Minnesota OpenMolcas Homepage

Jun. 2, 2019


OpenMolcas is a quantum chemistry package available at


The citation for OpenMolcas is the following [this will be updated when the article is accepted and online]:

I. F. Galván, M. Vacher, A. Alavi, C. Angeli, J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N. Dattani, M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos, L. Gagliardi, F. Gendron, A. Giussani, L. González, G. Grell, M. Guo, C. E. Hoyer , M. Johansson, E. Källman, S. Keller, S. Knecht, G. Kovacevic, G. Li Manni, M. Lundberg, Y. Ma, S. Mai, J. P. Malhado, P. Å. Malmqvist, P. Marquetand, S. A. Mewes, J. Norell, M. Olivucci, , M. Oppel, Q. M. Phung, K. Pierloot, F. Plasser, M. Reiher, A. M. Sand, I. Schapiro, P. Sharma, L. K. Sørensen, C. Stein, D. G. Truhlar, M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, P.-O. Widmark, S. Wouters, J. P. Zobel, and R. Lindh, OpenMolcas: From Source Code to Insight, Journal of Chemical Theory and Computation, submitted by RL on May 31, 2019. Manuscript no. ct-2019-00532s.

OpenMolcas evolved from Molcas. The final version of Molcas was 8.2, and it was described in the following article:

"Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table," F. Aquilante, J. Autschbach, R. K. Carlson, L. Chibotaru, M. G. Delcey, L. De Vico, I. F. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P.-Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen , D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, Journal of Computational Chemistry 37, 506-541 (2016). doi.org/10.1002/jcc.24221

Minnesota coauthors (at Minnesota at the time the work was done) of Molcas 8.2 are R. K. Carlson, L. Gagliardi, M. Hermes, C. E. Hoyer, G. Li Manni, D. Ma, and D. G. Truhlar.

OpenMolcas has all or most of the capabilites described in that article plus several new ones contributed by many workers at many institutions. At Minnesota we have made several enhancements beyond what is in version 8.2, and the authors of these enhancements in OpenMolcas are: J. J. Bao, S. S. Dong, L. Gagliardi, C. E. Hoyer, K. M. Kidder, A. Sand, T. Scott, K. Sharkas, and D. G. Truhlar.

Minnesota enhancements of OpenMolcas that are fully available from the Gitlab site:

  • Implementation of MC-PDFT in OpenMolcas for use with CASSCF wave functions.
  • References:

    1. "Multiconfiguration Pair-Density Functional Theory," G. Li Manni, R. K. Carlson, S. Luo, D. Ma, J. Olsen, D. G. Truhlar, and L. Gagliardi, Journal of Chemical Theory and Computation 10, 3669-3680 (2014). doi.org/10.1021/ct500483t
    2. "Multiconfiguration Pair-Density Functional Theory: A New Way to Treat Strongly Correlated Systems," L. Gagliardi, D. G. Truhlar, G. Li Manni, R. K. Carlson, C. E. Hoyer, and J. L. Bao, Accounts of Chemical Research 50, 66-73 (2017). doi.org/10.1021/acs.accounts.6b00471

  • MC-PDFT in OpenMolcas can also be used with RASSCF, GASSCF, CAS-CI, RAS-CI, and GAS-CI wave functions. CASSCF, RASSCF, and GASSCF are special cases of the multiconfiguration self-consistent-field (MCSCF) method, and one can use either state-specific SCF or state-averaged SCF.
  • MC-PDFT can be used in conjunction with density matrix renormalization group (DMRG) method. For DMRG-PDFT calculations, an interface between OpenMolcas and QCMaquis (https://gitlab.com/qc-maquis/) is required. A sample input file for N2 molecule with symmetry is shown here.
  • The following on-top density functionals are available for MC-PDFT: tLSDA, ftLSDA, tPBE, ftPBE, trevPBE, ftrevPBE, tBLYP, ftBLYP, tOPBE, and ftOPBE.
  • State-specific CASSCF-PDFT analytic gradients as described in:
  • "Analytic Gradients for Complete Active Space Pair-Density Functional Theory," A. M. Sand, C. E. Hoyer, K. Sharkas, K. M. Kidder, R. Lindh, D. G. Truhlar, and L. Gagliardi, Journal of Chemical Theory and Computation 14, 126-138 (2018). doi.org/10.1021/acs.jctc.7b00967

  • State-interaction pair-density functional theory (SI-PDFT) as described in:
  • "State-Interaction Pair-Density Functional Theory," A. M. Sand, C. E. Hoyer, D. G. Truhlar, and L. Gagliardi, The Journal of Chemical Physics 149, 024106 (2018). doi.org/10.1063/1.5036727

  • Orbital contributions of properties calculated by the &SEWARD module for all orbitals (including virtuals), such as orbital moments. Controlled by the new keyword ORBAll in &SEWARD. (by Sijia Dong)
  • User-defined scaling of the exchange terms and/or correlation terms of density functionals, including functionals for KS-DFT and MC-PDFT. This allows HLE-type functionals to be included in OpenMolcas. Controlled by the new keyword DFCF in the &SCF and &MCPDFT modules. (by Sijia Dong)
  • Usage: DFCF=f_exch f_corr
    Default: DFCF=1.0 1.0
    Example 1: &SCF; KSDFT=BLYP; DFCF=1.0 0.9
    Example 2: &MCPDFT; KSDFT=TPBE; DFCF=1.25 0.5

  • Printing individual energy components of the MC-PDFT total energy. This is now printed in all the MC-PDFT output files. (by Prachi Sharma)
  • In the near future, more of our added capabilities will be added to the Gitlab repository, and the present Web page will be updated to give more information about the Minnesota-added capabilities of OpenMolcas.

    A description of the MC-PDFT capabilities in OpenMolcas (as of 2018 November 9) is given in 181109MCPDFTinOpenMolcas.pdf

    Some input files for MC-PDFT in OpenMolcas are given in 181109OpenMolcasSampleInputFiles.txt

    Links to Other Pages of Interest:

    This document last modified  by Software Manager