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reactive event, but these are not very interesting. If one could find a dividing surface
such that when reactants reach it, they almost surely go on to products without recrossing
the surface, one could calculate a reasonably accurate rate constant by simply calculating
the one-way rate of systems passing through the dividing surface. This is transition state
theory [10], and the dividing surface is called the transition state. Since a system with an
equilibrium distribution in reactant state space will evolve, by Liouville’s theorem, into
a system with an equilibrium (Boltzmann) distribution in any other part of phase space,
including the dividing surface [11,12], the calculation can be further simplified into a
calculation of the equilibrium one-way flux through the dividing surface. Notice that an
equilibrium flux is independent of the nature of the dynamics that gets the system to
the transition state dividing surface; it is even independent of the details of the potential
energy surface in the vast expanse of phase space between reactants and the transition
state. Calculating reaction rates gets even easier though when one recognizes [13, 14]
that the equilibrium rate constant for passing through a dividing surface toward products
may be written as

k= %K“e‘“’w/” (3.15)

where kg is Boltzmann’s constant, T is temperature, k is Planck’s constant, K*° is unity
for a unimolecular reaction and the reciprocal of the concentration in the standard state
for a bimolecular reaction, AG*° is defined by

AGH® = GF° — GRe (3.16)

where G®° is the standard-state free energy of reactants, and G*° is a new quantity that
has exactly the same mathematical form as a standard-state free energy but for a system
localized in the transition state by having one degree of freedom missing. The degree of
freedom that is missing is the coordinate normal to the dividing surface. G*° is called the
standard-state free energy of the transition state, and AG*° is called the standard-state
free energy of activation (or sometimes it may be called the standard-state quasithermo-
dynamic free energy of activation). Now the calculation of an equilibrium one-way flux
is reduced to the calculation of the difference of two free energies (technically, only G®°
is a free energy; G*° is a quasithermodynamic quantity, not a true free energy, because
one degree of freedom is missing). Since the transition state is missing one degree of
freedom, that degree of freedom must be treated as separable. The missing degree of
freedom is usually called the reaction coordinate, and one could say that the separability
of the reaction coordinate is the fundamental assumption of transition state theory. (If
the reaction coordinate were globally separable there would be no recrossing.) The sepa-
rability approximation usually breaks down most strongly when tunneling is important,
and nonseparability effects can be included by including a multidimensional tunneling
contribution as discussed in Section 3.3.2. Even when the separability assumption does
not break down for the true variational transition state, i.e., for the true reaction coordi-
nate (any trial transition state, being a dividing surface, defines a trial reaction coordinate
as the coordinate normal to it, and vice versa), in practice we are limited to reaction
coordinates that depend in a manageable way on only a manageable number of coordi-
nates or that are defined by a simple model, and thus there may be nonseparability (and
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hence recrossing) for calculations with practical reaction coordinates. New methods for
identifying complex reaction coordinates and reaction coordinates in complex systems
are under development [15-17].

The reader will have noticed that at key points in the above discussion we used classical
mechanical concepts such as the flux through a dividing surface in phase space. Even
the definition of the transition state (as a phase-space dividing surface) is classical. In
fact there is no unique way to extend the definition of the transition state to quantum
mechanics. However, if we write the free energies in terms of statistical mechanical
quantities such as partition functions, there are well-known ways to replace classical
mechanical partition functions by quantal ones. We will return to this issue and other
practical issues involved in evaluating and improving Equation (3.15) in Section 3.3.2.
However first we need to introduce another concept that will be important in computing
free energies in liquid-phase solution, namely the concept of potential of mean force
(PMF). The PMF is a statistical mechanical quantity that corresponds to the free energy
for a system in which one or more coordinate is ‘nailed down,” that is constrained
to a constant value. For example a two-dimensional PMF corresponds to fixing two
coordinates; they could be the x and y Cartesian coordinates of one of the atoms or —
more likely in applications — they might be some functions of the internal coordinates
such as the distance from atom A to atom B and the distance from atom B to atom C.
(Note that distances are nonlinear functions of the atomic Cartesian coordinates; we call
them curvilinear coordinates, whereas linear functions of atomic Cartesians are called
rectilinear coordinates.)

In general, if H is the Hamiltonian of the system, i.e., its total energy, the free energy
G is defined by

e OIRT = (¢~HIXT) (3.17)

where < ... > denotes a Boltzmann average over all phase space at temperature T.
We label the set of constrained coordinates of a PMF calculation as R, the set of other
coordinates as r, and the set of all conjugate momenta as p. Then Equation (3.17) becomes

e KT = (e HIRT) o (3.18)
Alternatively we can carry this out in two steps
—W(R)/RT __ [, ~HJRT :
e = (e )w (3.19)
£~OIRT — (¢~WR/RT) (3.20)

This defines W(R) as the PMF of coordinates R. For applications we need to specify
whether a constant of integration is added to G or W to set their zero of energy [18].

The standard-state solvation free energy AGS of a solute corresponds to a statistical
average over its coordinates, which may be called R, and the coordinates of the solvent,
which may be called r. By analogy to the PMF we may define a constrained standard-state
free energy of solvation as

AGS(R) = W(R) — V(R) (3.21)
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where W(R) is the liquid-phase PMF of the solute molecule, and V(R) is the gas-
phase potential energy of that molecule. Again we need to be careful about additive
constants that account for standard states and zeroes of energy. According to the Born—
Oppenheimer approximation [19], V(R) is given by the electronic energy of the molecule
with fixed nuclear coordinates R. (The electronic energy is defined [19] to include the
internuclear Coulomb repulsion.)

Equation (3.21) shows that the potential of the mean force is an effective potential
energy surface created by the solute—solvent interaction. The PMF may be calculated by
an explicit treatment of the entire solute—solvent system by molecular dynamics or Monte
Carlo methods, or it may be calculated by an implicit treatment of the solvent, such as
by a continuum model, which is the subject of this book. A third possibility (discussed
at length in Section 3.3.3) is that some solvent molecules are explicit or discrete and
others are implicit and represented as a continuous medium. Such a mixed discrete—
continuum model may be considered as a special case of a continuum model in which the
solute and explicit solvent molecules form a supermolecule or cluster that is embedded
in a continuum. In this contribution we will emphasize continuum models (including
cluster—continuum models).

Recrossing

Transition state theory, as explained above, assumes an equilibrium distribution in reac-
tant state space and no recrossing of the transition state. In a classical mechanical world,
we could always find a transition state that is not recrossed, but — except very close to
threshold [20] - the resulting dividing surface would typically be so convoluted that it
would be impossible to use. A better strategy [21] is to find the best (but not perfect)
dividing surface from among a sequence of practical dividing surfaces. Then one corrects
the approximate transition state theory rate expression for recrossing by multiplying by
a transmission coefficient. The best transition state is the one that minimizes the amount
of recrossing, which corresponds to minimizing the one-way flux [22]. This best transi-
tion state is called the variational transition state, and its use to calculate reaction rates
is called variational transition state theory [21-25]. Often when we say ‘transition state,’
it is shorthand for ‘variational transition state’ or ‘best transition state’ or ‘dynamical
bottleneck’ although the phrase may also be used to refer to trial transition states.

A pew issue arises when one makes a solute-solvent separation. If the solvent enters
the theory only in that V(R) is replaced by W(R), the treatment is called equilibrium
solvation. In such a treatment only the coordinates in the set R can enter into the
definition of the transition state. This limits the quality of the dynamical bottleneck that
one can define; depending on the system, this limitation may cause small quantitative
errors or larger more qualitative ones, even possibly missing the most essential part of a
reaction coordinate (in a solvent-driven reaction). Going beyond the equilibrium solvation
approximation is called nonequilibrium solvation or solvent friction [4,26-28). This is
discussed further in Section 3.3.2.

Application Areas .

Continuum solvation models have been applied to many chemical processes in the liquid
phase. Determining absolute free energies of activation is important because it allows
one to predict the time scale on which a chemical process can take place. In addition,
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the absolute barrier height is critical for determining mechanisms of chemical processes
whose reaction pathway is not well known from experiment. )

There are four important problem areas where the study of chemical reactions in
solution can be very useful. The first class of problems involves calculating the abso-
lute free energy of activation or rate constant. Our ability to predict absolute reaction
rates is critical in order to determine if a reaction can take place or not. A high free
energy of activation indicates that a reaction is slow or does not occur or that the true
reaction pathway was not found. In other cases, there is a clear experimental obser-
vation of the reaction, but the calculated barrier of the supposed mechanism is very
high. In this case, if we assume that a sufficiently reliable level of electronic structure
theory was used to calculate the barrier, it means that we do not know the real mech-
anism and a more detailed investigation should be done. This leads us to the second
problem: elucidating the reaction mechanism. Although for some chemical processes
the reaction mechanism is known, for many reactions the true mechanism is not known
at all. In other cases, there are doubts about the real mechanism. These problems are
discussed further in Section 3.3.4. The third problem is the competition between parallel
pathways. The relative rate constants determine the product ratio. Thus, our ability to
calculate relative rate constants allows us to predict which product is generated in a
chemical reaction. An interesting application is to predict the products of a reaction
of synthetic interest, which may result from a competition such as that between S\2
and E2 process. This is discussed in Section 3.3.5. Another example of the need to
calculate relative reaction rates is kinetic isotope effects, i.e., the relative rates of reac-
tion of different isotopomers or isotopologs. Kinetic isotope effects are often used by
experimentalists to elucidate reaction mechanisms and to gain an understanding of the
nature of the transition state (i.e., of the dynamical bottleneck). They are discussed in
Section 3.3.4.

The fourth aspect is related to development of more efficient reaction media or catalysts.
The dream of a chemist is to be able to induce a chemical transformation to take place
quickly, efficiently, selectively, and with good specificity. Computational studies of
reactions in solution allow us to understand the factors that influence reactivity and enable
us to design new catalysts or solvent media with better properties. Because continuum
models are fast, easy to use, and often reliable, they may be chosen for theoretical studies
aimed at the development of catalysts or chemical processes.

Examples of applications will be presented later in this contribution. However, first
we will discuss transition state theory for liquid-phase reactions and parametrization of
continuum models for reactive problems, because these theoretical constructs are required
for applications to chemical reactions in the liquid phase.

3.3.2 Transition State Theory

The most useful theoretical framework for studying chemical reactions in solution is
transition state theory. Building on the material presented in the introduction, we will
begin by presenting a general theory called the equilibrium solvation path (ESP) theory
of reactions in a liquid. We then present an approximation to ESP theory called separable
equilibrium solvation (SES). Finally we present a more complete theory, still based
on an implicit treatment of solvent, called nonequilibrium solvation (NES). All three
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theories assume reactant equilibrium, as discussed in the introduction. (Simple methods
for including nonequilibrium reactant effects are reviewed elsewhere [29].) In discussing
the ESP and the SES theories, R is always the set of atomic coordinates of an N-atom
solute, although (as mentioned above) one may, if desired, include one or a few solvent
molecules as part of the ‘solute’ (the so called ‘supermolecule’ approach).

Equilibrium Selvation Path (ESP)

In ESP theory [30-32] we treat the system by the same methods that we would use in the
gas phase except that in the nontunneling part of the calculation we replace V(R) by W(R),
and in the tunneling part we approximate V(R) by W(R) or a function of W(R). Next
we review what that entails. In particular we will review the application of variational
transition state theory [21-25] with optimized multidimensional tunneling [33, 34] to
liquid-phase reactions for the case [31,32] in which W(R) is calculated from V(R) by

W(R) = V(R) + AG(R) (3.22)

and the constrained standard-state free energy of solvation is obtained by a continuum
solvation model. Notice that we follow the usual practice of not indicating explicitly that
W(R) depends on the standard state, although it does.

The conventional definition of the transition state is a hyperplane passing through the
saddle point of V(R) and orthogonal to the imaginary-frequency normal mode [10,13,14,
35,36]. This definition can also be applied using a saddle point of W(R) and normal mode
analysis of W(R) instead of those for V(R). Call this saddle point geometry R*. Note
{(from the definition of W(R) given above) that a saddle point of W(R) corresponds to
an average over an ensemble of solvent configurations at solute geometry R*. This does
not correspond to a saddie point of the potential energy of the entire (solute+solvent)
system. For that reason it is a misnomer to call the theory based on W(R) conventional
transition state theory. In fact the conventional idea of calculating the rate constant
using a dividing surface that passes through a saddle point of the entire system is not
suitable for reactions in liquids because there are an uncountable number of saddle points,
most of which differ only in the conformation of some far-away solvent molecules (by
conformation here we mean not just intramolecular conformation but also hydrogen-
bonding and noncovalent-packing conformations of interacting solvent molecules). Thus,
in the early days of transition state theory, the theory was generalized {37,38] to liquid-
phase reactions by stating it in thermodynamic or statistical thermodynamic language.
This obviated the need to define clearly the transition state for liquid reactions, and this
task was only taken up more recently by using the concept of the PMF.

In the next step, one finds the minimum (free) energy path (MEP) starting at R* and
follows it toward both reactants and products. The progress variable s that measures the
signed distance along the path from the saddle point is called the reaction coordinate,
although that name is also used (see above) for the missing degree of freedom in the
transition state, and the two coordinates are not always the same (a possible point of
confusion, but both usages of ‘reaction coordinate’ are so well established that there
can be no turning back). This path is defined as the path of steepest descents, which in
general depends on the coordinate system in which it is computed [39]. In this chapter,
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when we refer to the MEP we always mean the one computed in mass-scaled or mass-
weighted rectilinear coordinates that diagonalize the classical mechanical kinetic energy;
such coordinate systems are called isoinertial, and the MEP is the same in any such
coordinate system [40]. The reasons for choosing an isoinertial coordinate system are
that it promotes the local separability of the reaction coordinate, and it allows intuition
about the motion of N atoms in three dimensions as if it were the motion of a single mass
point in 3N dimensions [39—42]. The MEP is sometimes called the intrinsic reaction path
or intrinsic reaction coordinate [43].

One next defines a sequence of dividing surfaces, which are trial transition states (these
are sometimes called generalized transition states to denote that they are not conventional
transition states at saddle points, but we will drop this semantic distinction here). Usually
one uses a one-parameter sequence of dividing surfaces, either hyperplanes in a rectilinear
coordinate system [21,40,44,45] or curved dividing surfaces defined in valence internal
coordinates [46,47]. The parameter is the value of s at which the transition state, locally
orthogonal to the MEP, intersects the MEP, and one optimizes this value to find the
variational transition state location, which is called s,. The deviation of s, from the
location along the MEP where potential energy is a maximum is called a variational
effect. More generally one can variationally optimize not only the value of the reaction
coordinate but also the orientation of the dividing surface; this approach can even be
applied without computing the MEP [48,49]. One can also use dynamically optimized
reaction paths that pass through a sequence of variationally optimized multi-parameter
dividing surfaces [50].

For each dividing surface one calculates the free energy of the transition state by
standard statistical mechanical procedures in terms of partition functions by treating the
transition state as a molecule with one degree of freedom missing [35,36]. The standard-
state free energy of activation is then obtained from Equation (3.16).

An alternative procedure for calculating G*+° would be to calculate a one-dimensional
PMEF, in particular W(s) or W(z), where z is the distance along an arbitrary reaction path,
and note that ¢

GHO = W (2)+ Wa (2) (.23

where W, (z) is a term, often but not always negligible, that vanishes when the missing
degree of freedom is rectilinear [18]. We shall not pursue this here.

Since we replaced the classical partition functions in G®° and G*° by quantum
mechanical ones, we have included quantum effects on all degrees of freedom of the
reactants and all but the missing degree of freedom at the transition state. One then
includes quantum effects on the remaining degree of freedom by a transmission coefficient
K, thereby replacing Equation (3.15) by

k o
k= K_I;l_TKi,oe—AG*' /RT (324)

Note that both k and AG*® depend on temperature. The transmission coefficient is
sometimes called the tunneling transmission coefficient because tunneling is the main
quantum effect on the reaction coordinate.
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The derivation of transition state theory as the flux through a dividing surface assumes
that the system can be in the transition state only when it has positive classical mechanical
kinetic energy there [14]. Tunneling is the phenomenon by which a particle passes through
a barrier which it cannot pass through with positive classical mechanical kinetic energy.
(Other definitions of tunneling are possible and sometimes preferable, but will not be
used here.) Since reaction by tunneling may occur where the Boltzmann factor is much
larger than that for overbarrier reaction, its contribution to the reaction rate may be large
even when the tunneling probability is small. An analogous nonclassical effect is called
nonclassical reflection. Tunneling and nonclassical reflection may both be understood
in terms of a particle of energy E impinging on a one-dimensional barrier V(z) with
barrier height V*. Classically the particle has zero transmission probability for E < V*
(this is classical reflection) and unit transmission probability for E > V# (this is classical
transmission). The fact that a quantum mechanical particle has nonzero probability of
transmission for E < V* is called tunneling (or nonclassical transmission), and the fact
that it has nonunit probability of transmission for E > V* is called nonclassical reflection
(or diffraction by the barrier). The two phenomena have similar magnitudes; for example,
for a purely parabolic barrier, the tunneling probability at energy E = V¥ — A is the
same as the nonclassical reflection probability at E = V* + A; however, tunneling usually
has a much greater effect on reaction rates because it occurs at energies that have an
exponentially larger Boltzmann factor [51].

One-dimensional treatments of tunneling are not reliable [52]. For gas-phase reactions,
accurate multidimensional tunneling approximations have been developed [33,34,53-55]
and are well validated against accurate quantum mechanical calculations [56,57]. These
tunneling approximations are nonseparable, and using them to calculate k overcomes
(at least partially) the separability assumption of transition state theory. In fact when
tunneling dominates the reaction rate and is modeled by multidimensional tunneling
approximations, the calculation is better viewed as a semiclassical multidimensional
dynamics calculation than as transition state theory. To extend these methods to liquid-
phase reactions modeled by continuum solvation methods one needs to know the effective
potential for tunneling. The PMF is already averaged over a canonical ensemble of
solvent configurations and, like any free energy quantity, it includes entropy as well as
potential energy; thus it is not a priori clear that it can be used to provide the effective
barrier for tunneling. In principle one would calculate the tunneling from the potential
energy and ensemble average [26,27,31] the tunneling probabilities. A more practical
(but approximate) procedure is to calculate the tunneling from the ensemble-averaged
potential energy. It can be shown [31] that the canonically averaged mean potential
energy is given (within an additive constant, which is all that is required) by

IG(R)

U =VR)+AGYR) - T—

(3.25)

Neglect of the last term yields Equation (3.22), which is called (in this context) the
zero-order canonical mean-shape (CMS-0) approximation [31].

Separable Equilibrium Solvation (SES)
In the SES approximation [32] we make some simplifications in the ESP formalism. First,
the saddle point is optimized using V(R) rather W(R), and the MEP is also traced using
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V(R). In calculating transition state partition functions along s and in calculating reactant
partition functions, W(R) is used instead of V(R) at the minimum energy structure of
each transition state or reactant, but vibrational frequencies are calculated using V(R).
In tunneling calculations, as in ESP theory, U(R) is used instead of V(R). The CMS-0
approximation is usually made in computing U(R).

SES theory can be used to illustrate a classic example of a solvent effect on a chem-
ical reaction, namely the solvent effect on bimolecular nucleophilic substitution (Sx2)
reactions [58]. Figure 3.8 shows how an approximate potential of mean force changes
with the solvent. We can see that in the gas phase, the barrier is very low. In aqueous
solution, the anion is very well solvated, and the formation of the transition state leads to
considerable charge delocalization, decreasing the favorable solvation effect. As a conse-
quence, a very high effective barrier is generated. In dipolar aprotic solvents, such as
dimethyl sulfoxide, because the ionic species are less solvated than in water, the solvent
effect decreases, producing the well-known [59] rate acceleration of ionic Sy2 reactions
on going from aqueous to dipolar aprotic solvents.

}

Protic solvent

Dipolar aprotic solvent

Gas phase

NuCHg + X~

oWt

NUCHg =X~

Figure 3.8 Potential of mean force profile for a typical Sy2 reaction in different media.

Nonegquilibrium Solvation (NES)

In the above treatments only the solute coordinates R appear explicitly and therefore
the definition of the transition state does not depend on solvent coordinates. The NES
approximation [60,61] provides a way to include solvent in the reaction coordinate while
retaining a continuum description of the solvent by adding a coupling Hamiltonian for
a collective solvent coordinate [60-70] (or more than one) to the Hamiltonian for the
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R degrees of freedom. (Sometimes the collective solvent coordinate is assumed to be
the reaction coordinate itself [70] rather than, as here, finding a reaction coordinate
in the space obtained by augmenting the solute coordinates by the collective solvent
coordinate.) As in ESP theory, in NES theory the equilibrium solvent effects are included
by replacing V(R) by W(R) in nontunneling parts of the calculation and by U(R) in
tunneling algorithms.

Consider the case of a single collective solvent coordinate y. This coordinate is linearly
coupled to the solute at the transition state by generalized Langevin theory [71-75]. (It is
not necessary to couple the solvent to the solute for the calculation of reactant properties
because we retain the equilibrium-reactant approximation.) The form of the coupling
is [60,61]

2

p 1 2
Heoupling = ﬁ + 2F[y—C"(R—R¥)] (3.26)

where p, is the momentum conjugate to y, u is the reduced mass to which all coordinates
are scaled (this will cancel out and have no effect on the dynamical results), F is a
collective solvent force constant, C is a solute-solvent coupling vector with components
C., and T denotes a transpose. The parameter F' may be related to the solvent relaxation
time, and the coupling constants may be related to some measure of the strength of the
solute—solvent coupling, such as viscosity or diffusion coefficient from experiment or the
force autocorrelation function from explicit-solvent molecular dynamics simulations [60].
Solvent relaxation times can be modeled either by explicit-solvent simulations [76-79]
or by continuum models [62, 65,74, 79-86].

The SES, ESP, and NES methods are particularly well suited for use with continuum
solvation models, but NES is not the only way to include nonequilibrium solvation. A
method that has been very useful for enzyme kinetics with explicit solvent representations
is ensemble-averaged variational transition state theory [26,27,87] (EA-VTST). In this
method one divides the system into a primary subsystem and a secondary one. For an
ensemble of configurations of the secondary subsystem, one calculates the MEP of the
primary subsystem. Thus the reaction coordinate determined by the MEP depends on
the coordinates of the secondary subsystem, and in this way the secondary subsystem
participates in the reaction coordinate.

Other methods of including nonequilibrium solvation are reviewed elsewhere [86], and
the reader is also referred to selected relevant and more recent original papers [66,88—100).
Particularly relevant to the present volume are methods that introduce extra degrees
of freedom by using the solvent reaction field not only at the current value of R but
also at nearby values [65, 66]. Many of the approaches introduce finite-time effects and
additional degrees of solvent freedom by introducing different time scales for electronic
and atomic polarization [88-97, 99, 100].

In the absence of discrete solvent molecules or a collective solvent coordinate,
continuum solvation models do not allow the solvent to enter into the reaction coordi-
nate, and in many cases that misses the primary role of the solvent. The solvent may enter
the reaction coordinate only quantitatively, for example by having a slightly different
- strength of hydrogen bonding to the solute at the transition state than at the reactant, or
¢ it may enter qualitatively, for example by entering or leaving the first solvation shell, by



348  Continuum Solvation Models in Chemical Physics

donating or accepting a proton (later being regenerated by another proton transfer so it
remains a catalyst, not a reagent), and so forth. Some examples of solvent participation in
the reaction coordinate that cannot be mimicked without explicit solvent molecules occur
in the formamidine rearrangement [101, 102] and in the Beckmann rearrangement [103]
of oximes.

3.3.3 Parameterization of Continuum Models for Dynamics

Continuum solvation models consider the solvent as a homogeneous, isotropic, linear
dielectric medium [104]. The solute is considered to occupy a cavity in this medium.
The ability of a bulk dielectric medium to be polarized and hence to exert an electric
field back on the solute (this field is called the reaction field) is determined by the
dielectric constant. The dielectric constant depends on the frequency of the applied field,
and for equilibrium solvation we use the static dielectric constant that corresponds to a
slowly changing field. In order to obtain accurate results, the solute charge distribution
should be optimized in the presence of the field (the reaction field) exerted back on the
solute by the dielectric medium. This is usually done by a quantum mechanical molecular
orbital calculation called a self-consistent reaction field (SCRF) calculation, which is
iterative since the reaction field depends on the distortion of the solute wave function
and vice versa. While the assumption of linear homogeneous response is adequate for the
solvent molecules at distant positions, it is a poor representation for the solute-solvent
interaction in the first solvation shell. In this case, the solute sees the atomic-scale charge
distribution of the solvent molecules and polarizes nonlinearly and system specifically
on an atomic scale (see Figure 3.9). More generally, one could say that the breakdown
of the linear response approximation is connected with the fact that the liquid medium is
structured [105].

12 solvation shell:
Specific interactions

Bulk solvent:
Solute-Dipoles Interactions
(dielectric constant)

Figure 3.9 |Interaction of the solute with the first solvation shell and with the bulk solvent.

The solvation free energy calculated by considering only the bulk electrostatics is
somewhat arbitrary because the boundary between the dielectric medium and the solute
is not well defined, and in fact the treatment of the solvent as a homogeneous, isotropic,
linear medium right up to a definite boundary is not valid. To obtain an accurate solvation
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free energy, we can use various empirical procedures. These procedures may involve
empirical adjustments of the location of the solute—solvent boundary, and/or they may
involve introducing additional terms that depend on the solute-solvent boundary. An
important point about the components of a solvation energy calculation is that they have
no real meaning as thermodynamic variables; only the sum of all the components of the
free energy of solvation is meaningful. This is well illustrated by a systematic comparison
of three solvation models that was recently reported; the bulk electrostatic terms differed
greatly, but after adding each model’s nonbulk electrostatic terms, the resultant free
energies of solvation were in better agreement [106].

Adding additional terms to account for system-specific first-solvation shell interactions
works well for neutral solutes, especiaily if the additional terms are well parameterized.
This strategy has been used in the SMx models {69, 107] (x = 1-6), where the parameters
are atomic surface tensions, where a surface tension is a free energy per unit area. In
later versions of these models the area in question here is the solvent-exposed surface
area of a given atom of the solute, and the atomic surface tensions depend on the local
bonding geometry of the atom in question [107-115]. These dependences are built into
parameterized, continuous functions of geometry in such a way that they are well defined
at transition states, and furthermore the user is not required to assign molecular mechanics
types to the atoms. One expects that the scheme works at least in part because the partial
atomic charge, polarizability, and atomic size of each atom of the solute are functions
of its local bonding geometry. This procedure is less satisfactory for charged solutes
where these properties are not the same functions of geometry as for neutral solutes.
Allowing the atomic surface tensions to depend explicitly on local charge would solve this
problem, but would complicate the algorithm, requiring the first-solvation-shell effects
to be self-consistently adjusted during the SCRF iterations. An alternative approach is
to treat some or all of the solvent molecules in the first solvation shell, especially those
near highly concentrated regions of partial charge in the solute, as parts of an extended
solute, called the supermolecule. Pliego and Riveros [116] call this the cluster—continuum
model, whereas other researchers call it a mixed discrete-continuum approach. Pliego and
Riveros [116] have provided a protocol for how many explicit solvent molecules should
be included, whereas Kelly et al. [117] have suggested that one solvent molecule is usually
sufficient.

Pratt and co-workers have proposed a quasichemical theory [118-122] in which the
solvent is partitioned into inner-shell and outer-shell domains with the outer shell treated
by a continuum electrostatic method. The cluster—continuum model, mixed discrete—
continuum models, and the quasichemical theory are essentially three different names for
the same approach to the problem [123]. The quasichemical theory, the cluster—continuum
model, other mixed discrete—continuum approaches, and the use of geometry-dependent
atomic surface tensions provide different ways to account for the fact that the solvent
does not retain its bulk properties right up to the solute—solvent boundary. Experience
has shown that deviations from bulk behavior are mainly localized in the first solvation
shell. Although these first-solvation-shell effects are sometimes classified into cavitation
energy, dispersion, hydrophobic effects, hydrogen bonding, repulsion, and so forth, they
clearly must also include the fact that the local dielectric constant (to the extent that such
a quantity may even be defined) of the solvent is different near the solute than in the bulk
(or near a different kind of solute or near a different part of the same solute). Furthermore
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since the atomic radii and the atomic surface tensions are usually determined empiricaily,
they must also make up for systematic errors in the solute charge distributions and for
the fact that actually the solute—solvent boundary is gradual and fluctuating, not sharp
and fixed.

Returning to the calculation of the bulk electrostatic contribution to the free energy
of solvation, first one needs to define the size and shape of the cavity. Although some
older continuum models used spherical or other idealized shapes (e.g. ellipsoids), most
modern continuum models use realistic cavity shapes based on superposition of atom-
centered spheres. There is, however, no consensus on the radii to be assigned to these
atomic spheres. For the purpose of parameterizing the atomic radii, it is especially useful
to consider the solvation of ionic species because the solvation free energy of these
species has a high absolute value and is very sensitive to the atomic radii. Solvation data
for organic ions are widely available for water [124-126], dimethyl sulfoxide (DMSO)
solutions [126], and assorted other solvents [127], and these have been used to param-
eterize continuum models in many solvents [114, 115,117, 127-129]. Comparing the
performance of the parametrizations of continuum models for pK, calculations in water
and DMSO illustrates the reliability that can be achieved. It was shown that polarized
continuum models can predict pK, values in DMSO solution [130, 131] with an error of
only two units. These results indicate that these models can be used for semiquantita-
tive modeling of ionic reactions in dipolar aprotic solvents. On the other hand, in water
or protic solvents, the performance of continuum models is worse because of strong
hydrogen bonds between the ionic species and the water molecules or because of the
unique cooperative hydrogen bonding structure of liquid water. No set of atomic radii is
capable of producing very accurate solvation free energy values for all situations. Never-
theless, by including some explicit water molecules in the first solvation shell in order
to account for critical solute—solvent hydrogen bonds and for strong electrostatic inter-
actions, one can obtain more accurate results. In this approach, the solute—water cluster
becomes the new solute (Figure 3.10). In the calculation of pK, values in water solution,

Figure 3.10 Inclusion of the first-solvation-shell interaction for the solvation of the hydroxide
ion in water solution.
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it was shown that the cluster—continuum method works much better than pure continuum
models [132].

One special difficulty of applying parameterized models to chemical reactions deserves
a special mention, namely that transition states often have charge distributions quite
different from those against which solvation models are parameterized. For example,
the partial atomic charge on Cl in the (Cl...CH,...C1 S\2 transition state is about
—0.7, midway between the values (—1.0 and about —0.4, respectively) found in CI™
monatomic anion and typical alky chlorides. Thus the atomic radii and atomic surface
tensions optimized against equilibrium free energies needs to be re-validated for transition
structures.

In principle, we can distinguish two possible kinds of breakdown of continuum solva-
tion models as they are usually applied to dynamics problems. One is breakdown of
the linear response approximation, and the other is breakdown of equilibration solva-

effect, but the response of the first solvation shell may show appreciable nonlinearity.
The approaches mentioned above can account for this in various ways, e.g. by using
a nonbulk dielectric constant in the first solvation shell, by treating all or part of the
first solvation shell explicitly, or by including empirical atomic surface tensions on the
solute. These same issues occur for dynamics, and they are compounded by the fact that
the deviation from equilibrium is finite, so the formal justification for linear response
is no longer applicable. In fact the assumption of linear response may even be qualita-
tively wrong for a nonequilibrium situation, such as the energy relaxation of a highly
excited mode produced by photoexcitation or reaction [105]. A quantitative assessment
of the effect of nonlinear response on calculated thermal reaction rates is not available,
but the assumption that it is small or can be modeled by the methods mentioned above
has worked well.

3.3.4 Absolute Free Energy Barriers, Reaction Mechanisms, and Kinetic
Isotope Effects

The standard-state free energy of activation for a liquid-phase reaction is

AGH© = AG**(g) + AAGE * (3.27)

where the first term on the right-hand side is the gas-phase (g) value, and the second
term is the solvation contribution given by

AAGE = AGE — AGR® (3.28)
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where the superscript R denotes the value for reactants. As discussed above, the solvation
free energy includes a bulk electrostatic contribution and nonbulk electrostatic terms. The
bulk electrostatic term can be calculated by the dielectric continuum model and is the
largest contribution for ionic reactions. The other terms make a smaller contribution for
jons, but for reactions involving neutral species, where the bulk electrostatic term is less
important, nonbulk electrostatic solvation can be significant or even dominant. These
terms can be calculated by empirical models.

In addition to SMx and the cluster—continuum model, other continuum models
have also been used to study reactions in liquids, including the polarized continuum
model [133-135] (PCM), the conductor-like screening model (COSMO [136] and
COSMO-RS [137,138]), the generalized COSMO [139] (GCOSMO) model, conductor-
like PCM [140] (CPCM), and isodensity PCM [141] (IPCM).

Tonic reactions are especially interesting because they can have a large solvent
effect. In the past 10 years, the important class of ionic Sy2 reactions have been
studied through ab initio calculations coupled with continuum solvation models in
different media [32, 142-150]. In the case of dipolar aprotic solvents, the perfor-
mance of the continuum models is very good. Tondo and Pliego [147] have inves-
tigated the Sy2 reaction of CH,COO™ with ethyl halides: CH;COO™ + CH;CHX —
CH,COOCH,CH+X", (X =Cl, Br, I). They have used MP4/CEP-31+G(d)//MP2/CEP-
31+G(d) electronic structure calculations and the Pliego-Riveros parametrization of the
PCM model for DMSO solvent [128]. The standard-state free energies of activation were
calculated to be 24.9, 20.0, and 18.5kcal mol'l, while the experimental values are 22.3,
20.0, and 16.6kcalmol™’, respectively. Thus, the theoretical calculations were able to
predict the correct reactivity order. Another Sn2 reaction that was studied using this
same PCM parametrization for DMSO solvent is the interaction of the cyanide ion with
ethyl chloride [149]: CN~ +CH,CH,Cl1 - CH,CH,CN+Cl". The solution phase AG*°
calculated at the CCSD(T)/6-311+G(2df,2p)//B3LYP/6-31G(d) electronic structure level
is 24.1kcalmol™" and it is in excellent agreement with the experimental [151] value of
22.6kcalmol™. On average, these theoretical calculations for Sy2 reactions overestimate
the solution-phase barrier by only 2 kcal mol ™!, confirming the accuracy of the continuum
model for ionic reactions in dipolar aprotic solvents, as anticipated from extensive pK,
calculations [130).

In the case of protic solvents such as water, the continuum models are less accurate,
especially for small ions or those with highly localized partial charges because of the
importance of specific solute—solvent interactions in the first solvation shell [115,132].
As an example, Pliego and Riveros [152] investigated the hydroxide ion addition to ethyl
acetate in aqueous solution to form a tetrahedral intermediate. They used the PCM method
with only electrostatic contributions. The liquid-phase free energy barrier for this step,
calculated at MP2/6-311+G(2df,2p)//HF/6-31+-G(d) level of electronic structure theory
is 17.6kcalmol™', while the experimental value is 18.8kcalmol™'. The small error is
due to overestimation of the barrier by the MP2 calculations. In a similar system [158],
MP4 calculations decrease the barrier by 2kcal mol™! in relation to MP2 energies. Thus,
using more reliable gas-phase energies should lead to an underestimation of the barrier by
about 3kcalmol™'. In addition, liquid-phase optimization could produce an even smaller
barrier, increasing the deviation.

The studies just reviewed were based on geometries optimized in the gas phase, and
the nonbulk electrostatic contributions were not included. However these refinements




Chemical Reactivity in the Ground and the Excited State 353

are included in some other work. As an example, Kormos and Cramer [144] have
investigated the identity Sy2 reaction H,C = CHCH,C1+CI" in aqueous solution using
DFT calculations and the SM5.42 method. Optimizations were done for both gas phase
and solution in order to evaluate the solvent effect on the transition state structure and free
energy. They found that liquid-phase optimization decreases the barrier by 1.5kcal mol ™
in this case, and the gas-phase and liquid-phase geometries were reasonably close. In
contrast, for the identity (CH,;),C = CHCH,Cl+Cl™ reaction, the barrier dropped by
6kcalmol ™', and a large difference was found between the geometry in aqueous solution
and the gas-phase geometry. This behavior can be explained if we consider that in the
latter case, the transition state resembles a stable tertiary carbocation species, allowing
both of the chlorine atoms to be more distant from the carbon atom for the liquid-
phase transition state structure. Systems with solvent-dependent transition states include
amide hydrolysis [153] and decarboxylations [154]. Such effects are sometimes studied
by microhydration models [155-157]. It is expected that in DMSO and other dipolar
aprotic solvents, liquid-phase optimization should be less important than in aqueous
solution.

The united atom for Hartree—Fock (UAHF) method [135] uses environment-dependent,
charge-dependent atomic radii in order to try to improve the accuracy of continuum
solvation calculations, but this has not always worked well. An example is the iden-
tity CI” + CH;Cl — CICH, + CI™ reaction in aqueous solution. Vayner et al. [145]
have studied this symmetrical Sy2 reaction using the CPCM model with the UAHF
parametrization. The gas-phase energies were determined at the CBS-QB3 level. The
calculated free enmergy of activation was 35.3kcalmol™, a very high value. They
found that the solvent contribution to the barrier is 27.3 kcalmol™!, which can be
compared with an estimated experimental value of ~ 23 kcal mol™". For the same system,
Truong and Stefanovich [142] used the GCOSMO method to study these identity reac-
tions in aqueous solution. In their calculations, the solvent contribution to the free
energy of activation is in the range of 17-19kcal mol~!, depending on the ab initio
method used. '

The lower reliability of the continuum models for modeling ijonic reactions in situ-
ations where there are strong solute—solvent interactions can be partially overcome by
introducing some explicit solvent molecules, as in the cluster—continuum model [116].
Two interesting systems that have been studied using this approach are the basic hydrol-
yses of methyl formate [158] and formamide [159]. An extensive analysis of the different
reaction pathways of methyl formate was carried out. The free energy of activation
profile for all the pathways was obtained at the MP4/6-31 14+-G(2df,2p)/HF/6-31+-G(d)
level of electronic structure theory combined with the cluster—continuum model, where
the IPCM method was used for the continuum electrostatics. Pliego and Riveros [158]
calculated that the direct attack of the hydroxide ion on the carbonyl group, leading to
a tetrahedral intermediate, has a free energy of activation of 15.2kcal mol ™', in good
agreement with the experimental value of 15.3kcalmol™. In addition, another reaction
pathway was investigated, where the water molecule hydrating the hydroxide ion acts as
the attacking species, and the hydroxide ion acts as a general base. Both the transition
states for these pathways are presented in Figure 3.11. The free energy barrier for this
general base catalysis mechanism was calculated to be 16.3kcalmol ™, indicating that
this mechanism is less important. Therefore, the calculations resolved the experimental
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Figure 3.11 Application of the cluster—continuum model for basic hydrolysis of the methyl
formate.

controversy [160] about the true reaction mechanism, indicating that the direct hydroxide
ion attack is the most important pathway, although some products are generated from the
coordination-water attack pathway. On the other hand, in the case of basic hydrolysis of
formamide, Pliego [159] found that only the direct hydroxide ion attack can take place.
This finding obtained using the cluster—continuum model, was recently confirmed by an
explicit-solvation molecular dynamics study by Blumberger and co-workers [161,162],
where no coordination-water attack mechanism was found.

A review [86] written in 1998 already gave 17 references for transition state geometries
optimized in solution; this is particularly straightforward when stable analytic gradi-
ents [113,163] are available. Liquid-phase optimization can be very important in some
reactions. In Figure 3.8, although the relative energy of the stationary points changes due
to solvation, gas-phase structures provide a good approximation. The situation is different
for neutral-neutral Sy2 reactions such as the example NH; + CH,Cl — NH,CH +CI™.
The formation of two charged species has a large solvent effect, and the N —C and
C—Cl distances in the transition state must be determined under liquid-phase condi-
tions [32,164-167]. However, SES and ESP models produce very similar free energy
profiles as a function of R, — R; — (R, — R;)*, where R, is the breaking bond distance,
and R; is the forming bond distance [32].

Even more important than changing the geometries, in some cases the solvent can
induce a different electronic structure than in the gas phase process, leading to a new
reactive process. A very interesting example is the halogenation of alkenes [168—176]
or alkynes [177,178]. Figure 3.12 illustrates the products generated in an apolar solvent
and in polar solvents. In low-polarity solvents, chlorination takes place through a radical
mechanism [177], while in polar solvents, the stabilization of the charged species favors
the ionic mechanism. In the case of bromination, the ionic mechanism also occurs in
polar solvents [168, 171]. However, in apolar solvents, a second bromine molecule can
participate of the process, forming the tribromide ion [168,171].
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Figure 3.12 Halogenation in apolar and polar solvents.

The halogenation reaction of ethylene has been modeled by many researchers [170,
172-176]. For chlorination in apolar solvents (or in the gas phase), the formation of
two radical species requires the use of flexible CASSCF and MRCI electronic structure
methods, and such calculations have been reported by Kurosaki [172]. In aqueous solu-
tion, Kurosaki has used a mixed discrete—continuum model to show that the reaction
proceeds through an jonic mechanism [174]. The bromination reaction has also received
attention [169, 170]. However, only very recently was a reliable theoretical study of
the ionic transition state using PCM/MP?2 liquid-phase optimization reported by Cammi
et al. [176]. These authors calculated that the free energy of activation for the ionic
bromination of the ethylene in aqueous solution is 8.2kcalmol™’, in good agreement
with the experimental value of 10 kcalmol ™.

Xie et al. [179] calculated the free energies of reaction and activation in
the gaseous and liquid phase for the following aryl ester hydrolysis reaction:
His. .. H,0. .. MeC(O)OC¢H,CH, — His. .. HOC¢H,CH, + MeC(O)OH. In the gas
phase they obtained a free energy of reaction AG® = —4.5kcalmol™ and a free energy
of activation AG*° of 44.3kcalmol™". Solvation has only a small effect on AG°; PCM
implicit solvent calculations yield —6.6 kcalmol ™' in HCCI, and —8.0kcalmol™ in H,O.
However the transition state has considerable zwitterionic character and PCM calcula-
tions lower AG*° to 27.6kcalmol™' in HCCl, and 16.1kcalmol™" in H,0, which is
consistent with experiment [180].

Rod et al. {181} compared continuum and discrete solvation models for the reaction
by which S(CH,); transfers a methyl group to an oxygen of a catecholate ligated to
Mg”*. The gas-phase reaction, which is calculated to be exoergic by 53kcalmol ™', was
calculated to occur without a barrier. In solution, a simulation with 8800 T1P3P explicit
solvent molecules yielded a reaction exoergicity of 21kcalmol™ and a free energy of
activation of 13.1kcalmol™'. Four implicit solvation models yielded free energies of
activation of 10.9, 11.2, 12.7, and 13.9kcalmol™!, in reasonable agreement with the
explicit-solvent calculation.

Although enzyme catalysis has usually been modeled with discrete solvent models {2,
182], Rod et al. [181] also performed an interesting comparison of discrete and continuum
models for the methyl transfer from S-adenosylmethione to catecholate catalyzed by
catechol O-methyltransferase. In this case the protein was explicit in both simulations,
one with 7800 T1P3P water molecules and two others with implicit solvent, each
having different atomic radii. The explicit calculation gave a free energy of activation
of 16.3kcalmol™, and the implicit ones both gave 15.5kcalmol™". It is not surprising
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that the implicit models are better for the enzyme reaction than the aqueous nonen-
zymatic reaction because the solvent is not interacting strongly with the reactants. A
troubling result is that there are more protein hydrogen bonds and salt bridges in the
implicit simulation than in the explicit one, but not all the hydrogen bonds and salt
bridges of the explicit simulation are preserved in the implicit one. This kind of differ-
ence is highlighted in earlier studies [183-1 85] of protein dynamics where explicit and
implicit solvent models were compared, and implicit models were found to be less
accurate.

Another comparison of discrete and continuum molecules was carried out for the decar-
boxylation of 4-pyridylacetic acid zwitterion in aqueous solution [157]. Transition states
were optimized with the SM5.42 implicit solvation model with zero, one, or two discrete
water molecules, yielding free energies of activation of 24.2, 21.2, and 18.3kcal mol ™',
respectively, as compared to —4.7kcalmol™! in the gas phase. The fact that one can
obtain quite different solvation free energies for ions without and with discrete solvent
is not surprising in light of the discussion in Section 3.3.3. Including only two discrete
waters without the continuum yields AG* = +1.1kcal mol ™}, very far from the results
with implicit solvent, which again is not surprising since one expects that ionic solvation
energies converge very slowly as solvent molecules are added. Kinetic isotope effects
for this reaction were found to be less sensitive than AG* to the inclusion of solvation
effects.

An important prototype reaction where both discrete and continuum solvation models
have been applied is the Claisen rearrangement of allyl vinyl ether to 4-pentenal. This
is an electrocyclic reaction proceeding by a [3,3] sigmatropic shift, and the interpre-
tation of solvent effects is complicated by the difficulty of modeling the polarity of
the transition state even in the gas phase, as reviewed elsewhere [186]. Severance and
Jorgensen [187,188] provided the first correct account of the solvation effects on the basis
of explicit-solvent calculations. Their calculated rate acceleration in agueous solution,
relative to the gas phase, corresponds to a lowering of AG*° by 3.8 kcalmol ™!, which
may be compared to a lowering of 4.0 that they estimated from various experiments.
The acceleration was attributed to enhanced hydrogen bonding at the transition state. A
later explicit-solvent calculation by Gao [189] gave a lowering of 3.5kcalmol ™. Earlier
predictions [190] by implicit-solvent models gave much smaller effect, 0.7 kcalmol ™,
but that is now attributed to inaccurate modeling of the charge distribution at the transi-
tion state in the early studies. Using a more accurate charge distribution based on MCSCF
electronic structure calculations gave a lowering of AG*® of 4.3kcalmol ™" [186]. These
results indicate the high sensitivity of predicted solvent effects on rate constants to
getting the charge distributions right in solution by self-consistent reaction fields. They
also show that continuum models can sometimes account well for hydrogen bonding
effects.

Although ionic mechanisms are more common in aqueous solution than radical mech-
anisms, Nguyen and co-workers [191] presented an interesting application of continuum
solvation models to a radical reaction, in particular CH, + H,0, — CH, + HO,, in
aqueous solution. They used the PCM/HFE/6-31G** continuum solvation model, with
UAHF radii and including electrostatics, cavitation, dispersion, and repulsion, to calcu-
Jate the standard-state free energy of solvation of the transition state to be —5.4kcalmol ™’
and that of reactants to be —9.4kcal mol~", with the difference being +4.1kcal mol .
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A similar calculation with the COSMO-RS solvation model gave —4.7kcalmol™ for
the transition state, ~7.2kcalmol™ for reactants, and +2.5kcalmol™ for the difference.
Experimentally, it is found that the reaction rate is 1.2 x 10° times slower in aqueous
solution than in the gas phase [192], corresponding to an increase in the free energy of
activation of 4.2kcalmol™, in excellent agreement with PCM (4.1kcalmol ™) but not
with COSMO-RS (2.5 kcalmol™"). The good agreement with PCM was attributed to
successful parameterization. The solvation difference of the transition state from reac-
tants was found to be very close (0.2-0.3kcalmol™) to the difference between that
for products and that for reactants in this reaction. This is curious because the reac-
tion is exothermic, and the transition state breaking and forming bond distances are (as
expected from the Hammond postulate) more reactant-like than product-like, although
the O — O —H bond angle is more product-like.

Another application of continuum models to radical reactions is provided by the
hydrogen abstracton H +CH;0H — H, +CH,OH [61, 193], for which experimental [194,
195] kinetic isotope effects are available. These studies [166,193] also include variational
effects, multidimensional tunneling, nonequilibrium solvation, and kinetic isotope effects,
as well as the coupling between these effects. Including an optimized multidimensional
treatment of tunneling, the ESP rate constant for the perprotio reaction is 2.0 times
larger than the SES one, and the NES rate constant is 52% smaller than the ESP
one for the ‘best’ nonequilibrium solvation parameters. The comparison of aqueous-
phase and gas-phase rate constants needs to be re-examined now because the gas-phase
transition state is now better understood [196] than when the liquid-phase study was
conducted.

The 1,2-hydride shift in phenyl glyoxal hydrate to produce mandelate and the corre-
sponding deuteride shift have been studied using continuum solvation models and VTST
with multidimensional tunneling by Tresadern ez al. [197]. They found that, starting from
a reaction intermediate, the varational effect lowers the overbarrier rate constant k by
26 % and kinetic isotope effect (KIE) by 6 %. Tunneling, in contrast, raises k by a factor
of 5.1 and the KIE by 71 %. Without corner cutting, the tunneling effect would be much
smaller (factor of 3.6 and 51 %, respectively).

A challenging test of all kinds of models of liquid-phase reaction rates is provided
by the measurement of six different kinetic isotope effects (two secondary H/D at
different positions, one !'C/C, and 2C/C" at a different position, one “N/!“N, and
one ¥C1/%'Cl) for the Sy2 reaction between (n—C,Hy),NCN and C,H,Cl in dimethyl-
sulfoxide at 303K [145]. The mean of the unsigned deviations from unity these six
KIEs. The experimental values of these KIEs are 0.990, 1.014, 1.21, 1.001, 1.000, and
1.007. All KIEs will then be calculated by transition state theory. In the same order,
the best theoretical method, based on B3LYP/aug-cc-pVDZ gas-phase electronic struc-
ture calculations gave 0.994, 1.005, 1.17, 0.993, 1.000, and 1.007, which is very good
for five of the six results. Adding solvation by the PCM/UAHF method yielded 0.973,
0.978, 1.17, 0.993, 1.000, and 1.007 (in the same order), which is less accurate in
half the cases. Probably the conclusion to be drawn is that solvent effects are small,
and the error is dominated more by the quality of the electronic structure theory than
the quality of the solvation model. In some cases, the solvent effect on rate constants
has been carefully investigated by continuum models, and it has been found to be
small [198, 199].
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Continuum solvation models have also been used to rationalize the Hammett p*
parameters determined [200] from Sy 1 solvolysis rate constants [201] of cumyl chlorides.
In particular the SM5.42R/AM1 [112] model reproduces the experimental p* within
24 %. The use of continuum models for placing the empirical correlations of physical
organic chemistry on a firmer basis is in its infancy.

3.3.5 Competitive Reactions

Many important chemical reactions have competitive parallel pathways. In some cases,
this competition is very significant and can diminish the yield of desired product. The
ability to predict branching ratios is helpful for planning synthetic routes, and as a
consequence, an important goal of theoretical studies of chemical reactions is to be able
to predict the product ratio.

An interesting system where parallel pathways play an important role is the Sy2
nitration of alkyl halides (Figure 3.13). The nucleophilic attack of the nitrite ion can
take place through the nitrogen, leading to nitroalkanes, or through the oxygen atom,
producing the alky] nitrite. Nitroalkanes are the desired products due to their importance
as well as their utilization as chemical intermediates to further transformation. In the case
of the reaction of the nitrite ion with n-hepthyl bromide, experimental studies show that
only 67 % of the product is the nitroalkane, and a large amount of the alkyl nitrite (33 %)
is formed [202].

C7H15N02 + Br-
(67%)

C,H,Br + NOj;

C7H150NO + Br-
(33%)

Figure 3.13 Experimental product ratio in the Sy2 reaction of n-hepthyl bromide with nitrite
ion in dimethyl formamide (DMF) solution.

Westphal and Pliego [203] have recently performed a high-level ab initio study of the
prototypical system CH,CH,Br +NQ;, which is a good representation of the n-hepthyl
bromide reaction. Gas-phase geometry optimizations were done at the MP2/6-31+G(d)
level of electronic structure theory, followed by single-point energy calculations at the
CCSD(T)/6-311+G(2df,2p) level (for bromine, Ahlrichs’ TZVPP basis set was used)
and solvent contribution at PCM/B3LYP/6-31+G(d) level (DMSO solvent, Pliego and
Riveros parametrization). Using transition state theory, they predicted that the nitroalkane
and alkyl nitrite are formed in the proportion of 46:54, in good agreement with the
experimental data for the hepthyl bromide, 67:33. This shows that continuum solvation
models can be very useful for application in synthetic chemistry.

ot
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33.6 Catalyst Design and Control of Chemical Reactions

Our present ability for modeling chemical processes using theoretical methods constitutes
a very powerful tool in the design of new catalysts. Continuum solvation models have been
used in the design and modeling of metallocene catalysts for olefin polymerization [204,
205] and Pd(IT) ligand systems to perform aerobic oxidations of secondary alcohols [206].

Continuum solvation models have been used in the design of a novel supramolecular
organocatalytic concept, aimed to selectively stabilize Sy2 transition states [148,150,207].
Such development can become a very useful tool for controlling the regioselectivity,
chemoselectivity, and enantioselectivity of Sy2 reactions. It should also be mentioned
that the solvent itself may be considered a catalyst [101-103, 153,208-210].

3.3.7 Conclusion

Continuum solvation models can be used to predict the free energy of activation of
chemical reactions and the effective potential for condensed-phase tunneling, and they
can therefore be combined with transition state theory to predict chemical reaction rates.
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