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Natural Transition Orbital Calculations  

in the RASSI module of OpenMolcas 
Introduction 

This document is a manual for the natural transition orbital (NTO) calculation that is done in the RASSI 
module of OpenMolcas. It includes discussion of the theory of NTOs, an explanation of the code, and 
several input and output examples of the NTO calculations with the RASSI module. 

Prior to adding the NTO calculation to the RASSI module, OpenMolcas already contained code for NTO 
calculations (and other analysis tools) in the WFA module  

https://molcas.gitlab.io/OpenMolcas/sphinx/users.guide/programs/wfa.html 

but the new implementation extends the capability in two key ways: 

1.  An external package, in particular TheoDORE,1 is required for visualizing the NTOs calculated in the 
WHA module; however, NTOs calculated in the RASSI module can be visualized with luscus, 

https://sourceforge.net/projects/luscus/ 

which is a more commonly used external package for OpenMolcas users than TheoDORE. The new 
implementation prints out the NTO files in the same format as how other orbital files, such as ScfOrb file 
and RasOrb file, are printed. So the output file can also be used for three-dimensional graphics with the 
GRID_IT module. 

2. WHA cannot calculate NTOs for states with different symmetries, but the new implementation in RASSI 
can do this, as shown in Section 4 for this document. 

To distinguish the NTO calculations in two modules, those performed in the RASSI module will be called 
RASSI-NTO, or simply NTO, and those performed in the WFA module will be called WFA-NTO. The 
comparison between RASSI-NTO and WFA-NTO is only made in Section 4, so all discussions in other 
sections of this module refer to the implementation in the RASSI module. 

  

https://molcas.gitlab.io/OpenMolcas/sphinx/users.guide/programs/wfa.html
https://sourceforge.net/projects/luscus/
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1. Theory 

The definition of NTOs was originally proposed by Martin,2 whose paper is cited by the manuals of 
Gaussian 16,3 Q-Chem4 and the WFA module in OpenMolcas (although, as discussed below, the 
implementations in these codes do not necessarily agree precisely with Martin’s definitions). 
Furthermore, Martin’s NTOs are defined only for configuration interaction with single excitations (CIS) 
in Ref. 2; however the implementation of NTOs discussed here is for multiconfigurational (MC) wave 
functions generated in the RASSCF module, so in this section we explain the extension of NTOs to those 
multiconfigurational calculations. In addition, this section explains a mistake in Martin’s paper. We will 
also show that we avoid the mistake in similar ways as other papers5,6 do. 

1.1 Martin’s definition 

Here we use a CIS calculation with a restricted Hartree-Fock (RHF) wave function for the ground state to 
explain the theory in Martin’s paper.  

Suppose there are No occupied orbitals and Nv virtual orbitals in the ground state. An NTO calculation 
starts with the transition density matrix (TDM) from the ground state to state J. An element of a TDM is 
as follows: 

 𝐷𝐷𝑝𝑝𝑝𝑝
𝐽𝐽 = ∑ �𝐽𝐽�𝑎𝑎𝑝𝑝𝑝𝑝

† 𝑎𝑎𝑝𝑝𝑝𝑝�0�𝑝𝑝  (1) 

where p and q are spatial orbitals with q ranging from 1 to No and p ranging from No+1  to NBas (which is 
equal to No + Nv); and σ is the spin.  

Then two symmetric matrices are constructed from the TDM: 

 𝐌𝐌𝐽𝐽 = (𝐃𝐃𝐽𝐽)T𝐃𝐃𝐽𝐽 (2) 

 𝐍𝐍𝐽𝐽 = 𝐃𝐃𝐽𝐽(𝐃𝐃𝐽𝐽)T (3) 

The eigenvector matrix (denoted 𝐔𝐔𝐽𝐽) of 𝐌𝐌𝐽𝐽 multiplying the occupied canonical MO coefficient matrix 
(𝐂𝐂𝐨𝐨), which is a matrix of the coefficients of basis functions that form canonical MOs, gives the hole NTO 
coefficient matrix, 𝐂𝐂𝐡𝐡𝐽𝐽, which is a matrix of the coefficients of basis functions that form NTOs. Similarly, 
the particle NTO coefficient matrix, 𝐂𝐂𝐩𝐩𝐽𝐽, is a multiplication of the eigenvector matrix (𝐕𝐕𝐽𝐽) of 𝐍𝐍𝐽𝐽 and the 
virtual canonical MO coefficient matrix (𝐂𝐂𝐯𝐯). The formulas are as follows: 

 𝐂𝐂𝐡𝐡𝐽𝐽 = 𝐔𝐔𝐽𝐽𝐂𝐂𝐨𝐨 (4) 

 𝐂𝐂𝐩𝐩𝐽𝐽 = 𝐕𝐕𝐽𝐽𝐂𝐂𝐨𝐨 (5) 

 𝐌𝐌𝐽𝐽𝐔𝐔𝐽𝐽 = 𝝀𝝀𝐽𝐽𝐔𝐔𝐽𝐽 (6) 

 𝐍𝐍𝐽𝐽𝐕𝐕𝐽𝐽 = 𝜿𝜿𝐽𝐽𝐕𝐕𝐽𝐽 (7) 

where 𝝀𝝀𝐽𝐽and 𝜿𝜿𝐽𝐽are eigenvalue matrices of 𝐌𝐌𝐽𝐽 and 𝐍𝐍𝐽𝐽, respectively. If there are n nonzero eigenvalues of 
𝐌𝐌𝐽𝐽, one will also find n non-zero eigenvalues of 𝐍𝐍𝐽𝐽. Each nonzero eigenvalue of 𝐍𝐍𝐽𝐽 equals one of the 
eigenvalues of 𝐌𝐌𝐽𝐽. A particle NTO and a hole NTO that correspond to the same eigenvalue are called a 
particle-hole pair, and the square root of their eigenvalue is called an excitation amplitude, �𝜆𝜆𝑖𝑖 (or �𝜅𝜅𝑖𝑖), 
where i is the index of ith particle NTO, hole NTO or particle-hole pair, and 𝜆𝜆𝑖𝑖 (or 𝜅𝜅𝑖𝑖) is a diagonal 
element of the matrix 𝝀𝝀𝐽𝐽 (or 𝜿𝜿𝐽𝐽) in the ith row. 
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Martin’s paper says that the sum of the eigenvalues for particle NTOs or hole NTOs is 1 for CIS wave 
functions. This is a mistake made in Martin’s paper. In the next section we show that it is not right and 
reformulate Equation (1) so that the sum is 1 for CIS wave functions. 

1.2 NTOs of He atom 

1.2.1 NTO using Martin’s definition 

According to Martin’s definition, one may consider a He atom with three s-type basis functions. The 
ground state wave function and the CIS excited state wave function are  

 Ψ1 = |ϕ1αϕ1β| (8) 

 Ψ2 = 𝑐𝑐1
1
√2

 [|ϕ1αϕ2β| - |ϕ1βϕ2α|] + 𝑐𝑐2
1
√2

 [|ϕ1αϕ3β| - |ϕ1βϕ3α|] (9) 

where {ϕi} is a set of orthonormal canonical MOs. Since both wave functions are normalized, we have c1
2 

+ c2
2 = 1. 

The transition density matrix is 

𝐃𝐃1 = �√2𝑐𝑐1
√2𝑐𝑐2

� (10) 

And the two symmetric matrices are  

𝐌𝐌1 =  (2) (11) 

𝐍𝐍1 =  � 2𝑐𝑐12 2𝑐𝑐1𝑐𝑐2
2𝑐𝑐1𝑐𝑐2 2𝑐𝑐22

� (12) 

The eigenvalues are 2 and 0 for 𝐍𝐍1 and 2 for 𝐌𝐌1. 

This is clearly contradictory to Martin’s claim that the sum is 1. 

1.2.2 A modification of Martin’s definition 

However, if one calculates NTOs for α and β orbitals separately, one can obtain eigenvalues that sum to 
unity. Define 

𝐷𝐷𝑝𝑝𝑝𝑝,𝑝𝑝
𝐽𝐽 = �𝐽𝐽�𝑎𝑎𝑝𝑝𝑝𝑝

† 𝑎𝑎𝑝𝑝𝑝𝑝�0� (13) 

Since we are calculating NTOs for singlet states, we may use the calculations for α spins as an example 
since the NTO calculation for β spin is the same as that for α spin.  

𝐃𝐃α1 = �
1
√2
𝑐𝑐1

1
√2
𝑐𝑐2
� (14) 

𝐌𝐌α
1 =  (1

2
) (15) 

𝐍𝐍α1 =  �
1
2
𝑐𝑐1
2 1

2
𝑐𝑐1𝑐𝑐2

1
2
𝑐𝑐1𝑐𝑐2

1
2
𝑐𝑐2
2 � (16) 
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The sum of eigenvalues of 𝐍𝐍α1  is 0.5 for either particle NTOs or hole NTOs; therefore the sum of 
eigenvalues of both α and β is unity. The NTOs calculated for each spin are called spin NTOs. For singlet 
systems, one can find an α NTO that has the same spatial part as that of a β NTO; therefore the spatial 
part of that α NTO or that β NTO is called a spatial NTO, whose eigenvalue is defined here to be the sum 
of the eigenvalues of the α NTO and the β NTO.  

The NTOs calculated from a CIS calculation are called CIS spin NTOs. 

Ideas similar to that of spin NTOs are also found in other papers. The paper by Mayer, although it does 
not explicitly use the terminology of NTOs, calculates the spin NTOs for each spin separately.5 The paper 
by Plasser et al. also calculates the NTOs from a transition density matrix for spin orbitals.6   

1.3 Extension of NTO theory 

The idea behind an NTO calculation can be extended to complete active space self-consistent field 
(CASSCF), complete active space configuration interaction (CASCI), restricted active space self-
consistent field (RASSCF), and restricted active space configuration interaction (RASCI) wave functions. 
The transition density matrix in still defined as equation (9), but p and q are the indices of active orbitals. 
This leads to a square TDM whose number of rows or columns is the number of active orbitals. 

We use a RASCI calculation on He to explain how this method works, still with three s-type basis 
functions. In this RASCI calculation, one starts with RHF orbitals as initial orbitals, putting the occupied 
MO in the RAS1 space, no MO in the RAS2 space, and two MOs in the RAS3 space, and allowing at 
most one hole and one particle in the RAS1 and RAS3 spaces, respectively; then one calculates the first 
two states without optimizing orbitals. This calculation leads to two wave functions that are equal to 
equation (4) and (5), respectively. However, according to the new definition, the TDM and the other two 
matrices are as follows: 

𝐃𝐃α1 = �

0 0 0
1
√2
𝑐𝑐1 0 0

1
√2
𝑐𝑐2 0 0

� (17) 

𝐌𝐌α
1 = �

1
2

0 0
0 0 0
0 0 0

�  (18) 

𝐍𝐍α1 = �

0 0 0
0 1

2
𝑐𝑐12

1
2
𝑐𝑐1𝑐𝑐2

0 1
2
𝑐𝑐1𝑐𝑐2

1
2
𝑐𝑐22

� (19) 

The matrices in section 1.2.2 are submatrices of the corresponding ones in equations (13)-(15).  
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2. Method in the RASSI module of OpenMolcas 

2.1 Methodological details 

This RASSI-NTO calculation uses the method defined in section 1.3, namely the method that calculates 
active-space spin NTOs. It starts with a two-state transition density matrix, which is calculated by 
CASSCF, RASSCF, CASCI, or RASCI. These four kinds of calculation are performed in the RASSCF 
module. The RASSCF module prints out the CI coefficients of configuration state functions (CSFs) that 
are expressed in a state-averaged natural orbital (SA-NO) basis. The TDM is calculated from those CI 
coefficients; therefore the matrices calculated from the TDM, for example, 𝐌𝐌α

1 , are expressed in terms of 
SA-NOs, and their eigenvectors are applied to SA-NOs to generate NTOs. 

The code that calculates active-space spin NTOs in the RASSI module is called NTOCalc, and it uses the 
methodology discussed in section 1.3. It calculates α spin NTOs without converting them to spatial NTOs 
if the wave functions are singlets. 

If the active orbitals are put in different irreducible representations (irrep) when a symmetry is imposed to 
the wave function, the MO coefficients are stored in a no-symmetry form, as explained next. Suppose 
there are four irreps, having 1, 2, 3, and 4 basis functions, respectively, and there are two active orbitals, 
one in the second irrep and the other in the fourth irrep. Then the code first creates a new 2×6 (two rows 
for the two active orbitals, and six columns for the number of basis functions that are used for active 
orbitals) matrix to store the MO coefficients. The MO coefficients of the first active orbital will be put in 
the first and the second element in the first row of the new matrix, and the last four elements in the first 
row are zero. The MO coefficients of the second active orbital will be put in the last four elements in the 
new matrix in the second row, and the first two elements in the second row are zero. This new form of 
storing MO coefficients is what we call a no-symmetry form. The new matrix is the MO matrix that will 
be used to calculate NTOs, and the NTOs will be converted back to their original form to be printed out. 
For the previous example, the NTOs will be printed out as one orbital in the second irrep and the other the 
fourth irrep. 

If two states have different symmetries, the TDM is calculated with a rotated biorthogonal MO basis.7 In 
this situation, the rotations are applied to the SA-NOs that are rotated once in the biorthogonalization 
process. 

We now define excitation contribution (EC) for a particle-hole pair: 

𝐸𝐸𝐸𝐸NTO,𝑖𝑖
σ = 𝜆𝜆𝑖𝑖

σ

∑ 𝜆𝜆𝑖𝑖
σ

𝑖𝑖
 (20) 

where 𝜆𝜆𝑖𝑖σ is eigenvalue of the ith particle-hole pair with spin σ, and i ranges from 1 to the number of 
active orbitals. 

NTOCalc prints the excitation amplitude, eigenvalue, and excitation contribution of each pair of particle 
and hole NTOs. It also prints NTO files in the current working directory (where the rest of the output is 
printed) with a name in the form Project.NTOrb.IState_JState.Spin.NTOType. Project is the name of the 
project given by the variable $Project, IState is an index assigned by the RASSI module for a state in the 
first JobIph file (see the explanation in Sections 3.1.2 and 3.2.2), and JState is an index assigned by the 
RASSI module for a state in the second JobIph file. Spin is either a for α or b for β, and NTOType is PART 
for particle NTOs and HOLE for hole NTOs. For example, a file named H2.NTOrb.1_2.a.PART has the 
information on α particle NTOs, between the first state and the second state assigned by the RASSI 
module. The excitation contributions are stored in places where the occupation numbers are stored for 



6 
 

 
 

other orbital files (for example, .ScfOrb, .RasOrb). NTO files can be used by the GRID_IT module to 
generate .lus files. 

2.2 Input keywords 

The input lines to activate an NTO calculation are as follows: 

>>COPY $Scratch/$Project.JobIph $Scratch/JOB001 
>>COPY $Scratch/$Project.JobIph $Scratch/JOB002 
&RASSI 
NTOC        
NR OF JOBIHPS = 2 1 1 
1; 2 

The Emil commands are used to generate two JobIph files named JOB001 and JOB002. 

&RASSI is the name of the module in which RASSI-NTO calculation can be performed. 

NTOC is the keyword to activate the NTO calculation in the RASSI module. Without it the RASSI module 
will not do NTO calculations. 

 NR OF JOBIPHS is the keyword that specifies how many JobIph files to read, how many states in each 
JobIph file to use and which states in each JobIph file to use for the calculations performed in this 
module. The numbers 2 1 1 means there are two JobIph files, in the first file one state will be used and in 
the second file one state will be used. The number 1; 2 in the following line means in the first JobIph file 
the first state will be used, and in the second JobIph file the second state will be used. More information 
of this keyword can be found on the OpenMolcas manual. 
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3. Examples 

3.1 An example for an NTO calculation from a RASCI calculation 

3.1.1 Input File 

&GATEWAY 
Coord=C2H4.xyz 
Basis=3-21G 
Group=C1 
 
&SEWARD 
 
&SCF 
 
&RASSCF 
Lumorb 
CIONLY 
Spin=1 
CIROOT= 2 2 1 
INACTIVE=0 
NACTEL= 16 1 1 
RAS1=8 
RAS2=0 
RAS3=18 
 
>>COPY $Scratch/$Project.JobIph $Scratch/JOB001 
>>COPY $Scratch/$Project.JobIph $Scratch/JOB002 
 
RASSI 
NTOC        
 NR OF JOBIHPS = 2 1 1 
 1; 2 
 
&Grid_it 
 All 
 FileOrb=$Scratch/C2H4.NTOrb.1_2.a.PART     
>> COPY $CurrDir/C2H4.lus $CurrDir/2APart.lus 
 
&Grid_it 
 All 
 FileOrb=$Scratch/ C2H4.NTOrb.1_2.a.HOLE 
>> COPY $CurrDir/C2H4.lus $CurrDir/2AHole.lus   
  
This is an input file that does a RASSI-NTO calculation for RASCI wave functions with RHF orbitals; the 
wave functions are the same as CIS wave functions for the first excited state. Modules GATEWAY to 
RASSCF generate RASCI wave functions, RASSI with the keyword NTOC calculates NTOs, and Grid_it 
modules produce output files that can be used to create pictures of the NTOs from the files, 
C2H4.NTOrb.1_2.a.PART and C2H4.NTOrb.1_2.a.HOLE.  
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3.1.2 Output 

In the output file the information on natural transition orbitals is as follows: 
  
 State:  1   2 
 JobIph:  1   2 
 Root nr: 1   2 
************************************************************************************* 
*                                      NATURAL TRANSITION ORBITALS                                   * 
*                                      BETWEEN STATE  1  AND STATE  2      *   
************************************************************************************* 
NTO CALCULATION ONLY DONE FOR ALPHA SPIN BECAUSE THE WAVE FUNCTION IS A SINGLET, SO 
ALPHA NTOS ARE EQUAL TO BETA ONES 
 
NATURAL TRANSITION ORBTIAL INFORMATION FOR ALPHA SPIN 

EXCITATION 
AMPLITUDE EIGENVALUE EXCITATION 

CONTRIBUTION(%) 
HOLE NTO PARTICLE NTO 

SYMMETRY INDEX SYMMETRY INDEX 
0.68636 0.47109 94.22 a 26 a 26 
0.12109 0.01466 2.93 a 25 a 25 
0.07269 0.00528 1.06 a 24 a 24 
0.06853 0.00470 0.94 a 23 a 23 
0.05165 0.00267 0.53 a 22 a 22 
0.04000 0.00160 0.32 a 21 a 21 

SUM OF EIGENVALUES 0.50000         
************************************************************************************* 
*                                      END OF NATURAL TRANSITION ORBITALS                                   * 
*                                      BETWEEN STATE  1  AND STATE  2      *   
************************************************************************************* 
 
The figures of the particle and hole NTOs are shown in the bottom row in Figure 1. 

There are three lines before the NTO section, each line has 1 and 2. This part is called state information in 
this document. In the first line starting with State, 1 means the first state assigned by the RASSI module 
and 2 means the second state assigned by the module. In the second line starting with JobIph:, 1 indicates 
that the first module-assigned state comes from the first JobIph file, i.e. JOB001 in the scratch space, 
according to the input example in section 3.1.1; 2 indicates that the second module-assigned state comes 
from the second JobIph file, i.e. JOB002. The third line shows that the first module-assigned state is the 
first state in the first JobIph file, and the second module-assigned state is the second state in the second 
JobIph file. From this information we know that IState is 1 and that Jstate is 2 for the name of the NTO 
files produced for this state, which is the second state in the second JobIph file. 

Before the table the output says that the NTO calculation is only done for α spin if the wave functions are 
singlets. Then it prints out the results for α spin NTOs. 

The output prints out the excitaiton amplitudes, the eigenvalues and the excitation contribution of each 
pair of hole and particle NTOs whose eigenvalue is greater than 10-5. Since only α-spin information is 
printed out, the sum of eigenvalues should be (and is) 0.5. This is different from Q-Chem or Gaussian, 
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whose output writes the eigenvalues of what we define as spatial NTOs. (See section 4 for more 
information.) 

The program also prints the symmetry and the index of each hole NTO or particle NTO. The index of a 
particle NTO is its index only among the particle NTOs with the same spin, because a particle NTO and a 
hole NTO are calculated separately from two different matrices (and NTOs with different spins are 
calculated separately too). Therefore, for non-singlet systems, it is strongly encouraged to visualize the 
particle NTOs and hole NTOs for each spin. 

The figures of the hole and particle NTOs from Gaussian 16 are also shown in Figure 1. We can clearly 
see that with the same set of ground-state and excited-state wave functions, Gaussian 16 and the RASSI-
NTO code give the same set of NTOs. 

 

 

Figure 1. Hole NTOs and particle NTOs by Gaussian 16 (top row) and OpenMolcas (bottom row). From 
the left to the right are three hole spin NTOs with the excitation amplitudes in an increasing order (0.07, 
0.12, and 0.69) and three particle spin NTOs with the excitation amplitudes in a decreasing order (0.69, 
0.12, and 0.07). 
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3.2 An example of an NTO calculation using wave functions with different symmetries 

3.2.1 Input example 

&GATEWAY 
Coord=C2H4.xyz 
Basis=3-21G 
Group=Full 
&SEWARD 
&SCF 
>> COPY $CurrDir/C2H4.ScfOrb $Scratch/INPROB 
&RASSCF 
 LumOrb 
 Symmetry=1     
 Spin=1 
 INACTIVE=2 0 1 0 0 0 0 0 
 RAS2=2 2 2 1 1 0 1 0 
 NActele=10 0 0 
 CIRoot=1 1 1 
>> COPY $Scratch/C2H4.JobIph $Scratch/JOB001 
>> COPY $CurrDir/C2H4.ScfOrb $Scratch/INPROB 
&RASSCF 
 LumOrb 
 Symmetry=3     
 Spin=1 
 INACTIVE=2 0 1 0 0 0 0 0 
 RAS2=2 2 2 1 1 0 1 0 
 NActele=10 0 0 
 CIRoot=1 1 1 
>> COPY $Scratch/C2H4.JobIph $Scratch/JOB002 
RASSI 
NTOC 
Nr of JobIphs=2 1 1 
1;1 
&Grid_it 
 All 
 FileOrb=$Scratch/C2H4.NTOrb.1_2.a.PART     
>> COPY $CurrDir/C2H4.lus $CurrDir/2APart.lus 
&Grid_it 
 All 
 FileOrb=$Scratch/C2H4.NTOrb.1_2.a.HOLE 
>> COPY $CurrDir/C2H4.lus $CurrDir/2AHole.lus   
 

Here, CASSCF wave functions with different symmetries are used in the RASSI module.  
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3.2.2 Output 

Below is the part of the output that shows the state information and the eigenvalues and eigenvectors of 
NTOs. 

 State:  1   2 
 JobIph:  1   2 
 Root nr: 1   1 
 

EXCITATION 
AMPLITUDE EIGENVALUE EXCITATION 

CONTRIBUTION(%) 
HOLE NTO PARTICLE NTO 

SYMMETRY INDEX SYMMETRY INDEX 
0.66496 0.44218 94.13 b1u 1 b3g 1 
0.12930 0.01672 3.56 b3g 1 b1u 1 
0.08173 0.00668 1.42 ag 4 b2u 3 
0.04858 0.00236 0.50 b2u 3 ag 4 
0.03810 0.00145 0.31 b1g 1 b3u 2 
0.01886 0.00036 0.08 ag 3 b2u 2 

SUM OF EIGENVALUES 0.46974         
 

The particle and hole NTOs are shown in Figure 2. 

The state information shows that the NTOs will be for the second module-assigned state, which is the first 
state in the second JobIph file. The NTO files are named C2H4.NTOrb.1_2.a.PART and 
C2H4.NTOrb.1_2.a.HOLE. 

The CASSCF ground state has two important configurations, (π)2 and (π*)2, respectively. This is a major 
difference of the wave functions in this section and the wave functions in Section 3.1, and it leads to an 
interesting result that both the π and the π* orbitals can be important hole NTOs or particle NTOs.  

 

Figure 2. Hole NTOs (top row) and particle NTOs (bottom row) of C2H4 in D2h symmetry. The numbers 
are the eigenvalues for each particle-hole pair. 

In contrast to the previous example, the sum of eigenvalues is not 0.5, this is because the wave functions 
correspond to full configuration interaction within the active space, and excitations higher than singles do 
not contribute to the eigenvalues.  
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3.3 An example for an NTO calculation for non-singlets 
3.3.1 Input example 
&Gateway 
Coord=C2H4.xyz 
Group=C1 
Basis=3-21G 
&Seward 
&SCF 
UHF 
Spin=2 
Charge=1 
&RASSCF 
CIOnly 
Charge=1 
Spin=2 
Inactive=0 
RAS1=7 
RAS2=1 
RAS3=18 
Nactele=15 1 1 
CIRoot=2 2 1 
THRS 
1.0D-08 1.0D-04 1.0D-1 
>> COPY $Scratch/$Project.JobIph $Scratch/JOB001 
>> COPY $Scratch/$Project.JobIph $Scratch/JOB002 
RASSI 
NTOC 
Nr of JOBIPHS = 2 1 1 
1; 2 
&Grid_it 
 All 
 FileOrb=$Scratch/ C2H4.NTOrb.1_2.a.PART 
>> COPY $CurrDir/C2H4.lus $CurrDir/2APart.lus 
&Grid_it 
 All 
 FileOrb=$Scratch/C2H4.NTOrb.1_2.a.HOLE 
>> COPY $CurrDir/C2H4.lus $CurrDir/2AHole.lus 
&Grid_it 
 All 
 FileOrb=$Scratch/C2H4.NTOrb.1_2.b.PART 
>> COPY $CurrDir/C2H4.lus $CurrDir/2BPart.lus 
&Grid_it 
 All 
 FileOrb=$Scratch/ C2H4.NTOrb.1_2.b.HOLE 
>> COPY $CurrDir/C2H4.lus $CurrDir/2BHole.lus 
 
This is an input file for the NTO calculation of a doublet system, C2H4

+.  
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3.3.2 Output 

Below is the part of the output that shows the state information and the eigenvalues and eigenvectors of 
NTOs. 

 State:  1   2 
 JobIph:  1   2 
 Root nr: 1   2 
 

EXCITATION 
AMPLITUDE EIGENVALUE EXCITATION 

CONTRIBUTION(%) 
HOLE NTO PARTICLE NTO 

SYMMETRY INDEX SYMMETRY INDEX 
0.02928 0.00086 66.37 a 26 a 26 
0.01517 0.00023 17.82 a 25 a 25 
0.01369 0.00019 14.51 a 24 a 24 

0.0041 0.00002 1.3 a 23 a 23 
SUM OF EIGENVALUES 0.00129         

 

NATURAL TRANSITION ORBTIAL INFORMATION FOR BETA  SPIN 

EXCITATION 
AMPLITUDE EIGENVALUE EXCITATION 

CONTRIBUTION(%) 
HOLE NTO PARTICLE NTO 

SYMMETRY INDEX SYMMETRY INDEX 
0.97005 0.94099 97.75 a 26 a 26 
0.14703 0.02162 2.25 a 25 a 25 

SUM OF EIGENVALUES 0.96261         
 

Since the wave functions are not singlets, the information for two spins is printed out.  

The NTOs of C2H4
+ in Cs symmetry is shown in Figure 3. The excited state corresponds to a β electron 

excited from the σ orbital, see the top left one in Figure 3(b), to the π orbital, see the bottom left one in 
Figure 3(b). The eigenvalues show that the first excited state is strongly dominated by β electron 
excitations. 

 

Figure 3. Hole NTOs (top) and particle NTOs (bottom) in α spin (a) and β spin (b) of C2H4
+ in Cs 

symmetry. The eigenvalues (from left to right) for each pair are 0.00023 and 0.00086 (α NTOs), 
respectively, and 0.02162 and 0.94099 (β NTOs), respectively.  
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4. A comparison among the NTO calculations using different programs 

As mentioned previously, the WFA module also calculates NTO in OpenMolcas. Table 1 compares the 
printed eigenvalues of the NTO calculations in the RASSI module (corresponding the RASSI column), in 
the WFA module (called WFA-NTO in this section), by Gaussian, and by Q-Chem. Other codes do not 
distinguish between spatial NTOs and spin NTOs, so we first present the eigenvalues printed out in the 
output, and from this we deduce whether the eigenvalues are for spatial NTOs or spin NTOs. 

All the calculations done in Table 1 use 3-21G basis set. Two systems are tested, C2H4 and C2H4*, whose 
geometries are shown in Appendix A. The NTO calculations are performed for neutral and charged C2H4 
and C2H4*. 

First, we compare the ratio of the eigenvalues from RASSI-NTO and WFA-NTO. The RASSI-NTO code 
calculates only α spin NTOs if the wave functions are singlets, and calculates both α and β NTOs in other 
cases. We find that the ratio is 2 for singlet systems, and 1 for the doublet system. We conclude that 
WFA-NTO prints out the eigenvalues of spatial NTOs when the wave functions are singlets and of spin 
NTOs when the wave functions are not singlets. 

We also find that the ratio of Gaussian eigenvalues to the Q-Chem ones is 1 for singlets and 2 for the 
doublet. This suggests that Q-Chem prints out spatial NTOs when the wave functions are singlets, and 
spin NTOs when the wave functions are not. 

The ratios of Gaussian eigenvalues to the RASSI-NTO eigenvalues are always two, and the output says 
“alpha occ. eigenvalues” even when the wave functions are singlets (see the examples in Appendix B on 
the output of Gaussian), we conclude that Gaussian always prints out spin NTOs and multiplies the 
eigenvalues by two before they are printed out. 

Then we consider symmetries using the fifth NTO calculation in Table 1 as an example. In this case, the 
wave functions are in the D2h point group, the ground state has Ag symmetry, and the first excited state 
has B2u symmetry. As explained in section 2.1, the RASSI-NTO code uses an intermediate matrix to store 
the MO coefficients in a no-symmetry way, and it also uses the biorthonalized MO basis when it gives 
results (eigenvalues and NTO coefficients) for NTOs of an excited state with a different symmetry from 
the ground state. On the contrary, the WFA-NTO code gives zeros for the eigenvalues, indicating that the 
code does not apply to cases where the excited state has a different symmetry from the ground state. This 
is an aspect where the RASSI-NTO is more general than the WFA-NTO. 
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Table 1. Eigenvalues of spin or spatial NTOs calculated by RASSI-NTO, WFA-NTO, and Gaussian 

Molecule Method 2S+1 Group Excited  
Statea RASSI WFA Gaussian Q-Chem WFA/RASSIb 

C2H4 
CIS or 
HF/RASCI 
(16;1;1,8,0,18)c 

1 C1 1 
0.47109 0.9422 0.94211  

2 0.01466 0.0293 0.0293  
0.00528 0.0106 0.01061  

C2H4 
SA(2)- 
CASCF(2,2)d 1 C1 1 

0.4999 0.9998     
2 0.0001 0.0002     

        

C2H4 
SA(2)- 
CASCF(2,2) 1 C1 2 

0.00021 0.0004   
2 0.00021 0.0004   

    

C2H4 
SA(2)-
CASSCF(10,8) 1 D2h 2 

0.03726 0.0745     
2 0.03675 0.0735     

2,2,2,1,1,0,1,0e 0.00013 0.0003     

C2H4 
CASSCF(10,8) 1 D2h 1 

0.44218 0   
n.a. 0.01672 0   

2,2,2,1,1,0,1,0 0.00668 0   

C2H4* CIS 1 C1 1 
0.47282 0.9456 0.94558 0.9456 

2 0.01378 0.0276 0.02755   
0.00497 0.0099 0.00997   

C2H4
+ HF/RASCI 

(15;1;1,7,1,18) 2 C1 1 
0.0009/0.9410f 0.00086/0.94099   

1 0.0002/0.0216 0.00023/0.02162   
0.0002/0.0000 0.00019/0.00000   

C2H4
*+ CIS 2 C1 1 

    0.00371/1.90584 /0.9530 
n.a.     0.00037/0.09001 /0.0450 

    0.00007/0   
aThe ground state is dominated by the (π)2(π*)0 configuration, and, except in the CIS calculation, the second most important configuration is 
(π)0(π*)2. The first excited state is a state dominated by the (π)1(π*)1 configuration. The second excited state is dominated by the (π)0(π*)2 

configuration, and, except in the CIS calculation, the second most important configuration is (π)2(π*)0. 
bThis is the ratio of eigenvalues calculated by the WFA module and that by the RASSI module. 
cA RASCI calculation that uses HF orbitals is the same as a CIS calculation because there are 16 active electrons, 1 hole in RAS1, 1 particle in 
RAS3, 8 orbitals in RAS1, no orbitals in RAS2, and 18 orbitals in RAS3. 
dThis is a CASSCF calculation including two active electrons and two active orbitals, averaged over 2 states. 
eThe eight numbers are the numbers of active orbitals in ag, b3u, b2u, b1g, b1u, b2g, b3g and au symmetries. 
fThe eigenvalues are shown as α_eigenvalue/β_eigenvalue.  
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Appendix A. The geometries of C2H4 and C2H4* 

Two geometries are used for calculations in Table 1. The first one is the geometry of ethylene, which has 
D2h symmetry. The second one pulls the last H atom of ethylene 0.1 Ångstrom above the XY plane so that 
the molecule has no symmetry. 
The input geometries are as follows, where the unit is Å. 
 
C2H4 
 C   0.000000    0.660645    0.000000 
 H   0.918431    1.232652    0.000000 
 H  -0.918383    1.232708    0.000000 
 C   0.000000   -0.660645    0.000000 
 H  -0.918431   -1.232652    0.000000 
 H   0.918383   -1.232708    0.000000 
 
C2H4

* 

 C   0.000000    0.660645    0.000000 
 H   0.918431    1.232652    0.000000 
 H  -0.918383    1.232708    0.000000 
 C   0.000000   -0.660645    0.000000 
 H  -0.918431   -1.232652    0.000000 
 H   0.918383   -1.232708    0.100000 
 
Appendix B. The eigenvalues printed out by Gaussian and Q-Chem 

This section shows that Gaussian multiplies the eigenvalues of spin NTOs by 2 before they are printed 
out. 

Below is a part of the output for the NTO eigenvalues of He with 3-21G basis set with Gaussian. 

Alpha  occ. eigenvalues --    1.00000 
 Alpha virt. eigenvalues --    1.00000 
 
Starting with the α transition density matrix for He in the 3-21G basis set (using the definition in Section 
1.2.2 because the NTO calculations presented here from Gaussian and Q-Chem are for CIS states) 

𝐃𝐃α𝟎𝟎𝟎𝟎 = � 1
√2
� (16) 

This gives 

𝐌𝐌α = (0.5) (17) 

This means that the eigenvalue should be 0.5 for the α NTO, but Gaussian prints it out as 1.  

Another proof is from the output of calculations for C2H4
+ spin NTOs by Gaussian and by Q-Chem. 

Below is a part of the output for C2H4
+ NTO calculation with Gaussian: 

Alpha  occ. eigenvalues --    0.00007   0.00037   0.00371 
 Alpha virt. eigenvalues --    0.00371   0.00037   0.00007   0.00000   0.00000 
… 
  Beta  occ. eigenvalues --    0.09001   1.90584 
   Beta virt. eigenvalues --    1.90584   0.09001   0.00000   0.00000   0.00000 
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Below is the part of the output for C2H4
+ NTO calculation with Q-Chem: 

e-/hole pair  1 beta :  ampl =  0.9762   (95.3 %)  
e-/hole pair  2 beta :  ampl =  0.2121   ( 4.5 %) 
 
The largest eigenvalue of the β spin NTOs is 0.976, and we have 1.90584/(0.9762)2=2.00.   (Here note 
that Q-Chem reports the amplitudes.) 

For the NTO calculation between the first excited state and the ground state of He2
+, Gaussian gives 

1.97780 for the largest eigenvalue, and Q-Chem gives (0.9944)2.  The ratio is, again, 2.00. 

In conclusion, when we compare the results of the NTO calculation that is done in the RASSI module with 
those that are performed in Gaussian, we should be aware that there is a ratio of 2 for the eigenvalues of 
spin NTOs. 
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