Minnesota-Chicago OpenMolcas Homepage

Feb. 17, 2021

1. OpenMolcas General Information

1.1. OpenMolcas Website

    OpenMolcas is a quantum chemistry package available at

    The OpenMolcas online manual is available at

1.2. Reference

    The citation for OpenMolcas is the following:

"OpenMolcas: From Source Code to Insight," I. F. Galván, M. Vacher, A. Alavi, C. Angeli, J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N. Dattani, M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos, L. Gagliardi, F. Gendron, A. Giussani, L. González, G. Grell, M. Guo, C. E. Hoyer , M. Johansson, E. Källman, S. Keller, S. Knecht, G. Kovacevic, G. Li Manni, M. Lundberg, Y. Ma, S. Mai, J. P. Malhado, P. Å. Malmqvist, P. Marquetand, S. A. Mewes, J. Norell, M. Olivucci, , M. Oppel, Q. M. Phung, K. Pierloot, F. Plasser, M. Reiher, A. M. Sand, I. Schapiro, P. Sharma, L. K. Sørensen, C. Stein, D. G. Truhlar, M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, P.-O. Widmark, S. Wouters, J. P. Zobel, and R. Lindh, Journal of Chemical Theory and Computation, 15, 5925-5964 (2019). doi.org/10.1021/acs.jctc.9b00532

    OpenMolcas evolved from Molcas. The final version of Molcas was 8.2, and it was described in the following article:

"Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table," F. Aquilante, J. Autschbach, R. K. Carlson, L. Chibotaru, M. G. Delcey, L. De Vico, I. F. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P.-Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen , D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, Journal of Computational Chemistry 37, 506-541 (2016). doi.org/10.1002/jcc.24221

*Minnesota coauthors (at Minnesota at the time the work was done) of Molcas 8.2 are R. K. Carlson, L. Gagliardi, M. Hermes, C. E. Hoyer, G. Li Manni, D. Ma, and D. G. Truhlar.

2. OpenMolcas Enhancements at Minnesota

    OpenMolcas has all or most of the capabilites described in that article plus several new ones contributed by many workers at many institutions. At Minnesota we have made several enhancements beyond what is in version 8.2.
    We list the Minnesota enhancements of OpenMolcas that are fully available from the Gitlab site.
    In the near future, more of our added capabilities will be added to the Gitlab repository, and the present web page will be updated to give more information about the Minnesota-added capabilities of OpenMolcas.

2.1. Multiconfiguration Pair-Density Functional Theory (MC-PDFT)

2.1.1. Introduction to Theory

    Multiconfiguration pair-density functional theory (MC-PDFT) is a post-MCSCF method that evaluates the energy of a state with on-top pair-density function theory.
    Readers may refer to the two following references for the details of the theory.

"Multiconfiguration Pair-Density Functional Theory," G. Li Manni, R. K. Carlson, S. Luo, D. Ma, J. Olsen, D. G. Truhlar, and L. Gagliardi, Journal of Chemical Theory and Computation 10, 3669-3680 (2014). doi.org/10.1021/ct500483t
"Multiconfiguration Pair-Density Functional Theory: A New Way to Treat Strongly Correlated Systems," L. Gagliardi, D. G. Truhlar, G. Li Manni, R. K. Carlson, C. E. Hoyer, and J. L. Bao, Accounts of Chemical Research 50, 66-73 (2017). doi.org/10.1021/acs.accounts.6b00471

    In addition, we provide a description of MC-PDFT capabilities in OpenMolcas (as of 2018 November 9) and some input examples.

2.1.2. MC-PDFT Reference Wave Functions

    The reference wave function for a MC-PDFT calculation include state-averaged or state-specific CASSCF, RASSCF, GASSCF, CAS-CI, RAS-CI, and GAS-CI wave functions.

    MC-PDFT can be used in conjunction with the density matrix renormalization group (DMRG) method. For DMRG-PDFT calculations, an interface between OpenMolcas and QCMaquis (https://gitlab.com/qc-maquis/) is required. A DMRG-PDFT sample input file for N2 molecule with symmetry is shown here. Examples of DMRG-PDFT calculations are given in the following references:

"Density Matrix Renormalization Group Pair-Density Functional Theory (DMRG-PDFT): Singlet-Triplet Gaps in Polyacenes and Polyacetylenes," P. Sharma, V. Bernales, S. Knecht, D. G. Truhlar, and L. Gagliardi, Chemical Science 10, 1716-1723 (2019). doi.org/10.1039/C8SC03569E

"Multiconfiguration Pair-Density Functional Theory for Iron Porphyrin with CAS, RAS, and DMRG Active Spaces," C. Zhou, L. Gagliardi, and D. G. Truhlar, Journal of Physical Chemistry A 123, 3389-3394 (2019). doi.org/10.1021/acs.jpca.8b12479

"Magnetic Coupling in a Tris-hydroxo-Bridged Chromium Dimer Occurs Through Ligand Mediated Superexchange in Conjunction with Through- Space Coupling," P. Sharma, D. G. Truhlar, and L. Gagliardi, Journal of the American Chemical Society 142, 16644-16650 (2020). doi.org/10.1021/jacs.0c06399

    A zip file containing sample input files and orbitals for the calculations in the third reference is available here.

2.1.3. MC-PDFT On-Top Functionals

    The following on-top density functionals are available for MC-PDFT: tLSDA, ftLSDA, tPBE, ftPBE, trevPBE, ftrevPBE, tBLYP, ftBLYP, tOPBE, and ftOPBE.

2.1.4. A Special Note

    Please use the keyword 'NoGr' (No Gradient) to avoid additional cost to compute gradients if gradients are not needed.

2.2. MC-PDFT Analytic Gradients

    The gradient of MC-PDFT obtained from a single-state (SS) reference wave function is different from that obtained from a state in a state-averaged (SA) calculation.

    State-specific CASSCF-PDFT analytic gradients as described in:

"Analytic Gradients for Complete Active Space Pair-Density Functional Theory," A. M. Sand, C. E. Hoyer, K. Sharkas, K. M. Kidder, R. Lindh, D. G. Truhlar, and L. Gagliardi, Journal of Chemical Theory and Computation 14, 126-138 (2018). doi.org/10.1021/acs.jctc.7b00967

    State-average CASSCF-PDFT analytic gradients as described in:

"Analytic Gradients for State-Averaged Multiconfiguration Pair-Density Functional Theory," T. R. Scott, M. R. Hermes, A. M. Sand, M. S. Oakley, D. G. Truhlar and L. Gagliardi, The Journal of Chemical Physics 153, 014106 (2020). https://doi.org/10.1063/5.0007040

     You may find a sample input for optimizing the geometry of ethylene using MC-PDFT.

2.3. Multi-State Pair-Density Functional Theory

2.3.1 Compressed Multi-State Pair-Density Functional Theory (CMS-PDFT)

    The manual of the CMS-PDFT method can be found here.

2.3.2 Extended Multi-State Pair-Density Functional Theory (XMS-PDFT)

    The manual of the XMS-PDFT method can be found here.

2.3.3 State-Interaction Pair-Density Functional Theory (SI-PDFT)

    The SI-PDFT method is described in the following reference:

"State-Interaction Pair-Density Functional Theory," A. M. Sand, C. E. Hoyer, D. G. Truhlar, and L. Gagliardi, The Journal of Chemical Physics 149, 024106 (2018). doi.org/10.1063/1.5036727

2.4. Natural Transition Orbitals (NTO) in RASSI

    The user can run a natural transition orbital calculation in the RASSI module in OpenMolcas (by Jie J. Bao).
    For methodology, usage, keywords and examples, one may refer to the manual for the NTO calculation in the RASSI module.

2.5. Scaling Exchange and Correlation in Density Functionals

2.5.1. Introduction

    The user can scale the exchange terms (by a factor of f_exch) and/or the correlation term (by a factor of f_corr) for a density functionals. This scaling works for KS-DFT calculations and MC-PDFT calculations that use translated or fully translated functionals. (by Sijia S. Dong)

2.5.2. Keyword and Usage

     Keyword:   DFCF
     Usage:        DFCF=f_exch f_corr
     Default:      DFCF=1.0 1.0

    *Note: By setting f_exch as 1.25 and f_corr as 0.5 one can get a High Local Exchange (HLE) density functional

2.5.3. Examples

    Example 1:

DFCF=1.0 0.9

    Example 2:

DFCF=1.25 0.5

2.6. Orbital Contributions

    Orbital contributions of properties can be calculated by the SEWARD module for all orbitals (including virtuals), such as orbital moments. Controlled by the new keyword ORBAll in &SEWARD. (by Sijia S. Dong)

2.7. Energy Decomposition in MC-PDFT

    The MC-PDFT module prints out individual energy components of the MC-PDFT total energy by default. (by Prachi Sharma)

3. Contributors

    J. J. Bao, S. S. Dong, L. Gagliardi, C. E. Hoyer, K. M. Kidder, A. Sand, T. Scott, K. Sharkas, P. Sharma, and D. G. Truhlar.

4. Links to Other Pages of Interest:

This document last modified  by Software Manager