

Tutorial for TUMME 2023

Rui Ming Zhang
Xuefei Xu
Tsinghua University
and
Donald G. Truhlar
University of Minnesota

Outline

- Introduction
- Installation
- How to run
- Input file
- Output files
- Others
- Example

Introduction – 1

What is TUMME?

- TUMME (Tsinghua University Minnesota Master Equation solver) is a computer program for setting
 up and solving one-dimensional energy-dependent master equations for gas-phase chemical kinetics.
- TUMME can solve for the phenomenological rate constants and the time evolution of energy-bin populations for a gas-phase reaction network involving single or multiple intermediate energy-wells in a (*P*, *T*) ensemble.

What can TUMME do?

- Construct the transition matrix of a master equation with discrete energy bins
- Calculate rate constants for collisional energy transfer
- Calculate microcanonical reaction rates including anharmonicity, recrossing, and tunneling
- Calculate phenomenological rate constants for a complicated reaction map
- □ Calculate the time evolution of energy populations
- Characterize the pressure and temperature dependences of chemical kinetics

Introduction – 2

- Basic assumptions of TUMME
 - Markov random process

The transition process depends on the current state and has no historical memory.

□ RRKM assumption

The intramolecular vibrational relaxation (IVR) is faster than reaction.

Bimolecular reagents equilibrated

Bimolecular pairs are always in thermal equilibrium.

- Pressure, temperature, and concentrations
 - a) Constant pressure, constant temperature
 - b) Bath gas is ideal gas
 - c) Bath gas concentration >> reactant and product concentrations

Master equation sketch

Introduction – 3

Features of TUMME

- Microcanonical flux coefficients by multistructural variational transition state theory (MS-VTST) with multidimensional tunneling (ZCT, SCT, LCT, or μ OMT)
- Inverse-Laplace transform for microcanonical rate flux coefficients
- $_{\Box}$ "Exponential-down" collision relaxation mode with energy-dependent $\langle \Delta E_{
 m d}
 angle$
- Phenomenological rate constants from chemically significant eigenmodes
- Pseudo-first order treatment when bimolecular reactions involved
- □ MPI and MP parallelism of computer code
- Double/quadruple/octuple precision for floating-point arithmetic
- □ Interfaces available for *Polyrate, MSTor,* and *Gaussian*

Installation

Installation command:

```
[user@~] tar -Jxvf TUMME2023.xz
[user@~] cd TUMME2023/
[user@~/TUMME2023] ./configure
```

- TUMME is written using Python3.
- To run basic TUMME, Anaconda should be installed.
- To use high-precision libraries, you need the configure file to compile.
- □ To use MPI, you need to install *mpi4py* module according to this webpage:

https://mpi4py.readthedocs.io/en/stable/install.html#using-pip

```
#!/bin/bash
path=`pwd`
                               INTEL does NOT work!
cd $path/C++/qd/qd-2.3.7.1
./configure --prefix $path/C++/qd CXX=g++ CC=gcc FC=gfortran
make clean
make
make install
cd $path/C++/mpack dd/src
make clean
make
cd $path/C++/mpack qd/src
make clean
make
#compile muti-preicison tumme
cd $path/C++
sed -i "s#^ROOTPATH =.*#ROOTPATH =$path#g" Makefile
make clean
make
cd $path/bin
sed -i "s#^ROOT PATH=.*#ROOT PATH=$path#g" tumme
#set enviroment variable
echo "# Enviroment variable of TUMME" >> ~/.bashrc
echo 'export PATH=$PATH:'$path'/bin' >> ~/.bashrc
```

Details in the file configure

How to run

Run command:

[user@~/TUMME2023] tumme param.in

- The script will run different commands according to the keyword #PARALLEL defined in the input file.
- □ The name of the input file can be any file name.

```
#!/bin/sh
ROOT PATH=/home/work/TUMME/
SRC_PATH=$ROOT_PATH/src
PYTHON COMMAND=python3
TUMME MAIN=tumme main.py
INPUT=$1
# read parallelism
PARALLEL_STR=$(grep "#parallel" $INPUT|tr -d '\n'|sed -e 's/[ \t]*$//g')
PARALLEL MODE=$(echo ${PARALLEL STR##* })
NPROC STR=\$(grep "#nproc" \$INPUT|tr -d '\n'|sed -e 's/[ \t]*$//g')
NPROC=$( echo ${NPROC_STR##* })
# run command
if [ "$PARALLEL MODE" == "MPI" ]
  MPI COMMAND="mpirun -np "$NPROC
else
  MPI COMMAND=' '
$MPI_COMMAND $PYTHON_COMMAND $SRC_PATH/$TUMME_MAIN $INPUT
```

Details in the file tumme

Input file – 1

- Structure of the standard input
 - Parallelism keywords
 - Parameter section
 - Reaction section
 - Species section

Structure of the standard input file "param.in"

```
#nproc 4
#parallel mpi
Parameter
    LJCollision
    End LJCollision
    Edown
    End Edown
    Temperature[K]
    End_Temperature
    Pressure[torr]
    End Pressure
    Energy
    End_Energy
    GroundSpecies
                     W1
                     0.5
    MergeThreshold
    Precision
                     double
    Prints
    End Print
End_Parameter
```

```
Reaction
    BarrierRxn
    End_BarrierRxn
    BarrierlessRxn
    End BarrierlessRxn
End_Reaction
Species
    Well
    End_Well
    TranState
    End_TranState
    Bim
    End_Bim
End_Species
```


Input file – 2

End_Species

Interface to external files

Species properties can be read from Polyrate file, Gaussian file, and Species-section, and the priority is

Polyrate file > Gaussian file > Species section

Output files

- □ *.rate
 - Temperature-and-pressure-dependent rate constants and high-pressure limits.
- □ *.out
- Properties of species and reactions and parameters while solving master equation.
- □ File printing microcanonical flux coefficients
- □ File printing partition functions
- □ File printing collisional energy transfer functions
- □ File printing time evolution of energetic-bin populations
- □ File printing CSE eigenvalues
- ☐ File printing CSE eigenvectors
 - CSE ≡ chemically significant eigenmodes

Other notes – 1

About energy

- □ Distinguish concepts of **dE**, **ESOT**, **EMAX**, and **EEOT**.
- □ Ensure ESOT > dE and EMAX > EEOT.
- ☐ The depth of an isomer well may be truncated due to the numerical method of normalization.
- ☐ If some energies of species are read from **EO** or **EELE** and others from **GO9file**, one should ensure they have consistent zeros of energy.
- At low temperatures, when molecules mainly populate low energy levels, one should decrease the value of ESOT.
- □ At high temperatures, when molecules populate high energy levels, one should increase the value of **ESOT**.

Other notes – 2

About symmetry number

Need to define Rotsigma when	Not need to define Rotsigma when			
Read properties from Polyrate	Read density of state from MSTor			
Read properties from Species section	Read properties from Gaussian			

About frequency scaling factor

Need to define Freqscale when	Not need to define Freqscale when			
Read properties from Gaussian	Read density of state from MSTor ^a			
Read properties from Species section	Read properties from <i>Polyrate</i> ^a			

^a If, as usual, the frequency scaling has been done in *MSTor* and *Polyrate*.

Example 1

1,2-H-shift isomerization of isobutyl

 $(CH_3)_2CHCH_2 \bullet \leftrightarrow (CH_3)_3CH \bullet$

This is an example for the simplest isomerization reaction. In this example, TST(RRKM) is used with the single-structure-rigid-rotor-harmonic-oscillator approximation. The rate constant and time-evolution of species concentrations are extracted from the master equation

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = -\mathbf{W}\mathbf{y} \tag{1}$$

where y is a vector containing the population of R and P_b , and W is the transition matrix.

Input: the standard input file

Output: rate constants and the time evolution of concentrations.

Zhang, R. M.; Xu, X.; Truhlar, D. G., The Journal of Physical Chemistry A 2021, 125 (28), 6303-6313.

Example 1 (cont.)

Standard input file

```
Parallelism block
2 #parallel mp
                Global parameter block
   Parameter
 5
       HSCollision
           Bmax[A]
                                        Collision section
                                  28.0134
           MassM[amu]
       End HSCollision
10
       Edown
11
           EdConst[cm-1]
                                        Relaxation section
12
       End_Edown
13
14
       Temperature[K]
15
           1500.
                        Temperature
16
       End Temperature
17
18
       Pressure[torr]
19
           3E1 7E1 1E2 3E2 7E2 1E3 3E3 7E3 1E4 3E4 7E4 1E5 3E5 7E5 1E6
20
       End_Pressure
                        Pressure
21
                                  Species where zero
22
       GroundSpecies
                                  of energy is placed
23
24
       Print
25
           Timeevolution
26
               Timefile time.txt
27
               TimeStep[s] 1E-9
28
               TimeNum 100
                                  Time-evolution
29
               Initspecies
                  R
30
31
               END_Initspecies
32
           END Timeevolution
33
       End Print
34
35
   End_Parameter
36
                        Reaction block
37
   Reaction
       BarrierRxn
38
                              Define the reactant, transition
           Info R-TS_R Pb-Pb
39
                              state, and product
       End BarrierRxn
41 End Reaction
```

Species block

```
43 Species
               Well/isomer
       Well
45
           Name R
46
           Geometry[A]
47
               C
                                  0.00000500
                                               0.05728400
                                                            -0.35846700
48
                                    Geometry
49
           End_Geometry
50
           Frequency[cm-1]
51
               137.0475
                                      235.0936
                                                            270.3191
52
                                    Frequency
               ...
53
           End Frequency
                       -157.628103 Energy
54
           E0K[a.u.]
55
       End_Well
56
57
       Well
58
           Name Pb
59
           Geometry[A]
60
                                  0.00000000
                                               1.47714300
                                                             0.01848500
61
               . . .
62
           End_Geometry
63
           Frequency[cm-1]
64
               132.2029
                                      137.4214
                                                            137.4346
65
               . . .
66
           End_Frequency
67
           E0K[a.u.]
                         -157.637096
68
           Rotsigma 3
69
       End Well
70
       TranState Transition state
71
72
           Name TS R Pb
73
           Geometry[A]
74
               C
                                  0.00001700
                                               0.02076500
                                                            -0.15960900
75
76
           End Geometry
77
           Frequency[cm-1]
78
               209.6066
                                      217.8881
79
80
            End Frequency
81
           E0K[a.u.]
                      -157.571442
82
        End_TranState
83
84 End Species
```


Example 1 (cont.)

Standard output file

```
REACTION INFO ]
                                                                                                                            Elementary
                                                                            189
                                                                                   Reactant:
   TS:
                                                                            190
                                                                                                             TS R Pb
                                                                                                                            reactions
44
     Precision:
                              double
                                                                                                             Pb
                                                                            191
                                                                                  Product:
                              2.00000E-01
45
     MergeThreshold:
                                                                            192
                                                                                   Polyrate file:
                                                                                                             None
     GroundSpecies:
                                                                            193
                                                                                  Variation:
                                                                                                            tst
47
     <DeltaE d>[a.u.] = (T/Tc)^(exponent)[ slope*( E - E gamma,0) + EdConst ]
                                                                            194
                                                                                   Tunneling:
                                                                                                             None
                              9.50045E-04
48
        Tc[a.u.]:
                                                                            195
                                                                                  Lower limit of MEP:
                                                                                                             None
49
        exponent:
                              0.00000E+00
                                                                                  Upper limit of MEP:
                                                                            196
                                                                                                             None
50
        slope:
                              0.00000E+00
                                                                                   The k(E) will be calculated from the analytical expression.
51
        EdConst[a.u.]:
                              7.14982E-04
                                                                            198
                                                                                  END OF INFO ]
52
     HSCollision
                                                                            199
53
        bmax[a.u.]:
                              1.70075E+01
                                               Global
                                                                            200
                                                                                  REACTION INFO 1
54
        massM[a.u.]:
                              5.10653E+04
                                                                            201
                                                                                   Reactant:
                                                                                                             Pb
55
        massA[a.u.]:
                              None
                                               parameters
                                                                            202
                                                                                  TS:
                                                                                                            TS_R_Pb
56
                                                                            203
                                                                                   Product:
   57
                                                                                  Polyrate file:
                                                                            204
                                                                                                             None
58
    [MOLECULE PROPERTIES]
                                                                            205
                                                                                  Variation:
                                                                                                             tst
59
                                                                            206
                                                                                   Tunneling:
                                                                                                             None
                              SPECIES block
                                                                            207
                                                                                   Lower limit of MEP:
                                                                                                             None
61
     Number of atoms:
                              13
                                                                                   Upper limit of MEP:
     Geometry [a.u.]:
62
                                                                                   The k(E) will be calculated from the analytical expression.
                                                                            209
     Freuencies scaling factor: 1.00000E+00
                                                                            210
77
     Frequencies (scaled) [cm-1]: ..
                                                                            211
     E(ele) [ a.u.]:
                               -0.11720102335749813
                                                                                 ****************** Reaction Map ***************
                                                                            212
     ZPVE [ a.u.]:
                              0.11720102335749813
                                                                                  Barrier with ZPVE in a.u.; X denotes none reaction )
     E(0K) [ a.u.]:
                                                                            213
                              0.0
     Eletronic level [a.u.]:
                                                                            214
                                                                                                          R
           1.00000E+00
                                                                            215 R
                                                                                                         X
                                                                                                               5.66610E-02
                           0.00000E+00
                                                                                                                                Energies
     Islinear:
                              False
                                                                            216 Pb
                                                                                                 6.56540E-02
92
                                                                            217
     IABC [a.u.]:
                              1.11925E+17
                                                Isomer
                              1.00000E+00
     Symmetry number:
                                                                            218
                                                                                   Reaction energy with ZPVE in a.u.; X denotes none reaction )
     Optical-isomer number:
                              1.00000E+00
                                                                            219
                                                                                     From/to
                                                properties
     MSTor file:
                              None
                                                                            220 R
                                                                                                          Χ
                                                                                                               -8.99300E-03
    [END OF MOLECULE]
                                                                            221 Pb
                                                                                                 8.99300E-03
                                                                            222
```

```
***************** Solve master equation ***************
225
    ----- Cycle -----
227
                                                    Parameters
                                  1.500E+03
228
      Temperature[K]:
229
      Pressure[Torr]:
                                  3.000E+01
                                                    for each (T, p)
230
      Energy step[cm-1]:
                                  1.04255E+02
                                                    condition.
                                  4.37123E+04
231
      Energy reference[cm-1]:
232
233
      RELAXATION INFO ]
234
      Name:
                                  R
                                  418
235
      Size:
236
      bmax[a.u.]:
                                  17.007535
237
      Z[1/s]:
                                  6.389267E+08
      Truncated well E0[cm-1]:
                                  237.776
238
239
      True well E0:[cm-1]
                                  0.000
      END OF INFO ]
240
241
242
      RELAXATION INFO ]
243
      Name:
                                  Pb
244
      Size:
                                  436
245
      bmax[a.u.]:
                                  17.007535
                                  6.389267E+08
246
      Z[1/s]:
247
      Truncated well E0[cm-1]:
                                  -1638.820
248
      True well E0:[cm-1]
                                  -1973.735
      END OF INFO ]
249
250
251
      ME INFO ]
252
                                  854
      Size
253
      Min CSE eigenvalue[1/s]:
                                  0.00000E+00
                                  4.06206E+05
      Max CSE eigenvalue[1/s]:
254
      Min IERE eigenvalue[1/s]:
                                  4.84188E+05
255
      Max IERE eigenvalue[1/s]:
                                 1.35205E+10
256
257
258
      EPCS:
259
        CSE No.
                                                2
260
                                  -3.80037E-01 5.14525E-01
261
                                  -9.24971E-01 -2.11400E-01
262
263
      Binding:
264
        Pb well corresponds to eigen mode 1
265
        R well corresponds to eigen mode 2
266
267
      Merge Pairs:
268
            R -
    [ END OF INFO ]
```

****************** Reaction Stack ***************

Example 1 (cont.)

Rate constants output file

```
**************** Rate constants in temperature ************
    **************** Rate constants map *************
                                                                                               205
        The diagonal denotes sum of the off-diagonal in a row....
                                                                                                   R -> other species
                                                                                                    T[K]/p[torr]
                                                                                                                              3.000E+01
                                                                                                                                            7.000E+01
                                                                                                                                                           1.000E+02
                                                                                                                                                                         3.000E+02
81 T = 1500.00 K, p = 3.000E+03
                                                                                                   1.500E+03
   From/To
                                                       Pb
                                                                                               209
                              9.48752E+06
                                              9.48752E+06
                                                                                                    ******************* High-pressure limit flux coefficient ****************
                              1.60158E+06
                                              1.60158E+06
                                                                                               225
                                                                      Phenomenological
                                                                                               226 T[K]
                                                                                                                               R->Pb
                                                                                                                                            Pb->R
                                                                                               227 1.500E+03
                                                                                                                         6.92012E+07
                                                                                                                                      1.16818E+07
                                                                      rate constants
                                                                                               228
     ******* ***** Rate constants in pressure **************
129
130

R -> other species
     p[torr]/T[K]
                                 1500.00
                                                                                  1.0
132 3.000E+01
    7.000E+01
                                          "Merge" happened
                                                                                  0.8
                                                                                                                                0.8
134 1.000E+02
135 3.000E+02
                                                                                Eraction 6.0 4.0
                                                                                                                             Exaction 9.0 4
    7.000E+02
137 1.000E+03
    3.000E+03
                           9.48752E+06
139 7.000E+03
                           1.51666E+07
                                                                                                                                                                   Total
    1.000E+04
                           1.81750E+07
                                                                                                                                0.2
                                                                                  0.2
141 3.000E+04
                           2.95969E+07
                                                                                                                                             1500 K, 10<sup>6</sup> Torr
                                                                                               1500 K, 10<sup>4</sup> Torr
                                                                                                                   — Total
                                                                                                                                0.0
                                                                                  0.0
                                                                                                                                         20
                                                                                                                                                                80
                                                                                                                                                                       100
                                                                                                   40
                                                                                                                         100
                                                                                                                                   0
                                                                                                                                                 40
                                                                                                                                                         60
                                                                                           20
                                                                                                           60
                                                                                                                  80
```

 $t/\mu s$

 $t/\mu s$

The time-evolution of isomers

Example 2

\blacksquare C-C and C-H β -scission of isobutylession

This is an example of competing unimolecular reactions. In this example, TST(RRKM) is used with the single-structure-rigid-rotor-harmonic-oscillator approximation. Rate constants are extracted from the master equation

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{dt}} = -\mathbf{W}\mathbf{y} + \mathbf{B}\mathbf{s} \tag{2}$$

based on CSE theory, where y is a vector containing the population of R. For the time evolution, TUMME neglect the **Bs** term of eq (2) and uses the following homogeneous master equation:

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = -\mathbf{W}\mathbf{y} \tag{3}$$

Input: the standard input file

Output: rate constants and the time-evolution of concentrations.

Zhang, R. M.; Xu, X.; Truhlar, D. G., *The Journal of Physical Chemistry A* **2021,** *125* (28), 6303-6313.

Example 2 (cont.)

Standard input file

```
1 #nproc 15
                      Parallelism block
2 #parallel mp
4 Parameter
                       Parameter block
       HSCollision
                                 9.0 Collision section
           Bmax[A]
           MassM[amu]
       End_HSCollision
9
10
       Edown
                               111.0324 Relaxation section
11
           EdConst[cm-1]
12
       End Edown
13
14
       Temperature[K]
15
           700.
                         Temperature
16
       End Temperature
17
18
       Pressure[torr]
                         Pressure
19
       1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1.0 1E1 1E2 1E4 1E6
20
       End_Pressure
21
                                 Species where zero of energy is placed
22
       GroundSpecies
23
       Precision quadruple Precision of the transition matrix
24
25
   End_Parameter
26
27
                  Reaction block
28
   Reaction
29
       BarrierRxn
           Info R-TS_R_Pa-Pa Define the reactant, transition state and product
30
       End_BarrierRxn
31
32
33
       BarrierRxn
34
           Info R-TS_R_Pc-Pc
       End BarrierRxn
35
36 End Reaction
```


76

Example 2 (cont.)

Standard input file

```
37 Species
               Species block
38
       Well
39
           Name R
                                                                                         Bimolecular pairs
                                                                           78
40
            Geometry[A]
                                                                           79
                                                                                       Name Pa
               C
                                   0.00000100
                                                0.06835100
                                                             -0.36837900
41
                                                                                       Sp1Mol The first molecular fragment species
                                                                           80
42
               . . .
                                                                           81
                                                                                           Name Pa 1 #sp1
43
            End Geometry
                                                                                                                                                           113
                                                                                                                                                                     Bim
                                                                           82
                                                                                           Geometry[A]
44
            Frequency[cm-1]
                                                                                                                                                           114
                                                                                                                                                                         Name Pc
                                                                           83
                                                                                               C
                                                                                                                  0.00000000
                                                                                                                                0.00000000
                                                                                                                                              0.00000000
45
               76.5658
                                      150.8529
                                                             176.9492
                                                                                                                                                           115
                                                                                                                                                                         Sp1Mol
                                                                           84
46
                                                                                                                                                           116
                                                                                                                                                                             Name Pc 1 #sp1
                                                                           85
                                                                                           End Geometry
47
            End_Frequency
                                                                                                                                                           117
                                                                                                                                                                             Geometry[A]
                                                                           86
                                                                                           Frequency[cm-1]
48
            E0K[eV] 2.937894765
                                                                                                                                                           118
                                                                                                                                                                                                0.000000
                                                                                                                                                                                                           0.000000
                                                                                                                                                                                                                       1.456933
                                                                           87
                                                                                               920.0904
                                                                                                                     1304.9899
                                                                                                                                            1304.9899
49
       End_Well Wells / isomers
                                                                                                                                                           119
                                                                           88
50
                                                                                                                                                           120
                                                                                                                                                                             End Geometry
                                                                           89
                                                                                           End Frequency
51
                                                                                                                                                           121
                                                                                                                                                                             Frequency[cm-1]
                                                                           90
                                                                                           E0K[eV] 0.0
52
        TranState
                                                                                                                                                           122
                                                                                                                                                                                29.8139
                                                                                                                                                                                                  87.0421
                                                                                                                                                                                                                  393.0655
                                                                           91
                                                                                           EleLevel[a.u.]
53
            Name TS_R_Pc
                                                                                                                                                           123
                                                                                                                                                                                . . .
                                                                           92
                                                                                              1 0
54
            Geometry[A]
                                                                                                                                                           124
                                                                                                                                                                             End Frequency
                                                                           93
                                                                                           End EleLevel
55
               C
                                  -0.00000900
                                                0.10844500
                                                              0.01394900
                                                                                                                                                                             E0K[kcal/mol] 0.0
                                                                                                                                                           125
                                                                           94
                                                                                           Rotsigma
56
               . . .
                                                                                                                                                           126
                                                                                                                                                                             Rotsigma
                                                                           95
                                                                                       End Sp1Mol
57
            End_Geometry
                                                                                                                                                           127
                                                                                                                                                                         End Sp1Mol
                                                                           96
58
            Frequency[cm-1]
                                                                                       sp2Mo1 The second molecular fragment species
                                                                                                                                                           128
                                                                           97
59
               83.0861
                                     115.2996
                                                                                                                                                                        Sp2Atom The atomic fragment species
                                                                                                                                                           129
                                                                           98
                                                                                           Name Pa_2 #sp2
60
                                                                                                                                                           130
                                                                                                                                                                             Name
                                                                                                                                                                                      13 r #sp2
                                                                           99
                                                                                           Geometry[A]
61
            End_Frequency
                                                                                                                                                                             Symbol
                                                                                                                                                           131
                                                                          100
                                                                                               C
                                                                                                                 -1.26496100
                                                                                                                               -0.21881800
                                                                                                                                              0.03958700
62
            E0K[eV]
                         4.514114916
                                                                                                                                                           132
                                                                                                                                                                             E0K[kcal/mol] 0.0
                                                                          101
63
        End TranState
                                                                                                                                                           133
                                                                                                                                                                         End Sp2Atom
                                                                          102
                                                                                           End Geometry
64
                                                                                                                                                           134
                                                                                                                                                                         EØK[eV] 4.452257969
                                                                          103
                                                                                           Frequency[cm-1]
                   Transition states
65
        TranState
                                                                                                                                                           135
                                                                                                                                                                     End Bim
                                                                          104
                                                                                               80.0033
                                                                                                                     438.0612
                                                                                                                                            576,8934
            Name TS_R_Pa
66
                                                                                                                                                           136
                                                                          105
67
            Geometry[A]
                                                                                                                                                            137 End Species
                                                                          106
                                                                                           End_Frequency
               С
                                  -0.31875100
                                               -0.23524300
                                                             -0.46905000
68
                                                                          107
                                                                                           E0K[kcal/mol] 0.0
69
               . . .
                                                                          108
                                                                                           Rotsigma
                                                                                                           1.0
70
            End Geometry
                                                                          109
                                                                                       End Sp2Mol
71
            Frequency[cm-1]
                                                                          110
                                                                                       E0K[eV] 3.868742222
72
               73.3727
                                     118.3417
                                                                          111
                                                                                   End Bim
73
74
            End_Frequency
75
            E0K[eV] 4.089317803
```


Example 2 (cont.)

Standard output file

```
Elementary reactions
44
     Precision:
                              quadruple
     MergeThreshold:
                              2.00000E-01
45
                                                                              ******************* Reaction Stack ****************
46
     GroundSpecies:
47
     <DeltaE_d>[a.u.] = (T/Tc)^(exponent)[ slope*( E - E_gamma,0) + EdConst ]
                                                                         307
                                                                                REACTION INFO ]
48
       Tc[a.u.]:
                              9.50045E-04
                                                                         308
                                                                                Reactant:
                                                                                                             R
                              0.00000E+00
49
        exponent:
                                                                         309
                                                                                TS:
                                                                                                             TS R Pa
50
        slope
                              0.00000E+00
                                                                         310
                                                                                Product:
                                                                                                             Pa
51
                              5.05901E-04
        EdConst[a.u.]:
                                              Global
                                                                         311
                                                                                Polyrate file:
                                                                                                             None
52
     HSCollision
                                                                         312
                                                                                Variation:
                                                                                                             tst
53
        bmax[a.u.]:
                              1.70075E+01
                                              parameters
54
        massM[a.u.]:
                              5.10653E+04
                                                                         313
                                                                                Tunneling:
                                                                                                             None
55
        massA[a.u.]:
                                                                                Lower limit of MEP:
                                                                                                             None
56
                                                                         315
                                                                                Upper limit of MEP:
                                                                                                             None
                             Isomers ****************
57
   *********
                                                                         316
                                                                                The k(E) will be calculated from the analytical expression.
58
    [MOLECULE PROPERTIES]
                                                                               [ END OF INFO ]
                                                                         317
59
                                                                         318
     Read from:
                              SPECIES block
61
     Number of atoms:
                              13
                                                                         319
                                                                                REACTION INFO
62
     Geometry [a.u.]:
                                                                         320
                                                                                                             Pa
                                                                                Reactant:
     Freuencies scaling factor:
                             1.00000E+00
76
                                                                                                             TS R Pa
                                                                         321
                                                                                TS:
     Frequencies (scaled) [cm-1]: ...
77
                                                                         322
                                                                                Product:
                                                                                                             R
     E(ele) [ a.u.]:
87
                              -0.10796549924632348
                                                                         323
                                                                                Polyrate file:
                                                                                                             None
88
     ZPVE [ a.u.]:
                              0.10796549924632348
                                                                         324
                                                                                Variation:
                                                                                                             tst
89
     E(0K) [ a.u.]:
                              0.0
                                                                         325
                                                                                Tunneling:
                                                                                                             None
     Eletronic level [a.u.]:
           1.00000E+00
91
                          0.00000E+00
                                                                         326
                                                                                Lower limit of MEP:
                                                                                                             None
92
     Islinear:
                              False
                                                                         327
                                                                                Upper limit of MEP:
                                                                                                             None
                              1.11655E+17
                                            Isomer
93
     IABC [a.u.]:
                                                                         328
                                                                                The k(E) will be calculated from the analytical expression.
                              1.00000E+00
     Symmetry number:
94
                                                                         329
                                                                              [ END OF INFO ]
                                           properties
95
     Optical-isomer number:
                              1.00000E+00
     MSTor file:
                              None
```

Parameters for each (T, p) condition.

```
371 v ========= Cycle ===========
372
373
       Temperature[K]:
                                   7.000E+02
                                   1.000E-10
374
       Pressure[Torr]:
375
       Energy step[cm-1]:
                                   4.86525E+01
376
       Energy reference[cm-1]:
                                   2.73088E+04
377
    [ RELAXATION INFO ]
378
379
       Name:
                                   R
380
       Size:
                                   560
381
       bmax[a.u.]:
                                   17.007535
382
       Z[1/s]:
                                   3.117643E-03
383
       Truncated well E0[cm-1]:
                                   112.075
                                   0.000
384
       True well E0:[cm-1]
385
     [ END OF INFO ]
386
387 ~ [ ME INFO ]
388
                                   560
389
       Min CSE eigenvalue[1/s]:
                                   7.19400E-07
390
       Max CSE eigenvalue[1/s]:
                                   7.19400E-07
391
       Min IERE eigenvalue[1/s]:
                                  1.45896E-05
392
       Max IERE eigenvalue[1/s]:
                                  3.15746E+10
393
       EPCS:
394
                                   1
395
        CSE No.
        R
                                   9.61931E-01
396
397
398
       Kappa:
399
        Bim Name
                                   Pa
                                                 Pc
400
                                   7.40531E-02 1.21092E-07
401
402
       Binding:
403
        R well corresponds to eigen mode 1
404
     [ END OF INFO ]
```

[END OF MOLECULE]

Example 2 (cont.)

Rate constants output file

```
****** map ********* Rate constants map ****************
49
        The diagonal denotes sum of the off-diagonal in a row.
50
     T = 700.00 \text{ K}, p = 1.000E-10
51
     From/To
52
                                                     Pa
                                                                    Pс
53 R
                                            7.19400E-07
                            7.19400E-07
                                                           4.65869E-28
54 Pa
                            2.58261E-26
                                            2.53198E-18
                                                           2.53198E-18
                            1.93973E-41
55 Pc
                                            2.93664E-12
                                                           2.93664E-12
    ******* Rate constants in pressure ****************
144
145 ∨ R -> other species
     p[torr]/T[K]
                                 700.00
    1.000E-10
                           7.19400E-07
   1.000E-09
                           7.19367E-06
    1.000E-08
                           7.19043E-05
   1.000E-07
                           7.16146E-04
    1.000E-06
                           7.01463E-03
152 1.000E-05
                           6.69286E-02
153 1.000E-04
                           6.14926E-01
154 1.000E-03
                           5.35435E+00
155 1.000E-02
                           4.32060E+01
    1.000E-01
                           3.12770E+02
157 1.000E+00
                           1.94093E+03
    1.000E+01
                           9.71923E+03
    1.000E+02
                           3.61678E+04
   1.000E+04
                           1.47466E+05
161 1.000E+06
                           1.76960E+05
```

```
**************** Rate constants in temperature *************
310
311 R -> other species
    T[K]/p[torr]
                        1.000E-10
                                    1.000E-09
                                               1.000E-08
                                                          1.000E-07
313 7.000E+02
                      7.19400E-07
                                 7.19367E-06
                                             7.19043E-05
                                                        7.16146E-04
   350
351 T[K]
                                                 Pa->R
                                                            Pc->R
352 7.000E+02
                     1.77507E+05
                                 6.53738E+01
                                            6.88689E-15
                                                       2.94171E-12
```

Phenomenological rate constants

Falloff curves

Example 3

Hydrogen Abstraction from HCHO by OH (TST)

$$\text{HCHO} + \text{OH} \xrightarrow{1} \text{HCHO} \cdots \text{HO} \xrightarrow{2} \text{HCO} + \text{H}_2\text{O}$$

This is an example of a bimolecular reaction. This example uses TST(RRKM) theory with the single-structure-rigid-rotor-harmonic-oscillator is used for reaction 2, and the reaction 1 is estimated by the inverse-Laplacian transform to the hard-sphere model. Based on the CSE theory, the rate constant is extracted from

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{dt}} = -\mathbf{W}\mathbf{y} + \mathbf{B}n_{\mathrm{HCHO}}n_{\mathrm{OH}} \tag{4}$$

where the $n_{\rm HCHO}n_{\rm OH}$ is left unknown. For time-evolution calculations, the reaction is assumed to be pseudo-first order, and eq. (4) is converted to homogeneous form by appending the $n_{\rm HCHO}$ concentration to the population vector ${\bf y}$ to get vector ${\bf y}^*$,

$$\frac{\mathrm{d}\mathbf{y}^*}{\mathrm{d}t} = -\mathbf{W}^*\mathbf{y}^* \tag{5}$$

Input: the standard input file, *Polyrate* file for the reaction 2. Output: rate constants and the time-evolution of concentrations.

Zhang, R. M.; Chen, W.; Truhlar, D. G.; Xu, X., Faraday Discussions 2022, 238, 431-460. doi.org/10.1039/D2FD00024E.

Example 3 (cont.)

Standard input file

```
Global parameters block
     Parameter
         LJCollision
             EpsilonM[cm-1]
EpsilonA[cm-1]
                                    56.993
191.134
                                                Collision
             DiameterM[A]
                                       3.74
             DiameterA[A]
                                       4.94
        MassM[amu]
MassA[amu]
End_LJCollision
                                    28
                                    47
10
         Edown
11
             EDCONST[cm-1]
12
                             200
                                     Relaxation
                              300
13
             Tc[K]
                             0.85
14
             Exponent
15
         END Edown
16
17
         Temperature[K]
             600, 1000, 1500,
18
19
         End Temperature
20
21
         Pressure[torr]
22
           1E-2
23
         End Pressure
24
25
         PBimol
             BimolName
26
                                   Bimolecular pair(s)
27
28
             End BimolName
                                   with pseudo-first
29
30
             ExcessConc[mol/L]
                                   order assumption
31
               1E-5
32
             End ExcessConc
33
         End PBimol
34
35
         GroundSpecies
36
     End Parameter
37
                      Reactions block
     Reaction
38
39
         BarrierRxn
                                        Barriered elementary
                         RC-TS-P
40
             Info
                                       reaction, read from
41
             Pyrfile
                       Rxn1.fu6
42
         End BarrierRxn
                                        Polyrate file
43
44
         BarrierlessRxn
45
                                              Barrierless elementary
             Avgdiameter[A]
46
                                   4.11
             Rxnenergy[kcal/mol] -3.734532
47
                                             reaction, ILT + hard-sphere
48
         End BarrierlessRxn
     End Reaction
```

```
Species block
      Species
           Bim
44
45
46
47
48
49
50
                Name R
                Sp1Mol
                     Name R_f
Geometry[A]
                                   0.00000E+00
                                                         0.00000E+00
                                                                             -5.23675E-01
                     End_Geometry
51
52
53
54
55
56
57
58
59
                     Frequency[cm-1] 1.17074E+03 1.22857E+03 1.48038E+03 1.82298E+03 2.83467E+03 2.90356E+03
                     End_Frequency
EleLevel
                     End EleLevel
                     Rotsigma 2
E0K[kcal/mol] 0
60
                End_Sp1Mol
61
62
63
                Sp2Mol
64
                     Name k_n
Geometry[A]
0.00000E+00
65
66
                                                                              1.07801E-01
                                                         0.00000E+00
67
                                                        0.00000E+00
                                                                             -8.62409E-01
68
                     End Geometry
69
70
                     Frequency[cm-1]
___3.69902E+03
71
72
73
74
75
76
77
78
                     End Frequency
                     EleLevel
2 0
                       2 0.000637887
                     End_EleLevel
79
80
81
82
83
                     E0K[kcal/mol] 0
                End_Sp2Mol
                E0K_0
            End Bim
84
85
                Name P
86
                Sp1Mol
                Name P_f
End_Sp1Mol
87
88
89
90
                Sp2Mol
91
                     Name P w
92
                     Rotsigma 2
93
                End_Sp2MoI
94
            End Bim
      End_Species
```


energy

Example 3 (cont.)

Time-evolution file

```
# Time evolution ouput for TUMME
     # the unit for energy is kcal/mol; the unit for time is second
                                                                                time
     T =
                             K, p = 1.000E+01 \text{ torr}
                              0.00000E+00
     y(E)/time
                                                             4.00000E-07
                                                                            6.00000E-07
                                                                            7.61593E-22
     7.94883E+00
                              6.85012E-32
                                             8.33291E-22
                                                             7.96635E-22
10
     7.90908E+00
                             -1.07883E-27
                                             9.98076E-22
                                                             9.54173E-22
                                                                            9.12200E-22
     7.86934E+00
                             -3.32792E-28
                                             1.19544E-21
                                                             1.14285E-21
                                                                            1.09258E-21
     7.82959E+00
                             -2.60212E-28
                                             1.43168E-21
                                                            1.36871E-21
                                                                            1.30850E-21
                              3.93483E-26
                                             1.71456E-21
     7.78985E+00
                                                            1.63914E-21
                                                                            1.56703E-21
     7.75011E+00
                             -4.70048E-27
                                             2.05319E-21
                                                             1.96287E-21
                                                                            1.87653E-21
15
     7.71036E+00
                             -4.78735E-27
                                             2.45852E-21
                                                             2.35037E-21
                                                                            2.24698E-21
     7.67062E+00
                             -3.84387E-27
                                             2.94387E-21
                                                             2.81437E-21
                                                                            2.69057E-21
                             -5.38489E-29
                                             3.52505E-21
                                                             3.36998E-21
                                                                            3.22174E-21
17
     7.63087E+00
                              2.27151E-27
                                             4.22076E-21
     7.59113E+00
                                                             4.03509E-21
                                                                            3.85760E-21
     7.55139E+00
                             -1.03427E-26
                                             5.05372E-21
                                                             4.83142E-21
                                                                            4.61889E-21
                             -4.83806E-27
                                             6.05073E-21
     7.51164E+00
                                                             5.78457E-21
                                                                            5.53012E-21
                             -1.73190E-26
                                             7.24373E-21
21
     7.47190E+00
                                                             6.92509E-21
                                                                            6.62047E-21
     7.43215E+00
                             -2.21353E-26
                                             8.67143E-21
                                                             8.28999E-21
                                                                            7.92533E-21
     7.39241E+00
                             -5.47684E-27
                                             1.03799E-20
                                                             9.92332E-21
                                                                            9.48681E-21
                             -2.23638E-26
                                             1.24241E-20
     7.35267E+00
                                                            1.18776E-20
                                                                            1.13551E-20
25
     7.31292E+00
                             -2.15904E-26
                                             1.48711E-20
                                                             1.42169E-20
                                                                            1.35915E-20
     7.27318E+00
                             -1.11184E-26
                                             1.77991E-20
                                                            1.70162E-20
                                                                            1.62676E-20
27
     7.23343E+00
                             -2.36191E-26
                                             2.13020E-20
                                                             2.03649E-20
                                                                            1.94691E-20
     7.19369E+00
                             -1.19291E-26
                                             2.54929E-20
                                                            2.43715E-20
                                                                            2.32994E-20
```

microscopic population of RC

```
302 R
303 [n] 1.00000E+00 9.56011E-01 9.13957E-01 8.73754E-01 8.35318E-01
```

macroscopic concentration of R

The time-evolution of $n_{\rm OH}$ (solid lines) and $n_{\rm RC}$ (dash-dot lines). The initial condition is set as $n_{\rm OH}(t)$ =0=10⁻⁷ mol/L, $n_{\rm RC}(t)$ =0 and $n_{\rm HCHO}$ is assumed to be constant at 10⁻⁵ mol/L.

Example 4

Hydrogen Abstraction from HCHO by OH (MS-VTST/SCT)

This is an example of a bimolecular reaction. In this example, MS-CVT/SCT is used for reaction 2, and rate constants for reaction 1 are estimated by an inverse Laplace transform applied to the hard-sphere model. The rate constant is extracted from eq. (4) based on CSE theory, and the time evolution is estimated from eq. (5).

Input: the standard input file,

Polyrate file for reaction 2, MStor files for RC and TS

Output: rate constants and the time-evolution of concentrations.

$$\text{HCHO} + \text{OH} \xrightarrow{1} \text{HCHO} \cdots \text{HO} \xrightarrow{2} \text{HCO} + \text{H}_2\text{O}$$

Zhang, R. M.; Chen, W.; Truhlar, D. G.; Xu, X., Faraday Discussions 2022, 238, 431-460. doi.org/10.1039/D2FD00024E.

Example 4 (cont.)

Standard input file

```
Global parameters block
     Parameter
 2
         LJCollision
             EpsilonM[cm-1]
                                      56.993
             EpsilonA[cm-1]
                                      191.134
                                                Collision
             DiameterM[A]
                                         3.74
             DiameterA[A]
 6
                                         4.94
             MassM[amu]
                                      28
             MassAlamul
 8
                                      47
         End LJCollision
9
10
                          Relaxation
11
         Edown
             EDCONST[cm-1]
12
                               200
             Tc[K]
                               300
13
14
             Exponent
                               0.85
15
         END Edown
16
17
         Temperature[K]
18
             100.
           End Temperature
19
20
         Pressure[torr]
21
            10 1E4 1E7
22
         End Pressure
23
                              Bimolecular pair(s)
24
25
         PseuBimolecular
                              with pseudo-first
             PseuBimName
26
                              order assumption
27
                 R
28
             End PseuBimName
29
             ExcessConc[mol/L]
30
31
                 1E-5
             End ExcessConc
32
         End PseuBimolecular
33
34
35
         GroundSpecies
                                  R
     End Parameter
```

```
Reactions block
     Reaction
38
39
                        Barriered elementary reaction, read from Polyrate file
40
          BarrierRxn
41
              Info
                           RC-TS-P
              Pvrfile
42
                          Rxn1.fu6
              Variation
                                   Variation
43
                          cvt
              Tunneling
44
                           sct
                                  Tunneling
45
              slower[A]
                           -0.12
                                   Range of reaction coordinates
                            0.23
46
              supper[A]
          End BarrierRxn
47
48
                            Barrierless elementary reaction, ILT + hard-sphere
49
          BarrierlessRxn
              Info
50
                                     R-RC
              Avgdiameter[A]
51
                                     4.11
              Rxnenergy[kcal/mol] -3.734532
52
53
          End BarrierlessRxn
54
55
     End Reaction
56
57
     Species
                       Species block
58
          Bim
59
              Name R
60
              Sp1Mol
61
                  Name R f
62
                  Geometry[A]
63
64
65
```


Example 4 (cont.)

1	#									
2	# Time evolut	tion oupu	t for TUMME							
3	# the unit fo	or energy	is kcal/mol; th	e unit for time	is second					
4	#									
5						time				
6	T =	100.00	K, p = 1.000E	-03 torr		time				
7	y(E)/time		0.00000E+00	2.00000E-07	4.00000E-07	6.00000E-07	8.00000E-07			
8	RC									
9	9.93603E+00		-7.69770E-42	4.93115E-26	4.77741E-26	4.62847E-26	4.48416E-26	691	R	
10	9.91602E+00		0.00000E+00	5.40583E-26	5.23729E-26	5.07401E-26	4.91581E-26	692	[n]	1.00000E+00 9.68821E-01 9.38616E-01 9.09352E-01 8.81001E-01
11	9.89601E+00		2.30931E-41	5.92603E-26	5.74127E-26	5.56227E-26	5.38885E-26	693	F3	
12	9.87599E+00		-6.15816E-41	6.49632E-26	6.29379E-26	6.09756E-26	5.90746E-26			and an arrange of the second and the
13	9.85598E+00		1.53954E-41	7.12143E-26	6.89940E-26	6.68430E-26	6.47590E-26			macroscopic concentration of R
14	9.83596E+00		0.00000E+00	7.80675E-26	7.56336E-26	7.32755E-26	7.09910E-26			
15	9.81595E+00		7.69770E-41	8.55779E-26	8.29098E-26	8.03249E-26	7.78206E-26			
16	9.79594E+00		-1.53954E-41	9.38099E-26	9.08852E-26	8.80516E-26	8.53064E-26			
17	9.77592E+00		1.53954E-41	1.02833E-25	9.96269E-26	9.65208E-26	9.35115E-26			
18	9.75591E+00		-3.07908E-41	1.12723E-25	1.09209E-25	1.05804E-25	1.02505E-25			
19	9.73589E+00		9.23724E-41	1.23566E-25	1.19713E-25	1.15981E-25	1.12365E-25			The time evolution of n_{OH} (solid lines) and n_{RC}
20	9.71588E+00		-1.53954E-40	1.35448E-25	1.31225E-25	1.27134E-25	1.23170E-25			, ,
21	9.69587E+00		9.23724E-41	1.48469E-25	1.43840E-25	1.39355E-25	1.35010E-25			(dash-dot lines). The initial condition is set as
22	9.67585E+00		3.07908E-41	1.62743E-25	1.57669E-25	1.52754E-25	1.47991E-25			((0) 407 - 1/1 - ((0) - 1/2
23	9.65584E+00		-6.15816E-41	1.78390E-25	1.72828E-25	1.67440E-25	1.62219E-25			$n_{OH}(t=0)=10^{-7}$ mol/L; $n_{RC}(t=0)$ and n_{HCHO} are
24	9.63582E+00		1.84745E-40	1.95535E-25	1.89439E-25	1.83533E-25	1.77811E-25			assumed to be constant at 10 ⁻⁵ mol/L.
25	9.61581E+00		-1.53954E-40	2.14328E-25	2.07646E-25	2.01172E-25	1.94900E-25			assumed to be constant at 10° mol/L.
	energy		microsco	pic populat	ion of RC					

Example 4 (cont.)

Comparison with example 3

5/19/2023

Thank you for your interest in TUMME.

You are invited to provide feedback to: xuxuefei@tsinghua.edu.cn and truhlar@umn.edu

The authors gratefully acknowledge Wenqi Chen for assistance with the tutorial.