1.1. OpenMolcas Website
OpenMolcas is a quantum chemistry package available at
https://gitlab.com/Molcas/OpenMolcas
The OpenMolcas online manual is available at
https://molcas.gitlab.io/OpenMolcas/sphinx
1.2. Reference
The citation for OpenMolcas is the following [this will be updated when the article is accepted and online]:
"OpenMolcas: From Source Code to Insight," I. F. Galván, M. Vacher, A. Alavi, C. Angeli, J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N. Dattani, M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos, L. Gagliardi, F. Gendron, A. Giussani, L. González, G. Grell, M. Guo, C. E. Hoyer , M. Johansson, E. Källman, S. Keller, S. Knecht, G. Kovacevic, G. Li Manni, M. Lundberg, Y. Ma, S. Mai, J. P. Malhado, P. Å. Malmqvist, P. Marquetand, S. A. Mewes, J. Norell, M. Olivucci, , M. Oppel, Q. M. Phung, K. Pierloot, F. Plasser, M. Reiher, A. M. Sand, I. Schapiro, P. Sharma, L. K. Sørensen, C. Stein, D. G. Truhlar, M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, P.-O. Widmark, S. Wouters, J. P. Zobel, and R. Lindh, Journal of Chemical Theory and Computation, Journal of Computational Chemistry 15, 5925-5964 (2019). doi.org/10.1021/acs.jctc.9b00532
OpenMolcas evolved from Molcas. The final version of Molcas was 8.2, and it was described in the following article:
"Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table," F. Aquilante, J. Autschbach, R. K. Carlson, L. Chibotaru, M. G. Delcey, L. De Vico, I. F. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P.-Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen , D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, Journal of Computational Chemistry 37, 506-541 (2016). doi.org/10.1002/jcc.24221
*Minnesota coauthors (at Minnesota at the time the work was done) of Molcas 8.2 are R. K. Carlson, L. Gagliardi, M. Hermes, C. E. Hoyer, G. Li Manni, D. Ma, and D. G. Truhlar.
OpenMolcas has all or most of the capabilites described in that article plus several new ones contributed by many workers at many institutions. At Minnesota we have made several enhancements beyond what is in version 8.2.
We list the Minnesota enhancements of OpenMolcas that are fully available from the Gitlab site.
In the near future, more of our added capabilities will be added to the Gitlab repository, and the present web page will be updated to give more information about the Minnesota-added capabilities of OpenMolcas.
2.1.1. Introduction to Theory
Multiconfiguration pair-density functional theory (MC-PDFT) is a post-MCSCF method that evaluates the energy of a state with on-top pair-density function theory.
Readers may refer to the two following references for the details of the theory.
"Multiconfiguration Pair-Density Functional Theory," G. Li Manni, R. K. Carlson, S. Luo, D. Ma, J. Olsen, D. G. Truhlar, and L. Gagliardi, Journal of Chemical Theory and Computation 10, 3669-3680 (2014). doi.org/10.1021/ct500483t
"Multiconfiguration Pair-Density Functional Theory: A New Way to Treat Strongly Correlated Systems," L. Gagliardi, D. G. Truhlar, G. Li Manni, R. K. Carlson, C. E. Hoyer, and J. L. Bao, Accounts of Chemical Research 50, 66-73 (2017). doi.org/10.1021/acs.accounts.6b00471
In addition, we provide a description of MC-PDFT capabilities in OpenMolcas (as of 2018 November 9) and some input examples.
2.1.2. MC-PDFT Reference Wave Functions
The reference wave function for a MC-PDFT calculation include state-averaged or state-specific CASSCF, RASSCF, GASSCF, CAS-CI, RAS-CI, and GAS-CI wave functions. MC-PDFT can be used in conjunction with density matrix renormalization group (DMRG) method. For DMRG-PDFT calculations, an interface between OpenMolcas and QCMaquis (https://gitlab.com/qc-maquis/) is required. A sample input file for N_{2} molecule with symmetry is shown here.
2.1.3. MC-PDFT On-Top Functionals
The following on-top density functionals are available for MC-PDFT: tLSDA, ftLSDA, tPBE, ftPBE, trevPBE, ftrevPBE, tBLYP, ftBLYP, tOPBE, and ftOPBE.
2.2.1.State-Specific MC-PDFT Analytic Gradients
State-specific CASSCF-PDFT analytic gradients as described in:
"Analytic Gradients for Complete Active Space Pair-Density Functional Theory," A. M. Sand, C. E. Hoyer, K. Sharkas, K. M. Kidder, R. Lindh, D. G. Truhlar, and L. Gagliardi, Journal of Chemical Theory and Computation 14, 126-138 (2018). doi.org/10.1021/acs.jctc.7b00967
The SI-PDFT method is described in the following reference:
"State-Interaction Pair-Density Functional Theory," A. M. Sand, C. E. Hoyer, D. G. Truhlar, and L. Gagliardi, The Journal of Chemical Physics 149, 024106 (2018). doi.org/10.1063/1.5036727
The manual of the XMS-PDFT method can be found here.
The user can run a natural transition orbital calculation in the RASSI module in OpenMolcas (by Jie J. Bao).
For methodology, usage, keywords and examples, one may refer to the manual for the NTO calculation in the RASSI module.
2.5.1. Introduction
The user can scale the exchange terms (by a factor of f_exch) and/or the correlation term (by a factor of f_corr) for a density functionals. This scaling works for KS-DFT calculations and MC-PDFT calculations that use translated or fully translated functionals. (by Sijia S. Dong)
2.5.2. Keyword and Usage
Keyword: DFCF
Usage: DFCF=f_exch f_corr
Default: DFCF=1.0 1.0
*Note: By setting f_exch as 1.25 and f_corr as 0.5 one can get a High Local Exchange (HLE) density functional
2.5.3. Examples
Example 1:
&SCF;
KSDFT=BLYP;
DFCF=1.0 0.9
Example 2:
&MCPDFT;
KSDFT=TPBE;
DFCF=1.25 0.5
Orbital contributions of properties can be calculated by the SEWARD module for all orbitals (including virtuals), such as orbital moments. Controlled by the new keyword ORBAll in &SEWARD. (by Sijia S. Dong)
The MC-PDFT module prints out individual energy components of the MC-PDFT total energy by default. (by Prachi Sharma)
J. J. Bao, S. S. Dong, L. Gagliardi, C. E. Hoyer, K. M. Kidder, A. Sand, T. Scott, K. Sharkas, P. Sharma, and D. G. Truhlar.