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CHAPTER 1

Continuum Solvation Models:
Classical and Quantum
Mechanical Implementations

Christopher J. Cramer and Donald G. Truhlar

Department of Chemistry and Supercomputer Institute,
University of Minnesota, Minneapolis, MN 55455

T R

INTRODUCTION

Theory and experiment often provide complementary information for a
problem of interest. Given this relationship, a judicious combination of theory
and experiment is often more powerful than using either approach alone. The
explosive increase in the use of molecular modeling in modern chemical re-
search is due in no small part to this kind of potential.

Early work in molecular modeling was primarily concerned with struc-
tural questions for molecular systems in a vacuum. Later work extended mo-
lecular theory to address issues of reactivity and dynamics. A long period of
evolution, refinement, and calibration of various models has resulted in appli-
cations of theory that are increasingly successful in explaining and predicting
molecular properties and reactivities in dilute gas-phase processes. However the
bulk of practical chemistry and all of biological chemistry take place in con-
densed phases, typically liquid solutions, as opposed to the gas phase. It is
primarily within the last decade that theoretical models capable of treating
such systems accurately have emerged as working tools of the chemist.
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2 Continuum Solvation Models

In this chapter, we restrict ourselves to a discussion of models that treat
molecules in dilute aqueous solutions. In general, the effect of aqueous solva-
tion on chemical reactions is illustrated in the thermodynamic cycle of Figure 1.
Depending on relative values of the free energies of solvation of the reactants,
products, and transition state, both the equilibrium constant and the rate
constant of the reaction may change in either direction, sometimes by very large
factors.! Figure 2 illustrates the dramatic changes in the extensively studied Sy2
reaction of chloride anion with methyl chloride2-7 on going from the gas phase
to aqueous solution. The considerably more favorable solvation of the sepa-
rated molecules relative to the transition state is sufficient to transform the low-
barrier, double-well potential found in the gas phase into an aqueous phase
potential of mean force8-11 that involves no stable intermediates.

Biologically, the effect of aqueous solvation plays a critical role in deter-
mining the structure of biopolymers!2-15 and their interaction with other mol-
ecules.16-18 In this context it is interesting to generalize our thermodynamic
cycle to represent the interaction of an enzyme and substrate as illustrated in
Figure 3. Here, the desolvation of the substrate prior to complexation in the
enzyme active site may be a significant factor influencing the equilibrium con-
stant for complex formation and thus the rate of enzymatic catalysis. The
power of this simple analysis is made clear by the equation

AGy, = AGg + AGS(E-S) — AGS(E) — AGZ(S) (1]

which shows that if we know the solvation free energies, we can calculate the
aqueous free energy change from the gas phase without directly simulating it.
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AG®,, = AG®, + AG°s(B) - AG°(A)

Figure 1 The interrelationship of free energies in the gas and solution phases with
free energies of solvation.
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Figure 2 The effect of aqueous solvation on the reaction of chloride with chloro-
methane.

The direct simulation of the aqueous binding process is difficult because changes
in solvation/desolvation that accompany association are slow and hard to sam-
ple, especially when hydrogen bonding patterns are coupled to conformational
changes in the protein, or for recessed binding sites, where the associating
substrate may hinder solvent escape. Another important kinetic factor is the
differential stabilization (by enzyme vs. solvent) of the transition state of the
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Figure 3 The effect of solvation on enzyme—substrate interactions.
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reaction.!® Similar differential solvation issues occur in the crossing of biolog-
ical membranes.2? The accurate modeling of these processes thus impacts on
medicinal and pharmacological chemistry; as a result, there is widespread
interest in applying solvation models to drug discovery and design.21-25

Aqueous Solvation Components

Aqueous solvation influences structure and reactivity via a combination
of several distinct effects. One key property of a solvent is its ability to be
electrically polarized,! a first measure of which is provided by the bulk di-
electric constant, which is 78.3 for water at 298 K. Upon passing from the
vacuum (or dilute gas phase) dielectric constant of unity into solution, the
structure and charge distribution within a solute will generally relax to permit
greater charge separation; these effects increase with increasing dielectric con-
stant of the solvent and are referred to as solute polarization. Since solute
polarization represents a distortion from the optimum gas phase structure, it
necessarily increases the internal energy of the solute. Similarly it raises the free
energy of the solvent. These effects partially cancel the gain in free energy due
to more favorable interactions of the polarized solvent and solute. When the
favorable solute—solvent consequences of further polarization are overcome by
the intrasolute and intrasolvent costs of further distortion, relaxation is com-
plete. These polarization interactions are often (especially for small systems),
but certainly not always, governed to a large extent by the leading nonzero
multipole moment of the solute, that is, its charge for an ion or, typically, its
dipole moment for a neutral solute. Low-order multipole moments operate
over a long range and, as a consequence these interactions, typically extend far
beyond the first solvation shell.

We find it convenient to represent the combined contributions of the fore-
going effects to the free energy of solvation by a term that we label ENP,26:27 for
electronic, nuclear, and polarization. In particular, this term includes (1) the
change in the electronic and nuclear energies of the solute due to its electronic
and geometric distortion in solution and (2) the free energy of electric polariza-
tion of the solvent, considered as a bulk dielectric medium. The electric polar-
ization of water is dominated by the reorientation of individual water molecules
throughout the volume of the dielectric. The seminal work on the molecular
thermodynamics of the electric polarization of a continuum dielectric medium
by a charged?® or dipolar29-31 solute was carried out by Born, Onsager, and
Kirkwood more than fifty years ago. The fundamental concept involved in this
work is the reaction field. This concept is explained as follows.31 A charge,
dipole, or higher multipole moment of a solute polarizes the surrounding me-
dium, and the resulting electric polarization of that medium gives rise to a field
at the solute, called the reaction field. We will see that the most complete treat-
ments now available do include this effect in that molecular electronic wave-

functions and geometries of solutes are optimized self-consistently in the pres-
ence of this field.
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In addition to bulk electric polarization of the volume surrounding the
solute, there are other effects that are more specifically associated with the sur-
face layer of solvent (i.e., with the first solvation shell). One example is the*free
energy required to make a fresh solvent surface around the solute. A certain
part of this process is the same as increasing the surface area at a water—vacuum
interface; the energy associated with this part may be called the cavitation
energy. But there are additional components at a water—solute interface. For
example, there are attractive dispersion forces between. the solute and the
nearby solvent molecules. Finally, there are local structural changes in the
solvent as a result of the insertion of the solute: key examples in water are
solute—solvent hydrogen bonding and the especially strong change in solvent—
solvent hydrogen bonding in the first solvation shell. Whereas the electrostatic
component of hydrogen bonding may be included to some degree in the di-
electric polarization term, it also has short-range directional components that
cannot be accounted for in a uniform dielectric. Especially for solutes that do
not hydrogen-bond to the solvent, the solvent structural change may be unfa-
vorable due to loss of entropy, and there is detailed experimental evidence32.33
leading to the interpretation of the hydrophobic effect as due to loss of entropy
in the solvent because of the introduction of chemical groups unable to partici-
pate in hydrogen bonding.

The difference between the electrostatic effect calculated using the bulk
dielectric constant and that calculated taking account of local structural factors
is sometimes called dielectric saturation, although it has been suggested34 that
a better phrase would be “inhomogeneous dielectric constant.” We refer to the
sum of these first-hydration-shell effects as the CDS term, representing struc-
tural rearrangements that entail cavitation, dispersion, and solvent disposition.

Available models consider or ignore these components of solvation in
various ways, as discussed in detail in the sections that follow. One additional
effect that should be mentioned is charge-transfer interactions between the
solvent and the solute. Although most models do not treat these effects explic-
itly, they must be implicit to some extent in semiempirical models.

In discussing the various solvation models, we will use the term “molecu-
lar mechanics” to denote the modeling of solute—solvent forces (or any other
forces) by a sum of terms corresponding to pair interactions (which may be Cou-
lombic, multipolar, dispersion, repulsion, etc.) and angle distortion penalties
(which may refer to bond angles or dihedrals). We will contrast this to quantum
mechanical approaches, which explicitly address the quantal character of the
electronic motions that are ultimately responsible for the balance of these forces.

Aqueous Solvation Modeling -

Explicit-Solvent Approaches

Current efforts in solvation modeling in general follow one of two distinct
approaches. The first involves the explicit consideration of hundreds or thou-
sands of solvent molecules.35-42 The supermolecular system consisting of these
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molecules plus the solute, when statistically sampled as a canonical ensemble,
serves as a basis for simulations from which thermodynamic data related to
solvation may be extracted. A molecular mechanics force field is generally
employed, since the significant size of the system makes the analysis of forces
and energies at the quantum mechanical level difficult, although combinations
of quantal treatments of the solute with molecular mechanical treatments of the
explicit water molecules representing the bulk have begun to appear.43-32

This explicit solvent approach has certain inherent advantages and disad-
vantages. While a complete discussion is beyond the scope of this chapter, we
will summarize those that are most relevant by comparison to continuum
models. A key drawback of the molecular mechanics approach is that it almost
always ignores the contribution of solute polarization to the ENP terms. (To
compensate, the atom-centered partial charges from which the Coulomb inter-
actions are calculated are often set to semiempirical values that exceed the best
estimates of gas-phase partial charges.) A related issue is nonpairwise polariza-
tion of solvent molecules, which is missing when solvent interactions are
treated by pair potentials. Although classically polarizable solvent models have
been employed in specific simulations,53-55 they are not yet general; therefore,
electric polarization of the solvent does not include many-body effects on the
solute electronic polarization in most simulations. Even simple electrostatic
interactions pose difficulties in simulations. Because they operate over ranges so
large that it is not computationally tractable to treat all pairwise interactions, a
cutoff distance is generally employed, with some sort of correction applied
when required.56:57 Creative approaches addressing this difficulty have ap-
peared.58-59 Moreover, the choice of the atomic (or group) charges employed in
the force field is not unambiguous,06!1 although methods that use such
charges, including continuum solvation models, suffer similarly, given the non-
observable nature of partial charges. In molecular mechanics, there is an ambi-
guity in empirical parameterizations as to whether dispersion and exchange
repulsion are being partially modeled by the electrostatic terms or whether the
electrostatic effects are being partially modeled by the van der Waals terms.

Another disadvantage of the explicit-water type of approach is that entropy-
dependent properties (e.g., free energy) are notoriously difficult to determine
accurately in simulations, since it is rarely clear to what extent all the important
regions of phase space are sampled in the simulation.3542 This is partly a
technical constraint, insofar as simulations are computationally demanding
and can be run only for finite lengths of time (typically on the order of nanose-
conds * one order of magnitude). However, phase-space bottlenecks may pre-
vent even very long simulations, which appear to have converged with respect
to further sampling, from properly taking into account all accessible configura-
tions of the system.62 Several recent papers have discussed and addressed se-
rious difficulties in reducing sampling errors.58.59,63-65

Finally, at least for the present, explicit-water simulations treat heavy-
body motions by the laws of classical mechanics; this is not always valid,



Introduction 7

especially for hydrogen bonds and transition states with a significant hydro-
genic component in the reaction coordinate. A more rigorous treatment must
take account of the possible consequences of quantum mechanical tunneling in
these instances.

Probably the key advantages of explicit-water simulations are the great
generality of the method and the extra level of molecular detail that simulations
reveal. A recent example concerns the study of tightly bound water molecules
near the surfaces of proteins.éé Although typical experimerrtal probes of protein
structure give no information about these water molecules, because of the
fluxional character of their binding, molecular dynamics simulations reveal
both time-averaged and instantaneous views of protein hydration.

Furthermore, the explicit-water simulations do include the CDS terms to
the extent that dispersion and hydrogen bonding are well represented by the
force field. Finally, by virtue of the solvent being explicitly part of the system, it
is possible to derive many useful non-entropy-based properties35—42 (radial
distribution functions, average numbers of hydrogen bonds, size and stability
of the first solvation shell, time-dependent correlation functions, etc.). Since
many of these properties are experimentally observable, it is often possible to
identify and correct at least some deficiencies in the simulation. Simulation is
thus an extremely powerful tool for studying solvation, especially when fo-
cused on the response of the solvent to the solute.

Continuum Solvent Approaches

An alternative simulation procedure is to replace the explicit solvent mol-
ecules with a continuous medium having the bulk dielectric constant.67-74
Once the solvent has been simplified, it is much easier to employ quantum
mechanical techniques for the ENP relaxation of electronic and molecular
structure in solution; thus this approach is complementary to simulation inso-
far as it typically focuses on the response of the solute to the solvent. Since the
properties of the continuum solvent must represent an average over solvent
configurations, such approaches are most accurately described as quantum
statistical models.

Although later in the chapter we develop these models in considerably
more detail, it is worth noting that the complementarity of the continuum and
explicit solvent approaches extends to their inherent advantages and disadvan-
tages as well. With a continuum representation of the solvent, there is no cutoff
distance beyond which electrostatic interactions are ignored. Moreover, the
absence of explicit solvent eliminates the possibility of solvent configurational
sampling errors, assuming that the continuum is developed so as to mimic the
proper statistical average of solvation. Continuum models, like explicit-water
models, are obviously limited by the size of the solute, but they do not suffer
any limitations arising from a large number of (required) solvent molecules.

On the other hand, if the solvent is not represented, it is obviously impos-
sible to arrive at many of the properties listed earlier as calculable by simulation
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procedures. Furthermore, separation of free energies into enthalpic and entro-
pic components is quite difficult in the absence of an explicit treatment of the
solvent molecules.

Clearly, the two alternative methods are each of wide utility, and a choice
of either or both can onlybe made after a careful consideration of the details
and required answers unique to the modeling of a given system of interest.

Thermodynamics of Solvation

The central quantity in this chapter is the free energy of solvation, AGs.
This quantity, with our choices (one molar ideal solution and one molar ideal
gas) for standard states, is the free energy. of transfer of a molecule X from an
ideal gas at 1 mol/L concentration to an ideal solution at the same solute
concentration [X] and temperature T. In practice, this is determined by75

AGYX)==RT lm In ( [Xl:q ) 2]

(X, X1g— 0 (Xlg /eq

where R is the universal gas constant, and the equilibrium constant, which is
the argument of the natural logarithm, is unitless. This form of equilibrium
constant is sometimes called the Ostwald convention (in contrast to Henry’s
‘law, discussed next). In Equation [2], the subscripts denote aqueous (aq), gas
phase (g), and equilibrium (eq); the equilibrium constant must be measured for
a dilute solution because the standard state, as usual, refers to an ideal solution.
Thus, in particular, one cannot use solubilities and vapor pressures over satu-
rated solutions. \

We may derive the corresponding equation involving the logarithm of
Henry’s constant as

AG2(X) = RT In [ lim (f?i) ] —RT In ROTp,, 3]

Dy Xy 0 X 7 eq

where py is the vapor pressure of X in atmospheres over an aqueous solution in
which its mole fraction is xx, p, is the density of water in moles per liter, and
RO is R expressed in units of atmospheres per degrees Kelvin per mole.
Throughout this chapter, all results are given for a temperature of 298 K, and
for this temperature the last term of Equation (3] is 4.26 kcal/mol. Note that
the argument of the first logarithm in Equation {3] is the usual Henry’s law
comstant. (Modern treatments express Henry’s law in terms of mole fractions,
although Henry used mass density.)

Some workers, while retaining the one-molar ideal solution standard
state for the solution phase, use a one-atmosphere standard state in the gas
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phase. If we denote the standard state free energy of solvation with the latter
choice as AGY), then it is related to the present choice by

GI(X) = GX) + 1.89 kcal/mol [4]

at 298 K.

It is particularly unfortunate that many calculated free energies of solva-
tion are published without explicit reference to the chosen standard state. By
noting the particular value cited for an experimental free energy of solvation,
it is sometimes possible to infer the choice of standard state (if one assumes
the workers took care to be consistent), but this is dangerous. We have made
every effort to convert all results presented in this chapter to the standard state
used in Equation [2]: that is, one molar in both gaseous and solution phases.
But some caution should be applied in accepting results where such conversion
Is necessary. :

To relate these thermodynamic quantities to molecular properties and
interactions, we need to consider the statistical thermodynamics of ideal gases
and ideal solutions. A detailed discussion is beyond the scope of this review. We
note for completeness, however, that a full treatment of the free energy of
solvation should include the changes in the rotational and vibrational partition
functions for the solute as it passes from the gas phase into solution, AG;,.75

In addition, corrections to the entropy of mixing arising from nonideality
may be important. Sharp et al.”¢ have advocated the approach of Huggins and
Flory,”7-8¢ which establishes that long-chain molecules (e.g., polymers or very
large n-alkanes) will have an excess entropy of solution proportional to the
ratio of the volume of the solute to that of the solvent. This approach has been
very successful for polymer solutions,87:88 but for globular or small molecules
it is not necessarily more valid than using the ideal solution entropy of mixing,
AS;;.89-94 Moreover, even for straight-chain alkanes, where the Flory—Huggins
formula appears to work quite well,’6:%5 the difference between ASgy and AS,,
scales (at least a rough approximation) with the solvent-accessible surface
area.”%?3 Thus it is not clear whether an extra term is warranted in phenome-
nological or semiempirical treatments for general solutes or indeed whether
such a term might diminish the success of such models. The replacement of the
volume effect by a term proportional to solvent-accessible surface area seems
even more intuitively reasonable for globular solutes. We repeat, however, that
in this chapter we neglect both AG,,, and any nonideal entropic corrections to
AGg that are not potentially accounted for in a semiempirical fashion.

The explicit-solvent models discussed earlier attempt to directly evaluate
thermodynamic averages by statistically sampling a large number of solvent
configurations. The continuum solvation models, which are the main focus of
this chapter, include this average implicitly; rather than considering the solva-
tion free energy as the sum of contributions of individual solvent configura-
tions, they consider it as a sum over contributions from one or more physical
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effects and/or one or more parts of the solute. These partitionings are the
subject of the next section.

CONTINUUM SOLVATION MODELS:
THEORY AND APPLICABILITY

Classical Models

With any type of molecular modeling, there is generally a tradeoff be-
tween cost and reliability, and one typically shuns models that cost more with-
out increasing reliability. In practice, this cost is usually expressed as computa-
tional effort, or computer time. In gas phase modeling, one typically finds
molecular mechanics and semiempirical molecular orbital theory at the low-
cost end and multireference configuration interaction or coupled-cluster theory
at the other, with the choice dictated by the size of the system. System size also
influences the choice of solvation model. We consider first the least expensive
models, those that take no account of the quantum mechanical nature of the
solute.

Solvent-Accessible Surface Area Models

One useful way to approximate the interactions of a solute with surround-
ing solvent is to partition the net solvation free energy into portions specific to
distinct parts of the solute (e.g., atoms, functional groups, etc.). This partition is
accomplished by assuming that the energetics for the interaction of any sub-
group of the solute will be dominated by solvent—solute interactions that are
" close to that subgroup. The next step is to imagine partitioning the surrounding
solvent shell into atom-specific or group-specific regions. One makes the fur-
ther approximation that the size of these regions, and the corresponding mag-
nitude of the interaction, is well represented by the size of the first solvation
shell of the atom or group in question. And finaily, one assumes a propor-
tionality between the size of the first solvation shell and the exposed molecular
surface area.?6 While the most efficient means for the calculation of molecular
surface area remains a matter of active research, it is reasonably straightforward
to accomplish either analytically®’-107 or numerically,71,108-116 with varying
degrees of accuracy and/or numerical precisions, depending on the algorithm
and numerical parameters. Under the assumptions stated earlier, the free energy
of solvation may be expressed as107,117-122

AGE = 2 0;A, [5]

i

where the index of summation runs over the appropriate atoms or groups of the
solute, A, is the calculated surface area, and o; is the surface tension (units of
energy per length squared) associated with atom or group .
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The choice of exactly what surface area to calculate is, however, not
entirely unambiguous.123 Although one might consider constructing a surface
from standard?24 atomic van der Waals radii, the more typical approach is to
use the so-called solvent-accessible surface area (SASA).108,123,125 The solvent-
accessible surface is defined as that generated by the center of a spherical
solvent molecule rolling on the van der Waals surface of the solute. A moment’s
reflection shows that this is the same as the exposed surface obtained by placing
spheres at each of the atomic centers, where each sphere has a radius equal to
the van der Waals radius of the atom plus the radius of a solvent molecule. For
water, which is reasonably well approximated as a spherical solvent, the radius
is usually taken as 1.4 A.49

Other definitions of molecular surface are discussed elsewhere,93,114,115,123,125
but we will consider only the solvent-accessible surface area. This definition is
preferred because it has a simple interpretation: namely, since the augmented
sphere boundaries pass through the centers of the rolling solvent molecules, the
exposed area of an augmented sphere centered at atom 7 is proportional to the
number of solvent molecules in the first hydration shell of atom 7. (The
idea32.96,126 that the solvation free energy is proportional to the number of
solvent molecules in contact with the solute predates the definition of solvent-
accessible surface area.) Since a surface through the first hydration shell defines
the cavity, the term “cavity surface area,”117 might be chosen, but we use “solvent-
accessible surface area” because this term has received general acceptance.

Given the many simplifications inherent in the SASA model, it tends to
find use primarily for very large molecules (e.g., biopolymers), where its great
speed makes it attractive.127,128 Also, there is some evidence that differential
changes in the free energy associated with the solvent-accessible surface play an
important role in the relative stabilization of one or another protein conforma-
tion. Ooi et al.122 thus used experimental data from a series of small- to
medium-sized organic molecules to parameterize seven surface tensions for
distinct groups found in proteins: aliphatic, aromatic, and carbonyl CH,
groups, hydroxyl, amide, and amine groups, carboxyl oxygen, and sulfide and
thiol groups. For example, ooy = —172 cal/A2 and o for an aliphatic CH,
group is +8 cal/A2, corresponding well to one’s intuitive feeling for the hydro-
philic and hydrophobic character of the respective groups. These surface ten-
sions were then used in a modified Empirical Conformational Energy Program
for Peptides (ECEPP)129 force field for the calculation of aqueous conforma-
tional preferences for all 20 N-acetyl-N’-methylamino acid carboxamides. The
authors noted interesting effects of solvation on conformation; for example, the
internally hydrogen-bonded C$3 conformation of the alanine derivative is fa-
vored by considerably less in aqueous solution than in the gas phase. Moreover,
by examining the complete (¢, ) conformational energy surface, they calcu-
lated Boltzmann weighted net free energies of solvation (see later, Equation
[44]), which are presented in Table 1. By applying this methodology to bovine
pancreatic trypsin inhibitor, ribonuclease A, and elastase, the free energy of
denaturation was found to be decreased by 93—441 kcal/mol relative to the gas
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Table 1 Computed Aqueous AG¢ (kcal/mol) for the N-Acetyl-N’'-Methylamides
of the 20 Naturally Occurring Amino Acids Using the SASA Approximation
of Equation [5]¢

Residue AGS Residue AGS Residue AG? Residue AG?

Ala -0.6 Gly -1.2 Met -1.1 Ser —-6.4
Asp -8.0 His -6.8 Asn ~7.9 Thr —-4.6
Cys -2.5 lle 0.3 Pro ~0.7 Val -0.1
Glu —8.2 Lys -6.1 Gln -7.9 Trp -5.4
Phe =21 Leu 0.2 Arg -14.0 Tyr -9.2

2From Reference 122.

phase, although in every case the fully extended, denatured protein remained
significantly higher in energy than the native conformation.12? A more detailed
presentation of the small-molecule data of Scheraga and co-workers is found in
a later section, in connection with Table 2.

The SASA approach makes no attempt to separate the free energy of
solvation into distinct components, such as the ENP and CDS terms, but
simply assumes the net solvation energy to be proportional to the SASA. In
later sections we will consider models that separate these effects. Even there,
though, by grouping cavity and solvent structural effects into the same term,
one will not distinguish solvent structural effects that occur upon creating a
cavity from those over and above the change at a solvent—vacuum interface.

Poisson—Boltzmann Models

The Poisson Equation From classical electrostatics, the free charge den-
sity p(r)—that is, the charge density due to the solute as opposed to the polar-
ization charges in the solvent—in a continuous medium of homogeneous di-
electric constant (relative permittivity) €, where r denotes the position in space,
is related to the electrostatic potential, &(r), by Poisson’s equation,130-132
which takes the following form, in this case in Gaussian units:

4p(r)

V2 = - =TF

(6]
Note that Equation [6] does not hold if € depends on r.132 However, solutions
to this equation can be obtained for multiple regions, each of which has con-
stant €, by enforcing continuity conditions at the boundaries between regions.
Alternatively one can replace Equation [6] by132

V-£(r)Vé = —4mp(r) (7]

Either solution of Poisson’s equation for &(r) (i.e., Equation [6] or [7]) permits
calculation of the free energy G as the maximum work extractable from the
system by132
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G=%fd3rp¢ (8]

This equation takes account of the fact that to maintain T we have kept the
dielectric medium in contact with a heat bath with which it can exchange heat
to maintain thermal equilibrium. Equation [8] provides the simplest example of
a reaction field effect. The electric field is in general given by131.132

E(r) = -Vé (9]

and thus it may be decomposed, at least mentally, into a contribution from the
solute charges in vacuum and a contribution from the polarization induced in
the solvent. The latter contribution within the solute cavity is called the reac-
tion field. Then Equation (8], or the equivalent131,132

G=%jd%Dm'Hﬂ [10]

where D(r) is the dielectric displacement due to the free charges, shows that the
solute interacts with its own reaction field, which has a significant effect on the
energy of the system.

In practice, it is possible to solve Equation [6] or [7] analytically for ideal
cases only. One such case is a charge ¢ on a conducting sphere of radius o,
which is a simple model of a monatomic ion. Recall that a charge on a metallic
sphere is spread uniformly over its surface, but the effect of this outside the
sphere is the same as for a point charge at the sphere center. The dielectric
constant in a conductor is %, and the integral in Equation [8] becomes the
integral of an analytically known central field in the homogeneous dielectric
medium exterior to the sphere. Evaluating this integral both for the gas phase
(e = 1) and the dielectric medium (¢ > 1) gives Born’s formula28 for the free
energy of transfer from a dielectric of unity (vacuum or sufficiently dilute gas
phase) to a solvent of dielectric :

o 1 1 2
AGS=‘5(1‘E>% (1)

A continuing issue of discussion is the precise meaning of a in terms of atomic
properties.133-137 Obviously there is some ambiguity in the way that the radius
of the sphere can be related to the various definitions of the radius of an atom
or in whether136 a shell of solvent should be included.

Note that Equations (8], {10], and [11] include not only the interaction
energy of the ion with the solvent but also the change in solvent—solvent
interactions when the ion is inserted. Under fairly mild assumptions, it can be
shown that the latter increase in intrasolvent energy cancels half the favorable
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ion—solvent interactions, which is one way to think about the factors of /2 in
these equation5.3l,46,136,137,139—]46

A similar treatment for a point dipole of magnitude . in a sphere of
radius « yields the Kirkwood—Onsager result29.30

o _ _ (8 - 1)“'2
aGy= - L 12)

For a molecular charge distribution, such simple formulas are not appli-
cable, but using either the finite difference method147-158 or the boundary
element method135.156,159~165 one can convert the problem to a set of linear
algebraic equations, which can be solved numerically. In the finite difference
method, one solves directly for the electrostatic potential at a set of grid points.
In the boundary element method, one solves for the distribution of induced
polarization charge at the dielectric interface, taking advantage of the general
result from electrostatic theory that permits one to replace the effect on the free
charges of the polarization charges induced throughout the entire dielectric
medium by the effect of a suitable distribution of surface charge on the interface
with that medium.132 One popular commercial software package to accom-
plish the solution of Poisson’s equation is DelPhi.15S Results for a selection of
organic molecules are provided later. Since applications reported to date have
treated the solvent as a homogeneous dielectric, these energies include only
what we call the ENP component, and in fact only the unrelaxed-solute ap-
proximation to this component because polarization of the solvent is taken into
account, not mutual, simultaneous polarization of both the solvent and the
solute.

To account for solute polarization, still within the constraints of classical
electrostatics, investigators have explored the equivalent approaches of employ-
ing an internal solute dielectric greater than one (typically 2 to 4,156 reflecting
the square of the index of refraction for most organic molecules) or placing
point-inducible dipoles at some or all grid points.74

The Poisson—Boltzmann Equation Equation [7] may be modified to take
account of mobile charge density within the surrounding continuum (e.g., the
ions of a dissolved electrolyte). In the case of a 1:1 electrolyte, such as NaCl,
this situation is treated by the nonlinear Poisson—Boltzmann equation166

V-e(r)Vd — g(r)Ak2 E—ZI sinh (f;‘%) = —4mp(r) [13]

where ky is Boltzmann’s constant, T is temperature, g is the magnitude of the
charge of the electrolyte ions, A is a function that is zero in regions inaccessible
to the electrolyte and one elsewhere, and k2 is the usual Debye—Hiickel param-
eter
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where 7, is the Debye length and I is the ionic strength of the bulk solution.
Note that €(r)Vé(r) in Equation [13] is 4w times the electric displacement
vector D(r).131,132

The three-dimensional, second-order, nonlinear, elliptic partial differen-
tial equation may be simplified in the limit of weak electrolyte solutions, where
the hyperbolic sine of ¢ is well approximated by ¢. This yields the linearized
Poisson—Boltzmann equation

V-e(r)Vod — e(r)Ak2d(r) = — 4mp(r) [15]

a special case of which is well known from Debye—Hiickel theory.8%,166-170
Equations [13] and [15] are more complicated to solve than the Poisson equa-
tion, but numerical solutions by both the finite difference153.156,163,165-184 and
boundary element163,164,177 methods are possible.

The ability to incorporate electrolyte effects is important because biolog-
ical macromolecules like DNA, with its negatively charged phosphodiester
backbone, are surrounded by multiple ions.185 Moreover, the relaxation time of
these ions is long enough to make explicit solvent simulations quite challeng-
ing.186-188 By replacing the solvent by a continuum, the Poisson—Boltzmann
approach affords an economical treatment of such effects for DNA, proteins,
and so on.183,189 Current efforts in this area include incorporation of solvation
into molecular mechanics and dynamics force fields, either using the Poisson—
Boltzmann equation to develop new force field parameters!®° or by incorporat-
ing approximate solutions of the Poisson—Boltzmann equation directly into the
molecular model.184,189

The Generalized Born and Generalized
Born/Surface Area Models in
Molecular Mechanics

Most molecular mechanics programs incorporate a dielectric constant
into their electrostatic interaction terms, %! which may be thought of as a crude
way to introduce a continuum model. This approach not only neglects solvent
and solute polarization and first-hydration-shell effects, it also neglects the
solvent’s effect on the self-energy of an ion and its interaction with the solvent
as incorporated in Equation [11]. Many workers use distance-dependent di-
electric constants (e.g., tending to the free space value at small distances and
the bulk value at large distances), but this usage, or using dielectric constants to
account for reaction field effects in a cavity,152:154.192 Jeads to severe conceptual
difficulties. In fact, the concept of effective dielectric constant should be avoided
wherever possible, especially for calculating forces.156
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To include the effect of solvent polarization in molecular mechanics, Still
and co-workers!%3 turned to the generalized Born model.5>71,142,194-203 [p this
model, the electric polarization free energy is written in atomic units as

1 1
GP=‘“(1—“> z Ae9r Yer [16]
2 &/ wr

where g, is the net atomic partial charge, k£ and &’ run over atomic centers, and
Yei- 15 @ Coulomb integral. Still et al. approximated the Coulomb integrals as

Yerr = {Tee? + 00 Cppr(rpp )12 (17]

where a, is the effective ionic radius of atom &, 7,,. is the interatomic distance
between atoms k and k’, and C,,. is given by

—The
Ckk' = &Xp d__ [18]

(O)Qkak,

where d(© is an empirically optimized constant equal to 4. Equation [17) may
be considered to be a generalization of older equations due to Ohno and
Klopman.204.205 Jts analytic form is designed to ensure proper behavior in three
important limits: infinite separation of atoms k and k’ (where it yields a sum
of Born formulas), coalescence of identical atoms (where it again yields a
Born formula) and close approach of dissimilar atoms [where it yields the
Kirkwood—-Onsager result within 10% when 7., < 0.1(ap0.)1/2].

For the monatomic case (k = k' = 1), o, was defined?93 to be a parameter
Prs Where the latter was taken to be the atomic radius from the Optimized
Potentials for Liquid Simulations (OPLS)2%6 force field less 0.09 A, which is an
empirical adjustment. In the multicenter case, a, is defined numerically by a
new procedure!?3 that could be thought of as an approximation to the solu-
tions of Equations [6]-[10]. In this procedure, « is chosen so that the G,
derived as in a monatomic case is equal to the G determined via numerical
integration. Thus, one considers M spherical shells i around each atom & and
calculates

X

_ A;(r;3{pk}) < 1 1 ) 1
1 = A .- +
A 2 4mrz \7,— 05T, r,+ 05T,/ " 7ae1 — 0.5Taes

(19]

where 7; and T, are defined recursively by




Continuum Solvation Models: Theory and Applicability 17

+ %T, i=1
= 1 (20]
rierty (T T) i>1
and
NE: i=1 -
I = { 1+FT._, i>1 [21]

and A; (r;;{ps}) is the analytically determined!10 approximate exposed surface
area of the sphere of radius 7;, that is, the area not included in any spheres
centered around other atoms when those spheres have radii given by the set
{ps}. The summation limit M is reached when the sphere of radius ;, — 0.5T;
encompasses the entire molecule (for the monatomic case, M = 0; in that case
only the term outside the summation is used). The expansion factor F and the
initial shell thickness T, are numerical parameters set to 0.5 and 0.1 A, respec-
tively. By virtue of the analytical approximation to A; and by treating « as a
periodically updated constant, analytical derivatives of Equation [16] may be
included as forces within a molecular mechanics minimization.

This approach, then, accounts for the electrostatic and solvent polariza-
tion (but not the solute polarization) portions of the ENP term, using force field
atomic partial charges. Still et al.193 also included a part of the CDS energy
term in their formalism by employing a SASA approach (i.e., Equation [5]),
where the SASA is evaluated for the OPLS van der Waals surface plus solvent
radius, and the surface tension ¢ is defined to be a constant of 7.2 cal mol—!
A-2, This positive surface tension term may be thought of as a cavity creation
energy; clearly the atom-specific dispersion and hydrophilic contributions are
not included.

This combination of Equations [5] and [16] is called the Generalized
Born/Surface Area model (GB/SA), and it is currently available in the Macro-
Model207 computer package. The speed of the molecular mechanics calcula-
tions is not significantly decreased by comparison to the gas phase situation,
making this model well suited to large systems. Moreover, the model takes
account of some first-hydration-shell effects through the positive surface ten-
sion as well as the volume polarization effects. A selection of data for aqueous
solution is provided later (Table 2), and the model is compared to experiment
and to other models. Nonaqueous solvents have been simulated by changing
the dielectric constant in the appropriate equations,208 but to take the surface
tension to be independent of solvent does not seem well justified.

The choice of the partial charges requires some care when the GB/SA
model is used. Still et al.1%3 note that the model is very sensitive to the charge
set (e.g., OPLS) chosen. This issue is particularly important when comparing
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differences in the solvation energies of conformational isomers because force
field studies usually assign atomic partial charges based only on atomic num-
ber, not molecular geometry, although the geometrical dependence of partial
charges can have a significant effect on solvation energies.60.61

Quantum Mechanical Models

Since the models discussed up to this point do not take account of the
quantum mechanical nature of a solute, they are incapable of a realistic self-
consistent treatment of the mutual polarization of the solvent and the solute
when the latter is placed in the former. Attempting to formulate such a treat-
ment raises complex issues of time scales when one considers dynamics, espe-
cially of charge transfer reactions,209~212 but in this chapter we consider only
models that assume a simple Born—Oppenheimer treatment of the time scales.
In this approach, for each nuclear geometry of the solute, one seeks a self-
consistent equilibrium solution for the state in which the quantal electronic
degrees of freedom of the solute are in equilibrium with the classical polariza-
tion modes of the solute. Then, in principle, the solute nuclear motion is treated
using the resulting free energy surface as a potential of mean force.8? In prac-
tice, one is usually satisfied to simply optimize the solute nuclear coordinates to
minimize the free energy of the combined solute~solvent system with no solute
nuclear kinetic energy.

In the following sections, we consider several different levels of approx-
imation for the electronic structure of the solute and its interaction with the
solvent.

Ab Initio Models

Born—Kirkwood—-Onsager Reaction Field The result of the Onsager3°
reaction field model for a point dipole inside a spherical cavity is expressed in
Equation [12]. Although the dipole moment and the electric field are vector
quantities, in this simplification they are antiparallel, and thus their dot prod-
uct involves simply the negative square of the dipole moment. Accounting for
the reaction-field coupling tensor and the work of polarizing the solvent (half
the polarization free energy) gives rise to the dielectric prefactor and the inverse
cubic dependence on the cavity radius.29.30,70

The simplest quantum mechanical Hamiltonian operator that includes
reaction field effects for neutral solutes is”1

(Ho- gu-(wiwiw) ) 1) = E19) 22)

where H,, is the gas-phase Hamiltonian, g = 2 (¢ — 1)(2e + 1)~1a-3, and « is
the solute cavity radius. For charged solutes, one should also include an ionic
Born term derived from Equation [11]. The corresponding Hartree—Fock equa-
tions are then70:71,144,213-224
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(Fo- gu- (W) l6) = &l6) 23]

where F, is the usual gas-phase Fock operator,?5 and the &; are the one-
electron orbital energies of the molecular orbitals ¢,. Note that in this approach
the usual solutions of the self-consistent field equations are modified to include
an additional level of self-consistency, since the Fock operator, the one-electron
density matrix involved in the solution of the Hartree—-Fock equations,22¢ and
the molecular dipole moment are all mutually interdependent. It is easily seen
that the dipole moment calculated under the influence of solvation (i.e., from
solving Equations [22] and [23] will be larger than the gas phase dipole mo-
ment. That is, increased charge separation is favored in solvents of increasing
dielectric constant.! The electrostatic portion of the free energy of solvation,
AG:, is then simply the energy calculated from Equation [12] minus the gas
phase energy. This is the first level of theory we have considered that self-
consistently takes account of the mutual polarization of the solvent and the
solute. It is easily appreciated that the improvement in solvation energy from
increased dipole moment is counterbalanced by an increase in the internal
solute energy. The latter is clear because any deviation from the gas phase,
optimized electronic structure necessarily involves an increase in internal en-
ergy. This is illustrated graphically in Figure 4, which shows the change in
AGgpp and its two components for a solute coordinate along which distortions
lower the interaction energy with the solvent. .

Several details with respect to implementation of Equations [22] and [23]
deseive further discussion. Whereas the approximation of the solute residing in
a spherical cavity is clearly of limited utility, since most molecules are not
approximately spherical in shape, there is also the issue of the choice of the
cavity radius, . Obvious approaches include (1) recognizing that the spherical
cavity approximation is arbitrary and thus treating « as a free parameter to be
chosen by empirical rules, and (2) choosing a so that the cavity encompasses
either the solvent-accessible van der Waals surface of the solute or the same
volume. Wong et al.227 have advocated a quantum mechanical approach like
the last method wherein the van der Waals surface is replaced by an isodensity
surface. Because g depends on the third power of , the calculations are quite
sensitive to the radius choice, and some nonphysical results have been reported
in the literature when insufficient care was taken in assigning a value to a.
Implementations that replace the cavity sphere with an ellipsoid have also
appeared.213

As emphasized, the Born—Kirkwood—Onsager (BKO) approach includes
only the solute’s monopole and dipole interaction with the continuum. That is,
the full classical multipolar expansion of the total solute charge distribution is
truncated at the dipole term. This simplification of the electronic distribution
fails most visibly for neutral molecules whose dipole moments vanish as a
result of symmetry. A distributed monopole or distributed dipole model is more
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AG(EN) -
Gas-phase minimum .
(zero of energy)

_____________________________ AG(ENP)

Polarization energy of
undistorted wavefunction

Potential of Mean Force (arbitrary units)

Solvated minimum S

Representative Solute Coordinate (arbitrary units)

Figure 4 The ENP component of the potential of mean force is the sum of a posi-
tive distortion energy and a negative (but rapidly less steeply changing) polarization
free energy. The solvated minimum occurs close to, but not precisely at, the mini-
mum of AGgy;p because Ggpg also has a (typically very small) dependence on geom-
etry.

appropriate in such cases. To the extent that the full solute charge distribution
is well modeled by a set of dipole distributions at various sites, the BKO
approximation corresponds to replacing the sum of the interactions of the
continuum with each of the individual site moments by a single interaction of
the continuum with the sum of the site moments. This is inappropriate in
certain cases; examples are dealt with in more detail in the final section. The
generalized Born model does not have these deficiencies of the BKO model in
representing realistic charge distributions.

The Born-Kirkwood—Onsager model, however, is particularly simple
to implement; its advantages include the ability to use correlated wavefunc-
tions220,222 and to calculate analytic first and second derivatives.214.219,220 A
such, the BKO or Onsager model (the latter considers only the dipole—not the
charge—and hence is appropriate only for neutral solutes) is available in many
standard programs,214.228:229 and it is widely employed.
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It does not appear that any attempt has been made to couple this BKO
model to a means by which to calculate the CDS components of solvation, and
this limits the model’s accuracy, especially for solvents like water, where the
CDS terms are not expected to be trivial. For water as solvent, studies have
appeared that surround the solute with some small to moderate number of
explicit solvent molecules, with the resulting supermolecule treated as interact-
ing with the surrounding continuum.223.230 Although such a treatment has the
virtue of probably making the calculation less sensitive to the now-large cavity
radius, it suffers from the usual explicit-solvent drawbacks of the size of the
system, the complexity of the hypersurface, and the need for statistical sam-
pling.

Applications of the Born—Kirkwood—Onsager model at the ab initio level
include investigations of solvation effects on sulfamic acid and its zwitterion,231
an examination of the infrared spectra of formamide and formamidic acid,??” and
a number of studies focusing on heterocyclic tautomeric equilibria.227:232,233 A
more detailed comparison of some of the heterocyclic results is given later.
The gas phase dipole moment depends on basis set, and systematic studies of this
dependence are available. Furthermore, the effects of basis set choice and level of
correlation analysis have been explored in solvation studies as well,227:233 but
studies to permit identification of particular trends in their impact on the
solvation portion of the calculation are as yet insufficient.

Reaction Fields from Higher Order Multipolar Expansions Generaliza-
tions of the Born—Kirkwood—Onsager model have appeared which extend the
multipole series to arbitrarily high order.30,67,144,234-236 This approach yields
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where each component 7 of every multipole M of order [ interacts with all the
reaction field multipole moments induced by the solute multipoles (e.g., the
M7’ terms) via a coupling f7”, called the reaction field factor. The Born—
Kirkwood—Onsager model is then seen as a special case involving only the
charge (I = 0) and dipole moment (/ = 1) terms; the spherical cavity eliminates
any specific dependence on m (e.g., the Cartesian components of the dipole
moment, although the orthogonality of these components for the dipole term
causes them not to interact even in the absence of a spherical cavity), and f; is
nonzero only for | = I' = 0 (the Born term) and / = I’ = 1 (the g coupling).

More generally, the reaction field factors may either be determined nu-
merically, since they appear in an overdetermined system of linear equations,23¢
or they may be computed analytically for certain idealized cavities (e.g., sphere
and ellipsoid).30-66:213,.214 Efficient optimization of solvated geometries mo-
tivates the latter approach,213.235-237 but the formalism has also been ap-
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plied with multipolar expansions fitted to completely arbitrary surfaces.23¢ Ab
initio implementation of the model using ellipsoidal cavities is available in
SCRFPAC,236:238 and the REFFAC numerical algorithms to find the reaction
field factors are in the process of being incorporated into an ab initio code for
distribution.236 It also appears that the Gaussian program suite228 will soon
incorporate multipolar expansions in both ideal and general cavities.239

The multipole expansion model has seen use in the examination of solva-
tion effects on both reaction coordinates and conformational equilibria, includ-
ing the isomerization of push—pull ethylenes240 (e.g., nitroenamines), the
ketene-imine [2+2]-cycloaddition to form B-lactam,24! and the Diels—Alder
reaction.242:243 Again, only the ENP terms are considered in general.

A critical point in the application of this model is the convergence of the
solvation energy with respect to multipole order. Even for fairly simple mole-
cules, this convergence can be quite slow. Thus, Pappalardo et al.240 found a
total electrostatic polarization free energy (& = 38.8) for Z-3-aminoacrylonitrile
of —13.2 kcal/mol, of which 66% was contained in the dipole term, 22% in
the quadrupole, and the remaining 12% in the terms up through 26-pole,
which was the highest multipole they considered. Moreover, this slow conver-
gence becomes considerably more pronounced for the transition state for rota-
tion about the double bond in this molecule, where the polarization free energy
for the charge-separated structure is —44.8 kcal/mol, partitioned as 64% di-
pole, 18% quadrupole, and 19% in the higher order terms. These authors
argue that as a result, the Born—Kirkwood—Onsager model, which is a trunca-
tion at the dipole term, should not in general be trusted for any but the most
simple molecules.239.240 This point is discussed in more detail in the survey
section of this chapter.

The convergence of the multipole expansion is also apparently quite de-
pendent on the shape (i.e., idealized or arbitrary) of the cavity employed.236,239
In this regard, although the multipolar expansion of the electronic structure is
typically performed for a single point—for example, the center of mass of the
molecule (recall that only the first nonzero moment of the molecule is indepen-
dent of the origin of the coordinate system)-—this is not a requirement. Instead,
an arbitrary number of distributed multipoles may be placed at any number of
points (e.g., the atomic coordinates).236.244-246 Fitting the multipoles and reac-
tion field factors proceeds as before, although in this case even a neutral mole-
cule usually has partial charge components at each point unless forbidden by
symmetry—reminiscent of the generalized Born model (Equation [16]). As
expected, the distributed approach leads to much more rapidly convergent
calculations of electrostatic solvation free energies. In the modeling of for-
mamide, using as a cavity the van der Whaals contact surface, a one-center
expansion still has 1% fluctuations by the 2¢6-pole term. The distributed expan-
sion, on the other hand, has a 1% contribution from the quadrupole and
is essentially completely converged after this point.236 It is generally more
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efficient to describe molecular electronic structure as a set of # distributed
monopoles rather than a single multipolar expansion of order #, although the
method employed for determining the magnitude of the monopoles (partial
charges) remains the subject of ongoing debate.246-262 Including higher multi-
poles at every center obviously increases the flexibility of the approach, but at
the cost of considerable computational effort.236.246 A recent application of this
approach, which includes electron correlation, has appeared for the NH;/HCl
complex.263 -

Generalized Reaction Fields from Surface Charge Densities Rather than
centering attention on the charges or distributed multipoles, at various posi-
tions inside the solute cavity, that induce the reaction field, one can instead
focus on the cavity surface. In particular, the effect of the reaction field may be
modeled by an appropriately distributed set of induced polarization charges
(virtual charges) on the surface S of the dielectric, as already mentioned. The
virtual charge density, o(r), for each location r on S is
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[&p(r) + de(n)ls_ (25]

o(r) =

where ¢,(r) is the electrostatic potential due to the solute charge distribution
and ¢,(r) is a potential due to the virtual charges. The derivative is an out-
wardly normal one evaluated on the solute side (indicated by the S_ subscript)
of the interface.72.73,112,264-267 The potential created by the surface-distributed
virtual charges is

bot) = | LR [26]

where 1’ is a point on the surface S. This potential must be added to the
potential due to the solute charges to obtain the total electrostatic potential ¢
at r. The electrostatic portion of the free energy of solvation is then defined as

AGE = (WiHq + 6J0) = 3 [ 60 oafe) + puildr - G 27)

where p, and p, are the solute nuclear and electron density, respectively, the
integral represents the cost of polarizing the solvent, and Gy is the free energy
of the solute in the gas phase. Available computer codes implementing this
methodology include MONSTERGAUSS2¢8 and GAMESS-UK. 229232

This model, usually referred to as the Polarized Continuum Model (PCM)
has a long history, and considerable effort has been spent in arriving at pre-
scriptions for choosing the optimum cavity surface as a function of basis set,26°
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developing algorithms for efficient optimization of molecular geometries, 267,270
incorporating self-consistently the quantum mechanical effects of dispersion271-274
and electron correlation,274-276 and considering nonequilibrium solvation.277
Cavitation effects are usually included in this model using the scaled-particle
model of Pierotti,278 which is not a necessary choice and is perhaps not the best
choice. With this inclusion, the PCM model includes both ENP and, at least in
part, CDS terms, but the directional components of hydrogen bonding in do-
nor/acceptor solvents are not treated fully. At the correlated ab initio level of
theory, with the additional overhead of the solvation portions of the calcula-
tion, implementation of these models is particularly demanding of computa-
tional resources. Thus one runs into the practical questions of precisely how
accurate a continuum model may be expected to be, and how much added cost
for a well correlated solute is a worthwhile expenditure. The answers are by no
means clear, and certainly more work remains to be done to develop a better
understanding of the tradeoffs.

Although the cost of the correlated models has limited their application
to fairly small molecules,272-277 implementations of the methodology at sim-
ply the Hartree—Fock level have been used to study the basicity of methyl-
amines,2”® conformational equilibria in esters and amides,28° the influence of
solvation on the anomeric effect,281 $,2 reactions, 265282 and even structural
properties of biopolymers like DNA.283-285 In addition, considerable attention
has been paid to interfacial phenomena and the analysis of solvent transfer
processes.286-282 Finally, the influence of solvation on the reaction coordinate
for the Menschutkin nucleophilic displacement reaction has been analyzed
with the PCM formalism.290 :

The extremely general nature of the PCM technique makes it uniquely
attractive, although the electrostatic solvation energies appear to be quite sensi-
tive to choice of basis set.232,274,279-281,291

Semiempirical Models

The accounting of the quantum mechanical models for the mutual solvent—
solute polarization in a self-consistent fashion is perhaps their greatest virtue.
However, as already alluded to, the costs of ab initio formalisms may not be
warranted—either because they cannot attain accuracies beyond the intrinsic
limitations of the continuum solvation model or, alternatively, because they are
simply not applicable to a prohibitively large system. In such instances, just as
in the gas phase, semiempirical quantum mechanical models often provide an
attractive alternative to the classical models discussed earlier.

Born—Kirkwood—Onsager Reaction Field The theory underlying the im-
plementation of the BKO model at the semiempirical level is no different from
that presented in Equations [22] and [23], although the approximations inher-
ent to various levels of semiempirical theory make certain technicalities of the
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calculation slightly different (e.g., the means by which dipole moment is calcu-
lated from the wavefunction).292:293 Thus, the choice of semiempirical Ham-
iltonian is made for much the same reasons as in the gas phase.

The Neglect of Diatomic Differential Overlap (NDDO)294 level of theory
is the most general and successful,292 and self-consistent reaction field (SCRF)
studies employing the Modified Neglect of Diatomic Overlap (MNDO),2%5 Austin
Model 1 (AM1),296 and Parametric Method 3 (PM3)297.298 Hamiltonians have
all appeared. Following implementation of the solvation model, one is afforded
essentially free choice, since the majority of available semiempirical pack-
ages228,299-302 incorporate all these NDDO Hamiltonians. Whereas the distrib-
uted version of GEOMOS301 includes the SCRF model in the Born—Kirkwood—
Onsager version, it appears that only locally modified versions of AMPAC and
MOPAC do so as well.214,303,304

Other semiempirical Hamiltonians have also been used within the BKO
model. A Complete Neglect of Differential Overlap (CNDO/2)395 study of the
effect of solvation on hydrogen bonds has appeared.306 The Intermediate Ne-
glect of Differential Overlap (INDO)307 formalism has also been employed for
this purpose.308 Finally, the INDO/S model,39? which is specifically parame-
terized to reproduce excited state spectroscopic data, has been used within the
SCRF model to explain solvation effects on electronic spectra.222:310-312 This
last approach is a bit less intuitively straightforward, insofar as the INDO/S
parameters themselves include solvation by virtue of being fit to many solution
ultraviolet/visible spectroscopic data.2®3 '

With the NDDO methods, tautomeric equilibria,230 especially in hetero-
cycles,216-219,223,224,227,232,233 have been a favorite topic for study using the
BKO approach. The tautomeric equilibria of many heterocyclic systems are
exquisitely sensitive to solvation,1-313:314 making them interesting test cases for
the validation of any solvation model. A detailed comparison is presented later
in the section on relative free energies in heterocyclic equilibria. A comprehen-
sive study of the stabilization of a wide variety of carbon radical and ionic
centers has also been reported.315

As mentioned earlier, various workers have attempted to remove some of
the strong dependence on the cavity radius by going to supermolecule systems
incorporating explicit solvent molecules.223.230.311,312 This approach has the
additional benefit of including directional components of local solvation ef-
fects, which may be important in spectroscopy,311-312 albeit at the expense of
rapidly complicating the hypersurface.

In general, the BKO model as implemented at the semiempirical level
suffers from the same drawbacks, and offers the same advantages, as those
enumerated for the ab initio level. The chief difference is simply that larger
systems may be addressed with the faster semiempirical models. A more com-
plete discussion of cases where the model performs poorly is offered in the
survey section.
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Reaction Fields from Higher Order Multipolar Expansions Of the semi-
empirical programs already mentioned that include the Born—Kirkwood—
Onsager model, it appears that only GEOMOS301 allows inclusion of higher
order multipoles and/or more generalized cavities. Using this generalized
model with semiempirical molecular orbital theory, Terryn et al.316 studied
amine basicity at the CNDO/2 level with 8 multipole moments. Bertran et
al.317 employed the same level of theory in a study of solvation effects on
frontier molecular orbital energies. Ford and Wang,318 who have discussed
methodology for choosing optimal ellipsoidal cavities, have provided some
results for a small number of neutral molecules and ions (see Table 2 later).
They emphasize that the multipolar expansion model is significantly more
sensitive to cavity variation than the simple BKO model. In addition, a study of
the effect of solvation on the conformational equilibria of a-substituted car-
bonyl compounds has been undertaken at the PM3 level.31% Again, the only
distinctions between the ab initio and the semiempirical levels have to do with
the means by which multipole moments are calculated within the NDDO
approximation and the size of the systems that may be conveniently addressed
—the virtues and failings of the model are largely unchanged.

Generalized Reaction Fields from Surface Charge Densities Ab initio for-
mulations of the PCM model discussed earlier, undertaken primarily by Tomasi
and co-workers (see, e.g., Refs. 72, 73, 266, 267), have very recently been
implemented into four different semiempirical packages.320-325 Available codes in-
clude MOPAC,300,325 3 ]ocally modified32¢ version of MOPAC,300 and VAMP.302
While the model used by Negre et al.320 with NDDO Hamiltonians follows
exactly the derivation of Equations [23] and [27], those of Wang and
Ford,321.322 Fox et al. (an INDO implementation),323 Rauhut et al.,324 and
Klamt and Schiiirmann32$ include the work of polarizing the solvent by-a
diferent derivation that yields the same result. Thus Equation [27] is reformu-
lated as

0 1 o
AGE = (¥lH, + 5 V,I¥) - Gg [28]

where V, is defined such that Equation [28] yields results equivalent to Equa-
tion [27]. Klamt and Schiiiirmann,325 who extended the more general for-
mulation of Hoshi et al.,327 have presented an innovative Green’s function
approach, which they call COSMO, for determination of the surface virtual
charge densities of Equation [25]. The cosmo method assumes conductorlike
screening (i.e., € = 00) and empirically corrects for the effects of a finite
dielectric constant. This approach, like other approaches discussed in this sec-
tion, allows a more flexible description of the solute charge distribution than
the distributed atom-centered monopoles of the generalized Born model in that
COSMO includes single center dipoles, which are expected to be particularly
important for centers with nonbonded electrons. In addition, the COSMO
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approach potentially permits more rapid and efficient energy calculations and
geometry optimizations for solutes described by general cavities. Other
workers have also considered issues relevant to the optimization of solute ge-
ometry.270.328-330

Although few applications of these very recently implemented models
have yet appeared, some calculations for free energies of transfer into aqueous
solution are available.320,321.331,332 Polarization of the solute has been analyzed
by reference to the molecular dipole moment,32° including comparison to a
hybrid quantum mechanics/molecular mechanics approach,5° and the effect of
aqueous solvation on conformational equilibria and simple nucleophilic reac-
tions has been examined.322 No consideration of CDS solvation terms in con-
junction with these models has appeared.

The SMx Approach: Generalized Born Electrostatics Augmented by
First-Hydration-Shell Effects Each of the foregoing solvation models, when
implemented at the semiempirical level, resembles closely its implementations
employing ab initio molecular orbital theory—indeed, the ab initio versions
often predate the semiempirical. On the other hand, the generalized Born
model, discussed with respect to Equation [16] for the case of molecular me-
chanics,193 has certain properties that make it particularly appropriate”1.142 to
the semiempirical level.26:27,202,203 OQur own SMx models, where SM denotes
“solvation model,” take advantage of this, and we now review these models.

AG:g is calculated from

AG: = Gi — Epn(®) (29]

where Egy(g) is the gas-phase electronic kinetic and electronic and nuclear
Coulombic energy, and G is the part of the solute aqueous free energy given by

G = Egn(aq) + Gplaq) + Geps(aq), [30]

where Egn(aq) is the sum of the solute electronic kinetic and electronic—
nuclear Coulombic energies in the presence of solvent (necessarily greater than
or equal to the energy of the gas phase optimum, i.e., including any distor-
tion energy), Gp(aq) is the solution polarization free energy, and Geps is the
cavitation—dispersion—structural free energy. Other contributions to the “true”
free energy (e.g., vibrational) are assumed to remain effectively constant and
thus not to affect AGS, although they must be added to Gj to obtain all the free
energy in solution, as opposed to just the part defined in Equation [30].
We find it convenient to deal with the sum

Genp(aq) = Egn(aq) + Gp(aq) V (31]

where Gp(aq) is defined as in Equations [16] and [17]. Equation [18] is mod-
ified, however, in this implementation,
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Cerr = Ci2 (rhw) + ChE: (T (32]
where
co, - ( g7 ) [33]
kk: = €Xp d(o)akak'

and d© remains an empirically optimized constant set equal to 4; the new C{}’

is given by

i)
— (1) (2)
(1)’/r£2k)']2} ) > ’rkk' rkk'l<rkk' [34]

di} ex (
(1) kk P
Cerr = : {1 = {(roer — it

otherwise

where d{}. is nonzero only to correct for certain anomalous O—O and N—H
interactions within the NDDO approximation.

For the monatomic case (k = k' = 1), o, is set equal to the intrinsic
Coulomb radius, p,, where

(0)
— O m| _1 9de T g 1 ]
Pr = Pk’ + pi [ - arctan -————qg) +3 [35]

where pi, pi!, and ¢i*’ are empirically optimized parameters, g, is the calcu-

lated partial charge, and g has been fixed at 0.1 for all atoms. Thus, unlike
the molecular mechanics implementation, atomic radii are a function of the
partial atomic charge, which is determined self-consistently in the semiempiri-
cal model. In the multicenter case, o, is determined numerically as described in
Equations [19]-[21].193 ,

The E, N, and P terms at the semiempirical level are obtained from the
density matrix P of the aqueous phase SCF calculation as

=1 1 ZpZy
GENP 2 % Py,v(Hp.v + Fp.v) + 2 kkz,#k T kR

1
(1 - g) kzk, ZyqkYer [36]

N} =

where H and F are, respectively, the one-electron and Fock matrices, p and v
run over valence atomic orbitals, Z, is the valence nuclear charge of atom k
(equal to the nuclear change minus the number of core electrons), and g, and
Yur are defined as in Equation [16]. We point out here that two equations in
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the literature (Equation [5] of Ref. 202 and Equation [19] of Ref. 203, both of
which are analogs of Equation [36] above) are incorrect: the former is missing
the last two terms of Equation [36] and the latter is missing the final term and
has “=” in the summation index instead of “#.” These are typographical
errors; the code has always been correct.

A key step in implementing the generalized Born model at the NDDO
level is that the Fock matrix is related to the energy functional (Equation [31])
as its partial derivative with respect to the density mattix. The partial charges
that appear in Equation [16] are easily derived from the density matrix. In our
work we do this by computing the density matrix P neglecting overlap (as in
approximate treatments of systems by Coulson and Longuet-Higgins247), in
which case

=Z,—- 2 P,, [37]

REEL

(We note that under the assumption of zero overlap, the atomic charges com-
puted this way are the same as the standard Mulliken248249 gross atomic
charges.) Hence the differentiation of Equation [36] is straightforward, and,
neglecting the dependence of p, on q,, it delivers a new Fock matrix that
includes the effects of polarization self-consistently, just as for the other quan-
tum reaction field formalisms, namely,

) S Ze-Pudves wEE 38

k' €k’

o=

F,W=F§93+8w<1—

where F(O) is the gas phase Fock matrix element and 3,,,, is the Kronecker delta
function. The density matrix is determined self-consistently in the presence
of solvent. Thus, as for the other quantum models, there is a “triple” self-
consistency in these calculations: the Fock matrix, the density matrix, and the
interacting solvent field.

The remaining contribution to the free energy of solvation beyond Ggpnp(aq)
is not ignored, but instead calculated using a formalism similar to the SASA
models already discussed,

s = 2{o‘°’+o‘” [f(Biw) + g(BritAp-(Bes {Be))  [39]

where the o, are atomic surface tension parameters, and A,.(B,.,{B.}) is the
solvent-accessible surface area for nonhydrogen atoms k&’. The SASA is defined
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as the exposed surface area of atom k', which equals the exposed surface area of
the atom-centered sphere with radius B.. The latter is well described as

Be = Ry + Rg [40]

where R is the van der Waals radius of atom &’ and Rs is the solvent radius,
taken for water as 1.4 A. Exposed area is defined in this step as area that is not
contained in any of the other atomic spheres when they also have radii given by
Equation [33]; this is why A,. depends on the full set of {8,}.

For the remaining portion of Equation [39], B, is the sum of the bond
orders of atom k to all hydrogen atoms in the solute. Using the definition of
bond order used by Armstrong et al.,333 one obtains

Biu= > P [41]

nER,veEH

where p. runs over the valence orbitals of atom %, and v runs over all hydrogen
1s orbitals. The hydrogen atom is defined (1) to have no solvent-accessible
surface area and (2) not to block the solvent-accessible surface area of the
underlying nonhydrogenic atom (i.e., By = 0). Furthermore

f(Bey) = tan=1 (V3B,,) [42]
b
ap €Xp { - 1 — [(BkH _k_ Ck)/wlz]z }7 IBkH - Clzl <w,

8(Bew) = 0 otherwise

[43]

where w, defines the range of bond orders about ¢, affected by g.

This more complicated version of Equation [5] is required to account for
the ergonic effect of hydrogen atoms interacting with the local solvent in a
fashion that is dictated by the heavy atom to which they are attached. That is,
an alkane hydrogen is hydrophobic, whereas an alcohol hydrogen is hydro-
philic. For the model to be maximally general, it is thus convenient to modify
the heavy-atom surface tension as a function of the number of attached hydro-
gen atoms, rather than attempting to derive a single, unphysical surface tension
for all hydrogen atoms. Although the motivation for parameterizing SM2 and
SM3 in terms of united atoms was to achieve the best representation of the
physics, not to minimize computation; it is efficient, and the united-atom ap-
proach has a potential added advantage if one considers large molecules in that
the coordinates of the hydrogen atoms are rarely observed experimentally and
hence are less certain than the coordinates of nonhydrogenic atoms. In SM2
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and SM3, though, the coordinates of hydrogen atoms are needed for the ENP
part of the calculation.

The various parameters have been fit to reproduce experimental334-337
aqueous solvation data. Much like the earlier quantum models, the primary
dependence of the ENP terms is on the solvent dielectric constant, which is
taken from experiment. Cavity definition, regardless of shape, is parametric in
every model, although many researchers avoid the term; nevertheless, van der
Waals radii, isodensity surface values, and so on are parametric choices. The
more important point is that the cavity parameters are not expected to show
much sensitivity to solvent in any model.

The CDS parameters, on the other hand, are expected neither to be
solvent-independent nor to be clearly related to any particular solvent bulk
observable, especially insofar as they correct for errors in the NDDO wavefunc-
tion and its impact on the ENP terms. The CDS parameters also make up
empirically for the errors that inevitably occur when a continuous charge
distribution is modeled by a set of atom-centered nuclear charges and for the
approximate nature of the generalized Born approach to solving the Poisson
equation. Hence, the CDS parameters must be parameterized separately
against available experimental data for every solvent. This requirement presents
an initial barrier to developing new solvent parameter sets, and at present,
published SMx models are available for water only (although a hexadecane
parameter set338 will be available soon).

As mentioned after Equation [24], atom-centered monopoles in principle
generate the higher multipoles required to describe the electronic distribution
(although, of course, a finite number # of charges can give at most #» nonvan-
ishing multipole moments), and as noted by Dillet et al.,236 the distributed
monopole term provides the vast majority of the polarization effect (albeit not
all). We note this only for comparative purposes, though, since calculation of
the ENP terms does not actually involve the multipole moments explicitly.

The SMx aqueous solvation models, of which the most successful are
called AM1-SM2,27 AM1-SM1a,26 and PM3-SM3,202 adopt this quantum
statistical approach, which takes account of the ENP and CDS terms on a
consistent footing. The NDDO models employed are specified as the first
element (AM1 or PM3) of each identifier. It is worth emphasizing that the SMx
models specifically calculate the absolute free energy of solvation—a quantity
not easily obtained with other approaches. We have reviewed the development
and performance of the models elsewhere.203 We anticipate our further obser-
vations later in this chapter by noting that the mean unsigned error in predicted
free energies of solvation is about 0.6—0.9 kcal/mol for the SMx models for a
data set of 150 neutral solutes that spans a wide variety of functionalities. A
number of examples are provided later in this chapter.

The models are all available in the semiempirical package AMSOL.33%
They have also been implemented in commercial software packages.299:340 The
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earliest versions of AMSOL were inefficient, but the computational speed was
successively improved in versions 3.5 and later.

Comparison of Continuum Models

It is possible to imagine many ways to compare the various models.
Moreover, every comparison will tend to illustrate the strengths of some models
more than others. The choices of what data to present are driven, at least in
part, by the requirement that calculated results be available from multiple
models. Predictions for the influence of solvation on various heterocyclic equi-
libria are presented later (in connection, e.g., with Figure 5).

Theoretical models may be tested against more accurate theoretical treat-
ments or against experiment. In this chapter, we concentrate on the latter.
Because water is not only the solvent for which the most data appear to
exist,334-337 but is moreover the most important from a biological standpoint,
it is the solvent on which we will focus.

Absolute Free Energies of Aqueous Solvation

Table 2 provides a large collection of data for aqueous solvation (g = 78.3
at 25°C) from several of the methods we have discussed. Molecules have been
chosen provided (1) they have been studied with two or more methods, and (2)
an experimental free energy of solvation has been measured. For a few partic-
ularly interesting cases, comparisons are made even in the absence of experi-
mental data.

Tables 3 and 4 are the cross-correlation matrices for the various methods
and experiment, with a few positions missing because the number of molecules
common to certain pairs of methods was not statistically significant. Finally,
Table 5 lists the slopes and intercepts determined by linear regression of pre-
dicted values for each method against experiment for the neutral solutes. Be-
cause the experimental error is very high for the ions (at least = 5 kcal/mol),
the correlations in Table 4 should be analyzed with care.

It is important to emphasize that only the solvent-accessible surface area
(SASA), the generalized Born/surface area (GB/SA), and the full AM1-SM2
models purport to address local, nonelectrostatic effects. There is no a priori
reason to expect the remaining purely electrostatic models to correlate closely
with experiment; nevertheless, it is worthwhile to examine the cross-correlations.
We will highlight some of the most interesting trends.

The SASA model2! enjoys the second-best correlation to experiment for
the uncharged solutes, with slope and intercept values quite near the ideal unity
and zero, respectively. This is particularly impressive given its great simplicity
and extremely rapid application. On the other hand, the range of molecules to
which it has been applied is fairly simple—a small handful of functionalities on
simple alkyl chains of varying length. It is noteworthy that as functionality
becomes more complex, performance appears to degrade, as for acetamide,
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Table 5 Slopes and Intercepts from Linear Regression of Model Predictions Against
Experimental Data in Table 2

Model Slope Intercept (kcal/mol)
SASA 0.98 0.07
GB/SA 1.04 -0.09
FDPB14 0.15 -2.36
FDPB2< ’ 0.72 -0.77
AM1 multipole expansion (I = 6) 1.00 1.70
AM1-PCM~= 0.78 0.12
AM1-COSMO 0.81 1.96
AM1-SM2 ENP= 1.44 -0.41
AM1-SM2 full 0.95 -0.04

aLow correlation coefficients obtained in regression; see Table 3.

where SASA underestimates the solvation free energy by 3.0 kcal/mol. This
underestimation probably is at least partly due to the failure of the model to
account for the greater polarizability of the amide group than the simple car-
bonyl group; only a single surface tension is used to describe each.

The GB/SA model193 also correlates quite well with experiment for the
neutral solutes. As expected, the regression slope and intercept are also nearly
ideal. Conversely, based on the four ions for which results have been reported,
there seems to be a tendency to overestimate ionic solvation free energies, but
definite conclusions cannot be drawn from so small a sampling. Whereas the
available data span a larger range of functionality than do those from the SASA
model, there is still a paucity of results for complex and polyfunctional solutes.
It would be very interesting to see how robust the model is in such instances.

Two finite difference Poisson—Boltzmann data sets appear in Table 2. In
FDPB1,24 the atomic partial charges are taken from a best fit to the AM1
electrostatic potential,257-259 and the atomic radii are set equal to their van der
Waals radii.122 In FDPB2,165 the charges and radii are from the OPLS204 force
field. The internal dielectric constant in both cases is unity. The former set of
atomic partial charges is almost certainly a better approximation to the proper
quantum mechanical electronic distribution; nevertheless, the FDPB1 method
is essentially uncorrelated with the neutral experimental data (r = 0.128).
Although this purely electrostatic model might not be expected to correlate
especially well with the experimental values, which include local effects, the
FDPB2 model shows a moderate correlation with experiment (albeit with a
very nonideal regression slope and intercept). Still more remarkable, there is no
correlation between results from these two methods for the solutes studied!
Indeed, neither of the FDPB models correlates significantly with any of the
other electrostatic models. This result is surprising, even taking into account
the failure of the FDPB to account for solute polarization. The strikingly large
differences between the two implementations suggest that the FDPB formalism
is very sensitive to charge modeling, since the radii are not much different. This
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possibility is further supported by the FDPB1 study, where very different solva-
tion free energies were observed when the AM1 ESP charges were replaced with
AM1 Mulliken charges (e.g., aniline goes from —8.4 to —4.2 kcal/mol).24

Moreover, the FDPB2 results for acetamide, E- and Z-N-methylaceta-
mide, and N,N-dimethylacetamide are decidedly odd. The unsubstituted amide
is predicted to have a solvation free energy much larger than experiment, even
in the absence of any accounting for local hydrogen bonding. Moreover, the
experimental values for the solvation free energies of the two monomethylated
congeners are identical at —10.0 kcal/mol.341 FDPB2 predicts them to differ by
3.6 kcal/mol, with the parent acetamide experiencing a decrease of almost 7
kcal/mol in solvation free energy upon methylation at the Z position! Continu-
ing in this vein, although methylation of the parent acetamide in the E position
decreases the solvation free energy a full 3.2 kcal/mol, methylation of Z-N-
methylacetamide at this same position to form the dimethylamide does not
change the free energy of solvation at all. This is quite different from the full
AM1-SM2 results (which are in better agreement with experiment), where the
effect of each methyl group is approximately additive. Despite possible expecta-
tions to the contrary, the AM1-SM2 ENP results yield an inverse correlation
with the experimental solvation free energies, thanks to the greater polarizabil-
ity of the methylated amide compared to the parent.

The FDPB results are more consistent for the ionic data, as might be
hoped given the dominance of electrostatic interactions for these charged spe-
cies. Nevertheless, the correlation is not particularly high. Our conclusions
about the relative merits of the SMx and Poisson—~Boltzmann approaches are
consistent with the study of Alkorta et al.,2¢ who found that both methods
work well for ions, but the SMx approach is more successful for neutrals, with
the differences being more pronounced for systems with smaller free energies of
solvation. Thus, while the FDPB formalism has certain particular strengths, as
discussed earlier, work remains to be done in the selection of optimal charges
and molecular surfaces.

Calculations employing the single-center, classical multipolar expan-
sion,318 complete to sixth order (/ = 6) to fit the AM1 electronic density in an
ellipsoid, show a very high correlation with the other three quantum mechani-
cal electrostatics-only models for neutral solutes. Rather surprisingly, it does so
as well with full AM1-SM2 and experiment. Focusing on the regression against
experiment, it appears that there is a nearly uniform 2.0 kcal/mol overestima-
tion of solvation free energy for each neutral solute, with isopropanol and
acetone being the only two significant exceptions. Given the small number of
data, and the great difference in say, anisole and methane, this finding must be
regarded as coincidental, although it is noteworthy that there is fairly close
agreement between this model and full AM1-SM2 for guanine and 9-methyl-
guanine, where no experimental values are available. The same trend in correla-
tions appears for the ions, although the correlation with experiment is not
particularly meaningful in this instance, because three of the five points have an
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identical experimental free energy of solvation. Further work on this approach
would thus be quite interesting, although clearly the requirement for more and
more multipoles as molecules become larger and larger presents an obstacle,
and multicenter approaches will perhaps prove more successful.

The AM1 polarized continuum model of Wang and Ford,322 on the other
hand, exhibits a very poor correlation with experiment, although it correlates
moderately well with the other quantum mechanical electrostatic models.
Whereas the correlation with experiment will clearly be improved-in many
cases by inclusion of such effects as cavitation and hydrogen bonding, there
remain very unusual outliers (e.g., propyne, the aromatic hydrocarbons, an-
isole), in which these effects will either be much too small or in the wrong
direction to correct the error. Given the still limited data available from this
method, the origins of these problems are not entirely clear, although Ford and
Wang347 have suggested a means for improving the AM1 electrostatic potential
that may be helpful. Correlation with experiment for the ions, though only
moderate, improves as expected. Further development of this method too
would be of great interest. '

The other surface charge density method is the AM1-COSMO formalism
of Klamt and Schiifirmann.325 This method, based on a combination of atomic
partial charges and atom-centered dipoles, is particularly efficient for deriving
the surface virtual charges. Because AM1-COSMO results correlate well with
experiment (albeit with a sizable positive intercept and a slope significantly less

_than unity), it is perhaps surprising that they do not correlate particularly well
with either the AM1-PCM or the AM1-SM2 ENP models. Inasmuch as each of
these three models addresses only the electrostatic component of the solvation
free energy, one would expect them to be much better mutually correlated.
Whereas the electrostatic energies from AM1-COSMO and the AM1 multipole
expansion models are well correlated, it must be recognized that that compari-
son involves only seven data points, compared to 39 for AM1-PCM and AM1-
SM2 ENP.

It appears that much of the deviation between AM1-COSMO and the
AM1-PCM and AM1-SM2 ENP results may be traced to heteroatoms, which
make much larger negative contributions to the electrostatic solvation free
energy in AM1-COSMO than in the other two models. Water and ammonia,
for instance, are predicted to be 7—8 kcal/mol better solvated by AM1-COSMO
than by AM1-PCM or AM1-SM2 ENP. Moreover, the AM1-COSMO solva-
tion energies for these molecules are much more negative than the experimental
free energies of solvation; it is unlikely that the nonelectrostatic components of
solvation can be positive enough (if positive at all) to bring these COSMO
energies into reasonable agreement with experiment. Other amines show very
similar behavior, as do alcohols, ethers, esters, and carboxylic acids. AM1-
PCM values are unavailable for thiols, but AM1-COSMO predicts these com-
pounds to be much better solvated electrostatically than does the AM1-SM2
ENP model. In ionic cases as well as for neutrals, AM1-COSMO predicts the
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most negative electrostatic solvation free energy in every instance. Interestingly,
the AM1-PCM and AM1-COSMO results are in good agreement for aromatic
systems with heteroatom substituents; this appears to be because the larger
AM1-COSMO heteroatom contribution is balanced by the anomalously large
AM1-PCM aromatic hydrocarbon contribution. AM1-COSMO does not ap-
pear to exhibit the latter behavior. It must be emphasized, of course, that
the cavity parameters in the AM1-COSMO formalism have not been opti-
mized,325.331 and it is quite possible that considerable improvement will be
observed with better atomic radii.

The AM1-SM2 ENP values293 have been provided primarily to compare
to the other quantal models, which address only the electrostatic component of
the solvation free energies. As expected, this component correlates closely with
each AG2. Interestingly, however, by comparing the slopes for the regressions
against experiment of the multipole expansion in the AM1-PCM, AMI1-
COSMO, and AM1-SM2 ENP models, it is apparent that the degree of solute
polarization is greatest for the AM1-COSMO and AM1-PCM models (a slope
of less than 1 and/or a large positive intercept implies that the electrostatic
energies must be “scaled back” to bring them into agreement with experiment),
less for the multipole expansion model, and least for the AM1-SM2 ENP
model. This is not an indication of which, if any, has higher accuracy, since the
magnitudes and corrections of both local effects and inadequacies in the solute
wavefunctions are not obvious. It does, however, suggest overpolarizatior. as a
possible cause for the problems of the AM1-PCM model with molecules such
as propyne, the aromatic hydrocarbons, and anisole, and the large values pre-
dicted by AM1-COSMO for heteroatom-containing systems.

The full AM1-SM2 model is discussed in more detail in the final section.
Within the context of Tables 2—5, however, it is worth noting that the model
enjoys the largest correlation to experimental data for the neutral solutes. All
but a few of the molecules listed comprise a subset of a larger data set of
147 neutral solutes spanning many functionalities (e.g., nitro groups, phos-
phorus compounds, sulfides, bromides, fluoroalkanes, iodides, polyfunctional
compounds), not shown because they have not been studied by other methods,
for which the AM1-SM2 model has a mean absolute error of 0.6 kcal/mo].203
One apparent flaw illustrated here is that AM1-SM2 consistently underesti-
mates the free energies of solvation for aliphatic and alicyclic ethers.

Finally, it is apparent that the reported solvation free energy for methox-
ide, —95 kcal/mol,33¢ is much larger than the predictions of FDPB1, AM1-
PCM, or AM1-SM2. Because the calculated values from these diverse methods
are all in fairly close agreement with each other, it is tempting to believe that the
experimental number may be in error in this instance.

Relative Free Energies in Heterocyclic Equilibria
Solvation may have a dramatic effect on tautomeric equilibria, especially
in heterocyclic systems.1-313:314 For instance, the equilibrium constant for the
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4-hydroxypyridine/4-pyridone tautomerization is changed more than a mil-
lionfold upon transfer from the gas phase to aqueous solution.314 Not only is
the differential absolute free energy of solvation large, but the calculated elec-
tronic structures are greatly perturbed by the solvent. For example, in the gas
phase the AM1 Mulliken partial charges on the nitrogen H and the O in
4-pyridone are 0.25 and —0.34, respectively, whereas in solution (AM1-SM2
model) these partial charges become 0.35 and —0.52, respectively,203 with a
concomitant increase in the dipole moment from 6.3 D to 10.8 D: Similar
effects are found in thymine,343 as discussed later in the biochemistry section.

The significant changes in solvation energy upon tautomerization as well
as the importance of aqueous heterocyclic equilibria in biochemistry make such
systems particularly interesting test cases for theoretical models of solvation.
We focus on two specific test cases for which data from a number of different
models are available: the tautomeric equilibrium between 2-hydroxypyridine
and 2-pyridone and the aqueous population of tautomers in the 5-(2H)-
isoxazolone system (Figure 5). The first case is somewhat simpler to focus
upon, because the tautomeric equilibrium in the gas phase is known.314 Solu-
tion measurements thus provide directly the differential free energies of solva-
tion for the two tautomers, relieving the models of the burden of accurately
accounting for the relative gas-phase free energies as discussed later. The size
and complexity of this system has limited the application of theoretical models
to a number of different Born—Kirkwood—Onsager approaches and the gener-
alized Born formalism. Results are summarized in Table 6, where the cavity
radius is « of Equation [12].

Wong, Wiberg, and Frisch,?27 at the correlated ab initio level, obtained
excellent agreement with experiment for € = 2, and reasonable agreement for
¢ = 36. They explicitly assign the greater error in the latter dielectric as arising
from specific interactions not accounted for in the BKO model, and as a result
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Figure 5 Two heterocycles that have tautomeric equilibria and are sensitive to solva-
tion: the equilibrium between 2-hydroxypyridine and 2-pyridone (top) and equilib-
rium between the NH, CH, OH,, and OH[. tautomers of S-isoxazolone (bottom).
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they do not attempt an aqueous (¢ = 78) calculation. Their choice of cavity
radius is intuitively reasonable and derives from calculation of the volume
enclosed by the 0.001 atomic unit isodensity surface, to which is added a
constant of 0.5 A. This prescription gives reasonably close agreement with
volumes obtained from simple van der Waals surfaces. It is by means of this
latter approach that Szafran et al.224 arrive at a cavity radius of 3.88 A. Here
again, agreement with experiment falls off rapidly at higher dielectrics. In this
instance, Szafran et al. observed improved results upon inclusion of one specific
water molecule.224

The BKO study of Freitas, Longo, and Simas,223 on the other hand,
ignored the specific interactions in water and instead adopted an unrealistically
small cavity radius of 3.0 A to obtain agreement with experiment. Such a cavity
cannot be justified in a physical sense. An earlier study of Karelson et al.216
employed a similarly small cavity radius of 3.15 A and thereby also obtained
reasonable agreement with experiment for water.

The AM1-PCM model does surprisingly well, even without including
specific solvent interactions, suggesting that this effect may account for only a
portion of the BKO discrepancies in more polar solvents. Evidently, higher
multipole moments may also be important.

The generalized Born solvation models203.344 take account of specific
water interactions explicitly and give excellent agreement in the AM1-SM1 and
PM3-SM3 cases; AM1-SM2 is less successful, albeit still improved over the
most reasonable BKO treatment. Cavity radii are not an issue for these models.

The aqueous solvation free energies of the four tautomers available to the
5-(2H)-isoxazolone system have also been studied using a variety of continuum
models (Table 7). Hillier and co-workers232.345 have provided data at the ab
initio level using the Born—Kirkwood—Onsager model, the classical multipolar
expansion model (up to / = 7), and an ab initio polarized continuum model.
We examined the same BKO model with a different cavity radius and the AM1-
SM2 and AM1-SM12a26203 models,346 and Wang and Ford have performed
calculations with the AM1-PCM model.332

Table 7 illustrates the tremendous sensitivity of the BKO model to de-
creasing cavity radius. The 3.6 A cavity radius was arrived at by following the
Wiberg, Wong, and Frisch prescription227 and is in reasonable agreement with
what one would expect from the volume enclosed by a van der Waals surface.
Ab initio BKO/6-31G** calculations with this cavity are in remarkably close
agreement with the AM1-SM2 ENP values (i.e., comparing to the electrostatic
portion of the AM1-SM2 results) with the exception of the OH, tautomer,
where the very small dipole moment of this structure causes the BKO model to
be inappropriate. _

The 2.5 A radius, on the other hand, gives drastically different results,
both in absolute and relative magnitudes. With this cavity radius, the solvation
free energy for the NH tautomer is in the range for a medium-sized ion! The ab
initio PCM model also gives surprisingly large absolute free energies of solva-
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Table 7 Comparison of Calculated Free Energies of Solvation (kcal/mol)
for 5-(2H)-Isoxazolone Tautomers

NH CH OH, OH; Ref.

Absolute

BKO/6-31G**, 2.5 A cavity -38.0 -22.4 -3.0 -18.5 232
BKO/6-31G**, 3.6 A cavity -6.2 -5.0 -0.7 —-4.3 346
SCRF (I = 7)/6-31G**, ellipsoid -10.9 -9.7 -6.4 —-8.1 345
PCM/6-31G**, van der Waals cavity —=17.2 -163 -12.3 NA< 232
PCM/AM1, van der Waals cavity -10.8 -9.2 -5.9 —-6.4 332
Explicit water, AMBER NA“ NA« NA« NA= 232
AM1-SM2, ENP only -6.2 -4.5 -3.2 —-3.6 346
AM1-SM2, full -11.0 -8.2 -9.5 -9.9 346
AM1-SM1a, full —-14.0 -10.0 -11.6 -12.1 346
Relative to CH tautomer

BKO/6-31G**, 2.5 A cavity —-15.6 0.0 19.4 59 232
BKO/6-31G**, 3.6 A cavity -1.2 0.0 4.3 0.7 346
SCRF (I = 7)/6-31G* *, ellipsoid -1.2 0.0 33 1.6 345
PCM/6-31G* *, van der Waals cavity -0.9 0.0 4.0 NA= 232
PCM/AM1, van der Waals cavity -1.2 0.0 33 2.8 332
Explicit water, AMBER -2.1 0.0 1.8 0.3 232
AM1-SM2, ENP only -1.7 0.0 1.3 0.9 346
AM1-SM2, full -2.8 0.0 -1.3 -1.7 346
AM1-SM1a, full -4.0 0.0 -1.6 -2.2 346

aNot available.

tion, given that only the electrostatics are being considered. However, the rela-
tive free energies for this model are in very reasonable agreement with the
AM1-SM2 ENP, the SCRF (/ = 7), and BKO/6-31G** (3.6 A cavity radius)
results. The AM1-PCM model is in similarly good agreement for both absolute
and relative energies.332 It is interesting to note that all these models also agree
closely with explicit-water calculations employing the AMBER force field.347
This last result is a bit surprising considering that the latter approach does not
account for solute polarization but does account for local solvent interactions
—it may be that these two effects fortuitously cancel.

In their original work, Hillier and co-workers232 invoked the BKO model
with a 2.5 A cavity radius as being the most trustworthy, even though this
cavity excluded sizable portions of the heterocycle itself. Their analysis suffered
from two critical problems. First, the authors were victims of an error propa-
gated through the theoretical literature,?17 namely, that in aqueous systems the
NH tautomer was the only observed species in solution. In fact, no experimen-
tal details support this statement; analysis of methylated analogs suggests that
the NH and CH tautomers should be present to a similar degree with no
detectable amounts of the OH tautomers.313:346 Second, unlike the earlier
example of 2-pyridone, no gas-phase experimental data are available for this
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heterocycle. Hence, meaningful comparisons of differential free energies of
solvation cannot be made. Instead, these differential free energies of solvation
must be added to relative gas-phase free energies. Because of a faulty geometry
optimization and a poorly converged gas-phase level of theory, Hillier and co-
workers believed that to “correctly” predict the predominance of the NH tau-
tomer in aqueous solution, they had to overcome a 13 kcal/mol difference in
relative gas phase energies favoring the CH tautomer. Gould and Hillier34s
later corrected these errors. -

In fact, very large basis set, correlated calculations suggest that the CH
tautomer is favored over the NH in the gas phase by only 6.2 kcal/mol.346
Assuming an approximately equal mixture of the two tautomers in aqueous
solution,313 the AM1-SM1a model is within about 1 kcal/mol of correctly
predicting the relative free energies of solvation. The more general AM1-SM2
model is not quite as accurate in its consideration of heteroatom-bound pro-
tons, and it thus provides a somewhat poorer prediction in this instance, al-
though it remains closer than any of the other models.

The last example illustrates the difficulties involved in studying the effects
of solvation on conformational equilibria and chemical reactions. Whereas it is
important to have a solvation model that performs reasonably accurately (e.g.,
the 0.6 kcal/mol mean error for neutral solutes observed with AM1-SM2) such
accuracy is of little use when the gas phase surface of the same system contains
significantly larger errors.

SURVEY OF SELECTED
SMx RESULTS

This section provides further information on the SMx parameterizations
and discusses examples of special results to illustrate the kinds of problem that
can be considered.

Four SMx parameterizations have been published to date.26:27.202 Three
(SM1, SM1a, and SM2) are based on the AM1 model for the solute, and one
(SM3) is based on PM3. In the most general terms, we consider SM1 to be
replaced by SM2. The choice between SM2 and SM3 is probably best made in
terms of whether AM1 or PM3 gives a better description of the solute proper-
ties of interest; see, however the following subsection in regard to PM3 for
compounds with nitrogen. The SM1a model requires the user to assign nitro-
gen centers as sp3, amide, sp2, or sp and oxygen centers as sp2 or sp3. Further-
more, hydrogens must be characterized in terms of the atoms to which they are
bonded. This requirement limits or prevents the applicability to many ions and
strained or nonclassical compounds and to transition states for proton, hydro-
gen, or hydride transfer. The SM1a model is the most accurate model on the
average, though, when it is applicable.
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Organic Chemistry

Average Performance on a Test Set

The SM1a, SM2, and SM3 models have been applied to the same repre-
sentative test set of 147 molecules, consisting of 143 organics plus ammonia,
phosphine, hydrogen sulfide, and water itself. Here we overview the results
discussed in detail elsewhere.203

The mean unsigned errors are 0.6, 0.6, and 0.9 kcal/mol, respectively, for
SM1la, SM2, and SM3. It is interesting to divide the 147 test molecules into
two sets, 27 nitrogen-containing compounds and 120 without nitrogen. The
respective mean unsigned errors of the SM1a, SM2, and SM3 models for the
nitrogen-containing set are 0.6, 1.0, and 1.6 kcal/mol, while for the set without
nitrogen they are 0.6, 0.6, and 0.8 kcal/mol. Thus the differences in overall
performance are primarily attributable to nitrogen. Examination shows that
the poor results of the SM3 model for nitrogen-containing compounds are due
to the unrealistic partial charges on nitrogen produced by PM3.

Another way to partition the test set is into 27 compounds with AGg =
0.1 kcal/mol, 3 with AGg = 0.0 kcal/mol, and 117 with AGg = —0.1 kcal/mol.
The first two groups (30 compounds) will be called the hydrophobic subset,
and the other 117, the hydrophilic subset. The respective mean unsigned errors
of the SM1a, SM2, and SM3 models for the hydrophobic subset are 0.7, 0.5,
and 0.6 kcal/mol, whereas for the hydrophilic subset they are 0.6, 0.7, and 1.0
kcal/mol. This breakdown confirms the success of the major performance
enhancement specifically designed into the SM2 parameterization, namely, to
improve the accuracy for the hydrophobic effect. We believe that the high
accuracy attained for the hydrophobic subset of molecules also gives con-
fidence that hydrophobic side chains are treated accurately in hydrophilic
molecules.

Nearly symmetrical molecules deserve special mention. Benzene and pipera-
zine are uncharged and have no dipole moment, so the Born—Kirkwood—
Onsager model predicts AGg = 0. However, AM1-SM2 predicts —0.5 and —7.8
kecal/mol, respectively, in good agreement with the experimental —0.9 and
—7.4 kcal/mol. In benzene the result comes as the sum of a hydrophobic AGgps
= 1.4 kcal/mol and a hydrophilic AGgrp = —2.0 kcal/mol; whereas in pipera-
zine both terms are hydrophilic (AG¢ps = —4.1 kcal/mol, AGeyp = ~3.7 keal/
mol), and they reinforce each other. Similar reinforcement occurs in many other
compounds [e.g., p-bromophenol (AG; = —4.4 kcal/mol, AGgnp = —2.7
kcal/mol)], in which case AM1-SM2 predicts AGg = —7.0 kcal/mol versus an
experimental value of —7.1 kcal/mol.

These models were also applied to a test set of 28 ions, consisting of 13
organic ions and 15 inorganics. The average unsigned errors in the SM1, SM2,
and SM3 models for this set are about 3—4%, which may well lie within the
experimental uncertainty because the errors in assigning absolute free energies
of solvation to charged species are large. In the SM2 model, 9 of the 28 ions
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have errors of 5% or more. For illustration purposes, we mention (CH3);PH*,
NOj3, CH;SH;, HS ™, and CH;OH3, with experimental solvation free energies
of —53, —65, —74, —76, and —83, respectively. The SM3 model yields —47.9,
~59, —74, —76, and —84 kcal/mol for unsigned errors of 10,9, 0, 0, and 1%,
respectively, an average of 4%.

Hlustrative Applications

Equilibria Solvation has important quantitative effects on many-kinds of
organic equilibria.! We use the acid—base equilibria of CH;NHj as an example.
Consider

CH,NH}(g) + B(g) = CH;NH, + BH*(g) AG = AG,
CH,;NHj(aq) + B(aq) = CH,NH, + BH*(aq)  AG = AG,

where AAG = AG, — AG,. Table 8 gives AAG values for five neutral and four
anionic bases as computed by the AM1-SM2 model344 and from experiment.
The main trends are well reproduced. Good results are also obtained for tau-
tomeric equilibria as detailed for several examples in the earlier section on
heterocyclic equilibria.

Dynamics In light of the encouraging results for absolute solvation ener-
gies and equilibria, applications of continuum solvation models to the dy-
namics of organic reactions also are expected to be very fruitful. Ionic reactions
(e.g., the classical S;2 mechanism) may proceed in qualitatively different ways
in solution and in the gas phase, and continuum solvation models provide a
convenient and economical way to map out solvation energy changes as a
function of the reaction coordinate.

Solvation can also have large quantitative effects on reactions of un-
charged species. For example, these effects have been considered in detail re-

Table 8 Solvation Effects on the Acid-Base Equilibria
of Methylamine

AAG (kcal/mol)

Base B SM2 Experiment
NH, -9 -10
Aniline 8 3
(CH;),NH 7 8
(CH;);N 15 14
Pyridine 12 15
Cyclopentadienyl anion 124 128
Benzoate 130 128
Phenoxide 125 132

Acetate 134 127
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cently for sigmatropic rearrangements. Such reactions, especially the Claisen
rearrangement and its variations, are among the most synthetically useful
methods for creating new asymmetric centers.348 Solvent effects on the reaction
rates and the stereochemical outcome are therefore of great interest.

There has been considerable interest in the effect of solvation on the
Claisen reaction and other pericyclic reactions. Both continuum solvation
models and explicit solvent treatments have been applied. Interpretation of
these results in terms of the efficacy of the solvation treatments is clouded by
uncertainties in the underlying treatment of the electronic structures of the
solute. These issues have been discussed extensively in recent literature on the
Claisen reaction,349-356 and there is an even larger literature for the Diels—
Alder cycloaddition reaction. Transition states for pericyclic reactions may be
roughly categorized in terms of varying amounts of biradicaloid (diyl), zwit-
terionic, and aromatic character; these qualitative distinctions have a consider-
able effect on the partial charges and electronic and geometric polarizability,
and hence on the solvation effects. The character of the transition states in these
terms as well as chair versus boat energy differences of the six-membered ring
transition states are sensitive to the size of the basis set in ab initio calculations.
In semiempirical molecular orbital theory, the charge character at a given
geometry is similar to minimum basis set Hartree~Fock results, which are less
polar than double-zeta-basis structures, but the geometric character is more
biradicaloid as a tendency. Proper assessment of the biradicaloid character at
the ab initio level requires some treatment of internal correlation (e.g., multi-
configuration SCF), and the calculation of accurate energetics for transition
states often requires inclusion of external correlation and extended basis sets.
We believe that these issues must be resolved satisfactorily for the gas phase
before definitive statements can be made about solvation, but when this has
been accomplished, continuum solvation models should be very useful for
exploring the effect of solvent.356

Biochemistry

Even the simplest level of understanding of most reactions of interest in
biochemistry requires taking some account of the effects of aqueous solvation
on both structure and dynamics. In this section, we consider examples of
solvation studies on three biomolecules: dopamine, glucose, and thymine.

Dopamine

Dopamine is a neurotransmitter, and the understanding of its conforma-
tional preferences may advance our understanding of its biological functions.
The critical dihedral angles ¢, and &, for the protonated form of dopamine,
which is the prevalent species at biological pH, are illustrated in Figure 6. Free
energy of solvation maps as functions of ¢, and &, were generated by AM1-
SM1 calculations for the neutral, N-protonated, and OH-deprotonated forms
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Figure 6 The effect of aqueous solvation on the conformation of dopamine. For all
points in the graph, &, = 90°, which is the value illustrated in the structure.

of dopamine.357 For both latter forms, the solvation energy has a significant
effect on the conformational preferences. Qualitatively, the AM1-SM1 calcula-
tions reflect what one would expect for solvation effects, and quantitatively
they lead to markedly improved agreement with experiment. Thus, the anti
conformation (¢, = 180°) illustrated in Figure 6 is predicted to be preferred in
aqueous solution, even though the most favorable gas-phase conformation
finds the ammonium moiety gauche to the aromatic ring (¢; = 60°). The
magnitude of this effect is on the order of 7 kcal/mol for the differential free
energy of solvation of these rotamers. The ratio of gauche to anti about ¢, is
determined by NMR spectroscopy to be 58:42; AM1 (gas phase) calculations
predict a 99:1 ratio, whereas AM1-SM1 predicts 37:63 (representing an error
of 0.5 kcal/mol). Aqueous solvation is also found to lower the rotational bar-
rier about &,, consistent with the rapid rotation observed experimentally by
NMR techniques.

Glucose

Glucose is a system in which the conformational average of multiple low
energy isomers cannot be ignored.358 That is, the free energy of solvation is a
Boltzmann probability-weighted average over conformations”*

exp [— AGE ] = % Pc exp [ ~ AGS(C) } [44]

RT RT

where P is the equilibrium mole fraction of conformation C in the gas phase. If
there is only one important conformation in both gas phase and solution, only
a single term need be retained in Equation [44], which becomes a tautology.
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Background on glucose conformations and the glucose solvation problem
may be found in four recent references.359-362 Here we summarize some of the
main results of our own studies38 with the SM1a, SM2, and SM3 models as
examples of the kinds of information available from continuum solvation
studies. We concentrated entirely on the dominant pyranose ring form of D-
glucose. The first issue studied was the relative stability in solution of the
three hydroxymethyl conformers G, G, and T of both the o and B anomers, as
illustrated in Figure 7. For both anomers, we found the G conformer to be better
solvated than the other two, in agreement with explicit-water molecule dynamics
simulations.369:361 In our calculations, we found that solvation stabilizes the G
form by 0.5~0.7 kcal/mol compared to the other conformers for both the a
and B anomers. Furthermore, the difference in solvation energies between the
various hydroxymethyl conformers was dominated by CDS terms, and in par-
ticular by contributions to this term from the C-6 hydroxyl group, in good
agreement with the conclusions of Kroon-Batenburg and Kroon360 based on
their explicit-water molecular dynamics simulations. This is very encouraging.

Next we turn to the torsional nightmare of the ring hydroxyls. The com-
putational convenience of the continuum solvation model allowed us to exam-
ine all 81 ring hydroxyl rotamers of the G hydroxymethyl conformer of the ¢-D
anomer with both the AM1-SM2 and PM3-SM3 parameter sets, fully optimiz-
ing the geometry in both the gas phase and solution for every case. We found 33
stationary structures in the former case and 40 in the latter. There are many
low energy rotamers in the gas phase, and solvation somewhat flattens the
landscape, but not by a large amount. Strikingly, though, the most favorable

Figure 7 G, G, and T hydroxymethyl conformers of both anomers of D-glucose.
Under each structure is the anomer designation, the conformer label, and the AM1-
SM2 value of AG (kcal/mol).

Y
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gas phase rotamer is the least well solvated. Our calculations indicated that
cooperative hydrogen bonding may occur for several rotamers likely to be pres-
ent in aqueous solution in nonnegligible amounts. When the nonanomeric
hydroxyls are engaged in a clockwise hydrogen bonding array, which is com-
mon, the anomeric hydroxyl prefers to engage in intramolecular hydrogen
bonding in preference to taking advantage of exoanomeric3$3 stabilization.

The solvation effect on the a/B anomeric equilibrium was calculated to be
essentially zero. This interesting result awaits further study at higher levels.

Finally we compared the AM1-SM2 ENP values to those calculated by
the Onsager model (Equation [12]). The Onsager model yields solvation ener-
gies from —0.004 kcal/mol to —2.1 kcal/mol. In addition to being uncorre-
lated with the AM1-SM2 ENP results, the Onsager values were about 18—-19
kcal/mol less negative than the full AM1-SM2 values. This illustrates just how
dangerous it is to ignore specific first-shell effects and focus only on the dipole
moment for electrostatic effects in large molecules.

Thymine

As discussed earlier in the section on heterocyclic equilibria, heterocycles
show large changes in electronic structure between the gas phase and solution,
and thus the effects of aqueous solvation on nucleic acid bases is very inter-
esting.

Consider, for example, thymine.344 Figure 8 shows the free energy contri-
butions by groups (where a group is C, CH, CH;, NH, or O) from the ENP and
CDS terms. The procedure for partitioning the ENP terms into group contri-
butions is explained elsewhere.343 Partitioning of the CDS contributions is
obvious.

The major changes in the partial charges due to solvation are toward
more positive at N{1)H and C(6)H and more negative at both oxygens, increas-
ing the dipole moment, which points from C(5) to C(2), from 4.2 D in the gas
phase to0 6.7 D in solution. Especially noteworthy is the different behavior of

-3.6
-1.5

0.3

-03 0.5

-1.6

Figure 8 Free energy of solvation contributions

O
(kcal/mol) by groups for thymine. The upper
‘?g number for each group is the ENP contribution,

and the lower number is the CDS contribution.
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the two nitrogens, with N(1) contributing much more to the ENP term and
polarizing much more in solution than N(3). This situation might be hard to
model classically. The increase in AGg of thymine due to aqueous solvation is
29%, which is typical of the nucleic acid bases. The average increase for the
other four is 31%.

The net ENP and CDS contributions to the solvation energy of thymine
are —10.4 and —6.1 kcal/mol, respectively, for a net AG of —16.5 kcal/mol.
Similar calculations for 1-methylthymine yield —13.3 kcal/mol; this solute has
also been studied by explicit-water calculations in which the solute is classical,
where a value of only —7.7 kcal/mol was predicted.364 Even the value calcu-
lated without relaxation in solution by AM1-SM2 model is —10.8 kcal/mol,
predicting that thymine is solvated significantly more favorably than was indi-
cated by the earlier calculations.

No experimental results are available for the nucleic acids, with or with-
out methyl substitution, to test the theories, but we can compare the results for
thymine to three theoretical estimates!S7 based on the linearized Poisson—
Boltzmann equation. The AM1-SM2 and PM3-SM3 values are —16.5 and
—20.1 kcal/mol, respectively. Using charges and force field parameters from
the AMBER,347 CHARMM, 365 and OPLS366 molecular mechanics force fields
and a solute dielectric constant of 1, Mohan et al.157 calculated solvation
energies of —19.1, —10.4, and —8.4 kcal/mol. The wide variation is discon-
certing. In light of such wide variations with “off-the-shelf” parameters, the
SMx approach based on parameters specifically adjusted to solvation energies
appears to be more reliable.

FUTURE DIRECTIONS AND
CONCLUDING REMARKS

Selection of an optimum solvation model must always be based on the
issues requiring resolution. For instance, continuum models are obviously not
appropriate when the specific structure of the first solvation shell is of interest.
Often, however, they are appropriate, offering great speed and the option of
employing quantal treatments of the solute. Continuum models are particularly
useful in that they generally calculate absolute free energies of solvation, al-
though not necessarily for more than a few components of the total free energy
of solvation—thus, as detailed earlier, if one is interested in first-solvation-shell
effects, one should not choose a continuum model that is limited to electro-
static polarization effects. Depending on the rigor with which the solute is
treated, continuum models range in speed from extremely fast molecular me-
chanics implementations to much more cumbersome (but potentially more
accurate) ab initio implementations. Judiciously balancing these considerations
is, of course, the daily task of the computational chemist.
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Continuum models like the SMx approaches allow for a myriad of addi-
tional higher order refinements that have not been included yet. We give only
one example here. Urry367 has argued that water molecules involved in hydro-
phobic hydration cannot, in general, simultaneously perform the function of
polar hydration. Thus the dielectric constant may be lower near hydrophobic
sites. It would be straightforward to include a region-dependent dielectric con-
stant in the generalized Born models employing Equation [19], but this has not
been done yet. :

In addition to methodological refinements, a number of general issues
deserve more focus. Accurate modeling of the electronic structure of solutes
with efficient formalisms (e.g., partial atomic charges) continues to be an active
area of study. More work remains to be done for the quantal models on
identifying the point at which improving the solute wavefunction fails to be
worthwhile, given the limitations implicit in the continuum approximation.
Moreover, it seems clear that combined quantal/molecular mechanics treat-
ments will be worthwhile when significant changes in electronic and nuclear
structure are expected for only a small portion of a solute (e.g., a2 quantum
substrate interacting with a classical enzyme). Physically meaningful models for
changes in the solute rotational and vibrational partition functions following
solvation remain to be proposed. Nonequilibrium solvation models are re-
quired for processes that occur rapidly relative to solvent structure relaxation.
Finally, whereas the dielectric constant of a solvent is one bulk property that
has been useful in developing continuum models for the electrostatic compo-
nents of solvation free energy, little work has been done on identifying how
other bulk properties (e.g., cohesive energy density, internal pressure, viscosity)
may be used to develop models for local effects occurring in the first (and
perhaps second) solvation shell. Addressing some of these questions will en-
hance the utility of these already extremely powerful models.3é8
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