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1. INTRODUCTION

The development of computational methods for condensed phases that have
predictive powers equivalent to those available for gas-phase systems has been a long-
standing goal of theoretical chemists. The complementary nature of theory and experiment
has become strikingly apparent for the study of molecular structure and dynamics in the gas-
phase, and indeed we have reached the point where many gas-phase observables are more
accurately and efficiently predicted by theoretical methods than they may be measured.
However, the corresponding role of theory in solution-phase chemistry is nowhere near so
well established. Since the bulk of preparative organic chemistry and all of biological
chemistry occur in condensed phases, the importance of further progress in this area should
be clear.

The transition from the gas phase to solution is by no means a small perturbation;
often the effects of solvation on issues of structure and reactivity are extremely large [1].
For example, the Menschutkin reaction of ammonia and chloromethane is illustrated in
Figure 1. The reaction involves nucleophilic displacement of chloride by ammonia and
thereby converts the neutral reactants into a pair of charged products, methylammonium
cation and chloride anion, a so-called Type II SN2 reaction. This reaction is exothermic and
proceeds readily in aqueous solution. Modeling efforts in the gas phase are unable to
provide much information about this process, since the product ions are very high in energy
in the absence of solvation—in fact the corresponding reaction path is entirely uphill in the
gas phase. The reaction is made possible by virtue of aqueous solvation, which is roughly
150 kcal/mol more favorable for the products than for the reactants [2,3].

While the above example illustrates the effect of solvent on the equilibrium between
reactants and products, another interesting case is the effect of solvent on the activation
energy, i.e., the differential solvation of the transition state relative to the reactants. This
effect has been well studied for SN2 reactions of anions [4-11]. Figure 2 illustrates this
effect for a more complex organic reaction, namely the Claisen rearrangement, an
electrocyclic reaction which converts an allyl vinyl ether to a y,8-unsaturated carbonyl
compound. The Claisen rearrangement has been demonstrated to be accelerated on the order
of 1000-fold for the unsubstituted parent ether on going from the gas phase to aqueous




10

gas
phase

NH; + CH5Cl HaN - é;_m H3;NCH3* + CI-

H H

G AGg,1y(reactants) AG;on(products)

aqueous
solution

Figure 1. Schematic gas-phase and aqueous potentials of mean force for the Menschutkin
reaction projected onto a single generalized reaction coordinate.

solution at room temperature [12-16). The Claisen rearrangement is a particularly interesting
case, insofar as there arce two distinct transition state structures, a chair and a boat form, each
of which lcads to stereochemically distinct products when the reactive termini are
appropriately substituted (illustrated with deuterium substitution in Figure 2). In addition to
the differential solvation effect between reactants and transition states for this reaction, there
are additional solvation differences between the two transition states, giving rise to the -
possibility that in specific instances one might tune the stereoselectivity of the reaction by
judicious choice of solvent (14,17].

These kinds of effects also occur in a more biologically focused paradigm, which is
illustrated in Figure 3. The top portion of the illustrated cycle corresponds to the
unimolecular, gas-phase reaction of some molecule A. It is convenient to continue using the
Claisen rearrangement as an example, since this appears to be the mechanism by which
chorismate is converted into prephenate in vivo, an important step in the shikimic acid
pathway [18,19] by which a family of sugars is transformed into aromatic amino acids. The
middle portion of the cycle is similar to what we have discussed above, i.e., the effect of
aqueous solvation has been included. The bottom portion of the cycle, on the other hand,
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Figure 2. Schematic comparison of the differential effect of aqueous solvation on
competing chair and boat transition states for the Claisen rearrangement.
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Figure 3. Thermodynamic cycles for a unimolecular reaction showing the relationship
between the gas-phase, aqueous solution, and the enzyme-mediated reaction.
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represents a reaction that is aqueous overall, but the reaction now proceeds within an
enzyme active site (e.g., chorismate dismutase). The cycle illustrates that the manner in
which an enzyme influences reaction rates is very similar to the manner in which solvent
does [20-22]. Thus, enzyme catalysis involves the competition between solvation of the
substrate by the bulk solvent and “solvation” by the enzyme (the latter more commonly
associated with terms like “complexation,” “binding,” or “stabilization™) [23].

Section 2 reviews theories of aqueous solvation based on combining quantum
mechanics with continuum models, including both a continuum representation of the bulk
solvent and also the continuum approach (based on atomic surface tensions) to first
hydration shell effects. Section 3 reviews selected applications to biomolecules. Section 4
considers other solvents. Section 5 presents a brief comparison of the present approach to
the method of theoretical linear solvation energy relationships, which also involves both
quantum mechanics and a continuum treatment of the solvent.

2. MODELING AQUEOUS SOLVATION

The most obvious way to account for solvation in a theoretical calculation is to
surround a substrate of interest with sufficient solvent molecules to mimic the effects of
bulk solvation. Regrettably, the number of solvent molecules which is required to mimic
bulk solvent is usually quite large. Moreover, the supersystem in general has a very large
number of energetically accessible states (differing by the individual orientations of solvent
molecules, for example) which must be statistically sampled to obtain thermodynamically
averaged information [24-30]. This sampling may be performed using either probabilistic
methods like Monte Carlo [21,25,27,28,30] or by following molecular dynamics trajectories
in phase space [20-22,26-28,31,32], but the net result is that converged treatment of the
explicit quantum mechanical representation of the entire system is effectively impossible.
As a result, simulations along the lines described above are typically carried out with
classical mechanical Boltzmann factors replacing the quantum mechanical density operators
for atomic coordinates. Furthermore, the atomic potential energy function which, according
to the Bomn-Oppenheimer separation of electronic and nuclear motions, is actually governed
by the quantum mechanical adiabatic evolution of the electronic states, is often replaced by
a set of pairwise interactions governed by a molecular mechanics force field. Even in such
classical simulations, convergence with respect to long-range forces [33-35] and
multidimensional sampling [36-42] remains problematic. In the latter respect, there is no
general way to insure the adequate sampling of phase space during a simulation. Thus, in
systems with hundreds to thousands of position and momentum coordinates, phase-space
bottlenecks may prevent the system from exploring regions which are important for the
accurate prediction of observed properties.

Classical simulations suffer from other drawbacks as well. Inevitably, force fields
are derived from fitting functional forms for interaction energies to experimental or
theoretical data {43,44], and the extension of such approaches to transition states is a severe
difficulty because of the limited database available. Thus, the development of force fields
capable of handling transition states is technically challenging [45].

In order to alleviate the problems associated with solvent sampling, it proves useful
to simplify the microscopic representation of the solvent. For instance, Warshel and co-
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workers pioneered replacement of individual water molecules with Langevin dipoles [46-
50]. One critical advantage of eliminating some of the technical difficulties associated with
carrying out the solvent sampling is that it permits a more accurate representation of the
solute, e.g., it makes it much more practical to introduce a quantum mechanical treatment of
the solute [10,46,51-75]. Another approach to simplifying the problem is to replace
hydrogen bonding interactions in the first hydration shell by an effective potential method
[76]. An older and more radical approach to simplifying the treatment of the solvent is to
remove all microscopic coordinates and leave behind only a continuum characterized by one
or more of its bulk properties. The simplest such solvation models retain no information
about the solvent beyond its bulk dielectric constant. This level of solvent detail is all that is
required for the cavity-based electrostatic approximations of Born [77], Kirkwood [78], and
Onsager [79] which capture the essential physics of an ion or small dipolar molecule in a
dipolar solvent. These classical treatments lead to simple analytic expressions for the
solvation free energy when the solute can be assumed to be spherical, and these analytical
expressions provide the essential scaling laws for qualitative understanding of how solvation
energies vary with solute radii.

Three key elements have been involved in extending the usefulness of continuum
solvation models to essentially arbitrarily complicated solutes: (1) By using computers, one
can eliminate the restriction to spherical solutes. The modern approach is to represent the
solute shape in terms of overlapping spheres centered at the atomic nuclei. Such space-
filling models are now recognized to provide realistic models of the shape of essentially all
molecules and molecular fragments, and even transition states. (2) By using molecular
orbital theory, the charge distribution of any solute can be modeled reasonably well by a
series of partial charges at the atomic centers; this is called the distributed monopole model.
This allows the treatment of solutes that contain more than a single dipolar center. Of
course, the more complicated models of solutes as arbitrarily large numbers of spheres, not
necessarily arranged symmetrically, and each with an arbitrary partial charge at the center,
means that analytic solutions are no longer available; however, the cost of computer
solutions (with varying degrees of numerical complexity and auxiliary approximations) is a
rapidly decreasing function of time. (3) Finally, modern extensions of the continuum solvent
model have benefited from the realization that the main defect of the continuum treatment of
the solvent is the breakdown of bulk properties in the first solvation shell. In early work this
concern was expressed in attempts to define effective solute radii that encompass a portion
of the solvent where “dielectric saturation” occurs. This saturation of the solvent
orientational polarizability in the vicinity of a large electric field is accompanied by other
first solvation shell effects, for example, “electrostriction”, which refers to the loss of
motional freedom experienced by dipolar solvent molecules in that same region. In modern
work, one focuses more directly on the first hydration shell and explicitly accounts for its
effects in addition to the bulk electrostatic effects.

This section will continue with more details of these modern extensions. Section
2.1.1 reviews the essentials of classical theory. Sections 2.1.2 and 2.1.3 review the classical
analytical theories. Sections 2.1.4 and 2.1.5 review the elements of extensions (1) and (2).
Section 2.2 reviews extension (3). '
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2.1. Electrostatic components of solvation free energy
We begin with a discussion of that portion of the solvation free energy which arises
from solute-solvent, solvent-solvent, and internal solute electrostatic interactions.

2.1.1. The Poisson Equation

The key reason for choosing to characterize the solvent continuum by its dielectric
constant is that it allows one to use the power of classical electrostatics. When the solute is
represented explicitly, and the solvent is treated as a continuum, the Laplacian of the
electrostatic potential, ¢(r), is related to the free charge density (i.e., the charge density due
exclusively to the solute), p(r), by Poisson’s equation [80-82],

v2p-- T2, M

where € is the homogeneous dielectric constant (relative permittivity of the solvent, e.g.,
78.3 for water at 298 K), r denotes the position in space, and the equation is written in
gaussian units. If £ depends on r, one can replace equation 1 by the slightly more
complicated [81]

V. e(®)Vé =-4mp(r). 1))

Assuming that thermal equilibrium is maintained by an external heat bath, the free energy of
solvation G, which is the maximum work which may be extracted from the solvation
process, is then obtained from {81,82]:

G=-1 [ & Low) V-erWor @

or equivalently

G=1[ a3 Lor) V-er) EO) @
2 4n

where E(r) is the electric field given by the gradient of the electrostatic potential and is
given by

E(r) =— Vo (r). ©)
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In solution, the electric field contains contributions from both the intrinsic solute charges
and from the polarization induced by the solute in the solvent. The latter contribution is
called the reaction field. Equations 3 and 4 can also be written as

=1 ] w B, ©)

where D(r) is the electric displacement due to the solute charges. This illustrates how the
solute interacts with its own reaction field, which has a significant effect on the energy of
the system. For conceptual purposes, equation 6 may be thought of as arising from an
iterative process. That is, the gas-phase solute is placed into solution, inducing a reaction
field determined from the gas-phase charge distribution. The interaction of the reaction field
with the solute charge distribution in general induces a relaxation of the gas-phase nuclear
and electronic structure in order to minimize the free energy of the whole system. Of course,
as relaxation proceeds it changes the reaction field quantitatively, such that additional
changes in the solute charge distribution may be favorable. The entire procedure reaches its
terminus when the internal cost of additional change in the charge distribution of the solute
and solvent begins to exceed the resultant gain in their interaction free energy.

We will have cause to refer to this electrostatic portion of the free energy of
solvation repeatedly in later discussion. We label it AGgnp to indicate that it includes the
work required to distort the electronic (E) and nuclear (N) structure (i.e., the molecular
electronic wave function and the geometry, respectively) of the solute from their optimal
gas-phase values, and this is driven by the gain in polarization (P) free energy, which is the
net gain in solute-solvent interaction free energy minus the cost in solvent internal free
energy.

2.1.2. The Born equation

In actual practice, analytical solutions to the Poisson equation exist only for rather
simple cases. One example is a charge ¢ on a conducting sphere of radius . Since a charge
on a metallic sphere is spread uniformly over its surface, but the effect of this outside the
sphere is the same as for a point charge at the sphere center, this is a simple model for a
monatomic ion. Solution of Poisson’s equation in this instance for the gas-phase (¢ = 1) and
the dielectric medium (¢ > 1) gives Born’s formula [77,83,84] for the free energy of transfer
of the charged sphere from a medium with a dielectric constant of unity (vacuum or
sufficiently dilute gas phase) to a solvent of dielectric constant &:

ac=-la1-LHZ ©

Of course, the meaning of o is somewhat less clear for a monatomic ion than for the
ideal case of the conducting sphere [84-88]. That is, the surrounding solvent dielectric is not
homogeneous all the way up to the ionic “surface”. Many models have been proposed for
relating o to the electronic structure of the monatomic ion, but AGg is very sensitive to the
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precise value of o, so these models must be used with caution. We prefer the empirical route
where o is determined from equation 7 using an experimental value for the free energy of
solvation. Such an o is called an effective ionic radius, or a Born radius. Based on analysis
of classical simulations employing explicit solvent representation, Jayaram et al. have
concluded that dielectric saturation does not affect the quadratic dependence of AG‘S’ on
charge for spheres with a charge less than 1.1 electronic units [87]; in such instances, the
ionic radii in equation 7 which reproduce the simulation free energies of solvation are
generally in reasonable agreement with other standard measures of atomic radii, such as the
van der Waals radii suggested by Bondi [89] (although, of course, they are not exactly the
same). Hirata et al. {86] and Roux et al. [90] have separately discussed this result in terms of
extended reference interaction site method (RISM) calculations [91,92], suggesting that
sensible Born radii may be derived from analysis of the first peak in the solute-solvent radial
distribution function, again in concert with a simple spherical model for the ion.
Furthermore, it has been shown that the average distance between ions and nearest neighbor
water molecules is about 1.4 A larger than the ionic crystal radius for typical ions {93].

As mentioned at the end of Section 2.1.1, the electrostatic energies which we have so
far discussed include not only the interaction of the solute with the solvent but also the
change in solvent-solvent interactions when the solute is inserted. Under the mild
assumptions of linear response theory, it can be shown that the latter increase in intrasolvent
energy cancels half the favorable solute-solvent interactions, which is one way to think
about the factors of % appearing in equations 3, 4, 6, and 7 [63,67,69,72,86,87,90,94-100].

2.1.3. The reaction field approach

Clearly only monatomic ions may be unambiguously regarded as spherical.
However, at large enough distance, the interaction of any multipole distribution with a
surrounding field is dominated by its leading term. In other words, at long enough range the
remaining interaction of an ion with a surrounding continuum is well approximated by the
Born equation. Indeed, in molecular simulations of ions which include explicit solvent
molecules, the calculation of electrostatic interactions is typically truncated at some
maximal distance from the solute to maintain computational efficiency, and the remaining
interactions out to infinite distance are often approximated using the Born equation [33-35].

The leading multipole moment for uncharged solutes is usually the dipole term.
Once again, an analytic solution to Poisson’s equation exists. For a point dipole of
magnitude 1 in a sphere of radius @, the result, derived in different ways by Kirkwood and
Onsager, is [78,79]

2
S (2e+ 1)0.3 ®

where € is again the dielectric constant of the solvent modeled as a continuum. It should be
emphasized that the spherical radius o appearing in equations 7 and 8 is only defined insofar
as it represents the point at which a discontinuity in the dielectric constant occurs in the
integral of equations 3 and 4. In other words, although it has clear mathematical utility in the
solution of the Poisson equation, there is no prescription for its determination in molecular
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cases. We note at this point that analytical solutions to the Poisson equation for a point
dipole inside an ellipsoid are also available, and implementations of this approximation have
also appeared [71].

As mentioned above, o may be assigned on the basis of fitting the Born equation to
experimental data for ions, but for uncharged molecules it would be a much more severe and
ambiguous approximation to determine o in the same way from the Kirkwood-Onsager
equation because of the spherical cavity approximation; it is clearly impossible to construct
an uncharged, spherically symmetric molecule which has a dipole moment. Furthermore,
little work has appeared establishing whether or not there are any clear connections between
optimal o values and known physical properties for atoms and molecules. In this regard, an
obvious approach would be to choose o as the radius of a sphere whose volume matches the
cavity enclosed by the solvent-excluding surface of the solute, also called the molecular
surface [101-105]. This approach yields similar results to those obtained using the van der
Waals surface to divide the regions of unequal dielectric constant [106]. Wong et al. [107]
have used a quantum mechanical approach in which the van der Waals surface is replaced
by an isodensity surface and empirical scale factors are employed. Since the choice of
surface determines the value of o, and the electrostatic free energy of solvation depends on
the third power of o in equation 8, the calculations are quite sensitive to the choice of
surface, and some nonphysical results have been reported in the literature when insufficient
care was taken in assigning a value to o. (Further discussion of alternative definitions of
solute surface is provided in Section 2.2.)

One of the key differences between the Born and Kirkwood-Onsager equations is
that the former involves the solute charge, which is unchanged by the polarization field
induced in the dielectric (we neglect charge transfer to or from the solvent); the latter,
however, involves the molecular dipole moment, which may readily increase by relaxation
of the electronic structure as described in Section 2.1, thereby contributing more
polarization free energy at the cost of reorganizational free energy. Since the polarization
field now affects the solvated electronic structure, it should be treated self-consistently in
any quantum mechanical calculations designed to incorporate the effects of continuum
solvation.

Within the Kirkwood-Onsager approximation, the quantum mechanical Hamiltonian
operator that includes reaction field effects for neutral solutes is

Ho-Agu-<vyluly>) ly>=E|y> ©®

where A =0.5, g = 2 (e-1)/ (2 e+1) a3, a is the solute cavity radius, and Hy is the gas-phase
Hamiltonian constructed in the usual manner. The corresponding Hartree-Fock equations are
then [57,66,71,107-123)

(Fo-Agp-<wyluhy) 16 >= & 16> (10
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where Fp is the usual gas-phase Fock operator [124,125], and the & are the one-electron
orbital energies associated with the molecular orbitals ¢;. Note that these equations must be
solved self-consistently insofar as the Fock operator, the one-electron density matrix
involved in the solution of the Hartree-Fock equations, and the molecular dipole moment are
all mutually interdependent. It is easily seen that these equations capture the phenomenon of
increased charge separation being favored in solvents of increasing dielectric constant. The
electrostatic portion of the free energy of solvation, AGENp, is then simply the energy
calculated from the orbitals obtained from equation 10 minus the gas-phase energy. Note
that this will generally be less negative than the energy calculated from equation 8, which is
the portion associated with AGp, since the costs of distorting the electronic and molecular
structure of the solute have been included in the. calculations implicitly by the SCE
formalism.

In addition, as discussed in Section 2.1.2, the cost of distorting the solvent structure
is taken into account via the factor A of 0.5 preceding the reaction field portion of the
solution-phase Fock operator. This formalism thus treats all three effects—favorable solute-
solvent interactions (twice AGp), cost of solute reorganization (A EgN), and cost of solvent
reorganization (minus A Gp)—mutually self-consistently; changes in solute electronic and
molecular structure cease when additional gain in AGp fails to be larger than the costs of
distortion, AEEN. An alternative approach has been considered, however, which minimizes
the solute energy plus solute-solvent interaction, rather than the system energy. Formally,
this convention involves taking A = I in equations 9 and 10; therefore, solute electronic and
structural reorganization proceeds until that portion of AGp associated only with the solute
no longer exceeds any increase in AEgN. Clearly, the solute distortion for the latter approach
must be greater than that for the former. However, when optimization is carried out with
A = 1, the rotal energy of the system can only be obtained by adding back a factor of 0.5 gu?,
where U is the relaxed dipole moment. In other words, if the cost of solvent reorganization is
not accounted for self-consistently, it is included ex post facto.

Both methods, employing A =0.5 [71,107,109-113,116-123] and A =1
[57,66,108,114,115,122,126,127], have seen extensive use in the literature. Regrettably, it is
not always clear in certain instances which method has been employed, and careful analysis
of the equations in individual papers even reveals cases where the mathematical derivation
switches haphazardly from one approach to the other! Not much work has been done to
assess which, if either, of these two methods is to be preferred. Szafran et al. [122]
compared the two approaches for the prediction of solvent effects on tautomeric equilibria in
2-hydroxypyridine== 2-pyridone and 4-hydroxypyridine== 4-pyridone and found littie
difference between them in comparison to experimental results. However, any comparison
of the methods is somewhat ambiguous insofar as the spherical cavity radius o appearing in
the coupling factor g has no obvious physical interpretation (vide supra). Treating the radius
as a free parameter makes it fairly simple to obtain reasonable results with either value of A.
What is unambiguous, however, is that optimization of solute geometries is much more
straightforward when one takes A =0.5. The alternative, A = 1, requires solution of a
coupled-perturbed Hartree-Fock equation each time analytic gradients are required, since the
total energy of the system includes the term 0.5gu2 non-self consistently, i.e., the term
depends on the dipole moment, and therefore the density matrix, but it is not accounted for
in the Fock operator since it is added ex post facto. This latter consideration is significant
enough to suggest that, from a purely practical standpoint, it would be better to adopt
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A =0.5, regardless of the competing arguments over which is to be preferred based on
fundamental principles.

In any case, the great simplicity of the Kirkwood-Onsager approach has prompted its
incorporation into a number of quantum mechanical electronic structure programs, both at
the ab initio and semiempirical levels [108,111,128-131}. Considerable caution should be
exercised in its application, however. For instance, for charged solutes one should include
an ionic Born term derived from equation 7, which will be a considerably larger contributor
to the solvation free energy than the corresponding Kirkwood-Onsager term. However, for
at least one commonly used electronic structure program this term is not included [130],
perhaps because it does not require a self-consistent treatment in the Hartree-Fock equations
and is thus easily added on post facto. Another consideration for ionic systems is that only
the leading molecular multipole moment is independent of the origin of the chosen
molecular coordinate system. Thus, Born-Kirkwood-Onsager calculations of such systems
require a choice of where to evaluate the molecular dipole moment, e.g., at the molecular
center of mass, center of charge, center of the encompassing sphere, etc. The final result will
be correct only if a consistent choice of coordinates is used throughout the derivation and
application. The two most critical considerations, however, are that (1) application of the
model is justified only when higher-order multipole moments are negligible, and (2)
application of the model is justified only for nearly spherical solutes. These issues are
addressed in the next two sections.

2.1.4. Truncated single-center multipolar expansions

As discussed above, the Born-Kirkwood-Onsager approach includes only the
solute’s monopole and dipole interactions with the continuum. That is, the full classical
multipolar expansion of the total solute charge distribution is truncated at the dipole term.
Although these terms dominate at very large distances, one may imagine evaluating the
electrostatic potential and the polarization contributions to the free energy of solvation while
approaching more and more closely to the solute. Eventually, the contributions from higher-
order moments cease to be negligible. The importance of such higher order moments is most
obvious for neutral molecules whose dipole moments vanish as a result of symmetry. The
Born-Kirkwood-Onsager model would require the electrostatic portion of the free energy of
solvation for these molecules to be identically zero.

Generalization of the Born-Kirkwood-Onsager approach may be accomplished by
solution of the Poisson equation for a single-center multipolar expansion to arbitrarily high
order. This approach yields [60,78,98,132-135]
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where each component M 7" “of every multipole moment interacts with all of the reactxon
field multipole moments induced by the solute multipoles via a set of coupling factors f 0

called the reaction field factors. The assumption that the cavity is a sphere leads to the
coupling factor being non-zero only for I = [”and being independent of m and m’. The Born-
Kirkwood-Onsager model is then seen as a special case involving only the net charge (I =0)
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and dipole moment (I = 1) terms. The assumption of a spherical or ellipsoidal solute cavity
actually permits analytical determination of all of the reaction field factors in equation 11
[60,71,78,108]. When implemented into the SCF equations in a manner analogous to that
described in the previous section with A taken as 0.5, this simplification additionally permits
efficient optimization of solvated geometries [71,132,133,135-137]. Even for more general
cavities, e.g., cavities which more resemble a molecular van der Waals surface, it is possible
to determine the reaction field factors numerically, since they appear in an overdetermined
system of linear equations {133,134]. Both of these approaches have seen increasing use
[134,138,139]. Although Tapia has discussed the competing derivations which yield A =1
(solvent as isothermal bath) and A =0.5 (work of solvent polarization included self-
consistently) in the equations analogous to equations 9 and 10 for this more general
multipole approach [66], it appears that implementations appearing in the recent literature
have exclusively used A = 0.5, probably to take advantage of the simplified geometry
optimizations for this case [71,132-139].

A point of obvious interest is how fast the electrostatic portion of the solvation free
energy converges with respect to multipole order. Interestingly, this convergence can be
quite slow, even for fairly simple molecules. A specific example is Z-3-aminoacrylonitrile,
which was studied by Pappalardo and co-workers [140]. Immersion of this solute in a
continuum with a dielectric constant of 38.8 yields a total electrostatic polarization free
energy of —13.2 kcal/mol. Decomposition of this energy finds 66% contained in the dipole
term, 22% in the quadrupole, and the remaining 12% in the terms up through 26-pole, which
was the highest multipole considered. Moreover, this slow convergence was still more
pronounced for the transition state for rotation about the carbon-carbon double bond, where
the polarization free energy for this nearly zwitterionic structure is —44.8 kcal/mol, now
consisting of 64% dipole, 18% quadrupole, and 19% in the higher order terms. The
convergence of the multipole expansion is also very dependent on the shape of the
employed cavity [134,138].

Although typically the multipolar expansion of the electronic structure is performed
at only a single point, e.g., the center of mass of the molecule, this is not a requirement.
Instead, an arbitrary number of distributed multipoles may be placed at multiple points, e.g.,
the atomic coordinates or the atomic coordinates and bond midpoints [72,134,141-144].
Numerical fitting of the multipoles and reaction field factors proceeds equivalently. One of
the simplest approaches is to use only atomic monopoles (i.e., partial charges); this may be
made equivalent to a single-center expansion up through /= N -1 where N is the number
of atoms. Indeed, this is quite similar to the generalized Born approximate solution to
Poisson’s equation which is discussed in greater detail in Section 2.3.

As expected, this distributed approach is much more rapidly convergent in terms of
the multipole order required at each center. In the modeling of formamide, for instance, a
one-center expansion in a generalized cavity still has 1% fluctuations by the 26-pole term
[134]. The distributed expansion at the atomic positions in the same cavity, on the other
hand, has only a 1% contribution from the quadrupole, and is effectively converged after
this point [134]. Moreover, it is generally more efficient computationally to describe the
molecular electronic structure as a set of N distributed monopoles rather than a single
multipolar expansion of order N. Of course, the precise method for determining the
magnitude of the distributed monopoles (partial charges) remains controversial insofar as
atomic partial charges are not physical observables; a large number of models and




21

algorithms is available [144-166]. Although including higher multipoles at every center
clearly increases the flexibility of the approach, the cost is considerable in terms of
computational effort and so far has limited its application to fairly simple systems, e.g., the
NH3-HCl complex [167].

2.1.5. Generalized reaction fields from surface charge densities

If the multipolar expansion of the molecular charge density implicit in equation 11
were carried out to infinite order, the resulting equation would be a complete solution to the
volume integral expression of Poisson’s equation discussed so far. An alternative approach
is application of Green’s theorem to convert the volume integral of equation 6 to an integral
over the molecular cavity surface S. In particular, the effect of the reaction field may be
modeled by a continuous polarization charge density spread over that surface, where this
virtual charge density, o(r), is in Gaussian units

1-¢ 2

)=t

[0 (r)+ 0] (12)

with ¢p(r) being the electrostatic potential due to the solute charge distribution, and ¢u(r)
being the potential due to the virtual charges {65,74,168-171]. The derivative is with respect
to an outward surface normal evaluated on the solute side (indicated by the S_ subscript) of
the dielectric interface. The potential created by the surface virtual charge density is

MOEIN IS(—rr)'lAdzr" (13)

and it must be added to the potential due to the solute charge distribution to obtain the total

electrostatic potential at r. The electrostatic portion of the free energy of solvation is then
defined as

AG‘S’=<\;IIH0+%¢GI\;!>—G;. (14)

In practice, the surface charge density is approximated by a discrete set of point
charges which are distributed as uniformly as possible, and the appropriate integrals are then
replaced by summations. This model is often referred to as the Polarized Continuum Model
or PCM, and it saw most of its early development by Tomasi and co-workers [65,74,169-
171]. More recently, it has been implemented in a variety of ab initio and semiempirical
quantum chemistry programs [128,172-179]. Of all of the models discussed so far, PCM has
seen the most effort spent upon the development of prescriptions for choosing the optimal
cavity surface, to include as a function of basis set at the ab initio level [180].

It is probably worth emphasizing here, in case it isn’t obvious, that the multipole
methods-of Section 2.1.4 and the surface-charge-density methods discussed in this section
are physically identical, and they will yield the same result if (1) the same molecular surface
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is used in both methods (e.g., the same solute atomic radii if the surface is constructed from
overlapping spheres), (2) the expansion of equation 11 is well-converged, (3) the numerical
representation of the surface charge density is well converged in the PCM, and (4) the factor
A used in the development of the SCF equations is identical. With respect to the last point,
equation 14 explicitly takes A = 0.5, as is most common in the multipolar reaction field
schemes discussed previously. However, again a choice of A =1 may be made (i.e.,
assuming the solvent to be an isothermal bath) in which case, in exact analogy to the
discussion in Section 2.1.3, the free energy of solvation must include the addition of a work
of solvent polarization term ex post facto. While this latter approach has been pursued by
Tomasi and co-workers [65,74,169-171}, all other implementations of the PCM approach
have used the formalism of equation 14 [128,172-179,181]. To our knowledge, no
comparison between the two implementations has appeared.

The broadly general nature of the PCM technique makes it uniquely attractive,
especially as it is somewhat more straightforward to implement than the analogous truncated
multipolar expansion method taken to arbitrarily high order. Nevertheless, it remains
extremely demanding in computational resources, primarily because of the time required to
generate the surface virtual charges. Klamt and Schiiiirmann [178] have presented a
particularly efficient algorithm [182] for accomplishing this at the Neglect of Diatomic
Differential Overlap (NDDO) [183] semiempirical level of theory.

While the scope of this chapter is intended only to cover quantum mechanical
continuum solvation models, we mention in passing that classical approaches to solving the
Poisson equation also exist which are similar in spirit to the PCM model but involve
representation of the solute charge density as a discrete, grid-mapped set of charges [184-
198]. These models fail to allow for self-consistent relaxation of the molecular electronic
structure, although obviously they are considerably faster than fully quantal models as a
result. To make up for the lack of self-consistency, the dielectric constant is sometimes set
cequal to a value in the range of 2 to 4 in the non-self-consistent Poisson approaches, whereas
it is properly set equal to 1 in the solute when solute polarization is included explicitly.

2.2. Non-electrostatic components of solvation free energy

So farin this chapter, we have concerned ourselves only with the bulk electric
polarization of the volume surrounding the solute. However, there are other effects that are
more specifically associated with the surface layer of solvent, i.e., the first solvation shell.
One example is the free energy required to create a solute-sized vacuum within the solvent.
This cavitation energy, which is approximately proportional to the surface area of the
created cavity, is quite dependent on the particular solvent. Additional components at
solvent-solute interfaces include the attractive dispersion forces between the solute and the
nearby solvent molecules and local structural changes in the surrounding solvent as a result
of the insertion of the solute. A key example of the latter effect is found in water, where the
solute may induce solute-solvent hydrogen bonding and/or cause especially significant
changes in solvent-solvent hydrogen bonding in the first solvation shells [199,200].
Although continuum solvation models arguably include the electrostatic component of
hydrogen bonding to some degree in the dielectric polarization term, short-range
components cannot be fully modeled by a uniform dielectric constant. Considering the other
" extreme, for solutes that do not hydrogen bond to an acceptor/donor solvent, the solvent
structural change may be unfavorable due to the loss of solvent orientational entropy, i.c.,
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the hydrophobic effect. We will refer to the sum of these effects as the CDS term, for
Cavitation, Dispersion, and solvent-Structural rearrangement.

The difference between the electrostatic effect calculated using the bulk dielectric
constant and that calculated taking account of local structural factors may be viewed as
arising from an inhomogeneous dielectric constant. In the absence of a microscopic model
for the solvent, one approach to incorporating the CDS term would be to allow the dielectric
constant of the surrounding medium to take on different values at different locations.
However, no clear prescription for accomplishing this in a physically meaningful way is
available. An attractive alternative is to assume that the approximate proportionality of the
cavitation term to the cavity surface area extends to the remaining terms as well. This seems
intuitively reasonable for dispersion, which operates over so short a range that one expects it
to be proportional to the number of molecules in the first solvation shell, which is clearly
dependent on the solvent accessible surface area of the solute [201]. There is a key
distinction to be made between cavitation and dispersion, however, and that is to note that
cavitation is independent of the solute, while dispersion is expected to depend on the local
polarizability of the solute in any given region. Thus, one might model the C and D terms by
assigning a surface tension ¢; to each atom i in the solute and calculating:

AGY, =3 6\ DA; 15)
4

where A; is the solvent accessible surface area of atom i. The surface tension will contain a
constant component which is independent of i, while the remainder will be associated with
dispersion and will be dependent on the atomic polarizability of the individual atom. The
solvent accessible surface area is most readily calculated following the definition of Lee and
Richards [101,202], and it is calculated as the surface mapped out by the center of a solvent-
sized ball rolling over the molecular van dér Waals surface.

Finally, the sum of the solvent structural rearrangement free energy and the free
energy due to specific electrostatic and hydrogen bonding effects in the first solvation shell
(including the non-homogeneity of the dielectric constant) can also be assumed to be
proportional to a cavity surface area, although it need not be the case that the CS cavity will
be defined in the same way as the CD cavity. We include the C term in both cases because it
is not rigorously clear how it might be separated from either dispersion or structural
rearrangement when the CDS term is simply known in its entirety. Of course, if the two

cavities are identical, then equation 15 may be used for the entire term AG%DS with a single

set of atom-specific surface tensions which would now be called ciCDs, ie., [203-209]
o _ CDS , .
AGpg= ? o, A 16)

It is worth noting that in cases where the CDS term dominates the entire free energy
of solvation, it may be possible to calculate the full AGg using the formalism of equation 16.
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Such an approach works reasonably well for estimating the solvation free energies of
hydrocarbons in water, where the ENP terms are very small [203-209]. Scheraga and co-
workers had moderate success applying this idea to the twenty biologically important amino
acids, although this is admittedly a crude approximation for these much more polar
molecules [207].

Very few quantum mechanical solvation models have attempted to incorporate
simultaneously both the ENP and some or all of the CDS components of solvation. One
common approach is to model cavitation free energies using the scaled-particle theory of
Pierotti [210], and some attempts to model dispersion have also appeared
[58,67,135,177,211-220]. Rigorous quantum mechanical calculation of this term can be
quite costly, and one must question whether the inherent accuracy of a continuum model,
with its strong dependence on solute radii, warrants such an approach, as compared to a
simplified approximation such as that offered by equation 15 or 16

One particularly interesting attempt to address both the ENP and hydrophobic CDS
components of solvation has been described by Still and co-workers within the framework
of molecular mechanics [221]. In their model the ENP term is arrived at non-self-
consistently by using a generalized Born formalism {10,11,51-54,61-63,66,69,70,221,222]
to approximately solve the Poisson equation, and the hydrophobic portion of the CDS term
is calculated using an analog of equation 16 where all atoms have the same surface tension,
which is a good start but is not flexible enough to model all CDS effects quantitatively. We
will devote Section 2.3 to describing our own extension of these ideas to a quantum

chemical implementation at the NDDO level, in which we attempt to include ali of the

CDS

important solvation terms in ¢, while simultancously permitting self-consistent

relaxation of molecular electronic structure as a function of solvation for one particular
solvent, water. . .

Before closing this section, it is useful to comment in more detail on the precise
interpretation of A; in equations 15 and 16. Lee and Richards [101,202] and Pascual Ahuir,
Silla, and Tuifion [104,105] have carefully distinguished three definitions of the surface area
of a solute or its associated cavity. The three definitions will be given here for the case
where the solute is modeled as a set of overlapping “atomic” spheres, one representing every
atom i (or a group i consisting of a nonhydrogenic atom and its attached hydrogens), with
radii R;, and the solvent molecules are modeled as spheres of radius Rs. The van der Waals
surface, also called WSURF [105], is composed of those surfaces of the atomic spheres that
are not encompassed by any other sphere. The solvent-accessible surface {202], also called
the cavity surface [203] or ASURF [105], is the surface traced out by the center of a solvent

" 'sphere rolling on the van der Waals surface. The third surface, originally called the
Molecular Surface [101], but more clearly labeled the solvent-excluded surface [105] and
also called ESURF [105], is the surface traced out by the points of contact of a solvent
sphere rolling on the van der Waals surface in those regions where the solvent sphere
touches only one solute sphere; in regions where the solvent sphere simultaneously contacts
two or more solute spheres, it is defined to be the surface traced by the inward surface of the
solvent sphere. Note that WSUREF is independent of Rs, ASURF depends strongly on Rs,
and ESURF has an intermediate dependence. We believe that the ASURF definition is most
physical for equations 15 and 16. This is because the ASURF surface passes through the
center of the first solvation shell and thus, when the solvent is modeled by a continuum, it is
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proportional to the number of solvent molecules in the first solvation shell. Since dispersion,
solvent-structural free-energy changes, and the effect of nonhomogeneous dielectric
constant in the first solvation shell are all approximately proportional to the number of
solvent molecules in that shell, this definition is ideal for equation 16.

2.3. The SMx models and absolute free energies of solvation

In this section we review our own SMx models, based on the generalized Born
model [10,11,51-54,61-63,66,69,70,221,222] for electrostatic effects and a generalization of
equation 16 for first-solvation-shell effects. Models AM1-SM1 [223], AM1-SMla [223],
AMI1-SM2 [224], and PM3-SM3 [225] are named to indicate their extension of an
underlying gas-phase semiempirical NDDO Hamiltonian, either Austin Model 1 (AM1)
[226] or Parameterized Model 3 (PM3) [227,228], with a particular solvation model (SM)
where the numbering of the solvation model is primarily chronological in nature. Two new
models, AM1-CM1A-SM4A and PM3-CM1P-SM4P, are under development [229] and will
be published soon. We have extensively reviewed the theory behind these models elsewhere
[75,230], and we present here a less exhaustive description for purposes of completeness.

In the SMx models, the standard-state free energy of solvation, AGY, is calculated
from '

AGS = G- EeN(g) a7

where EgN(g) is the gas-phase electronic kinetic and electronic and nuclear coulombic
energy, and G(S) is that part of the aqueous free energy given by

Gg = EpN(aq) + Gp(ag) + Gpg(ag), (18

where Egpn(aq) is equivalent to Epn(g) except now calculated in the presence of solvent,
i.e., including distortion energy, Gp(agq) is the electric polarization free energy in solution,
and G°CD is the cavitation-dispersion-structural free energy summarized in the previous
section. g)ther contributions to the total free energy of the solute in solution (e.g.,
vibrational) are assumed (in work carried out so far) to make an identical contribution to the
gas-phase and aqueous free energy, and thus not to affect Adg. Clearly they would have to
be added to Gg in order to obtain the total free energy in solution.

The polarization free energy is calculated from the generalized Bom approximation
[10,11,51-54,61-63,66,69,70,221,222] to the solution of the Poisson equation,

1,1
Gp = '2‘(1——) 2 99Kk’ (19)
€/ K’




26

where gy is the atomic partial charge on atom k, where k and &~ run over all atoms
(k=1,2,...,kmax), and where Ygx- is a coulomb integral. We have adopted the form for the
coulomb integrals proposed by Still et al. [221]

Y= {7 -+ Ok Ok Cuae (rig 112, 0)

where oy is the Born radius of atom k, ry, - is the interatomic distance between atoms k and
k', and Cy-is in general given by

Cix-=exp(=r 2, . ldO o), @D

with &0 being an empirically optimized constant equal to 4. Equation 20 is designed so that
Gp behaves properly in three important limits for a pair of atoms k and &~ infinite separation
of atoms k and k’, where it yields a sum of Born monatomic ion energies, coalescence of
identical atoms, where it again yields the monatomic Born formula, and close approach of
dissimilar atoms, where it approaches the Kirkwood-Onsager result.

For the monatomic case (k= k"and kmax = 1), o is set equal to

1 .
pr = pr@ + oV [ - 7 arctan q%?;‘— + %] (22)
k

where pk(o) and pg(l) are empirically optimized parameters corresponding to positive and
ncgative ionic radii, qk(O) is the charge about which the switch is centered, gk is the
calculated partial charge, and gx() has been fixed at 0.1 for all atoms. In the multicenter
casc, o is determined numerically so that the Gp which would be derived for the
monatomic case (i.e., as if using equation 7) is equal to the Gp determined via a numerical
integration [221,223,230,231] that corresponds to dividing the solute from solvent with a
WSURF-type surface based on a set of spheres centered at nuclear location xg- with radii
px-s where k“=1,2, ..., N, and N is the number of atoms in the solute. In partiéular,

1
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where a(r, {xk’, pr-}x = &) is the fraction of the surface area of a sphere of radius r at the
origin that is not contained in any of the N — 1 spheres specified by the set {xx-, p&-}r =k
when the system is translated so that atom k is the sphere at the origin. The integration is
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performed by precisely specified (and hence reproducible) quadrature rules in the SM1,
SM1a, SM2, and SM3 models, and it is converged in SM4A and SM4P. The integral in
equation 23 accounts for screening of the solute from the solvent by other parts of the
solute; this solute screening effect is critical to solvation modeling [17,75,221,223,232] but
is often neglected or—when included—often unappreciated.

At the valence-electron NDDO level, the electrostatic terms are calculated using the
density matrix P of the aqueous-phase SCF calculation as

1 1 %2, 1( 1
GENP =52 va(Hpv +va)+§ )y e —'2‘(1—5)221:‘11('“!1(1(' 24
v K k'#k Tkk KK

where H and F are, respectively, the one-electron and Fock matrices [233-235], L and v run
over basis orbitals, Zy is the effective (valence) nuclear charge of atom k. We point out here
that both equation 5 of reference 225 and equation 19 of reference 230 (both being analogs
of equation 24 above) are incorrect: the former is missing the last two terms of equation 24,
and the latter is missing the final term and has “=" in the summation index instead of “#”.

The critical point in implementing the generalized Born model at this semiempirical
level is that the Fock matrix is related to the energy functional of equation 18 as its partial
derivative with respect to the density matrix. The partial charges which appear in the
definition of Gp (equation 19) are themselves derived from the density matrix. In the SM1,
SM1a, SM2, and SM3 models, this is accomplished by a simple Mulliken population
analysis [147] under the assumptions of zero overlap

=2~ % Py , 25
ek

A more complicated dependence of atomic partial charges on the density matrix elements is
used in SM4A and SM4P, which we call Charge Model 1A and 1P (CM1A or CM1P) [166].
In any case, using either formalism to define gy, the partial differentiation of equation 18 is
straightforward, and it delivers a solution-phase Fock matrix which self-consistently
includes polarization effects. Thus, as for the other quantum models, self-consistency is
required in these calculations: in particular, the Fock matrix, the density matrix, and the
interacting solvent field are made self-consistent.

The last term in equation 18, which is required to accurately calculate absolute free
energies of solvation, is calculated by a version of equation 16 that is modified in a way that
depends on which of the SMx models is involved. For example, in SM2 and SM3, we use

Geps = % {c}}’) + Gg)[f (Bew)+ 8(Bk'H)]}Ak’(Bk" {Bx}) 26)

where the ok~ are atomic surface tension parameters, and Ag-(Bx-{ Bx}) is the solvent-
accessible surface area for non-hydrogen atoms k. The latter is defined as that portion of
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ASUREF associated with atom k° when the set of radii for all the atoms is {Px}. We set
Rs = 1.4 A, and we set Bx = 0 for hydrogen atoms.

In the remainder of equation 26, By is the sum of the bond orders, defined more
specifically as covalent bond indices [236], of atom k to all hydrogen atoms in the solute,
ie.,

2
Bui= ), P, @n
pe k,ve H

where |1 runs over the atomic orbitals of atom k, and v runs over all hydrogen orbitals. The
hydrogen atom is specifically defined to have zero solvent-accessible surface area, and
moreover not to block the accessible area of the atom(s) to which it is attached. Finally

f(Bi) = tan~! (3 Byn) (28)

and

ar. CXP{“bk/l ~[(Br - )/Wk]2 } Bt — el < Wk

&(Bua) = 9)

0, otherwise.

This more complicated cxpression of GOCDS was found to be required in water
because hydrogen atoms in that solvent interact with the first solvation shell differently
depending on the heavy atom to which they are attached. For example, an alkane hydrogen
is hydrophobic but an amine hydrogen is hydrophilic. To maintain flexibility and accuracy
in the model, it was convenient to make the heavy atom surface tension be a function of the
number of attached hydrogen atoms. We emphasize that the zero-radius treatment of
hydrogen occurs only for the CDS term in SM2 and SM3, not for the other models, and
never for the ENP term.

The various parameters (van der Waals radii, surface tensions, etc.) were fit to
reproduce experimental aqueous solvation data. In practice, one begins the parameterization
process by focusing on ions, for which most of the solvation free energy is found in the ENP
term. This being the case, the ENP parameters are effectively “decoupled” from the CDS
parameters, and indeed in the first pass through the ions, all surface tensions are set to zero.
Once cavity radii have been defined for the ions, they are then used in neutral molecule
calculations, with the difference between the calculated and experimental free energies
being assigned to the CDS term. Surface tensions and radii are then fit using equation 26 in
a multilinear regression to minimize residual error compared to experiment. These CDS
terms are then used in another pass through the set of ions, and the ENP parameters are
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allowed to relax accordingly to maximize agreement with experiment. This iterative
procedure is continued until the parameters converge, usually by the second or third pass
through the data. Throughout this process the parameters are monitored so as to ensure the
location of a physically meaningful local minimum in parameter space.

As a consequence of this type of parameterization, the CDS parameters do more than
account for cavitation, dispersion, and structural rearrangement. In particular, they correct
for the impact on the ENP terms of errors in the NDDO wave function, in the representation
of a continuous charge distribution by a set of partial charges on the atoms, and in the
generalized Born approximation to solving the Poisson equation. In addition in models
SM1, SMla, SM2, and SM3, they also account for systematic numerical errors in the
quadrature of equation 23.

We have reviewed the performance of the AM1-SM2, AM1-SM1a, and PM3-SM3
models elsewhere [75,230] and the SM4A and SM4P models will be described in a
forthcoming paper [229]. We note that the parameterizations ultimately permit the
prediction of absolute free energies of solvation for a large set of neutral molecules (> 150)
with a mean unsigned error of less than 1 kcal/mol (where the data span a range from
roughly +5 to —10 kcal/mol) and for about 30 ions with a mean unsigned error of about 3-4
kcal/mol. The latter number is well within experimental error since the measurements
require the completion of thermodynamic cycles which include gas-phase deprotonation
enthalpies. The models are all available in the semiempirical package AMSOL [237], and
they have also been implemented in commercial software packages. All of the calculations
discussed below were performed with various versions of AMSOL. The remainder of this
contribution will focus on the application of these models to systems of biological interest.

2.4. Nonequilibrium solvation :

The above considerations all apply to the solvent being equilibrated to the solute and
vice versa. This is a reasonable assumption for free energies of solvation of solutes
executing small-amplitude vibrations around a single equilibrium structure. For dynamics
problems, though, one must sometimes consider non-equilibrium solvation. The theoretical
treatment of nonequilibrium solvation involves a careful consideration of time scales [238],
and it is much less well understood than equilibrium solvation. Nonequilibrium solvation
effects can be included in dynamics calculations by treating solvent degrees of freedom
explicitly, or they can be incorporated as corrections to transition state theory [239,240] The
reader is directed elsewhere for recent literature on continuum models of nonequilibrium
solvation [241-245].

Another area where nonequilibrium solvation is important is electronic spectroscopy.
To a first approximation, excitation from an electronic ground state into an excited state
occurs much more rapidly than reorganization of the structure of the surrounding solvent
shells. As such, the solvent reaction field acting upon the excited state at the instant of
excitation is just that field that was derived from the ground state. Over a longer time period,
solvent relaxes to a new equilibrium reaction field, and if radiative emission occurs to create
the ground state, again the instantaneous reaction field experienced by the ground state will
be that for the excited state. This differential solvation can lead to a change in Franck-
Condon factors and significantly shifted absorption maxima in solution compared to the gas
phase. There is great interest in the theoretical prediction of the effects of solvation on
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spectroscopy, and again we will simply refer the reader to recent discussions of these issues
[126,177,179,246-252].

3. APPLICATIONS TO BIOLOGICALLY INTERESTING SYSTEMS

A major motivation for the development of aqueous solvation models is the
modeling of biological and pharmacological structure and reactivity. For instance, it is clear
that the development of the tertiary structure of non-membrane-associated proteins is driven
in part by the energetically favorable tendency for them to bury hydrophobic amino acid
residues in the interior of the protein while leaving hydrophilic residues exposed to the
surrounding aqueous environment [104,209,253-257]. Moreover, the energetics of substrate -
enzyme or substrate-receptor binding may be viewed as a differential solvation effect
between the active site and the bulk solvent [23,258], i.e., electrostatic and binding
stabilization of the substrate at the active site is in competition with solvation of the free
substrate in aqueous solution. The references in this paragraph provide only a small
sampling of the wide activity in this field.

Sections 3.1 and 3.2 are dedicated to specific examples of the effects of aqueous
solvation on systems of biological import. Section 3.1 illustrates for the nucleic acids how
the electronic structure changes as a result of solvent-induced polarization, and section 3.2
provides examples of how aqueous solvation influences the equilibrium population of
conformers for flexible biomolecules.

3.1. Aqueous solvation effects on electronic structure — the nucleic acids

Quantum mechanical studies of the nucleic acids [113,129,259-262] and classical
mechanical studies of their molecular dynamics, both in the gas phase and when surrounded
by hundreds or thousands of water molecules [26,263-269], have done much to advance our
understanding of these important molecules. As discussed in section 2, classical simulations
involve molecular mechanics force ficlds which are parameterized by electronic structure
calculations and/or semicmpirical fitting to experimental data. The charges built into such
force fields are not subject to solvent-induced polarization. That is, empirically optimized
partial atomic charges on the individual atoms are taken (o be constant and are not self-
consistently determined with respect to either molecular conformation or environment.
However, quantum mechanical calculations on solutes using the self-consistent models
detailed in section 2 nearly always indicate electronic polarization to be a non-negligible
component of the overall solvation free energy. In very polarizable systems, like
heterocycles, the effect can in fact be quite large {259,270,271].

Such a finding raises interesting questions about the requirements for realistic force
fields for molecular mechanics simulations of polarizable solutes in agqueous media.
Potential functions optimized for liquid-phase simulations [267,269,272] must necessarily
have larger partial charges and dipole moments than would be appropriate for the gas-phase
molecules. One way to accomplish this is to parameterize the force field based on
calculations on hydrogen bonded or ion-water complexes. A popular alternative has been to
base the partial charges on ab initio Hartree-Fock wave functions derived using the 6-31G*
basis set [273], since calculations with this basis set are known to overestimate molecular
dipole moments by about 10% in many cases [125]—this appears to be roughly the
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contribution of polarization to the overall electrostatic component of the free energy of
solvation. It is clear, however, that such an approach will be of limited value in more
polarizable systems or in systems where it is difficult to account for the bulk of the solvent-
induced polarization by performing electronic structure calculations for the solute when it is
complexed to only one or two water molecules. The nucleic acids appear to serve as a
particularly important example of this phenomenon. We have reported AM1-SM2 and PM3-
SM3 calculations for these solutes [259], and the two methods are in reasonable agreement
for the absolute free energies of solvation. Both models predict that solvent induced
polarization of the solute accounts for 23-34% of AG(S’. Since experimental free energies of
solvation remain to be measured for the nucleic acid bases, it is most instructive to compare
diverse theoretical models in order to assess the relative importance of polarization to the
aqueous solvation of these molecules.

One pertinent study is that of Gao and Xia [274], who estimated polarization effects
on solute-solvent interaction energies by a combined quantum/classical mechanical
approach which included 260 molecular mechanics water molecules in the AMI
Hamiltonian with the nucleic acid bases constrained to their gas-phase geometries. Although
calculations of the relative free energies of hydration are expensive by this method and were
therefore not carried out, canonical ensemble averages are less expensive, and average
values of the molecular dipole moments were computed for each solute. Katritzky and
Karelson {113] have also studied the nucleic acid bases, employing the Kirkwood-Onsager
approximation described in section 2.1.3 as implemented into the AM1 Hamiltonian. Since
both of these studies, as well as our own AM1-SM2 calculations, start from the AM1 gas-
phase Hamiltonian, it is particularly interesting to compare them. Table 1 lists the dipole

Table 1.
Dipole moments of the nucleic acid bases in aqueous solution compared to the gas phase
(Debyes)

In solution

At optimized
At gas-phase geometries solution geometries
In the Katritzky and  Gao and
gas phase Karelson Xia AMI1-SM2 AMI1-SM2
cytosine 6.3 74 9.9 9.0 100
thymine 42 52 59 6.2 6.6
uracil 43 5.0 59 64 6.9
adenine 22 2.9 3.8 3.1 3.1

guanine 59 6.6 8.5 8.5 9.3
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Table 2.
Absolute free energies of solvation for the methylated nucleic acid bases (kcal/mol)

AMBER AMBER OPLS OPLS 6-31G* 1-SM2
[275]  [276] 771 [278] [279] frozen relaxed

I-Methylthymine ~ 7.7  -94 -104 -99  -86 -10.8 -133
9Methyladenine ~ -128 —149 -108 94  —65 -167 209
I-Methylcytosine ~ —12.9 ~168 -179 -130 -144  -187

9-Methylguanine -19.8 -197 -195 -160 -182 -243

moments found for the nucleic acid bases in the gas phase, and with each of the solvation
models, for the gas-phase geometries [i.e., only the electronic structure (not the geometry)
has been permitted to relax in the presence of solvent]. We have also optimized the solutes
at the AM1-SM2 level in order to study the additional effects of geometric relaxation.

Three points are especially worthy of note. First, the increase in the molecular dipole
moment is smallest for the Kirkwood-Onsager model, as expected given the severely
limiting assumptions of that model (as discussed in section 2.1.3). Second, the results of
Gao and Xia are remarkably consistent with our own, especially considering the different
representations of the solvent either as explicit and classical or as a continuum dielectric.
Finally, the additional effects of geometric relaxation are not trivial for several of these
solutes, illustrating the importance of reoptimizing geometries in solution.

To illustrate the importance of the polarization contribution to the absolute free
energy of solvation, Table 2 presents the calculated free energies of solvation for the
methylated nucleic acid bases of DNA as calculated by several different methods {259,275-
279]. Elcock and Richards [278] calculated only relative free energies of solvation, and for
comparison purposes their results have been arbitrarily normalized to sum to the same value
as those of Mohan et al. {277] who used the same charge model. The results of Elcock and
Richards and of Bash et al. [275] are from classical simulations employing the Optimized
Parameters for Liquid Simulations (OPLS) [267,272] and AMBER [269] charge sets,
respectively, the results of Mohan et al. [277] are from a numerical solution of the classical
Poisson equation (i.e., non-self-consistent charges are employed) using the OPLS charge
set, and the results of Young and Hillier {279] are based on a multipole expansion through
=7, with the 6-31G* basis set. The results of Ferguson et al. [276] are based on repeating
the calculations of Bash et al. [275] with new algorithms. AM1-SM2 results are provided as
calculated both for the frozen gas-phase molecules (i.e., no relaxation of either electronic
structure or molecular geometries) and for self-consistently optimized solutes. Although it
will require experimental data to establish which model is most consistently accurate for
these molecules, it is clear that consideration of polarization dramatically increases the
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AM1-SM2 calculated absolute free energies of solvation, which are otherwise in reasonable
agreement with all of the other non-self-consistent models, with the exception of
9-methyladenine. The wide variation between even the different classical models illustrates
the need for continued study of the solvation free energies of nucleic-acid bases.

3.2. Aqueous solvation effects on molecular conformation

The nucleic acids are examples of systems where solvation induces large changes in
electronic structure. In addition to the change in electronic structure, there is an additional
small change in molecular geometry, as evidenced by comparing the last two columns of
Table 1. Further inspection, however, reveals that really there have been only very small
changes in bond lengths and bond angles, the net result of which has been to permit
additional electronic relaxation with minimal geometric distortion. Put another way, bond
stretching potentials and bond angle bending potentials are very steep for the nucleic acids
compared to the additional solvation free energy which may be gained by distortion from
the gas-phase equilibrium point for any given degree of freedom. In order to observe a
significant effect of solvation on molecular geometry, one of two situations must hold:
either the gain in solvation free energy to be had by geometric distortion must be quite large,
so that it competes with such steep potentials as those mentioned above or alternatively the
geometric potential itself must be rather shallow or involve more than one minimum, in
which case solvation may be instrumental in determining the shape of the potential. A good
example of the latter situation is a torsional coordinate in a flexible molecule. Torsions often
exhibit multiple minima and are characterized by fairly low-energy barriers separating the
minima. In section 3.2.1, we discuss this situation in more detail for the neurotransmitter
dopamine. In section 3.2.2, we expand the level of complexity to consider a number of
conformational issues relevant to polyalcohols, to include ethylene glycol-and the two
anomers of D-glucopyranose.

3.2.1. Dopamine

At physiological pH, the neurotransmitter dopamine exists predominantly in its
protonated form [280]. As a consequence, dielectric shielding may play a significant role in
the stabilization/destabilization of particular conformers [281]. We focus in particular on the
torsional isomerism about the carbon-carbon single bond which is defined by dihedral angle
¢1 in Figure 4. In general, torsion about the other carbon-carbon single bond, denoted by

dihedral angle ¢», is not particularly affected by solvation, and we restrict our discussion to
cases where that torsion has been fixed to its near optimal value of 90°. Figure 4 illustrates
that in the absence of solvation, the global minimum occurs for ¢1 = 60°, i.e., when the
ammonium group is gauche to the aromatic ring (the catechol hydroxyl groups introduce a
slight asymmetry into the system, so that ¢1 = —60° is not quite isoenergetic). This is
consistent with numerous theoretical [282,283] and experimental [284,285] studies which
illustrate that, in the absence of solvation, aromatic pi clouds interact very favorably with
ammonium cations, the most notable examples being interactions in enzyme binding sites
[282,285].

When aqueous solvation was included by using the original AM1-SM1 method, the
situation changed markedly [281]. The trans isomer (¢1 = 180°) is considerably stabilized
relative to the gauche rotamers. As a result, the trans rotamer became the global minimum
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Figure 4. Electronic-nuclear energy of dopamine in the gas phase and free energy of
dopamine in aqueous solution as a function of the torsion about the sp3-sp3 carbon-carbon
‘'single bond. For all points on the torsional coordinate, the dihedral angle ¢; is fixed at 90°,
which is the value illustrated in the molecular structure.

on the rotational coordinate because of the considerably smaller dielectric shielding
expericnced by the positively charged amino group when it is more distant from the bulky
aromalic ring. Expressedly differently, the hydrophilic ammonium group is more accessible
to solvent in the extended trans conformation.

In order to assess the quantitative accuracy of the model, it is useful to compare to
rotameric populations determined from aqueous nuclear magnetic resonance (NMR) studies
{286]. In particular, the gauche:anti ratio about ¢ has been observed by NMR to be 58:42.
Of the two theoretical models, AM1 (gas phase) calculations predict a >99:1 ratio and
AM] + AMI-SMI (implying a standard-state free energy in aqueous solution arrived at by
adding the AMI gas-phase energy to the AM1-SM1 free energy of solvation) predicts
37:63. The latter represents an error of only 0.5 kcal/mol. We have here repeated these
calculations using the more recent AM1-SM2 model, and the results are similar; the
predicted aqueous gauche:anti ratio is 12:88 which corresponds to an error of 1.4 kcal/mol.
It is worth noting that the calculated ratios rely in part on the relative accuracy of the AM1
gas-phase surface to which the solvation free energies are being added in order to arrive at
Boltzmann-averaged equilibrium populations. Thus, it is impossible to judge which model,
SMI1 or SM2, is actually predicting the differential free energies of solvation more
accurately. The fact that they are within one kcal/mol of each other reflects the similar way
in which the two models treat the ENP portion of the solvation free energy, which is the
dominant term for the dopamine cation. We will not devote extensive discussion to ¢2,
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however we do note that AM1-SM1 predicts aqueous solvation to lower the rotational
barrier about the indicated bond [281], and this result is consistent with the rapid rotation
observed experimentally by NMR [286].

3.2.2. Ethylene glycol and glucose

Accurately modeling the aqueous solvation of 1,2-ethanediol (ethylene glycol)
provides a very challenging test for continuum solvation models insofar as much of the
favorable solvation of this molecule results from numerous hydrogen bonding interactions
with the water molecules found in the first solvation shell. In the SMx models, such
interactions are accounted for by parameterization in the surface tension terms, and it is of
considerable interest to analyze the robustness of this scheme. Ethylene glycol is
additionally challenging because its equilibrium population at room temperature is
composed of numerous isomers. Figure 5 illustrates the ten possible symmetry-unique
isomers for this system. The nomenclature refers to the torsion angles about the leftmost
C-0 bond (lower case), the central C-C bond (upper case), and the rightmost C-O bond
(lower case). A “g ” (or “G ) indicates a gauche torsion angle (either positive or negative,
as marked) while a “£ 7 (or “T ") indicates the torsion to be trans. Although the presence of
three torsions, each of which is characterized by three rotational minima, would normally
give rise to 33 = 27 separate minima, symmetry in this system causes a number of these
cases to be degenerate. The numbers in parentheses beneath the molecular structures in
figure 5 indicate that degeneracy, and, as required, these sum to 27.

Experimentally, it has been established by a number of methods that isomer tG*g~
predominates, there is a smaller fraction of g*G*g~, and there is a barely detectable fraction
of g~G*g~ [287-295]. High level ab initio calculations which employ very large basis sets

tTg+
4)
g+Gtg+ [ead ad tTt tG't
(0] @ ¢)) (¢))]

Figure 5. The ten unique structures of 1,2-ethanediol. Geometries were optimized at the
MP2/cc-pVDZ level of theory. :
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(the correlation-consistent polarized valence triple-{ basis of Dunning [296]) and account
for correlation at sophisticated levels (coupled cluster analysis including all single and
double excitations with a perturbative treatment of triples [297]) reproduce these trends
nicely [298]. Results are summarized in Table 3. It is noteworthy that lower levels of theory,
especially semiempirical models, do very poorly at reproducing these results.

Table 3 also presents the equilibrium population predicted by addition of PM3-SM3
solvation free energies for structures fully optimized in aqueous solution to the ab initio gas-
phase energies. Comparison may again be made to experiment, in this case referring to
aqueous NMR measurements which estimated the percentage of conformers gauche about
the C—C bond to be 88+3% [299]. This is in good agreement with the predicted value of
92%. Results based on adding AM1-SM2 solvation free energies to the ab initio solute
energies were found to be quite similar, although in that instance the gas-phase geometries
were employed since AM1 geometries are qualitatively incorrect [298].

Table 3.
Equilibrium populations of ethylene glycol conformers in the gas phase and in aqueous
solution (%) .

Triple-{4 Triple-{2 + PM3-SM3

Isomer G‘Z’ 05(835) Gg9 o aqueous)
£Gtg- 55.9 45.8
g*Grg 27.4 31.0
g-G*g- 13.4 14.0
tTg* 1.3 4.2
gtTg~ 0.6 25
g*G*g* 04 0.4
tG*gt 0.3 0.6
g*Tg* 0.2 0.9
tTt 0.2 0.6

tG*t 0.2 not stationary
Total C-C gauche 97.6 91.8
Total C-C trans 24 82
Internal H-bond 834 76.8
No internal H-bond 16.7 23.2

2 Ab initio Hartree-Fock calculations.
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Finally, the population-averaged absolute free energy of solvation may be calculated
from [300]

exp[—AG§/RT]=§C: Pc exp[-AG§(C)/RT] 30)

where Pc is the equilibrium mole fraction of conformation C in the gas phase. Following
this procedure, we find the PM3-SM3 value for AGg to be 9.4 kcal/mol, in outstanding
agreement with a very recent experimental measurement of —9.6 kcal/mol [301].

The solvation of glucose, a monosaccharide, is expected to be dominated by the
same effects as those which are important for ethylene glycol. Of course, the degree of
complexity present in the sugar molecule is considerably greater than that observed for the
simple diol! Since thorough discussions of the energetics of glucose are available [302-306],
especially as regards the influence of aqueous solvation, we focus here on the contributions
of the SMx models to further illustrate the applicability of these continuum solvation models
[307].

Several noteworthy conformational equilibria have been experimentaily determined.
NMR experiments have been interpreted to indicate that only the G and G

-17.7

Figure 6. The important conformers for D-glucose. Under each structure is the
nomenclature designating the anomer (o or § 2-hydroxyl group), the hydroxymethyl
conformer (G, G, or T), and the AM1-SM2 value predicted for AGg in kcal/mol.
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hydroxymethyl conformers are present in aqueous solution (Figure 6) [308]. Consistent with
this observation, we find the alternative T conformer to be the highest in energy in aqueous
solution. This is due in part to a differential solvation effect: the T conformer is 0.6
kcal/mol less well solvated than the lowest energy G conformer for both anomers. This
preferential solvation of the G conformer is in good agreement with results from explicit-
solvent molecular simulations [304,305], once again illustrating the ability of the SMx
models to accurately reflect first-shell solvation effects. This agreement extends to
consideration of the effect of solvation on the anomeric equilibrium, which is known to be
36:64 o.:f in aqueous solution [309]. The effect of solvation on the anomeric equilibrium, as
calculated from the Boltzmann-averaged equilibrium populations using equation 34, is
predicted to be zero. This may be compared to the results of Ha et al. [305] and van Eijck et
al. [302] who used explicit-solvent aqueous simulations to predict a differential solvation
effect for the B anomer relative to the o of only 0.6 £ 0.5 kcal/mol and -0.5 * 0.2 kcal/mol,
respectively. The SMx prediction is thus halfway between the two simulation results.
Moreover, when the AM1-SM2 solvation free energies are added to Hartree-Fock gas-phase
relative free energies [306], the predicted anomeric equilibrium is within 0.8 kcal/mol of the
experimental result. While more work clearly remains to be done with respect to converging
the gas-phase relative free energies and examining in more detail the individual components
of solvation, this is heartening agreement.

4. OTHER SOLVENTS

Section 4.1 discusses the development of solvation models for solvents other than
water, and Section 4.2 briefly reviews empirical relationships for the prediction of solvent-
dependent properties.

4.1. Modeling solvation in non-aqueous solvents

Although water is clearly the single most important solvent in which chemistry of
biological relevance takes place, there are many solvents which find extensive use in other
areas, e.g., organic synthesis, or which find use in the modeling of biological processes, e.g.,
octanol and hexadecane are sometimes used to model lipid membranes. For such solvents,
all of the quantum mechanical continuum models discussed in Section 2 may be used for
calculation of the ENP portion of the standard-state gas to condensed phase solvation free
energy (i.e., free energy of transfer). One simply uses the dielectric constant appropriate for
the solvent being modeled. The CDS portion of the solvation free energy, on the other hand,
is not so straightforwardly addressed, and unfortunately very little work has been carried out
incorporating the CDS effects into quantum mechanical continuum solvation models.

Within the SMx models, the CDS terms must be parameterized separately against
available experimental data for each new solvent, and it is not clear, since they account for
several physical effects as well as for errors in the ENP terms, that they will be related to
any particular bulk property of the solvent in question. This presents the most significant
hurdle to the development of new solvent parameter sets. Presently, the only published SMx
models are specific for water. However, a n-hexadecane parameter set is in the final stages
of completion, an octanol parameter set will be available shortly, and other ethereal,
hydroxylic, and other solvents will be parameterized as well. Improved methods for arriving
at the atomic partial charges (e.g., CM1A, CMI1P) and/or solving the Poisson equation will




39

reduce these “error-correcting” contributions, and more clear correlations between the
remaining surface tensions and such bulk properties as macroscopic surface tension,
viscosity, cohesive energy density, etc., may be discernible.

In the parameterization of the n-hexadecane model [310], we have noted one
refinement which appears to be required for larger solvent molecules: significant dispersion
interactions involve only that part of the solvent within a distance Rcp of the solute, where
Rop < Rs. (Recall that Rg is the solvent radius.) In such instances, it is useful to generalize
the concept of solvent-accessible surface area. In particular, we separate the CDS effects,
very approximately, into a CD part and a CS part. Then, for the former, we use the ASURF
definition taking this smaller radius, R(p, for the rolling probe—this might be called
DSUREF. For water, which is quite small, we have implicitly taken Rcp equal to Rs, which is
1.4 A. This is a reasonable value for the “radius” of a water molecule in liquid water [93].
Since Rg for water is so small, it is reasonable to assume that dispersive interactions will
operate over the entire molecule. For a molecule like n-hexadecane, on the other hand, an
Rcp on the order of 1.7 A works best [310]. This radius mimics the size of one of the
methyl or methylene groups forming a portion of the n-hexadecane solvent molecule. This is
quite a bit smaller than the Rg of about 5 A which may be calculated either from the bulk
density of liquid n-hexadecane by assuming a spherical molecule, or from taking the
calculated volume of the molecule using overlapping spheres with van der Waals radii and
choosing Rs to be the spherical radius providing the same volume. The former method is
less ambiguous for a flexible molecule like n-hexadecane, although studies on both the
aqueous ASURF of n-heptane [311] and the WSURF of n-decane [312] have found that the
average molecular surface areas for the Boltzmann-weighted population of conformers at
298 K are only 3% and 4% smaller, respectively, than the surface area for the fully extended
chain conformation—obviously the effect on the volume will be similarly slight. Although it
is clearly possible that the remaining cavitation and structural rearrangement terms might
also each require a different radius, i.e., an Rcg that is not simply equal to Rg, we did not
observe that to be required for n-hexadecane.

We have illustrated in Section 3 a number of instances where molecular structures
and energetics change significantly on going from the gas phase to aqueous solution. Of
course, experimental observations in the gas phase are not generally possible for medium- to
large-sized organic and biological molecules. However, there is considerable data available
detailing the effects of changing solvents from one to another. Indeed, certain partition
coefficients, which describe the equilibrium concentration of a solute in two different
liquids, prove to be quite useful in drug design {313,314]. The most notable is the octanol-
water partition coefficient [313-320]; the octanol-water system is considered to be a good
model for biological membranes which are composed of amphiphiles like octanol.

The development of new semiempirical quantum chemical continuum solvation
models will permit a comparison to more empirical models which exist to explain the effect
of different solvents on various chemical properties. Those latter models are the subject of
the next section.

4.2 Quantitative Structure-Activity Relationships and Linear Solvation Energy
Relationships
Although the calculation of molecular properties from first principles is an
esthetically appealing proposition, it is often impractical. Difficulties may arise for relatively
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simple reasons, ¢.g., the system of interest is simply too large to be tractable for trustworthy
levels of theory. A more fundamental problem may be that no theoretical model exists to
accurately predict the chemical property which is of interest. As a concrete example,
consider that the antitumor activity of a series of structurally related organic molecules is
known, and the objective is to predict the related activity of an as yet unsynthesized set of
additional congeners. In such instances, it often proves useful to pursue an empirical
approach which seeks to relate a variety of “simpler” molecular properties to the biological
activity. Such an approach is embodied in the techniques of quantitative structure-activity
relationships (QSAR) [321,322]. In essence, a QSAR analysis involves a regression
equation that correlates microscopic features of a set of chemical compounds with some
macroscopic property. This approach has demonstrated its utility repeatedly and it finds
widespread use in medicinal and pharmaceutical chemistry.

A different application of regression analysis, which is nevertheless similar in spmt
is to be found in the so-called “linear solvation energy relationship” (LSER) formalism
developed by Kamlet, Taft, Abraham, and co-workers [323-326]. Secking to explain the
effects of different solvents on chemical properties and reactivities, these researchers
proposed an equation of the form

logy=co+cro+caP+c3n* (3D

where v is the solvent-influenced property of interest for a particular solute (typically free-
energy based, and hence the logarithm), and o, B, and 7* are solvent-specific constants
which describe the solvent’s hydrogen bond donating, hydrogen bond accepting, and
dipolarity/polarizability properties, respectively. These constants are determined by
measurement of some reference process in the solvent, e.g., the shift in the absorption
maximum for a particular dye whose absorbance is sensitive to hydrogen bond interactions.
As a result of choosing this kind of a reference process, these parameters have come to be
known as “solvatochromic parameters”. In practice, this equation finds use in the following
fashion. Following a series of experimental measurements of log(y) in a number of solvents
for which the solvatochromic parameters are known, one obtains optimal constants ¢; by
regression analysis of the data. In principle, one may now predict log(y) for any solvent for
which the solvatochromic parameters have been tabulated. There are clearly dangers
involved in extrapolating from a limited data set if the solvents selected for experimental
measurement were not representative of those for which predictions are being made;
nevertheless the method is quite powerful and has demonstrated itself to be reasonably
robust.

It will be particularly interesting to explore the interplay of ENP and CDS effects in
the parameters o, f3, and 7* when continuum solvation models are available for comparison
to LSER approaches.
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5. PROPERTIES OF SOLVATED MOLECULES AS PREDICTORS FOR
STRUCTURE-ACTIVITY RELATIONSHIPS

This section discusses how calculated molecular properties which take account of
solvation may be used in empirical structure-activity relationships to provide guidance in
molecular design. Although the formalism discussed in the preceding section was originally
developed to model the effect of solvents on some specific solute property, the regression
analysis has been generalized to allow prediction of some solute property based on solute
solvatochromic parameters [325,327]. That is,

log T =co+cron+cz Pa+ c3ma* X (32)

where T is upper case to indicate a general property exhibited by a large number of solutes
(as opposed to v, which may be unique to a single solute within the formalism of equation
31) and the subscript “2” indicates the solvatochromic parameters to be associated with the
solute, not the solvent (which is kept constant in equation 32). Solute-specific
solvatochromic parameters continue to be arrived at by measurement of some reference
process. An important point to note is that this is analogous to a QSAR analysis, i.e., a
chemical property is being correlated with some set of other, measurable properties, albeit
the latter approach developed more from a background of linear free-energy relationships
[328-330] than from a purely empirical impetus. Equations 31 and 32 can be combined ina
very general form, viz.,

logE - z C\l?olvent d:olute (33)

i

where the parameters C; and d; may be solvatochromic parameters, or other general
parameters [324,331-340].

An interesting variation on this theme, which has been pursued extensively by
Famini and Wilson [341-344], is to maintain the formalism of equation 32, but to replace
the solute parameters 0, 82, and m2*, which must be experimentally determined, with other
constants derived from theoretical calculations. The “theoretical” linear solvation free
energy relationship (TLSER ) ansatz is expressed as

logT =co+ ¢ Vmc+ c2m*+C38q+ c4€B+C5qt + c6q (34)

where Ve is the molecular van der Waals volume, and ®* is a polarizability term derived
from the calculated polarization volume (the latter should not be confused with the
solvatochromic descriptors 7* and mp*, which are experimentally measured quantities). Just
as with LSER, hydrogen bonding is separated into donor and acceptor components. Since
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all intermolecular interactions can be considered to have varying degrees of covalent and
electrostatic components, separate descriptors have been chosen to address each of these two
limiting paradigms. The covalent contribution to Lewis basicity, £, is taken as the
difference in energy between the lowest unoccupied molecular orbital (ELymo) of the solute
and the highest occupied molecular orbital (Egomo) of water, i.e., smaller values of €
denote a greater covalent basicity. The electrostatic basicity contribution is denoted by g-,
the magnitude of the most negative atomic partial charge in the molecule. Analogously, the
hydrogen bonding acidity is divided into two components: €q, is the energy difference
between Exomo of the solute and Epymo of water, and g* is the magnitude of the most
positively charged hydrogen atom in the molecule. Calculation of these descriptors may be
performed at any level of theory, of course, but to date the emphasis has been on using the
NDDO semiempirical level of theory (as mentioned in Section 2.3, this is the level used in
the AM1 and PM3 models) so as to take advantage of the relative efficiency of this method
for larger molecules.

Although equation 37 has been quite successful at predicting a number of interesting
chemical and biological properties [341-346], it is by no means the only possible way to
relate calculated molecular properties with activities/toxicities. Lewis has recently provided
an extensive review detailing other descriptors which have found use in TLSER-like
regression analyses [347]. Politzer and Murray and co-workers have also provided
alternative formulations of this approach [348-350]. One additional point which should be
mentioned is that it is perfectly logical to consider developing regression equations which
consider both experimentally determined and calculated descriptors [351,352]. Of course,
part of the attraction of the purely theoretical methodology is that it may be considerably
simpler and more economical to perform the calculations rather than synthesize the solute in
order to measure some parameter if it is not already known.

An interesting question is how solvation may influence the descriptors present in the
regression models [353]. As has been discussed at length above, both electronic and
geometric structure may change significantly for a solute in an aqueous environment (e.g.,
in vivo) and it seems clear that any TLSER-like regression equation being used to predict
properties in such a situation should accurately take account of that. In particular, the free
energy of solvation itself may be a particularly important descriptor. Activity in a
biomolecule typically requires its interaction with a receptor and/or, as mentioned in Section
4, its crossing of a hydrophobic cell membrane; since these processes usually require
desolvation which may or may not be balanced by specific interactions within a receptor
site, the cost of desolvation can influence the overall activity.

One interesting example illustrating this point has been provided by Alkorta et al.
{354], who have analyzed the affinity (expressed as 1/K;, where K; is the dissociation
constant of the enzyme-substrate complex) of a set of 3-benzazepine cations for the
dopamine D1 receptor. Figure 7 illustrates the gross structure of these substrates. In this
case, the descriptors chosen were the AM1-SM1 calculated free energies of solvation (AG(S)),
the dot product of the solute dipole moments with the unit vector parallel to the activity-
weighted sum of all of the solute dipole moments (j1*, i.e., this descriptor measures both the
magnitude of the molecular dipole moment and the degree to which it is aligned with the
dipole moments of the compounds observed to be most active), and the molecular
polarizability (). Using this approach they obtained a regression equation of:
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R; =H, F, C], Br, Me, OH, OMe, CN

R,=H,FCl
R; =H,Me
R4 =H,Cl

Figure 7. 3-Benzazepines examined by Alkorta et al. Not all possible permutations of the
listed R groups were explored.

log (I/K; ) = ~3.46 — 1.67 p* +0.16 AG} +0.07 35)

with a muitiple correlation coefficient R of 0.925 for a data set of 13 compounds. An
analysis of the statistical significance of o suggests that it is the least useful parameter in the
regression equation, which is perhaps not surprising since it represents a gas-phase property;
its removal leads to only a slight drop in R (0.853). The most interesting aspects of this
analysis, however, were the observations of Alkorta et al. [354] that (1) not even qualitative
activities-could be predicted from regression analyses performed for the neutral (i.e., non-
protonated) 3-benzazepines, consonant with the expected protonation of these compounds in
vivo, and (2) methylation of the azepine nitrogen leads to reduced solvation free energies as
a result of dielectric shielding and loss of hydrogen bonding opportunities; this increases the
affinity of the methylated compounds since it decreases the cost of their desolvation.

We anticipate that the continued development of rapid and accurate continuum
solvation models will give rise to increasing use of such analyses in structure-activity
predictions. The cost-effectiveness of the methodology for the pre-screening of potential
synthetic targets gives it considerable practical importance.

6. CONCLUDING REMARKS

Quantum mechanical continuum solvation models span a wide range of complexity
and utility in their ability to calculate electrostatic contributions to free energies of solvation.




44

When supplemented with models that also include those portions of the solvation free
energy associated with the first surrounding shell of solvent, they become particularly
powerful tools for studying complicated, condensed-phase systems. In particular, they can
be used to provide insight into solutes that play important roles in biological systems. This
information includes quantitative estimates of free energies of solvation, predictions of the
detailed changes in electronic and geometric structure of biomolecules in solution, and
calculation of micro- and macroscopic properties for use in structure-activity prediction.
Continued comparison to explicit-solvent simulations and experimental results will be
instrumental in improving the models.
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