem. Acc. 2005, 113, 107.
[8]    Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 1133.
[9]    Marenich, A. V.; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2011.
[10]  Chamberlin, A. C.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2008, 112, 3024.
[11]  Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2009, 5, 2447.
[12]  Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
[13]  Marenich, A. V.; Cramer, C. J.; Truhlar, D. G.; Guido, C. A.; Mennucci, B.; Scalmani, G.; Frisch, M. J. Chem. Sci. 2011, 2, 2143.
[14]  Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2013, 9, 609.

            Note that the generalized Born (GB) models (i.e., models based on charges) use class IV charge models which are currently available only for the following basis sets: MIDI!, MIDI!6D, 6-31G*, 6-31G**, 6-31+G*, 6-31+G**, 6-31B*,  6-31B**, DZVP, and cc-pVDZ, except for SM12 that uses ESP charges and CM5 charges that are nominally available for any basis set. SMD is based on continuous charge density and it uses the PCM approach other than the GB approximation. The VEM model is available in both the GB and PCM approximations. The latter case is implemented in the VEMGAUSS software. VEMGAUSS also contains the SMSSP model (not listed in the above table) which is a solvation model with state-specific polarizability. See http://dx.doi.org/10.1021/ct400329u for more detail.

     

2.  Availability of charge models in the codes developed at the University of Minnesota

A + means that the method is available.
A - means that the method is not available.  

  go to
AMM
go to
AMSOL
go to
CM5PAC
go to
DGSOL
go to
 GAMESSPLUS
go to
GESOL
go to  
HONDOPLUS
go to  
MNGSM
go to
OMNISOL
go to  
SMXGAUSS
go to
ZINDOMN
CM2 +
+
-
+
+
-
+
+
-
+
+
CM3 -
-
-
-
+
-
+
+
-
+
-
CM4 -
- - - +
- + + - + -
CM4M
- - - - +
- - +
- - -
CM5
- - + - -
- - -
- - -

 

Availability of charge models (other than CM5) depending on basis set
A + means that the method is available.
A - means that the method is not available.  

  MIDI!
MIDI!6D
6-31G*
6-31G**
6-31+G*
6-31+G**
6-31B*
6-31B**
DZVP
cc-pVDZ
CM2 (ref 1)
+
+
+
-
+
-
-
-
+
+
CM3 (ref 2)
+
+
+
-
+
+
-
-
-
-
CM4 (ref 3)
+
+
+ +
+
+ + +
+ +
CM4M (ref 4)
+ +
+
+
+
+
+
+
+
+
[1]    Li, J.; Zhu, T.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 1998, 102, 1820; Li, J.; Xing, J.; Cramer, C. J.; Truhlar, D. G. J. Chem. Phys. 1999, 111, 885; Li, J.; Williams, B.; Cramer, C. J.; Truhlar, D. G. J. Chem. Phys. 1999, 110, 724.
[2]    Winget, P.; Thompson J. D.; Xidos, J. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2002, 106, 10707; Thompson, J. D.; Cramer, C. J.; Truhlar, D. G. J. Comput. Chem. 2003, 24, 1291; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. Theor. Chem. Acc. 2005, 113, 133.
[3]    Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 1133.
[4]    Olson, R. M.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2046.   

             Note that CM2 and CM3 can be used with AM1 and PM3, and CM2 can also be used with INDO/S and INDO/S2

     

3.  Availability of solvation models in other (commercial and public) codes

An aq means that the method is present, but can be used for aqueous solvent only.
An E means that the method is present, but cannot be used to optimize geometries in solution.
A G means that the method is present including analytic gradients for both unrestricted and restricted wave functions.
An F means that  the method is present including analytic second-order derivatives (frequencies) for both unrestricted and restricted wave functions.
A - means that the method is not available.
An asterisk * means that the method will be available in future releases.

  go to
AMPAC
go to
Jaguar
go to
Spartan
go to
Q-Chem
go to
Gaussian
go to
GAMESS
go to
NWChem
SM5C              
AM1, PM3, MNDO/d E - - - - - -
SM5.0






no quantal Hamiltonian
-
-
E, aq
-
-
-
-
SM5.4






PM3
-
-
E, aq
-
-
-
-
SM6






DFT or HF
-
E, aq
-
-
-
-
-
SM8, SM12






DFT or HF
-
E
G
G
-
-
-
SMD







any method
-
-
-
G*
F
F
G*
SMVLE







HF/6-31+G(d)
-
-
-
-
-
E, aq
-

     

4.  Reaction rates in the condensed phase

We have developed five levels:

I.   For organic reactions in liquid solutions

     SES:   Seperable Equilibrium Solvation (Refs. 1 and 2)
     ESP:   Equilibrium Solvation Path (Refs. 1 and 2)
     NES:  Non-Equilibrium Solvation (Ref. 3)

II.  For enzyme reactions

     SZP:   Secondary-Zone Poential (Ref. 4)
     ESZ:   Equilibrium Secondary Zone (Ref. 5)

References:
1. "Interface of Electronic Structure and Dynamics for Reactions in Solution," Y.-Y. Chuang, C. J. Cramer, and D. G. Truhlar, International Journal of Quantum Chemistry 70, 887-896 (1998).  (Sanibel issue)
2. "Direct Dynamics for Free Radical Kinetics in Solution:  Solvent Effect on the Rate Constant for the Reaction of Methanol with Atomic Hydrogen," Y.-Y. Chuang, M. L. Radhakrishnan, P. L. Fast, C. J. Cramer, and D. G. Truhlar, Journal of Physical Chemistry 103, 4893-4909 (1999).
3. "Nonequilibrium Solvation Effects for a Polyatomic Reaction in Solution," Y.-Y. Chuang and D. G. Truhlar, Journal of the American Chemical Society, 121, 10157-10167 (1999).
4. "Quantum Mechanical Dynamical Effects in an Enzyme-Catalyzed Proton-Transfer Reaction," C. Alhambra, J. Gao, J. C. Corchado, J. Vill?, and D. G. Truhlar, Journal of the American Chemical Society 121, 2253-2258 (1999).
5. "Variational Transition State Theory and Multidimensional Tunneling for Simple and Complex Reactions in the Gas Phase, Solids, Liquids, and Enzymes," D. G. Truhlar, in Isotope Effects in Chemistry and Biology," edited by A. Kohen and H.-H. Limbach (Marcel Dekker, Inc., New York, published in 2005, copyright 2006), pp. 579-620.

  The following chart shows the capabilities of the various programs for carrying out these calculations

 
go to 
AMSOLRATE
go to 
CHARMMRATE
go to 
GAMESSPLUSRATE
go to 
GAUSSRATE
go to 
MORATE
go to 
POLYRATE
 
           
Gas
yes - yes yes yes yes
SES
yes(K,I) - yes(K,I) yes(I) yes(I) yes(I)
ESP
yes - yes - - -
NES
yes(1) - yes(1) - - -
SZP
- soon(2) - - - -
ESZ
- soon(2) - - - -

    Explanations:

K = by SES keyword (tunneling capabilities of keyword option: can do ZCT, SCT, or LCT)
I = by VTST-ISPE keyword (tunneling capabilities of VTST-ISPE option: can do ZCT or SCT but not LCT)
(1) = available beginning with POLYRATE 8.2
(2) = scheduled for inclusion in CHARMM 27

Back to Solvation Home Page
 
 
 


This document last modified  by Software Manager