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INTRODUCTION

“The rate of chemical reactions is a very complicated subject”
Harold S. Johnston, 1966

“The overall picture is that the validity of the transition state theory has not
yet been really proved and its success seems to be mysterious.”

Raymond Daudel, Georgés Leroy,
Daniel Peeters, and Michael Sana, 1983

This review describes the application of variational transition state theory
(VTST) to the calculation of chemical reaction rates. In 1985, two of us, toge-
ther with Alan D. Isaacson, wrote a book chapter on this subject entitled “Gen-
eralized Transition State Theory” for the multi-volume series entitled Theory of

" Chemical Reaction Dynamics.' Since that time, VIST has undergone
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important improvements due mainly to the ability of this theory to adapt to
more challenging problems. For instance, the 1985 chapter mainly describes
the application of VTST to bimolecular reactions involving 3—6 atoms, which-
were the state-of-the-art at that moment. The study of those reactions by VTST
dynamics depended on the construction of an analytical potential energy sur-
face (PES). Nowadays, thanks to the development of more efficient algorithms
and more powerful computers, the situation is completely different, and most
rate calculations are based on “on the fly” electronic structure calculations,
which together with hybrid approaches, like combined quantum mechanical
molecular mechanical methods (QM/MM), allow researchers to apply VTST
to systems with hundreds or even tens of thousands of atoms. Three other
major advances since 1985 are that transition state dividing surfaces can
now be defined much more realistically, more accurate methods have been
developed to include multidimensional quantum mechanical tunneling into
VTST, and the theory has also been extended to reactions in condensed phases.

“This review progresses from the simplest VIST treatments applicable to
simple systems to more advanced ones applicable to complex systems. The
next four sections describe the use of VIST for gas-phase unimolécular or’
bimolecular reactions for which we can afford to build a global analytical
PES or to use a high-level electronic structure method to run the dynamics
without invoking special methods or algorithms to reduce the computational
cost. In the second part (the subsequent three sections on pages 190-212), we
deal with VTST in complex systems; this often involves the use of interpolative
or dual-level methods, implicit solvation models, or potentials of mean force
to obtain the potential energy surface. Two sections also discuss the treatment
of condensed-phase reactions by VTST.

A fundamental theoretical construct underlying this whole chapter is the -
Born-Oppenheimer approximation. According to this approximation, which.
is very accurate for most chemical reactions (the major exceptions being elec-
tron transfer and photochemistry), the Born-Oppenheimer energy, which is
the energy of the electrons plus nuclear repulsion, provides a potential energy
surface V for nuclear motion. At first we assume that this potential energy sur-
face is known and is available as a potential energy function. Later we provide
more details on interfacing clectronic structure theory with nuclear dynamics
to calculate V by electronic structure calculations ““on the fly,” which is called
direct dynamics. The geometries where VV is zero play a special role; these
geometries are called stationary points, and they include the equilibrium
geometries of the reactants, products, and saddle points, and geometries of -
precursor and successor complexes that are local minima (often due to van
der Waals forces) between reactants and the saddle point and between
products and the saddle point. In general V is required at a wide range of
geometries, both stationary and nonstationary. ;

A word on nomenclature is in order here. When we say transition state
theory, we refer to the various versions of the theory, with or without includ- :»
ing tunneling. When we want to be more specific, we may say conventional -
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transition state theory, variational transition state theory, canonical varia-
tional transition state theory (also called canonical variational theory or
CVT), and so forth. For each of the versions of VIST, we can further differ-
entiate, for example, CVT without tunneling, CVT with one-dimensional tun-
neling, or CVT with multidimensional tunneling; and we can further specify
the specific approximation used for tunneling. Sometimes we use the term gen- -
eralized transition state theory, which refers to any version of transition state
theory in which the transition state is not restricted to the saddle point with the
reaction coordinate along the imaginary frequency normal mode.

In this chapter we explain the algorithms used to implement VTST, especially
CVT, and multidimensional tunneling approximations in the POLYRATE*™
computer program. We also include some discussion of the fundamental theory
underlying VTST and these algorithms. Readers who want a more complete treat-
ment of theoretical aspects are referred to another review.

The beginning of the next section includes the basic equations of VTST,
paying special attention to canonical variational transition state theory (CVT),
although other theories are discussed briefly in the third subsection. The rea-
son for centering attention mainly on CVT is that it is very accurate but
requires only a limited knowledge of the PES. The basic algorithms needed
to run the dynamics calculations are then discussed in detail, including harmo-
nic and anharmonic calculations of partition functions. Multidimensional tun-
neling corrections to VTST are discussed in the fourth section. Approaches to
build the PES information needed in the VTST calculations are then discussed,
including direct-dynamics methods with specific reaction parameters, interpo-
lated VTST, and dual-level dynamics. The sixth section is dedicated to reac-
tions in condensed media, including liquid solutions and solids. Then
ensemble-averaged VTST is highlighted. The eighth and ninth sections
describe some practical examples that show in some detail how VIST works,
including a brief discussion of kinetic isotope effects. The last section provides
a summary of the review.

VARIATIONAL TRANSITION STATE THEORY FOR
GAS-PHASE REACTIONS

Conventional Transition State Theory

Transition state theory (TST), also known as conventional TST, goes
back to the papers of Eyring® and Evans and Polanyi’ in 1935. For a general
gas-phase reaction of the type '

A + B — Products 1]

where A and B may be either atoms or molecules, the theory assumes that
there is an activated complex called the transition state that represents the bot-
tleneck in the reaction process. The fundamental assumption of TST (also
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called the no-recrossing assumption) is only expressible in classical mechanics.
It states that

(1) this transition state is identified with a dividing hypersurface (or surface,
for brevity) that separates the reactant region from the product region in
phase space, and v

(2) all the trajectories that cross this dividing surface in the direction from
reactants to products originated as reactants and never return to reactants;

that is, they cross the dividing surface only once. For this reason, the TST
dividing surface is sometimes called the dynamical bottleneck. Rigorously,
we can say that TST makes only four assumptions:

(1) that the Born—-Oppenheimer approximation is valid, and so the reaction is
electronically adiabatic;

(2) that the reactants are equilibrated in a fixed-temperature (canonical)
ensemble or fixed-total-energy (microcanonical) ensemble;

(3) that there is no recrossing; and

(4) that quantum effects can be included by quantizing vibrations and by a
multiplicative transmission coefficient to account for tunneling (non-
classical transmission) and nonclassical reflection.

In a world where nuclear motion is strictly classical, we need not consider (4),
and the TST classical rate constant, ké, for Eq. [1] is given by

1

b = _1_9_.C_(.D exp[—B Vi 2
where B = (kpT)™" (kg is the Boltzmann constant, and T is the temperature), b
is the Planck constant, V# is the potential energy difference between reactants and
the transition state (the barrier height, also called classical barrier height), Qic is
the classical (C) partition function of the transition state, and ®R is the classical
partition function of reactants per unit volume. (For a unimolecular reaction, we
would replace % by the unitless classical reactant partition function OX.)

Note that the transition state has one less degree of freedom than does
the full system; that particular degree of freedom is called the reaction coordi-
nate, and it is missing in Qé. Throughout this chapter, the symbol 1 is used to
denote the conventional transition state, which is a system confined to the vici-
nity of the saddle point by constraining the coordinate corresponding to the
saddle point’s imaginary-frequency normal mode to have zero extension.
This coordinate is the reaction coordinate in conventional transition state the-
ory. The zero of energy for the potential is taken as the energy of the minimum
energy configuration in the reactant region. The partition functions are pro-
portional to configurational integrals of Boltzmann factors of the potential.
For the reactant partition. function, the zero of energy is the same as that for
the potential, whereas for the partition function of the transition state, the zero
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of energy is taken as the local minimum in the bound vibrational modes at the
saddle point, which is V*.

We can establish a connection between Eq. [2] and thermodynamics by
starting with the relation between the free energy of reaction, AGY at tempera-
ture T, and the equilibrium constant K, which is given by

K = K% exp[-AGY/RT] (3]

where K is the value of the reaction quotient at the standard state. (For a reac-
tion where the number of moles decreases by one, this is the reciprocal of the
standard-state concentration.) Then we rewrite Eq. [2] in quasithermodynamic
terms®1%11 a5

1
Bh

where Ké is the quasiequilibrium constant for forming the transition state..
(The transition state is not a true thermodynamic species because it has one
degree of freedom missing, and therefore we add the prefix “quasi”.) The ther-
modynamic analog of Eq. [1] is now given by

kb = —K&(T) [4]

1 0
kL = -BFK*P exp[—AGgT/RT] [9]

where AGE"T represents the classical free energy of activation for the reaction
under consideration.

The siren song of TST when it was first proposed was that “all the quan-
tities may be calculated from the appropriate potential surface,”® and in fact
from very restricted regions of that surface. Specifically, one “only” needs to
obtain the properties (energies, geometries, moments of inertia, vibrational
frequencies, etc.) of the reactants and the transition state from the PES and
to be sure that the transition state is unequivocally joined to reactants by a
reaction path. One approach to ensuring this is to define the reaction path
as the minimum energy path, which can be computed by steepest descent algo-
rithms. (These techniques will be discussed in detail in the subsection entitled
“The Reaction Path”.) The fact that conventional transition state theory needs
the potential energy surface only in small regions around the reactant mini-
mum and saddle point is indeed enticing. We will see that when one adds var-
iational effects, one needs a more extensive region of the potential energy
surface that is, nonetheless, still localized in the valley connecting reactants
to products. Then, when one adds tunneling, a longer section of the valley is
needed, and sometimes the potential for geometries outside the valley, in the
so-called tunneling swath, is required. Nevertheless, the method often requires
only a manageably small portion of the potential energy surface, and the cal-
culations can be quite efficient.



130  Variational Transition State Theory

It is possible to improve the results of Eq. [2] by incorporating a factor
Yc, called the transmission coefficient, that accounts for some of the above
approximations. The “exact’ classical thermal rate constant will be given as

ke = yc(T)kL(T) 6]

We can factor the transmission coefficient into two approximately indepen-
dent parts,

Yc(T) = Te(T)g(T) ' 7]

that account, respectively, for corrections to the fundamental assumption
being made and to approximation (2) described earlier. When conventional
TST is compared with classical trajectory calculations, one is testing the no-
recrossing assumption; i.e., we. are assessing how far I'¢ is from unity, with
TST being an upper bound to the classical rate constant (I'c < 1). Both clas-
sical trajectory simulations (also called molecular dynamics simulations) and
TST invoke the local-equilibrium approximation'? where the microstates of
reactants are in local equilibrium with each other, but it has been shown
that for gas-phase bimolecular reactions, the deviation of g from unity is
usually very small.'**® In the case of gas-phase unimolecular reactions, the
reacting molecules need to be activated, and so there is a competition-between
energy transfer and reaction. At low pressures, the rate constant is pressure
dependent (“falloff region’) and controlled by the activation and deactivation
-of the activated species. Only when the pressure is sufficiently high is energy
redistribution much faster than the product-forming step such that TST can be
applied. In this context, we can consider TST as the high-pressure. limit rate
constant of a unimolecular rate constant.

The justification of variational transition state theory is rigorous only in a
classical mechanical world because, when the local equilibrium assumption is
valid, VTST provides an upper bound on the classical mechanical rate constant.
One optimizes the definition of the transition state to minimize recrossing, and
the calculated rate constant converges to the exact rate constant from above.

The derivation of TST involves calculating the flux, i.e., counting the
species that pass through the dividing surface located at the transition state.
This only can be stated with certainty in the realm of classical mechanics. In
other words, to formulate classical TST requires that, at a given moment, we
know exactly the location in coordinate space of our reactive system, which is
passing through the dividing surface, and we know the sign of the momentum,
which has to be positive, because the molecule is heading toward products.
This violates the uncertainty principle. Nevertheless, the classical framework
provides a starting point for real systems, which have quantum effects that
are incorporated in two ways. First, quantum effects on motion in all degrees
of freedom except the reaction coordinate near the dynamical bottleneck are
included by replacing classical vibrational partition functions by quantum
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mechanical ones. Second, tunneling and nonclassical reflection are included
through another temperature-dependent transmission coefficient, k.

In this review we consider reactions for which auxiliary assumption (1),
the Born-Oppenheimer approximation, is met or is assumed to be met.
Furthermore, we assume that energy transfer processes are occurring fast
enough to replenish the populations of depleted reactant states, so g & 1 for
all gas-phase reactions considered here. Therefore, the true quantum mechan-
ical rate constant is given by

k = y(T)EHT) = T(T)x(T)KH(T) (8]

where k takes into account nonclassical effects on the reaction coordinate, and
k' is a quantized version of kic. Then we have to find a methodology to eval-
uate T(T) and «(T), which are discussed in the following sections. In particu-
lar, VTST may be considered a way to calculate I' by finding a better transition
state that has less recrossing, and semiclassical tunneling calculations may be
used to estimate . In practical calculations on real systems, even when we
optimize the transition state by VTST, we do not find a transition state that
eliminates all recrossing. Thus there is still a non-unit value of I'(T). As we car-
ry out better optimizations of the transition state, the exact T should converge
to unity. The essence of transition state theory is that one finally approximates
I" as unity for one’s final choice of transition state.

Canonical Variational Transition State Theory

Conventional TST provides only an approximation to the “true” rate
constants, in part because we are calculating the one-way flux through the
dividing surface that is appropriate only for small, classical vibrations around
the saddle point.”” We should be considering the net flux in a way that
accounts for global dynamics, quantization of modes transverse to the reaction
coordinate, and tunneling. It is important to note that “transverse” modes
consist of all modes except the reaction coordinate. The first way in which
the calculated rate constants can be improved is to change the location of
the dividing surface, which in conventional TST? is located at the saddle point.
More generally we should also consider other dividing surfaces. The conven-
tional transition state dividing surface is a hyperplane perpendicular to the
imaginary-frequency normal mode (the reactive normal mode) of the saddle
point; it is the hyperplane with displacement along the reaction normal
mode set equal to zero (see Figure 1). Any other dividing surface is by defini-
tion a “generalized transition state.”2® We search for generalized transition
state dividing surfaces (even if they are not saddle points) that are located
where the forward flux is a minimum.?>?” The practical problem involves
locating this particular dividing surface S, which in principle is a function of
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Figare 1 Contour plot of the H, +H, - Hc — H, —H;, + Hc collinear reaction
showing the dividing surface at the transition state and minimum energy path (MEP).
X; and X, indicate the H,...Hy and Hy ... H. distances, respectively. The contour
labels are in kcal/mol.

all the coordinates q and momenta p of the system; that is, S = $(p,q). One
way of doing this is to consider the surface as being a function of coordinates
only and then simplify further this dependency by considering a few-parameter
set of dividing surfaces of restricted shape and orientation (together specified
by ) at a distance s along a given reaction path (instead of allowing arbitrary
definitions) such that S(p,q) is reduced to S(s,2). We can go further and fix the
shape of the dividing surface and use the unit vector fi perpendicular to the
surface, instead of €, to define the dividing surface S(s, A). These two para-
meters (one scalar and one vector) are optimized variationally until the for-
ward flux through the dividing surface is minimized.

In POLYRATE, the default for the reaction path is the minimum energy
path (MEP) in isoinertial coordinates. The minimum-energy path is the union
of the paths of steepest descent on the potential energy surface down from the
saddle point toward reactants and products. The path of steepest descent
depends on the coordinate system, and when we refer to the MEP, we always
mean the one computed by steepest descents in isointertial coordinates. Isoinertial
coordinates are rectilinear coordinates in which the kinetic energy consists of
diagonal square terms (that is, there are no cross terms between different com-
ponents of momenta), and every coordinate has the same reduced mass. (Rec-
tilinear coordinates are linear functions of Cartesian coordinates.) Some
examples of isoinertial coordinates that one encounters are mass-weighted
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Cartesians, mass-weighted Cartesian displacements, mass-scaled Cartesians,
and mass-scaled Jacobis. In mass-weighted coordinates,?® mass is unity and -
unitless, and the “coordinates” have units of length times square root of
~ mass; in mass-scaled coordinates, the reduced mass for all coordinates is a con-
stant U (with units of mass), and the coordinates have units of length. We
almost always use mass-scaled coordinates; the main exception is in the sub-
section on curvilinear internal coordinates, where much of the analysis invol-
ving internal coordinates is done in terms of unscaled coordinates.

The original choice?” of dividing surface for polyatomic VTST was a

hyperplane in rectilinear coordinates orthogonal to the MEP. With this choice
of dividing surface, the direction of the gradient along the MEP coincides with
the direction along fi. Therefore, in this case, the dividing surface depends only
on s, and the minimum rate is obtained by variationally optimizing the loca-
tion of the surface along the MEP. The coordinate perpendicular to the divid-
ing surface is the reaction coordinate, and the assumption that systems do not
recross the dividing surface may be satisfied if this coordinate is separable from
the other 3N — 1 degrees of freedom, where N is the number of atoms. The
set of coordinates {u4(s), .. .M3N - 1(s),s} or (u,s) are called natural collision
-coordinates.?’
‘ It can be shown® that all isoinertial coordinates can be obtained from
one another by uniform scaling and an orthogonal transformation. Therefore,
the MEP is the same in all such coordinate systems. This MEP is sometimes
called the intrinsic reaction coordinate or IRC.3!

It is not necessary to use the MEP as the reaction path; one could alter-
natively use a path generated by an arbitrarily complicated. reaction coordi-
nate,”* -and for reactions in the condensed phase, some workers have
allowed a collective bath coordinate®® to participate in the definition of the
reaction path. The transition state dividing surface is defined by the MEP
only on the reaction path itself. In the variational reaction path algorithm,**
the dividing surface is not necessarily perpendicular to the gradient along the
MEP. Instead, it is the dividing surface that maximizes the free energy of acti-
-~ vation,?® and S0, in this case, we also optimize # (discussed above and in the
subsection entitled “The Reaction Path”), which allows us to make a better
 estimate of the net flux through the dividing surface.

It is possible to write an expression for the rate constant similar to
Eq. [2] by using generalized transition state dividing surfaces. We start by
describing the formulation of VTST for the original choice of dividing sur-
face—, hyperplane in rectilinear coordinates orthogonal to the MEP—and
intersecting it at s. In this case, the generalized transition state rate constant
1 given by

kGT _ i QgT(Ta S)

¢ =ph oR(T) exp[—BVmer(s)] 9]
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where by convention s =0 indicates the location of the saddle pointand s <0
and s > 0 indicate the reactant and product side of the reaction path, respec-
tively, Vivgep(s) is the potential evaluated on the MEP at s, and QST is the clas-
sical generalized transition state partition function. The zero of energy for the
generalized transition state partition function is taken as the minimum of the
local vibrational modes orthogonal to the reaction path at s, which is equal to
Vmep(s). The value of the rate constant in Eq. [9], when minimized with
respect to s, corresponds to canonical variational transition state theory,
also simply called canonical variational theory (CVT)2°’27’3°’35’36

EEVT = rnsin kET(T,s) = kST [T, sg\:r(T)] (10]

where s&VT indicates the optimum classical position of the dividing surface. (In

general, an asterisk subscript on s denotes the value of s at a variational transi-
tion state.) The expression for the classical CVT rate constant is then

w108 ([mserm))
k=BT aR(D)

exp {—BVMEP (scy*(T)) } © o)

The CVT rate constant can account for most of the recrossing (depend-
ing on the reaction) that takes place at the conventional transition state. It
should be noted that to minimize the recrossing does not generally mean to
eliminate it, and for a particular reaction, we may find that even the “best”
dividing surface obtained by CVT yields a rate constant larger than the exact
classical rate constant, although it can be shown that in a classical world, we
can always eliminate all recrossing by optimizing the dividing surface in phase
space with respect to all coordinates and momenta.>” On the other hand,
assuming local equilibrium of reactant states, the CVT rate constant always
improves the result obtained by conventional TST, and therefore, the follow-.
ing inequality holds: : :

kSVT < kE(T) (12]

Thus, CVT takes into account the effect of the factor T(T) on the thermal.
rate constant, where the superscript § means recrossing of the convent: :
ional transition state, and the subscript C reminds us that we are still discuss+ -
ing the classical mechanical rate constant. CVT is considered to be an
approximation to the exact classical rate constant '

ke = kSVI(T) = DT (T)kE(T) [13]]3
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where

REVT(T
el = -——Zé (;)) [14]

Now we consider how to incorporate quantum effects into the thermal
rate constant. For the modes perpendicular to the reaction coordinate, this is
. done in what is often considered to be an ad hoc way by quantizing the parti-

tion functions.® Actually, this is not totally ad hoc; it was derived, at least to
order A% in Planck’s constant, by Wigner®® in 1932. Because the reaction coor-
dinate is missing in the transition state partition functions of Eqs. [2] and [9],
the rate constant is still not fully quantized at the transition state. At this point,
to denote that we have incorporated quantum effects in all degrees of freedom
of reactants and all but one degrees of freedom of the transition state by using
'quantum mechanical partition functions instead of classical mechanical parti-
tion functions, we drop the subscript (C) from all remaining expressions. The
CVT rate constant is then given by '

1 097(T.s9T(m))

kCVT -
ph oX(T)

exp {—BVMEP (SSW(T))} (15]

where ®® s the quantized reactant partition function per unit volume and
QST(T,s) is the quantized generalized transition state partition function at s.
- Note that the value sVT that minimizes the quantized generalized transition
State rate constant at temperature T is not necessarily equal to the value
: SSXT(T) that minimizes the classical expression.

Another way to write Eq. [9] is to relate it to the free energy of activation

profile GST° py analogy to Eq. [5]:

kCT = BihKi’O exp {— [GGT’°(T, s) — G%"} /RT}

= B%Ki*" exp [~AG$T’°(T, S)/RT] (6]

where K*° is the reciprocal of concentration in the standard state for bimole-
- cular reactions or unity for unimolecular reactions, G?T” is the standard-state
: fr%eoenergy of the system at the dividing surface perpendicular to the MEP, and
o7 is the classical standard-state free energy of reactants at temperature T.
he free energy of activation profile is given as

GT
AGS™® = Vyusp(s) - RTIn [%}%T%J [17]
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Therefore, the CVT rate constant can be rewritten as
1 :

cvT _ to  ACCVTO( VT
RO = K exp {-AGE™ (sVI(T)) /RT} g

When comparing Egs. [16] and [18], it can be seen that the minimum value of °
kST as a function of s is reached when the free energy of activation is maxi-
mum.*%27-3%%0 This can be restated in terms of first and second derivatives;
that is,

9 ar _ 0 \~GTo _
ask (Ts) s=sVT(T)  Os AGT(s) s=sVT(T) 0 (15a]
with
& or .
52T [19b]
and
aZ oT <
52 AT 19|

Initially we have taken the dividing surface to be perpendicular to the
MERP. In the reorientation of the dividing surface (RODS) algorithm, the divid- -
ing surface is oriented to yield the most physical free energy of activation,,:
which is the dividing surface that maximizes AGS °(S(s;, 1)) at a given T
and s;. In this case, the dividing surface is defined by the location s; where it.*
intersects the MEP and a unit vector f that is orthogonal to the dividing sur- -
face at the MEP. The value of the free energy with the optimum orientation at :
point s; is given by

AGRST® = max AGST(S(s;, &) [20].

and the CVT free energy is the maximum of the orientation optimized free: :
energies: » ~

AGYTe = max AG2°T(s) [21]

G?GT’° will be discussed below.

The algorithm used to evaluate A

Other Variational Transition State Theories

Canonical variational theory finds the best dividing surface for a canonical -
ensemble, characterized by temperature T, to minimize the calculated canonical -
rate constant. Alternative variational transition state theories can also be
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defined. This is done for other ensembles by finding the dividing surfaces that
minimize the rate constants for those ensembles. For example, a microcanonical
ensemble is characterized by a total energy E, and the generalized transition
state theory rate constant for this ensemble is proportional to NGT(E, s), which
is the number of vibrational-rotational states with energy smaller than E at a
generalized transition state at s, Microcanonical variational transition state® the-
ory (uVT) is obtained by finding the dividing surface that minimizes NCT: je.,

N*T = min NST(E, ) [22]

The location of the dividing surface that minimizes Eq. [22] is defined as seVT,
which specifies the microcanonical variational transition state; thus,

ONZT(E, s)

Os s=stYT(E)

=0 23]

~Notice that the minimum-number-of-states criterion corresponds correctly to
variational transition state theory, whereas an earlier minimum-density-of-
states criterion does not.?” The microcanonical rate constant can be written as

o — Qui(T) |57 NIVT(E) exp(~BE)dE
s b (T)

[24]

Where the electronic partition function is defined below. Evaluating the
microcanonical number of states can be very time consuming at high energies
for big molecules. To avoid this problem, one can instead optimize the general-
ized transition states up to the microcanonical variational threshold energy
and then use canonical theory for higher energy contributions. This approach
i called improved canonical variational theory (ICVT)."! ICVT has the
Same energy threshold as pVT, but its calculation is much less time consuming.

microcanonical criterion is more flexible than is a canonical one, and
therefore,

KH(T) > kVI(T) > BOVT(T) > RVT(T) [25]

As we go to the right in the above sequence, the methods account more accu-
tately for recrossing effects.
Sometimes it is found that even the best dividing surface gives too high
. Tate constants because another reaction bottleneck exists. Those cases can be
»-h’andled, at least approximately, by the unified statistical (US) model.***3 In
+ this method, the thermal rate constant can be written as

QulT) | NS (E) exp(~BE)IE

us
k hoR (T)

[26]
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where

NYS = NAYT(E)TUS ) Y

The 'Y recrossing factor due to the second bottleneck is defined as

[, NTE) NevT(g) )T ,
rYs — {1 + Nmin(E) ~ Nmix(E) } 28]

where N7 (E) is the second lowest minimum of the accessible number NET(E,s)
of vibrational-rotational states, and, N™*(E) is the maximum of NST(E, s)
located between the two minima in the number of vibrational—rotational
states. This approach is nonvariational but always satisfies the relation

R*VT > pUS 291

In the case that the same physical approximations are applied to fluxes in 2
canonical ensemble, we call this canonical unified statistical theory (CUS)*
and the recrossing factor I'°YS is given by

cus _ [ aST(T) ST |
PCUS“{”q;-MT)‘ mi"m} 130)

vr

where

ST = QST(T, ') expl—Vier (5)] 31]

is the partition function evaluated at the maximum of the free energy of acti-
vation profile, gy1** is evaluated at the second highest maximum, and gmin(T)
is evaluated at the lowest minimum between the two maxima. The CUS rate
constant is given by

ECUS = TCUS(T)ESVT(T) [32]

* In the limit that there are two equivalent maxima in the free energy of activa-
tion profile with a’ deep minimum between them, the statistical result is
obtained; i.e., '™ = 0.5. Note that signs appear different in Egs. [28] and
[30] because in the former, “max” and “min” are associated with local max-
ima and minima, respectively, of the flux, whereas in the latter, they are asso- -
ciated with maxima and minima, respectively, of the free energy of activation
profile—not of the flux.

Quantum Effects on the Reaction Coordinate

Up to this point we have incorporated quantum mechanics in the F -1
bound degrees of freedom (where F is the total number of bound and unbound

s
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vibrations and equals 3N — 6, where N is the number of atoms except that it is
3N =5 for linear species) through the partition functions, and therefore, both
the TST and the CVT rate constants are quantized. The difference berween
both theories is still given by the factor

rvNr) = kVT(T) /kH(T) - [33]

which takes into account the recrossing. To quantize all degrees of freedom
requires incorporation of quantum effects into the reaction coordinate, through
a multiplicative transmission coefficient «(T). For example, for CVT, we write

, kCVT/Y(T) - KCW/Y(T)kCW(T) [34]

where Y indicates the method to evaluate the quantum effects. The main quan-
tum effect to-account for is tunneling through the reaction barrier. We can
classify tunneling calculations into three levels depending on level of approx-
imation:**

(1) one-dimensional approximations,
(2). multidimensional zero-curvature approximations, and
(3) multidimensional corner-cutting approximations.

Early models that were developed correspond to the first level of approxima-
tion and are based on the probability of penetration of a mass point through a
one-dimensional barrier,**” whose shape was usually given by an analytical
function, for example, a parabola**~5° or an Eckart barrier,’! that is fitted to
the shape of the potential along the reaction path. The method of Wigner>®
actually corresponds to the leading term in an expansion in #4; as it depends
only on the quadratic force constant along the reaction path at the saddle
point, it may be considered an approximation to the one-dimensional para-
bolic result. These one-dimensional models, although historically important,
a’c not very accurate because they do not take into account the full dimension-
ality of the system under study. Detailed discussion of multidimensional tun-
neling methods is provided below.

PRACTICAL METHODS FOR QUANTIZED VIST
CALCULATIONS ‘

In this section, we provide details of methods used in computations of
quantities needed in quantized VIST rate constant calculations. We start by
discussing methods used to define dividing surfaces. As the reaction path plays
a1 important role in parameterizing dividing surfaces, we first describe meth-
0ds for its evaluation. We then discuss calculations of partition functions and
- Dumbers of states needed in the rate constant calculations.
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The Reaction Path

This section describes some algorithms used to calculate the reaction
path efficiently. The evaluation of the CVT rate constants requires the"
knowledge of at least part of a reaction path, which can be calculated by -
some of the steepest-descent methods briefly described in the first Subsection,
The second Subsection explains a reaction-path algorithm that, at a given
value of the reaction coordinate, finds the orientation of the hyperplanar divid-
ing surface that maximizes the free energy. Later on, more general shapes for
the dividing surface are discussed.

The Minimum Energy Path

The minimum energy path is the path of steepest descents in isoinertial
coordinates from the saddle point into the reactant and product regions. For
the general reaction of Eq. [1] in which the reactive system is composed of N
atoms (N = N + Ng)andi=1,2, ..., N labels the atoms, we define the 3N
Cartesian coordinates as R. The origin of the coordinate system is arbitrary,
although it is often convenient to define it as the center of the mass of the sys-
tem. The saddle point geometry in Cartesian coordinates, denoted R¥, is a-
stationary point and first derivatives of the potential energy, V, with respect.
to the coordinates at R, is zero:

ov

=0 35)

It is useful to change from Cartesian coordinates to a mass-scaled coordmate
system defined by ‘
\1/2 ‘
Xig = <’%) Rix [36]

where m; is the mass of nucleus #, u is an arbitrary mass, and o denotes the
Cartesian component (x, y, or z). For bimolecular reactions like Eq. [1], it is
common either to use the reduced mass of reactants

mamp

Bl = g (37] -

or to use a value of 1 amu for p. For these isoinertial coordinates, the kinetic
energy of the nuclear motion simplifies from

Zm, SR | [38]
a=x,y,z
to a diagonal form

I |

i=1 a=xy;z

2“2 > [39]
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where Xy represents the derivative of x;, with respect to time. With the latter
choice, the numerical value of coordinates expressed in A is identical to the
numerical value of a mass-weighted?® Cartesian coordinate in amu'? A. The
motion of the polyatomic system is reduced to the motion of a point mass 1 on
a potential surface V with the classical equations of motion given by

d ov

uaxm = —M [4O]

A generalized transition state is a tentative dynamical bottleneck, and a tenta-

tive reaction coordinate is a nearly separable coordinate in a direction from

reactants to products. Thermal rate constants are dominated by near-threshold
events, and near the reaction threshold, a nearly separable coordinate in a
direction from reactants to products is given by following the equations of
motion but damping out the velocity along the trajectory. With this damping,
the equations of motion can be rewritten for an infinitesimal time interval  as

ov

1
T [41]

Wiy = —

~ The integration constant is zero because of the assumption of infinitesimal
- velocity (x=0 at ¢ = 0). We can rewrite Eq. [41] in vector form as

udx = =VV(x)dt = —-G(x)d'c [42]

~where dt = tdt. If we define a infinitesimal mass-scaled distance along the
".path as ds, then

1/2
ds = l:i > dxfa] :@dt ' [43]

=1 o=x,y,2

~ with |G| being the modulus of the gradient. Substituting Eq. [43] in Eq. [42],
‘we obtain

dx -
& G0 =) o

ryhere.é = G/|G] is the normalized gradient, and v is a vector with opposite
- direction to the gradient. The MEP can be followed by solving the above dif-
ferential equation. The displacement on the MEP is given by the steepest des-
.:cent direction along v, where s indicates the progression along the path’*3
-and x(s) the geometry.
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For a practical evaluation of the MEP, the first stage involves the knowi:
edge of the transition state (or first-order saddle point) geometry. By convep..
tion we locate the transition state at s = 0, and we denote its scaled-masg
Cartesian-coordinates geometry by x!. Reactants and products sides are given
by values of s < 0 and s > 0, respectively. There are very efficient algorithms to
evaluate transition state geometries,*8 which are available in many popular
electronic structure packages. We cannot use Eq. [44] to take a step from the -
saddle point along the reaction path because the gradient is zero. At the saddle
point, the direction of the MEP is given by the unbound vibrational mode,
which requires evaluation of the normal mode frequencies and eigenvectors-
at the saddle point. At stationary points, the vibrational frequencies are calcy-
lated by diagonalization of the 3N x 3N matrix of force constants F, which
are the second derivatives of the potential with respect to isoinertial Cartesian -
coordinates scaled to a mass p. F is also called the Hessian. For instance, for: -
the conventional transition state geometry x, this matrix can be diagonalized .
by performing the unitary transformation: g

L(x})'F(x*)L(x") = A(x}) [45],_‘:

where 1 denotes transpose, A is the 3N x 3N diagonal matrix with eigenva- :
lues X,, on the diagonals (with m = 1,2,...,3N) and with eigenvectors.
arranged as a matrix L whose columns L,, correspond to the 3N normal-
mode directions. The normal-mode frequencies at the saddle point can be:
obtained from the eigenvalues by the relation: &

(Dm(s = O) = [)\_m(xi)/“] 1/2 [46]

The saddle point has 6 zero eigenvalues (5 if it is linear), which correspond to
the overall rotation and translation of the molecule. We define F as the number:
of vibrational modes (F = 3N ~ 6 for a nonlinear molecule or 3N— 5 fora .
linear molecule), where for a saddle point, the first F — 1 modes are bound ‘.
with positive eigenvalues and real frequencies. Mode F is unbound with an -
imaginary frequency (%) corresponding to motion parallel to the MEP at
the saddle point. The eigenvector associated with this frequency is denoted =
by Le(x*). The first geometry along the MEP toward reactants (— sign) and
toward products (+ sign) is given by

X(s1 = +8s) = xt £ SsLp(xt) | [47),

where 3s is the step length. The sign of Lr(x*) is chosen ‘so that the vector -
points from reactants towards products.

For the geometry x(s) (x hereafter), the gradient is different than zero, and
so for the next x, geometry, or in general for a geometry x,,, with n > 1, we can-;
apply Eq. [44] and follow the opposite direction of the normalized gradient: - =

Xn = Xn1 ~ 85Gat = X,y + Ssv,_, [48] ;
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where we use the shorthand notation G, = C(x,,) and v, = v(x,). The above
first-order equation gives the MEP geometries by the so-called Euler steepest-
descent (ESD) method.5® For an accurate evaluation of the MEDP, the step size
has to be small because the error is proportional to (8s)°. Some other
Euler-type methods try to minimize the error, like the predictor-corrector
algorithm,®%-61 the optimized Euler stabilization method,* and the backward
Euler method.®® Of all of the Euler-based steepest descent methods, the
optimized Euler stabilization method, version 1 (ES1*), is the one that
produces the best-converged paths.>® The ESD method provides an initia]

geometry

xOV=x, ; + dsv,_y [49]

Then a corrector step is speciﬁ%d as'a point at a minimum of a parabolic fit
along a line that goes through x,”’ and parallel to a “bisector” vector d,., which
is given by® '

_ V(Xp_1) — v(x,(,o) )

50
’V(xn—l) - v(x{) >

~The new geometry is given by
%, = x{V 4 ¢d, [51]

‘Where ¢ is a step along d,,, with a Step size proportional to a user provided para-

meter §,. The correction is not carried out if |v(x,_;) — v(x,,(p)) | < o, with

algorithm s sensitive to the values of 6; and @, and in the ES1* method, it is
. fecommended that both values are set according to recommendations®® that
were based on systematic studies of convergence, those values being §; = &s
fﬁtand 0= OO]_. .

energy, with quadratic information being used only at the saddle point.
nother possibility is to use algorithms, which in general are more accurate,
*that explojt higher order information about the potential energy. Page and
" Mclver®? haye presented a successful method that does this. First, a cubic
‘Xpansion of the potential energy surface around the saddle point was pro-

X(s1 = £85) = x & 8sLp(x!) + % (85)2c(xt) [52]
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where the vector c(x?) is defined by
Ac(x') = C(x)Le(x*) — LE(x")C(x)Le(x*)Li (x}) (53]
where

A:ﬂﬂﬁm@mﬂﬁﬂ+Pu@myﬁy4kgﬁ [53b]

with I being the identity matrix, and C(x}) is given by a finite difference expan-
sion of the force constants matrix around the saddle point with a preselected
step O3: :

C@U=Hﬁ+&u@m—mﬂ_&h@m _Hﬂ'

283

Although the algorithm is cubic, it requires calculations of Hessian matrices
only near the saddle point. - ’ : :

One of the most popular second-order methods for following the steepest -
descent path is the local quadratic approximation of Page and Mclver,®"
which we call the Page-McIver (PM) algorithm and we describe next. At a-
given geometry X, along the path, we evaluate the Hessian matrix F, and diag-
onalize it using :

&y = ULFnUn [55}

where U, is an orthogonal matrix of column eigenvectors and a, is a diagonal
matrix of eigenvalues. The geometry at the next step along the MEP is given by

Xn+1 = Xn + Dy(Q)v, [56]
where
D, (¢) = UM, (O], | [57]
and M,, is a diagonal matrix with diagonal elements given by
M;i(€) = [exp(—0tni€) ~ 1)]/atn i (58]

The variable ¢ is a progress variable that is zero at x,, and is related to the reac-
tion coordinate s by '

ds [de dx] 172

&= & & 5
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which can be rewritten

dc N
== Zl b} exp(—2an iC) [60]

where
h, = UlG, - [61]

The next value of the reaction path coordinate s,,; =s, + &s is given by
-choosing the value of ¢ to satisfy the following integral equation:

¢ 3N -1
8s = Jdg" (Z b} EXP(“Z%,iiCI)> [62]
0 i=1

. -which is numerically integrated by the trapezoidal rule. An option is to eval-
- uate a new Hessian after a given number of steps along the reaction path
. rather than after each step; in which case, we call it the modified Page-Mclver
- dlgorithm.>®

Variational Reaction Path Algorithm
_ The original approach for defining variational dividing surfaces, once the
* MEP is determined, is to choose them to be hyperplanes in rectilinear coordi-
" mates, which are constrained to be orthogonal to the MEP. In this case the

ividing surfaces are characterized by a single parameter, the location s along
sthe MEP. In the reorientation of the dividing surface (RODS) method, the
-dividing surface is not constrained'to be orthogonal to the MEP and its orien-
- ‘tation is optimized to maximize the free energy for points along the MEP. The
-iPreviously described algorithms allow calculation of a well-converged MEP by
- the steepest-descent path from the saddle point to reactants or to products.
_lowever, to obtain a well-converged path may be computationally very
@emanding and so some alternative strategies have been suggested>** for
- defining optimum dividing surfaces even if the MEP is not well converged.
ne such approach is the variational reaction path algorithm (VRP) that is
a combination of the ESD and RODS algorithms. The first geometry along:
the path can be obtained from Eq. [47] or Eq. [52] as discussed above. The
8eometries along the path, for instance, a given geometry x,, are obtained
applying first the ESD method to obtain a zero-order approximation to
the geometry on the MEP

x,(,o) =X,_1—08s Gn_1 [63]

?deﬁné the dividing surface as a hyperplane in rectilinear coordinates,
ch is orthogonal to the unit vector i and passes through the geometry
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x. The potential in the hyperplane is approximated through quadratic termg.
and is most easily expressed in terms of the generalized normal modes for
motion in the (F — 1)-dimensional space of the hyperplane (note that conven.
tional normal modes are defined only at stationary points, so this concept must ~
be generalized to use it at geometries where the gradient of the potential does
not vanish):

F=1
V) = V) + Y [GEp(8)Q + 5 M ()03 64

m=1
where Q,,, is the displacement from ' in generalized normal mode 7 and the.
gradient and force along mode m are defined as follows. The gradient vector and
Hessian matrix evaluated at x are denoted G and F9, respectively. Motion
along the vector fi, as well as rotations and translatxons, are projected out to give

GHO(&) = (1-a) (1 P*T) G © 5]
and a projected Hessian matrix

FE00) = (1)1 PR (1) ()

where PRT is the matrix that projects onto the translations and rotations.®>
The gradient vector and force constant matrix in the eigenvalue representation
are then given by

GE@) = [L@)] ‘G2 @) 67
and
AX®) = @) PO @)L @) 68

where AL is a diagonal matrix with elements ?»im along the diagonal and L is
the matrix of eigenvectors that diagonalizes the projected Hessian matrix. The
eigenvalues and eigenvectors are ordered so that the first F — 1 correspond to
the modes in the hyperplane and modes F, F + 1, ..., 3N correspond to the
modes along fi and translations and rotations, whxch have zero eigenvalues.
The normal mode coordinates are defined by

= [L@]' (x-=0) | 691

and the elements F, F+ 1, ..., 3N will be zero for motion constrained to the
hyperplane. E



Practical Methods for Quantized VTST Calculations 147

: The coordinate along the variational reaction path is then defined as the
- location of the minimum of the local quadratic potential in the hyperplane as
- given by Eq. [63], which is given by

xn = x{ + LY (#)QM(2) [70]

where the minimum in the normal mode coordinates is given by

* In the ESD algorithm, for which X, = x\, the value of s along the path is sim-
~ ply given by the arc length between adjacent points on the MEP

Sp = Sy_1 + 8s (72]

where the sign is negative on the reactant side and positive on the product
. side of the saddle point. Although x,, is not necessarily equal to x.¥ for the ,
" 'variational reaction path, it has been found thar use of Eq. [72] provides a bet-
- ter estimate of computed rate constants than a method that uses the difference
i between x,, and X,-1 in evaluating s.
A complete description of the variational reaction path approach still
{e%uires definition of the vector f. If fi is chosen to be along the gradient vector
G, then GRO)(4) and G () are zero [i.e., (1~ fat)a = 0, QM(#) = 0, and
“ X=x,"]. In the variational reaction path approach, the RODS algorithm is
'used to determine the direction of n. The free energy of activation of
- Eq. [17] is generalized to

A ST(T £ &
AGST(T,x{), 4) = VM(@) — RTIn [%l [73]

- where YM () is the minimum value of the local quadratic potential in Eq. [64],
~which can be expressed ’

F-1

V@) = V(x?) - 3 [6E, @] /2E,@) 74]

m=1 ’
;fgCalCUlation of the partition function needed in the evaluation of the free
f‘je'nergy of activation is described in the next section. Once the partition func-
+-ton js evaluated, the optimum value of AGSTe(T, x¥ ,1i | with respect to # is
f;‘;thained by applgjng the conjugate gradient algorithm fof which the vector of
e{iVatives 0AGETo(T, %0 ,1) /01 is needed. These derivatives are obtained by
te differences. We denote the optimum value of the unit vector for a point s
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tional motion
*(T) = #43(T) Q4(T) Q¥(T) s

where

AB 27turel o2
@i (T) = <TghT

and Q4 and OB include contributions from interna] degrees of freedom (vibra:
tional, rotational, and electronic) for each species. For unimolecular reactions,
the reactant partition function involves contributions from just one reactan;
species. For an atomic reactant, Q4(T) and o¥(
from the electronic degrees of freedom, whereas for pol
are approximated as shown for reactant A:

Q% = QAMQA,(T)QA,(T)

In this expression, couplings among the electronic, vibrational, and rotational
degrees of freedom are neglected. The calculation of partition functions for
bound species is standard in many textbooks and is repeated here for comple-
teness. The electronic partition function is given by

Qi =2 diexp [ ~pEA(m)]

where a is the index over electronic states and dy and EA(a) are the degener-/;
acy and energy of electron;c state a, respectively. Note that the energy of the:;
ground state (i.e., o = 1) is zero. Rotational partition functions approximatee
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for the rotational motion of a rigid molecule have shown that there is little logs
of accuracy (not more than about 1%) if the quantum partition function s
replaced by the classical one. For 4 linear reactant, the classical rigid-rotor par-
tition function is given by

[79]

where I* is the moment of inertia, 64 is the rotational symmetry number, and
h=h/2n. If the reactant is nonlinear, the rotational partition function is
approximated by

1/2\° v
Qr=gr 75 I [80]

rot

- where I, 12, and I2 are the principal moments of inertia of reactant A
The vibrational partition function is treated quantum mechanically, and
as a first approximation, it is evaluated within the harmonic approximation as

Fa
Qis(T) = [ Yexp [~BER, ()] 81]
m=1 n,,

where F, = 3N4 — 5-(linear) or Fy=3Ny-6 (nonlinear), Ny is the number
~of atoms jn reactant A, and Eﬁb’m(nm) is the energy of the harmonic vibra-
tional level 7 in mode and is given by

Elum(n) = (n-+3 ) o 82

‘Where 02 is the frequency of normal mode m in reactant A. Anharmonic
. ‘corrections to the vibrational partition functions are discussed below.

Generalized Transition Staze Partition Functions in Rectilineay
Coordinates
Evaluation of the generalized transition state partition function Q6T
. involyeg contributions from the 3N —4 internal degrees of freedom in the
iding surface. The three degrees of freedom for overall center-of-mass trans-
‘ lation and motion out of the dividing surface are removed. Calculations of gen-
“eralized transition state partition functions require definition of the dividing
- Surface, which in the most general case described above s specified by a loca-
_“flon x(s) along the reaction coordinate and the orientation of the planar divid-
Ing surface given by the unit normal vector fi(s). In this section, we describe
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calculations for dividing surfaces that are hyperplanes in rectilinear coordi- .
nates. Calculations for curvilinear coordinates are described in the next section.
As for reactant partition functions, we assume that the coupling among -
rotation, vibration, and electronic motion may be neglected, so that the gen-
eralized partition function can be written as the product of three partition

functions:
rot

OST(T,) = QST(T.9QET.008T(Ts) s3]

The electronic partition function is given by

QF" = 3~ dS(s) exp [-BEST (. 5)] 84
a=1 :
where o =1,... indicates the electronic state, @ =1 denotes the grouﬁ&.

electronic state, and dS7(s) and ES§T(a,s) are the degeneracy and energy of
electronic state a. The electronic energies are measured relative to the energy .
at the local minimum in the dividing surface with the ground state energy
EST(a = 1,5) = 0. For many molecules, it is sufficient to consider only the-
electronic ground state, because it is the only one that contributes significantly--
to the sum. Furthermore, it is usually a very good approximation to make the .
electronic partition function independent of s in the interaction region.

Rotational partition functions are calculated for rigid rotations of the,
transition state complex and only require knowledge of the geometry x(s).
As noted, classical rotational partition functions accurately approximate the '
quantum mechanical ones. For a linear transition state complex, the classical
rotational partition function is given by

or _ _2I(s)
Orox = B*Bose [851:5

where I(s) is the moment of inertia and Gy is the rotational symmetry number.
The rotational partition function for a nonlinear transition state complex is

3 2 i
-,j—ﬂ 7l (5)Ta()T5(s) 86]

GT —
OS(T,9) = 5

where I (s), I1(s), and I3(s) are the principal moments of inertia. ‘
Vibrational partition functions are evaluated within the harmonic:
approximation o

F=1
S =TT OB n(T.s) 871

m=1
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Each of the m vibrational partition functions is given by

QG = 3 exp [~BEST,, (7m, )] - 188]

Im

where Evcigm(nm,s) is the energy of the harmonic vibrational level 7,, in mode

m, measured relative to Vigp(s), and is given, analogous to Eq. [82], by

EST . (ys) = (nm + %) B (s) 89]

where ®,,(s) is the frequency of normal mode m for the dividing surface
defined by x(s) and fi(s). The sum in Eq. [88] should terminate when the lowest
~ dissociation energy of the system is reached,*® but because, in general, the
_contribution from high energy levels is negligible, the sum can include all -
harmonic levels and so we get an analytical expression of the type:

exp [~§mam<s>]

GT —
Qvib,m (T’ S) - {1 — exp[—Bf?mm(s)]} [90]
The harmonic frequencies {@1(s), ..., ®p_1(s)} needed for the vibrational .

partition functions correspond to those obtained by making a quadratic
expansion of the potential in the vicinity of the reaction path for motion con-
" strained to stay on the dividing surface. Calculation of harmonic frequencies
for planar dividing surfaces in rectilinear coordinates is straightforward and
. described here. At stationary points, the vibrational frequencies are calculated
. by diagonalization of the 3N x 3N Hessian matrix, F, which are the second
- derivatives of the potential with respect to isoinertial Cartesian coordinates
scaled to a mass p. For instance, for the transition state geometry, x!, this
“matrix is diagonalized as in Eq. [45] to yield the eigenvalues Am(x}). The nor-
‘mal-mode frequencies at the saddle point can be obtained from the eigenvalues
" using Eq. [46].
For a location s along the reaction path that is off the saddle point, we
~"want the set of vibrational frequencies {@1(s),...,®r_1(s)} for motions that
are orthogonal to the dividing surface at s. Diagonalization of F[x(s)] for loca-
“tions where the gradient is not zero will yield normal modes that mix motion
in the dividing surface with those orthogonal to it. In this case, motion parallel
10 fi(s) and the six degrees of freedom corresponding to translations and rota-
‘tion of the molecule can be projected out of the Hessian. In the case where the
dividing surface is a hyperplane and fi(s) is parallel to the gradient vector, the
SXpression for the projection matrix, P, can be found in the article of Miller,
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Handy and Adams.®’ The generalization to cases where fi(s) is not parale] tb.f}_ v
the gradient vector is given by an expression similar to Eq. [66] ‘

F* = (1= (s)a(s)") (1~ PT)E[x(s))(T - PRTY(I - a(s)ar(s)') . p@f

Now FF can be diagonalized using the relation:

The resulting m = 1,...,F — 1 eigenvalues are given by :
O (s) = [Mm(s)/n]'/? 93]

with directions given by the corresponding vectors LST(s), whose phases:
(“signs”) are discussed below Eq. [167]. o

Generalized Partition Functions in Curvilinear Intermal Coordinates

In the previous subsections, the dividing surfaces were hyperplanes. in
rectilinear coordinates; they were orthogonal to the reaction’ path at thi
point where they intersect it, and they were labeled by the location s at whic
they intersect the reaction path. In this section, we consider more genera
dividing surfaces defined in terms of curvilinear coordinates such as stretch;,,’
bend, and torsion coordinates (which are called valence coordinates o
valence force coordinates and which are curvilinear because they are nons:
linear functions of atomic Cartesians). In general, defining the reacti
path provides the value of the reaction coordinate only for points on-the
reaction path. Defining the dividing surface assigns a value to the reaction
coordinate even when the geometry is off the reaction path because one
defines the generalized transition state dividing surface so that s is constan
in the dividing surface; this means that defining the reaction coordinate off
the reaction path is equivalent to defining the dividing surface and vice versa:
Making the dividing surface curvilinear means that the expression for the
flux-in phase space through the dividing surface no longer matches the
expression for a classical partition function.?? Therefore one should intro-
duce an additional term C, in addition to the free energy of activation,_in
the exponent of equations-like Eq. [5]. However, as we only calculate the
generalized transition state partition function approximately, we do m
include this term (which is expected to be small for dividing surfaces defined:
in terms of stretch, bend, and torsion coordinates?). Changing the definitiom:
of the dividing surface changes the generalized transition state partition fun
tion even if one makes the harmonic approximation for transverse coord
nates because generalized normal mode frequencies. computed with th
constraint that s is constant will also change if the definition of s off the rea
tion path changes.%6-%8 ‘ ’
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An example showing why curvilinear coordinates are more physical

than rectilinear coordinates is provided by an atom-diatom reaction (A +
BC — AB + C) with a collinear reaction path where it is clearly more physical
to define the reaction coordinate in terms of the AB and BC distances and the
ABC bond angle than to define it as a function of the Cartesian coordinates.
Displacements from the linear geometry for fixed values of s produce different
effects on the geometry when the reaction coordinate is defined in curvilinear
coordinates, in which the bond distances stay fixed, as shown in part (a) of
Scheme 1, than when it is defined in rectilinear coordinates, in which atoms
move along straight-line paths in Cartesian coordinates, as shown in part
- (b) of Scheme 1. This effect is illustrated in Figure 2. The difference is impor-
- ‘tant because the evaluation of the second derivatives of the potential with dif-
ferent frozen variables produces different harmonic frequencies. The above
example indicates that the choice between rectilinear and curvilinear coordi-
‘nates for the harmonic treatment is equivalent to choosing between two differ-
. ent definitions of the reaction coordinate, s and &', for points that are off the
. reaction path. These two reaction coordinates are equal for geometries on the

x, (bohr)

LALLM [ A B B Y AR S B RS Mk

[ . ) . 2 ) 6
o x; (bohr)

“Figure 2 Contour plot that shows the projection‘ over the reaction coordinate of a
+Beometry close to the MEP when curvilinear (s} or rectilinear (s) coordinates are used.



154  Variational Transition State Theory

reaction path but differ for general geometries. The relation between them ig
given by the expression:®”

—

F=1F- .

EZZ 74idi + O(q7) [94]
i=1 j=1 .

where g; represents a curvilinear coordinate that is zero on the reaction path

and measures the distortion away from it; b; involves second-order partial

derivatives of s’ with respect to g; with s held fixed. The Hessian elements eval-.

uated with the two definitions are related by®¢:¢”

v [V _b_(aV)
99:99; s'lg'=(0,....,0,8") 94:9q s 7\ s q

where q" = {q1,92,...,9r-1,5'} and q = {q1,92,-..,qF-1,s}. It is clear from:
the above relation that the Hessian and (therefore) the harmonic frequencies. -
depend on the definition of the reaction coordinate except at stationary points, -
where 8V/8s = 0. As the calculated vibrational frequencies of the generalized
normal modes depend on the coordinate system, it is important to make the -
most physically appropriate choice. It has been shown that the curvilinear*
coordinates produce more physical harmonic frequencies than do the recti-
linear coordinates.’”*® This results because the atoms move along straight
lines in rectilinear generalized normal modes,®” whereas motions along paths. -
dictated by valence coordinates®®**~7 are much less strongly coupled..ff'.j
(Valence coordinates, also called valence force coordinates, are stretches; -
bends, torsions, and improper torsions.) The frequencies in the more physical: -
curvilinear coordinates can be obtained by following a generalization of the
scheme described by Pulay and Fogarasi,”" as described next:

For the N-atom system, the energy V at a geometry (denoted by x in Car~
tesian coordinates and by q in internal coordinates) close to a reference geo-"
metry (denoted by x” in Cartesian coordinates and by q° in internal
coordinates) can be obtained by a second-order Taylor expansion. In unscaled *
Cartesian and curvilinear coordinates, the expansions are given by

9s] .
q=(0,....,0,5)

3N 3N .
1 :
_ RIR. _ RN = N\ "ER(p. _ RO(P._ RO
v_vo+;c;i (R; Ri)+2;Fii(R, R))(R; - RY) [96.]:
and
curv Fcurv

V=Vor 3 slai-a )+22ﬁ,(q. )ig; - 4)

respectively, where Feurv is the number of curvilinear coordinates that are to be:
used, g; is a component of the gradient in internal coordinates, and f; is an:
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element of the Hessian in curvilinear coordinates. However, three problems
are related to the use of curvilinear coordinates: -

(1) They are not mutually orthogonal; .

(2) for more than four atoms, there are more than 3N — 6 valence coordi-
nates; and

(3) the transformation to Cartesian coordinates is nonlinear.

Specifically, the curvilinear coordinates can be written as a power series of the
displacements in Cartesian coordinates:*®

3N 3N
4= By(Rj~R?) + %Zc;k(R, —R))(Re —RY) + ... (98]
i ik

where a superscript zero indicates a reference geometry (a stationary point or a
point on the reaction path), Bj; is an element of the F.,r, x 3N Wilson B matrix,

0g;
= (5%)

and C;:k isan element of the 3N x 3N tensor C' that represents the quadratic term

ii=1,.. Far; j=1,...,3N [99]
{Rj}=(R%) ,

aqu'

— =1, . Fan; ,k=1,..., 1
3R3K; =1, Fuw; k=1 3N [100]

i - |
{Re}={R}

For reactions involving more than four atoms, it is often not obvious which
setof N — 6 internal coordinates best describes the whole reaction path, and in
those cases, it is very useful to define the reactive system in terms of redundant
internal coordinates.”” Using redundant internal coordinates circumvents

(1) destroying the symmetry of the system for highly symmetric reaction paths
by omitting a subset of symmetry related coordinates and

(2) using an incomplete set of 3N — 6 internal coordinates that does not fully
span the vibrational space.

- Therefore, the recommendation is that, for more than four atoms, one should

always use redundant internal coordinates to evaluate the generalized normal
mode frequencies.

In practice, the following procedure is carried out to calculate the
frequencies and generalized normal mode eigenvectors in redundant internal
¢oordinates, where nonredundant internal coordinates are simply a special
Case and may be used in the same manner.

First, the Wilson B and C matrices®® must be constructed. When using
redundant internal coordinates, the formulas for the Wilson B and C matrices
‘8iven above are used, except the number of internal coordinates, Feyry, is not
Testricted to be 3N — 6. The formulas given above for these matrices are decep-
tively simple, and in practice, this is the most difficult step,®® although once com-
Puter code is available (as in POLYRATE), the code is very general, and no new

68,72
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issues need to be considered for further apphcanons Once these matrices haye. -
been constructed, the Wilson G matrix, called G¥, is constructed as ’

GY = BuB' [101] ‘.

where u is a 3N x 3N diagonal matrix with the reciprocals of the atomic
masses on the diagonal. Next, the matrix GV~ is created using

GY- = (KK') <g 8) ((Ilé)t) [102]5

where K is defined to consist of the eigenvectors of G¥ corresponding to non--
zero eigenvalues, K’ is defined to consist of the remaining eigenvectors, and I
is defined to contain the nonzero eigenvalues. The generalized inverse of the-
Wilson B matrix is”! I

A = uB'G™- o3

Now, the construction of the gradient and force constant matrices in internal;"
coordinates is possible: :

g=AIGR

Fcurv ’
f=A'F'A - 3 "giAlC'A

- Then, the gradient and force constant matrices needed to project out the:
reaction coordinate are created:

— GWGW—-
f = PfP
g="Pg
The projected Hessian f¥ is given by ;
= {1 - p(s) [BuB'] }¥(s){1 — [BuB']p(s)} [109];

where p, the nonorthogonal coordinate projection operator, is given at s by:
st ’ >
g8 :
= 110
P~ 3 BuBTg [

Now it is possible to evaluate the vibrational frequenc1es using the Wilson GF;
matrix method,*%7*7°

GVFYLY =LY

where G¥ is defined above, the projected Hessian fP is used for F¥ sté?
is the matrix of generalized normal mode eigenvectors, and A is the diagonat
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cigenvalue matrix. Vibrational frequencies are given in terms of the eigen-
values by
Wy, = (Amm)l/z [112]

Next, the vibrational eigenvectors must be normalized. The normalized eigen-
vector matrix is given by

LY = LYW [113]
where
Wi = 1/ C;i0; [114]
and
c= ¥ e [wy ] [1s]
The Cartesian displacement normal-mode eigenvectors are
y =uBl(GY)"ILY = ALY = AL¥W [116)
Finally, the elements of the rectilinear eigenvector matrix, LST, which are

needed for multidimensional tunneling calculations (see Egs. [164], [170],
and [171}) are given by

1/2 1/2
GT _ (mi/p) MmN
Ly = 72~ 172 [117]
}; (my /)% % My

Loose Transition States

Although the POLYRATE program is very general, the definitions it uses
for the generalized transition state dividing surfaces are most appropriate for
reactions with non-negligible barriers and tight transition states. For many
association—dissociation reactions, the transition state is located at a position
where two fragments have nearly free internal rotation; in such cases, one may
wish to use even more general definitions of the dividing surfaces; ®”” these
are not covered in the current tutorial. We note though that the methods
used above have been used successfully to treat the association of hydrogen
atoms with ethylene to form the ethyl radical.”-%¢

In recent years, there has been tremendous progress in the treatment of
barrierless association reactions with strictly loose transition states.”%77-81-89
A strictly loose transition state is defined as one in which the conserved
vibrational modes are uncoupled to the transition modes and have the same
frequencies in the variational transition state as in the associating
reagents.81:8284 (Conserved vibrational modes are modes that occur in both
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the associating fragments and the association complex, whereas transition
modes include overall rotation of the complex and vibrations of the complex
that transform into fragment rotations and relative translational upon disso-
ciation of the complex.) Progress has included successively refined treat-
ments of the definition of the dividing surface and of the definition of the
reaction coordinate that is missing in the transition state’®””81788 and ele-
gant derivations of rate expression for these successive improvements.?5-83
The recent variational implementation of the multifaceted—dividing-surface
variational-reaction-coordinate version of VIST seems to have brought the
theory to a flexible enough state that it is suitable for application to a wide
variety of practical applications to complex combustion reactions of polya-
tomic molecules. Although some refinements (e.g., the flexibility of pivot point
placement for cylindrical molecules like 0,%%) would still be useful, the
dynamical formalism is now very well developed. However, this formalism
is not included in POLYRATE, and so it is not reviewed here.

Harmonic and Anharmonic Vibrational Energy Levels

The partition functions thus far have been assumed to be calculated using the
harmonic approximation. However, real vibrations contain higher-order force
constants and cross terms between the harmonic normal modes, and they are
coupled to rotations. If the cross terms and couplings are neglected, each of
the vibrational degrees of freedom is bound by an anharmonic potential given by

Vi = 2 km()QE + k(0% + ()08 . (18]

where Roums Rmmms 20d R are the quadratic, cubic, and quartic normal
coordinate force constants and Q is the vector of normal mode coordinates.
In rectilinear coordinates, the relationship between normal modes is given by

Q=L ik -x(5) 119

where the transformation matrix is defined by the diagonalization in Eq. [92].
In curvilinear coordinates, the normal modes are defined by the Wilson GF
matrix method as described above. For the harmonic approximation, the series
is truncated after the first term, and the frequency o is given by

O = v/ Ry /14 [120]

The partition function for the harmonic approximation is

F
= PR JT Qi [122]

m=1

_pgHO ~HO
Oy =e PR Q. [121]
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E}O is the harmonic ground-state ener » which is calculated b
b gy y

h F
EHO — 5 > on [123]
m=1
where
~ HO 1
O [124]

and ®,, is the harmonic vibrational frequency of mode m, given.by Eq. [120].
For generalized transition states, F is replaced by F—1 in Egs. [122] and [123]
such that the imaginary frequency is not included.

Hindered Internal Rotations (Torsions)

One type of anharmonic motion is a hindered internal rotation, or tor-
“sion, which can differ substantially from a harmonic normal mode motion.
- Unlike many other anharmonic motions, torsions can be readily accounted
for even in large systems. It has been shown2-°5 that a vibrational partition
function that includes a torsion can be written as

Qvib = e—ﬂEOQtorst [12‘5]

- where O, is a torsion partition function and Qy, is the stretch-bend partition
function that ignores the torsional twist angle. A simple and effective equa-
tion’® for calculating Q. is

FR

~ ~ HO

Qir = Q,, tanh (—QQI ) [126]
"where QR s the free rotor partition function given by

_ (2nlkT)
O = B — [127]

Where I is the effective moment of inertia and o is the effective symmetry num-
* ber. O is called the intermediate partition function, which is the high-tem-
Perature limit of the harmonic oscillator partition function given by

kT 1
I_
Q= (128]

Where @ is the normal mode frequency relating to the torsion. The method
thus far has been defined for a single well or multiple wells that are symmetri-
. cally equivalent. For multiple wells that are not symmetrically equivalent, the
~extended method has been defined by Chuang and Truhlar.®°
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The frequency, the effective moment of inertia, and the barrier height W,
are related to one another by the expression®*°!

1

o= (Z)u o

where M is the number of wells as the torsion rotates 360 degrees. Therefore,
under the assumptions that the effective potential for the torsion is a single
cosine term and that the moment of inertia is a constant, only two of the three
variables need to be specified to calculate the torsion partition function. The
frequency can be determined from normal mode analysis, the barrier height
can be determined from electronic structure methods, and the effective
moment of inertia is described next.

There are several schemes for calculating the effective moment of inertiaf'
for internal rotation: the curvilinear (C) scheme of Pitzer and Gwinn,”®”3 which
requires the choice of an axis (typically a bond) about which the tops are rotat-
ing; the rectilinear (R) scheme of Truhlar,”* which only requires that one iden-
tify the generalized normal mode that corresponds to the torsion and divide the
molecule into parts that rotate against each other; the ok scheme of Ellingson et
al.,>s which requires that one identify a torsion coordinate as well as the general-
ized normal mode frequency corresponding to the torsion; and the ®W scheme
of Chuang and Truhlar.?® When the torsion is mixed with stretching, bending,
or other torsional motions in the generalized normal modes, the user must pick
the generalized normal mode that is most dominated by the torsion under con-
sideration. It is not always clear which scheme is most correct, in part because
real torsions are usually coupled strongly to overall rotation and sometimes to
other vibrational modes as well. As the tops becorme significantly asymmetric,
the R scheme begins to fail, and one should use one of the other methods.

The method of calculating the moment of inertia in the C scheme is
described here. Let M be the mass of the entire molecule and m; be the mass
of atom i, and let the principal moment of inertia be defined as I, where
7=1,2, or 3. All atoms in the molecule are divided into two groups rotating
with respect to one another; each group is called a top, and the lighter top is
taken as the rotating top. Let the coordinate system be defined such that the z
axis is the chosen axis of rotation and the x axis is perpendicular to the z axis
and passes through the center of mass of the rotating top, and let the y axis be
perpendicular to both x and z. At this point, there are three sets of axes: the
original Cartesian axes, the principal moment of inertia axes (labeled 1, 2, or3),
and the axes for the rotating top (labeled x, y, and z). It is important that these
sets of axis are all either right handed or left handed. The direction of cosines
between the axes of the top and the principal moment of inertia axis j are
defined as o/, &, and o. The vector from the molecule’s center of gravity
to the origin of coordinates for the rotating top is given by r, with its compo-
nents rq, r2, and 73 on the principal moment of inertia axes.
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The moment of inertia for the rotating top about the z axis is given by
A=Y "mi(xl +y7) (130}
i .

where the sum is over the atoms in the rotating top and x;, i, and z; (used
below) refer to the location of atom i on the newly created x, y, and z axis,
respectively. The xz product of inertia is given by

B = Z mix;2; [131]
The yz produce of inertia is given by

C= Z miyiz; [132)
The off-balance factor is given by

U=3 mx [133]

The reduced moment of inertia for internal rotation is given by

o (@U)* (B)
I—A—Xi:{——M—-#-—Ii—} [134]

where
B = o*A — o*B — o?C + U(od 7,41 — ARTORY [135]

and the superscripts refer to cyclic shifts of axes, such thatj -1 =3ifj=1,
andj+ 1 = 1ifj = 3. POLYRATE uses the value of I calculated for the lighter
of the two tops as the C scheme moment of inertia.

The R scheme does not require that the axis of rotation be chosen a
priori, but it relies on the generalized normal mode eigenvector of the mode
corresponding to the torsion to determine the axis. The equations for I in
this scheme are given elsewhere.”®??

The wk scheme simply takes the moment of inertia as”®

2
I= ——1—59—‘2/ [136]

Ororsion” O
where Ororsion 15 the frequency of the normal mode that most corresponds to
the torsion, ¢ is the torsion angle, and the partial derivative in Eq. [136]
must be supplied by the user. The partial derivative may be evaluated with
other internal coordinates fixed or along a torsion path where other degrees
of freedom are optimized for each value of ¢. The oW scheme uses the barrier

height rather than the second derivative with respect to the torsion angle.”®
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Morse Approximation I and Other Corrections for Principal

Anbarmonicity

Many other anharmonic methods can be applied, especially for smaller
systems. One way to approximate the accurate anharmonic potential along a
stretching vibrational coordinate is to use a Morse function:”® :

Vi = De(8) {€Xp[~Bpt () Qi (s)] — 1} [137)

where D, is the dissociation energy and the range parameter Bm,m 1s chosen
such that the force constant is correct at the minimum of the Morse potential:

Brim () = Eg"m 138]

The energy levels for the Morse approximation I are given by

ESL . = bon(s) <n + %) [1 — XM () <n + %)J [139]

where 7 is the level index, ®,, is the harmonic frequency, and xpp,» is the
Morse anharmonicity constant:

bw,,(s)

XMm = 4Dg(S) [140]

The choice of D, as the lowest dissociation energy of the system relative to
VMep(s) is referred to as the Morse approximation 1.2%3%%7

The Morse approximation is not appropriate for modes that have
Romm = 0. These types of modes include bending modes of linear systems,
out-of-planes bends, and certain stretching motions. Often such modes are bet-
ter treated by a quadratic-quartic model, given by

V., = %kmm(S) [QnS)] + B (8)[Que()]* (141]

Accurate approximations for this model can be determined using a
perturbation-variation method.”®%°

Spectroscopists call the force constants that have all indices the same the
principal force constants, while the anharmonicity associated with the princi-
pal force constants is called principal anharmonicity. The Morse and quadra-
tic—quartic approximations treat only principal anharmonicity. However, as
mentioned in Eq. [95], neglecting the cross terms between modes is a
much more serious approximation in rectilinear coordinates.”® Explicitly
including cross terms in rectilinear coordinates is expensive and cumbersome
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because of the large number of quartic cross terms. One practical step that can be
taken to minimize the importance of cross terms is to use curvilinear internal
coordinates.?®72190:101 Not only are the harmonic frequencies more physical
in curvilinear coordinates, but anharmonicity is much better approximated by
retaining only principal terms in the potential and neglecting couplings.

Calculations of Generalized Transition State Number
of States

The generalized transition state number of states needed for microcano-
nical variational theory calculations counts the number of states NG! in the
transition state dividing surface at s that are energetically accessible below
an energy E. Consistent with approximations used in calculations of the parti-
tion functions, we assume that rotations and vibrations are separable to give

NGT =3 :H[E — Vmep(s) — EGi (n, s)] NI [E — Vmep(s) — EGf (n, s),s]
[142]

where H(x) is the Heaviside step function [H(x) = 0 for x < 0 and H{x) = 1
for x > 0] and the rotational number of states are calculated classically.

QUANTUM EFFECTS ON REACTION COORDINATE
MOTION

In the previous sections, we quantized the F — 1 degrees of freedom in
the dividing surface, but we still treated the reaction coordinate classically.
As discussed, such quantum effects, which are usually dominated by tunneling
but also include nonclassical reflection, are incorporated by a multiplicative
transmission coefficient k(7). In this section, we provide details about methods
used to incorporate quantum mechanical effects on reaction coordinate
motion through this multiplicative factor.

In practice, we have developed two very useful approaches to the multidi-
mensional tunneling problem. In both of these methods, we estimate the rate con-
stant semiclassically, in which case it involves averaging the tunneling
probabilities calculated for a set of tunneling energies and tunneling paths. In a
complete semiclassical theory, one would optimize the tunneling paths;'% the
optimum tunneling paths minimize semiclassical imaginary actionintegrals,
which in turn maxirmizes the tunneling probabilities. We have found'®? that suffi-
ciently accurate results can be obtained by a simpler criterion® in which, for each
energy, we choose the maximum tunneling probability from two approximate
results, one, called small-curvature tunneling3’104 (SCT), calculated by ass-
" uming that the curvature of the reaction path is small, and the other, called
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large-curvature tunneling (LCT),>721:105-110 calculated by assuming that it is
large. The result is called microcanonically optimized multidimensional tunneling
(ROMT) or, for short, optimized multidimensional tunneling {OMT). The result-
ing VIST/OMT rate constants have been carefully tested against accurate quan-
tum dynamics,°>11111% and the accuracy has been found to be very good.

The SCT, LCT, and OMT tunneling calculations differ from one-
dimensional models of tunneling in two key respects:

(1) These approximations include the quantized energy requirements of all
vibrational modes along the tunneling path. As the vibrational frequencies
are functions of the reaction coordinate, this changes the shape of the
effective potential for tunneling.

(2) These approximations include corner-cutting tunneling. Corner cutting
means that the tunneling path is shorter than the minimum energy path.

The wave function decays most slowly if the system tunnels where the effective
barrier is lowest; however, the distance over which the decay is operative
depends on the tunneling path. Therefore, the optimum tunneling paths
involve a compromise between path length and effective potential along the
path. As a consequence, the optimum tunneling paths occur on the concave
side of the minimum energy path; i.e., they “cut the corner,””-%102:107:113-
119 Eor the purpose of analyzing the results, it is sometimes of interest to
also. compute an intermediate result, called zero-curvature tunneling (ZCT),
that includes effect (1) but not (2). :

The rest of this section will provide the details of the ZCT, SCT, LCT,
and OMT tunneling approximations. : :

Multidimensional Tunneling Corrections Based on the
Adiabatic Approximation

The adiabatic separation between the reaction coordinate and all other
F —1 vibrational degrees of freedom means that quantum states in those
modes are conserved through the reaction path. With this approximation,
we can label the levels of the generalized transition states. in terms of the
“one-dimensional” vibrationally and rotationally adiabatic potentials

V, = Vumep(s) + ESN(a, ) [143]

where a is the collection of vibrational and rotational quantum numbers and
EST(a,s) is the vibrational-rotational energy level for quantum state o and
generalized, transition state at s. Making the rigid-rotor~harmonic-oscillator
approximation, EST(a,s) for the ground rotational state reduces to the energy

level for vibrational state n = {ny,...np_1} and is given by

ESI(n,s) =Y hwm(s) <nm + %) [144]
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The ground-state adiabatic potential is defined with o = 0, and only the vibra-
tions contribute to the internal energy through zero-point energies in each
mode to give

VS = Vep(s) + Zi—a—&%’—(s—) [145]

The transmission coefficient is written in terms of the classical and quantum
probabilities, P& and P§, respectively, for transmission through or above the
adiabatic potential: Va(a, s):>*

fo” dE exp(—BE) ; P4 (e, E)

A
K" =T dE exp(~PE) 3., PA(%,E) [146]

The probabilities for classical motion along the reaction coordinate within the
adiabatic approximation are simply zero when the energy E is below the max-
imum V2 of the vibrationally adiabatic potential for state a, and one for ener-
gies above the barrier; L.e.,

PA(a, E) = H[E — VA (a)] (147]

where H is the Heaviside unit-step function defined below Eq. [142]. Evalua-
tion of the quantum probabilities Ps is more difficult, and two approxima-
tions are made to facilitate evaluation of the numerator of the transmission
coefficient.

- The first approximation is that excited-state probabilities are approxi-

mated by the probabilities for the ground state Psc, but for a shifted energy,

A _ pAG A AG
P = PAO[E - VA(@) + V2 [148]
where VAC is the barrier height of the ground-state vibrationally adiabatic
potential,
AG A

VAG = VA(@=0) (149)
This approximation assumes that the vibrationally adiabatic potentials of all
excited states have the same shape as the ground-state vibrationally adiabatic
potential. Although this approximation is not strictly valid, it is adequate for
two reasons. First, when tunneling is important, the temperature is usually low
enough that the transmission coefficient is dominated by the ground state or
excited states close to the ground state. Second, contributions of tunneling to
the rate constant become unimportant (i.e., ¥ — 1) as T becomes high enough
that excited states with significantly different vibrationally adiabatic potential
curves contribute more to the rate constant.
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The second approximation consists in the replacement of quantum prob-
abilities P§° by semiclassical ones

PSAG = {1 + exp[26(E)]} ! (150]
where 0 is the imaginary action integral: »
) 5>(E) L
8(E) = b~ J ds {2p.4(5)[VE(s) ~ E] }' [151]
s<(E)

where VE is the ground-state adiabatic potentlal defined in Eq. [145], and
s< and s are the classical turning points, i.e., locations where VS equals E.
The effective mass pg{s) for motion along the reaction coordinate is discussed
in the next section.. After these approximations, the semiclassical adiabatic
ground-state transmission coefficient takes the simplified form

wro=Bh dixepx(p_(g ‘EfngAG(E) [152]

which requires evaluation of semiclassical reaction probabilities for the
ground state only.

The integrals in Eq. [146] extend to infinity, but Eqgs. [150] and [151] are
only valid for energies below the top of the barrier (i.e., for E < VAG), which is
the tunneling region. For energies above VAC, the quantum effects (nonclassi-
cal reflection) are incorporated by assuming that close to the top of the barrier
the shape of the potential is parabolic, and in that case,*”

PSAG(VAC 1 AE) = 1 — PSAG(VAG _ AF) [153]

where AE = E — VAC, This equation provides a natural extension to Eq. [150],
and therefore, the semxclassxcal probability in the whole range of energies is

given by

{0, E < Ey
PSAG - {1 + CXP[ZG(E)]}—‘ EO < E < VAG 154
T} 1-PSAG(2vAS— E), VAG < E<2VAG _E, (154

1, 2VAG Ey < E

where Ej is the lowest energy at which it is posmble to have turmelmg (also
called the quantum threshold energy). For instance, for a bimolecular reaction
A+B—-C+D

Ey = max [Vf(s = —00), VE(s = oo)] [155]
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and for a unimolecular reaction A — B
1 | 1
Ey = max [Vf(s =sgr) + zhm}}, VS(s = sp) + -z—hm;] - [156]

where sg and sp indicate the value of s at the reactant and the product minima,
respectively.

Accurate Incorporation of Classical Threshold Energies
The transmission coefficient described above is appropriate*! for correct-
ing the adiabatic theory or equivalently?%>? the microcanonical variation the-
g Y q y

ory, A
which can be written

VT M)R rdE exp(—BE) ZP (e, E)

h;gT Zexp[ BVA( a)} [1.57]

Reaction coordinate motion is treated classically in this expression and the
lowest energy for reaction [i.e., at which PA(E, &) is not zero], or the classical
threshold energy, is the barrier maximum for the ground-state adiabatic poten-
tial VAG. CVT has a different classical threshold energy, which can be seen by
writing the CVT rate constant as

ECVT ﬁh@k Zexp { [ ,sS‘.’T(T)] } [158]

where sCVT(T) is the value of s that minimizes the quantized generalized tran-

sition state rate constant at temperature T as defined after Eq [15 ] above. The
classical threshold energy inherent in this expression is VG[sSVT(T)] instead of

VAG. Using the transmission coefficient k5AC to correct CVT instead of pVT

(or the adiabatic theory) requires correction for the different classical thresh-

old. The CVT rate constant including multidimensional tunneling (MT) in the

reaction coordinate is given by

kCVT/MT — KCVT/MT(T) kCVI'(T) ) [159]

where

 dE exp(-BE)PAG(E)
R e
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Similarly, corrections are needed for other theories that have inherent classica] .
thresholds different from VAC, such as conventional TST, in which VAG i,

Eq. [152] is replaced by
Vi€ =Vi(s=0) 161

Some of the variables explained here are shown in Figure 3 for more clarity.
POLYRATE actually calculates the transmission coefficent as

dE —BE)PSAG(E
MT Bf(;)o ex;x(li(ﬁ\zg) (E) [162]

where VAG g VE(s = s4G), Then, instead of using Eq. [159], one uses
Eq. [162] but first multiplies the CVT rate by

KETEAT) = exp B [VI6PT() - v29]) [163]
In early papers we were careful to distinguish kCVT/MT from «MT_ but in recent

papers, we often call both of these quantities kMT and Jet the reader figure out
which one is involved from the context. ’ :

AGOVTO(T) AGETY(T5,AG)
<Y

h\ AGHY(T)
AGETYTs)
AGA(T)
ol G(s.C VAG
VaG(s,CVTy 2 A
Y ] [{\
. ‘
[=]
= V. AG( 5)
2 AV,G(s] oA
LE AHro a ( ) Eint* /
EmGT(5,CVT)
: - th
Vmep(SnCVT) EmST(s)
N / e/mi
/ . Wuaep(s)
0— CVT dividing :f,;g: iding L/M =
Aiili surface ~y] &
5<0 >0
Reactants +———  S,CVT(T) 5,AGg ~—— Products

Reaction coordinate, s

Figure 3 Graphic illustration of some important quantities that often appear in
variational transition state theory. The transition state is indicated by the } symbol.
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Zero-Curvature and Small-Curvature Multidimensional Tunneling

From the relation between Eq. [150] and Eq. [151], at equal barrier
heights, tunneling effects are more important if the particle has a small mass
or if the barrier is narrower. This is the reason why tunneling is important
when a light particle (for instance, a proton) is being transferred between
donor and acceptor. The width at the top of the barrier in Vygp is determined
by the magnitude of the imaginary frequency at the transition state, and it is
sometimes assumed that a large imaginary frequency indicates a narrower bar-
rier and, as a consequence, more tunneling. However, Viyep(s) is not the effec-
tive barrier for tunneling, but as described above, the adiabatic barrier should
be used. Complete description of the adiabatic tunneling probabilities requires
definition of the effective mass in Eq. {151], which we discuss next.

The adiabatic prescription presented above may appear to be a one-
dimensional approach, because the adiabatic potential is a function of the
reaction coordinate s only. However, the reaction path is a curvilinear coordi-
nate and the curvature of the path couples motion along the reaction coordi-
nate to local vibrational modes that are perpendicular to it. The coupling
enters into the Hamiltonian for the system through the kinetic energy term
and leads to a negative internal centrifugal effect that moves the tunneling
path to the concave side of the reaction path. In other words, as also concluded
above from a different perspective, the coupling causes the system to “cut the
corner” and tunnel through a shorter path than the reaction coordi-
nate.” 2102107113119 The effect of the coupling is to shorten the tunneling
path (relative to the reaction path), decreasing the tunneling integral in
Eq. [151] and thereby increasing the tunneling probabilities. Neglecting the
coupling in evaluating the tunneling is known as the zero-curvature tunneling
. (ZCT) approximation. In this case, the tunneling path is the reaction path and
the effective mass simplifies to pg(s) = p. The ZCT method has the drawback
that tunneling is usually seriously underestimated.**

Marcus and Coltrin'’* showed that the effect of the reaction path curva-
ture was to give an optimum tunneling path for the collinear H + H, reaction
that is the path of concave-side turning points for the stretch vibration ortho-
gonal to the reaction coordinate. If we define dt as the arc length along this
new tunneling path, then the effective mass in Eq. [151] is given in terms of the
s-dependent Jacobian factor d&/ds by p.4 = p (d&/ds)?. The small-curvature
tunneling (SCT) method was developed to extend this approach to three-
dimensional polyatomic reactions and to eliminate problems with the Jacobian
becoming unphysical.""''® In this approach, an approximate expression for
d&/ds is written in terms of the curvature components coupling the reaction
path to the vibrational modes and the vibrational turning points.**®

The coupling between the reaction coordinate and a mode  perpendi-
cular to it is given by a curvature component defined by®’

IN -
B,.r = —[sign(s)] %'?('QLGT s) [164]

im
=1
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where #; is component i of the unit vector perpendicular to the generalized
transition-state dividing surface at s and L%} is component i of the eigenvector
for vibrational mode m perpendicular to i at s. If the reaction path is the MEP,
then

i = v(s) [165]

where v(s) is the unit vector tangent to the MEP at s as defined in Eq. [44]. If
the reaction path is the VRP, then fi(s) is defined by the procedure in the sub-
section ‘““Variational Reaction Path Algorithm”. Note that in either case, the
sign of the unit vector is chosen to be opposite or approximately opposite the
gradient vector. The modulus of these F — 1 couplings corresponds to the cur-
vature along the reaction path:

F-1 1/2
<= {Z [BmF<s>12} - 66

To evaluate the turning points we make the independent normal mode
approximation, where the potential Viu(s, Qm) in mode m at s along the reac-

tion coordinate is given by Eq. [118]. The turning point for vibrational state
#,, in this mode is obtained by solving the equation:

Vils, O = tm(my 8)] = Exiy (1 5) [167]
The sign of B,z depend on the phase assigned to the vector LST. This is not an
issue for harmonic calculations because in such calculations it always enters
quadratically. However, for calculations of anharmonic turning points, as in
Eq. [167], we must make the physical choice. With the sign of fi chosen as sta-
ted after eq. [165], we choose the turning point so that BrOm< 0, which

insures that the turning point is on the concave side.
In the harmonic approximation, the vibrational turning point of mode m

is given by the expression

[+ 1);11/2
ton (P, S) [————-——uwm(s) [168]

The latest version of the SCT method is limited to treatment of tunneling for
the ground vibrational state with harmonic treatment of vibrations. In this
case, we use the shorthand notation tys(1i = 0,5) = t(s) for the ground-state
turning points. :

In the original SCT method, we assumed that all modes were extended to
their turning points along the tunneling path, and this led to unphysically large
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tunneling correction factors for reactions with many vibrational modes cou-
pled to the reaction coordinate motion. The final version of SCT, called the
centrifugal-dominant small-curvature approximation in the original publica-
tion,” assumes that the corner cutting occurs in the direction along the vector
of coupling components Br(s) in the space of the local vibrational coordinates
Q. We make a local rotation of the vibrational axes so that Br(s) lies along one
of the axes, #1, and by construction, the curvature coupling in all other vibra-
tional coordinates, u;, i = 2 to F — 1, are zero in this coordinate system. The
effective harmonic potential for the #; vibrational mode is written as

1
V = Vmer(s) + EH[OJ(S)JZ“% [169]
where the harmonic frequency for this motion is given by
F-1 2\ 2
_ Bm F(S) :‘
®= = ©Op(s 170
(; 220,09 (170]

- The turning point £ for zero-point motion in this harmonic potential takes the

form

m=1
The Jacobian factor d&/ds for the path defined by these turning points is
expressed in terms of the curvature and turning points by

de/ds = { [1—a(s)]* + (df/ds)z}% [172]

where
a = [k(s) ¥(s)| [173]

This expression has a singularity when the turning point is equal to the radius
of curvature and is unphysical for values that are larger; i.e., > 1 /x. The pro-
blem can be solved by using an exponential form, in which case the effectiv
mass for the SCT method is written as '

/b = min { €50 {=23(5) — B(e))° + (dE/ds)*) [174]

From the above expression, it is clear that 3¢ <, and therefore, the trans-
mission coefficients obtained by the small-curvature approximation are always
equal to or larger than the zero-curvature transmission factors. As shown, if
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the curvature along the reaction path is small or intermediate, it is possible to
treat tunneling, without explicit evaluation of the tunneling path, by using an
effective mass, which is a function of the reaction path curvature.

Large Curvature Transmission Coefficient

The SCT method is appropriate for use-in reactions with small reaction
path curvature. For systems with intermediate to large tunneling, the large-
curvature tunneling methods!>771:105-110.120.121 have heen developed that
build on the adiabatic approach, but they go beyond it to include important
features affecting tunneling in large-curvature systems. The first important fea-
ture is that the tunneling paths are straight-line paths that connect the reactant
and the product valleys of the reaction. A straight-line path is the shortest pos-
sible path between turning points in the reactant and product valleys, but the
effective potential along this path is no longer the adiabatic potential and it
can have a maximum that is larger than the adiabatic barrier maximum. Short-
ening the path decreases the tunneling integral, thus increasing the tunneling
probability, while increasing the potential does the opposite. The optimal tun-
neling paths for large-curvature systems are often straight-line paths because
the effect of shortening the tunneling path dominates for these systems. The
second important feature is nonadiabatic tunneling, which is the possibility
of tunneling into excited states for exoergic reactions or the possibility of tun-
neling from excited states for endoergic reactions. Finally, the straight-line
tunneling paths go through regions of the PES, which are far from the MEP.
We call this region the reaction swath. In this section, we start by describing
the large-curvature tunneling method for systems dominated by tunneling
from/to the ground vibrational states of reactants/products. We then describe
how vibrationally excited states are included in the calculations and the gen-
eral procedure to evaluate the LCG4 tunneling probabilities.'*° Finally, we
describe how to carry out these calculations by sampling the reaction swath
efficiently.'2%1*1 ‘

At this point, it may be helpful to make some comments about how
excited states enter the tunneling calculations. First consider the zero-curva-
ture approximation. Here both the transverse vibrational and the rotational
quantum numbers are conserved in the tunneling region, and the process is
vibrationally adiabatic.’* Next consider the small-curvature approximation.
This is not really adiabatic because the tunneling path is affected by reaction
path curvature, which is a manifestation of coupling to transverse modes. !
Nevertheless, when we calculate a ground-state-to-ground-state process by the
SCT approximation, we do not actually assume that the reactants and
products are in the ground states.'*> What we assume is that the system
tunnels in the ground level of the quantized transition state.’?® Outside the
tunneling region, the transverse quantum numbers may be vibrationally adia-
batic, and probably they are vibrationally nonadiabatic whenever there are
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low-frequency modes; in addition, the process is probably usually rotationally
nonadiabatic.’**'?* But in the dynamical bottleneck region where tunneling
occurs, the transverse modes conserve their quantum number, or at least
they are assumed to do so.

Next consider the large-curvature approximation. Here one cannot even
assume that the transverse quantum numbers of high-frequency modes are
conserved even during the tunneling process itself.'** One cannot describe
the wave function in the strong-interaction region, where tunneling occurs,
in terms of asymptotic or adiabatic modes; instead one uses a diabatic repre-
sentation in which ‘all nonadiabaticity is associated with a single diabatic
mode, which correlates more than one asymptotic mode of the product.
This yields a recipe for calculating a realistic tunneling probability. To explain
the algorithm, we will first consider the case where all quantum numbers are
considered, even for this one diabatic mode; this case is treated in the Subsec-
tion below. Then we consider the case where tunneling proceeds in part into
vibrationally excited levels of the product.

Large-Curvature Tunneling Without Vibrational Excitations

As stated, the large-curvature tunneling (LCT) methods use the ground-
state vibrationally adiabatic potential to define classical reaction-coordinate
turning points for a total energy E by inverting the equation

VS(s)) =E,i=0,1 [175]

to obtain so(E) and s (E), which are the turning points in the reactant and pro-
duct valleys, respectively. One major departure from the adiabatic theory
is that tunneling at total energy E is not initiated just from the reactant classi-
cal turning points at so(E), but it occurs all along the entrance channel up to
the turning point. Another departure is that tunneling occurs along straight-
line tunneling paths connecting the reactant and product valleys, rather than
the curvilinear path defined by the reaction path, vibrational turning points,
and curvature couplings. Finally, tunneling is assumed to be initiated by vibra-
tional motions perpendicular to the reaction coordinate rather than motion
along the reaction coordinate.

The end points of the tunneling paths in the reactant and product valleys
are defined as 3¢ and 31, and they obey the resonance condition

Vi (o) = Vi (51) [176]

This expression provides a relationship between § and 3; so that either one or the
other is an independent variable. Unless stated otherwise, we use 3y as the inde-
pendent variable, and when §; appears, its dependence on 3 is implicit. The tun-
neling path is a straight-line path in mass-scaled Cartesian coordinates defined by

x(&,30) = xre(S0) + &€ 1(S0) [177]
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where & denotes the progress variable along the linear path. The unit vector
along the tunneling path is defined by

#(Go) = XRP(gl)a—PXRPGo) o [178]

where xgp(30) and xgp(51) are mass-weighted Cartesian coordinates at the ter-
mini of the tunneling path, which lie on the reaction path at 5y and 3y, respec-
tively, and &; is the length of the path

& = xrp(31) — xrp(S0)] (179]

so that & equals the distance from xgp(5¢) along the path. For simplicity of nota-
tion, we do not explicitly show the dependence of £p on 5y. To avoid confusion
with coordinates along the straight-line tunneling paths, x(&, 3y), we use the nota-
tion xgp(s) to denote mass-weighted Cartesian coordinates along the reaction
path. The reaction path can be either the MEP or the variational reaction path.

The total tunneling amplitude along the incoming trajectory at_energy
E includes contributions from all tunneling paths initiated in the reactant valley

SQ(E)

TO(E)=J dsy vﬁl(E,Eo)t'l(Eo)Tmn(Eo).sinx[Eo,1‘|(§0)]' | [180).

—00

The tunneling amplitude Truq(3o) is weighted by the classical probability den-
sity dSp/vr(E,30), which is proportional to the time spent between 3, and
8o + dSp, by the number of collisions per unit time with the vibrational turning
point in the tunneling direction, t1(5,), and by the sine of the angle [3p, 7i(30)]
between the vector tangent to the reaction path at 5y and #(5y), which is a mea-
sure of how effectively the perpendicular vibrations initiate motion along the
tunneling path. Tunneling can occur during the incoming and outgoing trajec-
tory, so the total tunneling amplitude should be 2T, (E). However, to enforce
microscopic reversibility, the total tunneling amplitude is given by

T(E) = To(E) + Ti(E) [181)

where T (E) is the tunneling amplitude for the outgoing trajectory in the pro-
duct channel. The expression for T;(E) is similar to Eq. [180] except that we
use §; as the independent variable instead of 5y and the quantities

vr(E, 31),771(51), and ¥[31,7(51)] are evaluated at locations along the reaction
path in the product channel. The integrals in Eq. [180] and the analogous
equation for T;(E) extend out to s = +oo, but quantities along the reaction
coordinate needed to evaluate the integrand are available on a grid that
extends to finite values of s. Calculations of the tunneling amplitudes need
to be converged with respect to:the limits of the grid.
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The local velocity for a point §; in the reactant channel (i = 0) or product
channel (i = 1) is given by

vR(E,5;) = {§ [E - Vf(Ei)]}%,i =01 [182]

The general expression for the angle y[s, §(5;)] between the unit vector 1(5:)
and the unit vector tangent to the reaction path at s is

cos xls, AE)] = 4(3:) %i, ~0,1 [183]

where ¥[5;, §i(5;)], which is needed in the expressions for To(E) and Ty (E), is
obtained by evaluating this expression at s — $i. The vibrational period ©(3;)
is evaluated for the effective vibrational potential along the tunneling path.
This effective potential is obtained by projecting the tunneling path onto the
(F — 1) vibrational modes perpendicular to the reaction path at 3y and comput-
ing the potential along this projected straight-line path. In the harmonic
approximation, the vibrational period reduces to

W) =2 =01 84

o, (s;)
where the harmonic\frequency is expressed as
F-1 1/2
0L() = { > [wm@-)qm(s.-nl} i=0,1 [185)

m=1

and the componehts of unit vector along the projected path are given by

_ W) L) 0.1 (186)
[

where the eigenvectors are defined in Eq. [92]. Again, the sign of g,, depends
on the “sign” of the vector LT, but it is not an issue because we use the har-
monic approximation.

The' tunneling amplitude for each straight-line path is approximated
using a primitive semiclassical expression

Taun(50) = Toun(31) = exp[~8(30)], i = 0, 1 [187]
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where the action integral along the linear path is

o) = 2 <L Slaa(8,50)] — VE(E0) | cos xlsi(850), o)
an ) |
+J dg [VE(&,30) — VS (30)]*
&

fre

+ J ) d§ Slsm(€,50)] — So)} COSX[SHI(&SO),H(SO)D [188]

1]

where for simplicity the dependence of the integration limits on S are not
explicitly shown. The intervals [0, &] and [&m, &p] along the tunneling path
indicate the reactants region (labeled as I) and the products region (labeled
as III), respectively. Regions I and III are called adiabatic because contribu-
tions to the action integral can be constructed from the information along
the reaction path and the adiabatic potential. In these adiabatic regions, the -
system tunnels through the adiabatic barrier and the tunneling direction is
along the reaction coordinate. Therefore, the contribution to the action inte-
gral in these regions is weighted by projections of the tunneling path along the
reaction path, which are given by the cos y factors. In the nonadiabatic region
[€1, £, the tunneling is along the straight-line tunneling path and uses an
effective potennal which is described below, in calculation of the contribution
from this region to the action integral.

The vibrational adiabatic potential that enters Eq. [188] requires deter-
mination of s for geometry x(£,39) along the tunneling path. The value of s is
defined such that the vector between the geometry along the reaction path
xrp(s) and the geometry along the linear tunneling path x(£,3p) is perpendicu-
lar to the gradient at that s value:

(2 50) — xar(s)) 2 = 0 189)

However, this equation may have multiple solutions. We are interested in two
sets of solutions that make s a continuous function of &. The first solution
s1(€,30) is obtained by starting in reactants with § =0, where s;(§ = 0,
50) = %0, and then performing a root search for s at Ag, with si(§ =0 ,30) as
the initial guess for the root search. The procedure is iterated for § + Ag using
s1(&,30) as the initial guess for the root search to construct a single-valued and
continuous function si(€,30). A second solution syi(&, ) is found by starting
in products with & = &p, where sm(§ = &p, 30) = 51 and iteratively decreasing &
to find a solution starting from the product channel. Once the value of s is
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found, it is possible to define the generalized normal mode coordinates
Omlsi(€,50)],i = TorIIL, by the relation

Omlsi(&:50)] = {x(8,30) — xge[si(&,50)]} - Ly [si(&, 30)],i = TorHI  [190]

and therefore, at every point along the linear path located in regions [ or 11, it
is possible to assign a unique set of local normal modes.

Next we discuss how the boundaries bétween the adiabatic and nonadia-
batic regions are determined. We begin by defining a zeroth-order estimate of
the boundaries on the reactant side, &7. A given geometry x(,30) lies within
this boundary (i.e., £ < 5?) if all three of the following conditions are met:
(1) The value of si(&,3o) calculated by Eq. [189] has to be smaller than $;:

s1(£,%0) < 31 forg < & (191)

(2) All generalized normal mode coordinates are within their vibrational
turning points-

[Qmfr(8,30)]| < |emlsE, o)l fore < &F [192]

where the turning points are defined in Eq. [167] but taking 7,, = 0.
(3) The geometry x(&,30) lies within a single-valued region of the curvilinear
coordinates; i.e.,

- F-1

- Z B [51(8,50)] Qm[st(8,50)] < 1for€ < & (193]

m=1

where the curvature components are defined in Eq. [164]. Note that LSt
occurs in the definition of both B,,r and Q,, so the sign cancels out and we
don’t have to worry about it here. Similarly, we define a zeroth-order estimate
of boundaries on the product side, £}, by the conditions:

Sm(&,go) > So for& > &ﬁ’n ) [194]
| Omlsm(&,30)]|< |tmlsm(E, %0)]| for & > En [195]
F-1 v
- Z Burlsm(8,30)]Omlsm (€, 30)] < 1for < &l [196]
m=1

The values of the zeroth-order boundaries are now used to determine
the boundaries, & and &py, in Eq. [188]. Two cases can arise, <";? < &?u, in
which the effective potential in Eq. [188] needs to be specified for the nonadia-
batic ‘region, and &? > E.:?n: in which the adiabatic regions overlap and the
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nonadiabatic region does not exist. We discuss the latter case first: When the
adiabatic regions overlap, the adiabatic potential in the interval [Eyy, & is
calculated as -

min { VElsi(5, o)), VElom(&, )] | o 197)
For the case £ < &%, we define a zeroth-order effective potential for region Il

VIO (&, 50) = VIx(E,50)] + Vi (&0, 50)

0
+ % 2:31() [Végrr(allbgo) - Viorr(&?wgo)]
& — &1
where the first term is the actual potential along the straight-line tunneling
path. The other terms correct for zero-point energy in modes that are within
their turning points at the boundaries. Within the harmonic approximation,
they are given by

(198]

e~

3 [hm,,,(s) — uo?, (s)Qf,,(s)] yi=1TlorIIl  [199]

1

s=s;(&] %0

N

Véorr(é?: 50) =

3
I

This zeroth-order effective potential is not guaranteed to match up smoothly
with the adiabatic potential at the boundaries. To correct for this deficiency,
another requirement is added to the three conditions above, namely, (4) the
adiabatic potential should be greater than or equal to the zeroth-order effec-
tive potential at the boundary. The boundaries &; and &p; of the nonadiabatic
region (labeled as I in Figure 4) are thus defined by

g, =0 if VO[s:(80,50)] = VIE(€9,50), = Lor Il [200]

otherwise the value of & is defined implicitly by extending the nonadiabatic
region until

VElsi(&i50)] = Vegr (8ir50)
for VO[si(E2,50)] < Vi (€),50), i = TorII 201]

For the case where the adiabatic potential is larger than the effective potential,
another correction is made to the effective potential. The difference in energy
between the boundaries is due to anharmonicity, and therefore, we introduce
nonquadratic corrections of the type

Vin(Go) = VE[si(&:, 50)] — Vgt (§:130),i =T or T 202]
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Figure 4 Effective potential contour plot of a reaction that illustrates some features
of the LCG4 method for the evaluation of a linear path at a given tunneling energy. The

linear path has a length &, between th

here we consider 7, = 0. The
nonadiabatic LCG3 region is
the condition

uares labeled as (a) and ( b). In the reactants side,

plotted linear path are zoomed in the 5q
we consider the case in-which VE[si(?,50)] > Vg’fo (£1,50), and in the products side, the
10y -

i (Em,S0). . -

Opposite case is considered; i.e., Ve [sm (&, 50)] > Ve

for the reactant channel (i =I) and for the product channel (f = III). With this
correction, the effective potential is given by

Veir(€,30) = VIx(8,%0)] + V1 _(&,,50) + Vian (0)
[Vm (E.vIIth) - Vcl:orr(él’go) + V;Hh (50) - V:inh (50)]

+ ﬂ corr
[203]

&HI - él

ginal boundaries &0 and &0y and zeroth-order effective potential

off posing the addition condition (4) results in the LCG3
method,’ whereas the use of the improved boundaries &1 and &y and effective
potential VI (&,5p) results in the LCG4 method.!1°

Using the ori
VH’O(Q,EO) and not im
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The tunneling amplitude T(E) accounts for tunneling initiated by vibra-
tional motion perpendicular to the reaction coordinate along the incoming and
outgoing trajectories. There is also the probability that motion along the reac-
tion coordinate can initiate tunneling at the classical turning point so-for the
reaction coordinate motion. The amplitude for this tunneling contribution is
exp{—6[so(E)]} cos x{so(E), iso (E)]} and for the reverse direction is
exp{~8][so(E)]} cos y{s; (E),q[so(E)]}. The total probability then becomes

Poim' (E) = [T(E)”
. (cosx{So(E),ﬁ[So(E)J} + cosx{sy (E),ﬂ[SO(E)]}>2
2
x exp{=20[s0(E)]} (204

This primitive probability can be greater than one because of the integration of
the amplitudes over the incoming and outgoing trajectories. Within the uniform
semiclassical approximation, the probability should go to 1 /2 atthe barrier max-
imum and we enforce this by the uniform expression in Eq. [205] for E < VAG 109

1 [PLCG4(VAG)J -t

LCGA /-y prim \"a LCG4 1.
P™(E) =41 *t5 PLCGH(V/AG) prim (E) p X oo T
prim (V2 1+ [PLess(p)|

[205]

This expression reduces to the primitive probability PLCG4 when it is suff-
ciently small and goes to 1/2 at the barrier maximum, VAS, We use an expres-
sion analogous to Eq. [153] to extend the uniform probabilities to energies
above the barrier.

Large-Curvature Tunneling with Vibrational Excitations

As we mentioned, exoergic reactions can have tunneling into excited
states and endoergic reactions can have tunneling from excited states. To
simplify the description of the LCG4 tunneling method, we only consider cal-
culations of the tunneling correction factor for the exoergic direction. How-
ever, we construct the tunneling correction factor to obey detailed balance,
so the tunneling correction factor for the endoergic reaction is the same. Tun-
neling is assumed to populate excited states of a single receptor mode p in the
product channel. The p mode is a linear combination of the generalized transi-
tion-state vibrational modes along the reaction coordinate. We provide a
description of how this mode is defined below. The primitive probability is
obtained by summing over final states with the vibrational quantum number
ny of the LCG4 receptor vibrational mode

Pmax

PLSHE) = Y PLCCHE, ) [206]

1y =0
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where 7,y is the maximum value of #, for which the primitive probabilities
are included in the sum. P,';ff“(E) is calculated for values of 7., from 0 to
Ny**(E), which is defined below, and used in an expression similar to
Eq. [205] to obtain a uniform expression for each #,,,. Although PLCS4(E)
increases monotonically with increasing 7,,,,, the uniform expression may
not, and so we choose the value of ., that gives the maximum value:

-1
1 [P (9] 1 1
pLCGH E)=max{1+1 max ’1;CG4( X
( iy 2 P%Si% (V;\G) 'max ) 14 ':Pi;nc‘i?‘t (E)] -1

207]

Details of the methods for calculating P'I;gg“(E, ny) for n, = 0 are described

above. Calculation of PLSC*(E, n,) for excited states requires (1) definition
of the p mode, (2) definition of N7#*(E), and (3) description of how calcula-
tion of the primitive tunneling probability is modified for n, # 0.

Mode p, also called the quasiadibatic or receptor mode, is given by the
projection of the F—1 normal modes on the straight-line tunneling path.
Recall that for 7, = 0, a unique tunneling path is defined for each starting
point for tunneling in the reactant channel, 9. The tunneling vector given
by Eq. [178] and the ending point for tunneling in the product channel,
$1(50), is determined by the resonance condition in Eq. [176], where we now
explicitly show the dependence of 5 on 5. For excited states, n, # 0, the end-
ing point of the tunneling path in the product channel depends on np; that is,
$1(S0) is replaced by 31(S0,7,). The resonance condition defining 51(50,7;)
requires calculation of the adiabatic potential with excitation in the p mode,
which in turn requires definition of the p mode. We start by defining the p
mode for an arbitrary straight line path connecting a geometry along the
reaction path at 3 in the reactant region, xpp(3p), with a geometry along
the reaction path at an arbitrary location s along the reaction path in the pro-
duct channel, xgp(s). The vector connecting these two points is

E(§o,s) = xRp(S) - ka(go) [208]
The normalized projection of this vector onto the normal modes ‘at location s
along the reaction coordinate defines the p mode for this straight-line path and

is given by

= T
pmlsiio) = — 20 Lo @) 209
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The harmonic frequency for the # mode can be calculated as

i
F-1

@, (s;50) = {Z [©m(5)gpm(s; go)]z} - [210)

m=1

This procedure is equivalent to orthogonalizing E(39,s) to the tangent to the
reaction path at s and computing the harmonic frequency along the resulting
direction decoupled from the other modes. ‘

The ground-state adiabatic potential is used in the reactant channel for
values of s up to the location sAC of the maximum in the ground-state adia-
batic potential curve. The classical turning point in the reactant channel for
energy E, so(E), is still defined by Eq. [175]. In the product channel, we define
the excited-state vibrationally adiabatic potential curve with quantum number
ny for each initiation point 3o by

VB(ny,s;30) = VS(s) + npbay(s; 30) - [2171]

The product-side endpoint 31 (S0, 7,) of the tunneling path initiated at 3o is
defined by the resonance condition

VE[np,51(30,1p);50] = VI (30) C o 12)

- The classical turning point at energy E on the product side is then given by

51(E,np) = §1[s0(E), mp] [213]

There can be more than one solution to these two equations. The functions
$1(30,7p) and s1(E, n,) are defined as the largest of these solutions.

The integer N*®* is the largest value of 7, that allows tunneling at energy

E. As mentioned, the quantities needed in the LCG4 calculations are stored on

a grid of s values ranging from s_ in reactants to s, in products. The smallest

initiation point in the reactant channel for a tunneling path with excited state

n, in products is defined by :

S0,min (1) = Max[s_, Smin1 ()] [214]

where Smin1(7p)-is the value of the initiation point in the reactant channel that
connects to the last point on the grid:

s+ = 51[Smin1("p), 7 [215]
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With these definitions, N;™*(E) is defined as the largest integer value of 7, that
satisfies -

VE{ 19,51 [S0,1in (), 7] S0.min () } < E [216]

This definition assumes that the excited-state adiabatic potential for values of s
greater than 31 [So.min (), 7,] are smaller than the adiabatic potential at this s
value. ‘ '

Calculation of the primitive probabilities for each value of », follows the
same procedure as outlined in the previous section. A major difference arises
because the straight-line tunneling paths are different for each excited state.
Generalizations of Egs. [177]~[179] are as follows: ‘

X(E.n 30» ”p,) = xRP(EO) + é ﬁ(§01 np) [217]
- _ xgrp[81(50, )] — xrp(30)
'|($o, np) = &P(Eo,np) [218]
Ep(S0,mp) = »XRP[§1(§07”17)] - XRP(EO)‘ [219]

" The expression for tunneling amplitude To(E,n,) has the same form as
" Eq. [180], with the terms in the integrand modified appropriately to include
“the dependence on n,. The expression for vr(E,5¢) remains unchanged,
“whereas those for 171(3p,7,) and ¥[S0, (S0,7,)] are modified only because of
“the change in the angle between the tunneling path and the reaction path.
“Changes to Tyn(30,7,) are more substantial and are discussed in more detail
.‘below. The expression for the reverse amplitude T;(E,n,) takes the form

- Ty(E,np) =J - ds1 vx " (E,51,15)v (31, 1) Teun 51, 7] Sinx[gl,fl(gl)]’
o s1(Enp) :
220]

“‘where we use § as the independent variable in this case and the reactant side
~‘terminus of the tunneling path, 5¢(31,7,), is defined by

VE[rp,51;30(51,m)] = VE [50(51,7p)] [221]

_ The product-channel velocity term has an explicit dependence on 7, because
ithe excited-state adiabatic potential is used in its evaluation:

UR(E,gl,np) = <§ {E - Vf[np,§1;§0(§1’~np)]}>% [222]

AS in the expression for To(E, np), the quantities 171(34,7,) and [51,7(51, 7))
--are modified only because of the change in the angle between the tunneling
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path and the reaction path. Finally, the tunneling amplitudes in the expres- -
sions for To(E, ny) and T1(E,n,) are related by

Ttun (517 np) = Ttun [EO (31 ’ np)7 np]‘ [223]

so all that remains is a description of the modifications needed in calculating

Ttun (§0a np)-
The tunneling amplitude takes the form

Toun(50,75) = exp[~8(So, )] 24

where the action integral in Eq. [188] is modified to read as

1

) 1(30.7p) 1
9(507’1[7) = Q’g)— (Jz d&{VaG[SI(E_ng()vnp)] - VS(EO)}

X cosx[Sx(f;,S‘o,”p)7fl(§07’1p)]

Eiir(So.7p) .
+ J d& [Vi(,30,5) — VE(o))?

&I (go,ﬂp) ’

1
z

p(30.72p) _ - G
[ de{ Vil e 50, )] — VG
Ein(S0.7p) )

x cos x[sm(E, 30, 7p), N(So, ”P)]) [225]

where for clarity we explicitly show the dependence of the integration limits-
on 5p and 7,. The major change for the action integral with an excited state in
the product region is that the excited-state adiabatic potential is used in the .
product adiabatic region. Note that the resonance condition in Eq. [212]
allows us to replace V&(30) by VB[n,,5 (S0,7p);30] if it is more convenient
computationally. Evaluation of s;(§,30,7,) proceeds by finding the solution: -
to Eq. [189], as described in the previous section, except that the geometry: -
along the straight-line tunneling path is replaced by x(&,5o,7,) as defined in
Eq. [217]. . :
Determination of the zeroth-order boundary & (39, 77,) between adiabatic: -
region I and the nonadiabatic region uses the same procedure as outlined in the- -
three conditions provided in Egs. [191]-[193], with appropriate modifications: -
to include the n,-dependence of the straight-line path. Determination of the
zeroth-order boundary £J; (59, 7,) between adiabatic region I and the nonadia--
batic region uses Egs. [194]-[195], with one further modification beyond the:*
one to include the 7,-dependence of the straight-line path. The turning-points
for the vibrational modes in the product region should include the effect of
the excitation in the p mode. The excitation energy n,bw,(s; 3) in Eq. [211}
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is partitioned into all F — 1 normal modes. Each of the » modes gets an energy
that is given by

[mm (S)qp,m (5§ EO)]Z

AEm(s;50,np) = nphwy(s; o) —— [226]
[op (53 50)]
so the energy of the generalized normal mode # is given by
- 1 -
En(s;50,mp) = zhmm (5) + AEu(s;30,7p) [227]

The harmonic turning point needed in the modified version of Eq. [195] is
evaluated at s = sy (&, 50,7,) and is given by

: _ b AE, [sui(&, 30, 7p); S0, 75 :
m »50) 350, = = 2
tpmism(€, S0, 7p); S0, 7p) i(pa)m PEEES) + (o 50, )]
| [228]

Once the values for &?(Eo,np) and £];(8o,7,) are determined for a given

30 and ny, they are used in the definition of &(So,7,) and &y (30,7,) using the

* general approach described in Egs. [197]-[201]. For the case that the adiabatic

regions overlap, i.e., £2 (5, ny) > E91(30,7p), we set the adiabatic potential in
‘the interval (£ (S0, 75), &1(S0, 7,)] as

min {Vf[sl(é’;, 50,10)], VB[, s (&, S0, 7,); ;0]} [229]

.~ For the case that & (39, 7,) < £X, (50, ny), we define the zeroth-order effective
potential V:i’fo(é,Eo,np) by the same form as Eq. [198], with modification to
Jinclude the 7,-dependence of the tunneling path. VI _(2°,5,7,) is given by
Eq. [199] noting that the right-hand side is evaluated at s;(&,30,7,) and the

correction potential at the region-III boundary is now given by

. F-1
Vioee (B, 50, 79) = 3 [Em(s; S0,7p) — %pmzm(s)an (s)} 230]

m=1 s=sm (E050,7p)
~ The boundary &;(30,,) is defined by modified forms of Egs. [200] and [201],

‘whereas for &;(39,7,), these conditions are modified to read as follows:

Em (S0, 1) ='§%I(Eo,n,,) . _
for VE[ry, sm (&, S0, 7p); 50] > Vg'fo(éﬁpgo,ﬂp_) [231]
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and

VE[np, sm (5, 50,75); 50] = Vit (Eur, S0, 75) .

for VE[ry, sm (&, 30, 7)3 30] < VI(E9,, 30, 72,) 232
Once the boundaries &1(30,75) and &y (5, 7,) are determined, the effective
potential is defined by modification to Eq. [203], where the anharmonic poten-
tial on the reactant side V! (o, 7,) is given by modifying Eq. [202] to include
np-dependence of the straight-line path and the n,-dependent zeroth-order
effective potential, and on the product side, it is replaced by

Vi (3o, 7p) = V& [”p’slll(ﬁmago,”p);go] - Vg}O(ﬁm,go,”p) [233]

One final modification is needed in the treatment of excited states in the
LCG#4 calculations. With Ty(E, np) and Ti(E,n,) obtained with the proce-
dures defined above, the primitive semiclassical probability for state n, is given
by the following modification to Eq. [204];

PLCG4(E’np) =|To(E,np) + T (E,np)lz

prim
5,0 <cosx{so (E),filso(E),mp]} +;:osx{51 (E,np);ﬁ[so(E),np]}) 2

x exp{—20(so(E),n, ]} [234] -

where the tunneling contribution from motion along the reaction coordinate »
initiated at the classical turning point, which is accounted for in the last term,
is an adiabatic process and therefore only contributes to ny, = 0.

Practical Methods to Evaluate LCT Transmission Coefficients

The action.integral in Eq. [225] can be evaluated by standard numerical
integration. procedures, and about 180 points along the linear path are needed
to get full convergence in a typical case. Some of those points may correspond
to the nonadiabatic region, for which information in the reaction swath is -
‘needed. In addition, calculation of the transmission coefficient with the above
procedure has to be repeated at many tunneling energies, of the arder of 80
energies, and it is not unusual to have to calculate several hundreds of energies .
along the linear path, which cannot be extrapolated from information about ';
the MEP. These large numbers of single-point energy calculations can make i
evaluation of the LCT probabilities directly from ab initio data expensive.

One way of reducing the computational cost is to interpolate some of the
energies along the linear path by a spline under tension rather than computing
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-them all directly. If at a given tunneling energy E; we have to evaluate a set of
-energies along the linear path {&;,...,&;,...,Ey }, where Nt can be for
instance 180, we may have a subset {;,..., &} of points in the nonadiabatic
region, which points cannot be extrapolated from the MEP (in this section, we
assume 7, = 0 for clarity). We can pick up a given number Np, of equally
spaced points in this subset and calculate all others by spline under tension
interpolation. This procedure can be repeated for each of the
{E1,...,Ei,..., Em;} tunneling energies, with Mt being the total number of
tunneling energies needed to evaluate the transmission factor (a common value
is Mr = 80). This algorithm is called one-dimensional spline interpolation
large curvature tunneling [ILCT(1D)], and in general, with a value of
Na. = 9, it is possible to get converged transmission coefficients with an error
smaller than 4%.%° This algorithm reduces the computational cost of the LCT
.transmission coefficients by about a factor of 5.

Another possibility is to consider the Mt x Nt grid and to interpolate
not only the points along the linear path but also the tunneling energies. Of
the whole set of energies {Ei,...,Ei...,Em;}; we take a subset
{E1,...,E; ..., Em}, where E; is the same in both sets, specifically the lowest
‘energy at which tunneling is possible, and Ey, = En coincides with the top of
‘the vibrationally adiabatic barrier VAC. The difference is that the second
-subset includes only M equally spaced energies of the total Mt energies. At
tthis particular set of energies, we also build a subset {§;,...,&;,...,En} of
the {&;,...,&;,...,&y, } original set of progress variables where &; is the
same in both sets and £y = &y = &p, but as before, the second subset includes
only N equally spaced points instead of the total Nt points. The subsets are
built in this way because when squared, the M x N and Mt x Nr grids
have the same boundaries. In fact the M x N grid is transformed in a unitary
‘square by performing the following scaling:

- E,‘/ -‘-,El

E; and E, = S [235]

—EM—E] v P,j’

-where # =1,...,M and j = 1,...,N. The grid is interpolated using a two-
-dimensional spline under tension algorithm, and so this method is usually
call ILCT(2D).'?! Any given geometry specified by (E;, &} and that belongs
to the Mt x Nr grid can be retrieved from the M x N grid by interpolation,
because any geometry that belongs to the first grid belongs also to the second
one. It has been shown for the reaction of the CF; radical with several hydro-
carbons that the ILCT(2D) algorithm produces converged results with a rela-
/tive error of less than 1% using a 9 x 11 grid with respect to the LCG4 full
~calculation (80 x 180 grid). Due to the good performance of the ILCT(2D)
algorithm, we highly recommend its use for the evaluation of the LCG4
~transmission factors. :
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The. Microcanonically Optimized Transmission Coefficient

For a bimolecular reaction of the type A + BC — AB + C, where A, B,
and C may be atoms or groups of atoms, the reaction path curvature is a func-
tion of the skew angle, which is the angle between the gradient of V along the
reaction path in the product channel and the gradient of V along the reaction
path in the reactant channel. If we consider isoinertial coordinates, the skew-
angle is defined by

1/2
| mamc
B = cos <(MA e mc)) [236]

and it is related to the reaction path curvature by

dxk dxP  dxR\ dxR
- ds ds

+0o
J K(S)dS —-(K‘—‘ ?

= —(1 +cosB) [237)-
-0 ) - .

where x” and x® are the geometries in the reactant and product valleys, respec-

tively. The skew angle is close to n/2 when B has a much larger mass than &~
and C, and it is close to zero when B has a much smaller mass than A and C.-
Small skew angles lead to large curvature. In Figure 5, two examples illustrate:”
the curvature of the reaction path. For the reaction H + H, — H; + H, the
skew angle is B =60 degrees (Figure S5a), whereas for reaction”
Cl+ HCl — CIH + Cl, the skew angle is only B = 14 degrees (Figure Sb). Im
general, for a bimolecular reaction, the curvature of the reaction path is large
when a light particle (like a proton) is being transferred between two heavy

0 | TG S N ST SO0 WDt

x; (bohr) x, (bohr)

Figure 5 Contour plots in Jacobi coordinates for (a) H+H; — H, +H and
(b) C1 + HCl — CIH + Cl reactions, respectively. The MEP is indicated in both figures:
- toillustrate the larger curvature in the latter case. Figure (a) also shows other alternative:
tunneling paths (see text). .

ihi
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atoms, although this need not be the case for unimolecular reactions.'?® These
systems are usually called heavy-light-heavy reactions, and we expect large
tunneling effects in those cases. In fact, it is well known that the SC approx-
“imation may seriously underestimate tunneling for heavy-light-heavy sys-
tems, and therefore, we have to search for a better tunneling path.'%?
Figure 5a shows a plot with four possible paths for a given tunneling energy
E. The points on the MEP (labeled as S< and s.) that correspond to a parti-
cular tunneling energy, in both the reactant and the product sides, are called
classical turning points of reaction-coordinate motion, and they correspdnd
to the limits of integration of Eq. [151]. The longest, but energetically more
favorable path, is the MEP [labeled as (a) in Figure 5a], whereas the shortest
“path, but with the highest energy, corresponds to the straight-line path
“[labeled as (d) in Figure Sa]. In between there are an infinite number of paths
that connect reactants to products at that particular tunneling energy (among
them is the SC path; which is labeled as (b) in Figure Sa). Among all the pos-
sible paths, we have to find the one that has the largest tunneling probability,
‘which is equivalent to finding the path that, for the correct boundary condi-
tiens, minimizes the action [labeled as (c)], i.e., the so-called least-action path
" {LAP),10%124,126,127 Tunneling calculations based on the LAP are called least-
action tunneling (LAT). Some approximate methods try to find the LAP
~without its explicit evaluation,'?® because the search for the LAP is often
-unaffordable or not worth the cost for polyatomic- systems. One way to
“circumvent this problem is to evaluate the probability along the straight-
line path, which is the kind of path®198129-131 h ot dominates in the large-
curvature limit and is usually called the large-curvature path (LCP). We can
compute both the SCT and the LCT (the T in the acronym stands for tunnel-.
ing) -probabilities, the first being accurate for small-to-intermediate curvature,
-whereas the second is accurate for intermediate-to-large curvature (and also
~often reasonably accurate even for small-curvature). As the objective is to
find the tunneling mechanism with the largest tunneling probability, ‘an
-alternative to searching for the LAP is to choose between the maximum of
the SCT and LCT probabilities. This new probability is called the microca-
~nonically optimized multidimensional tunneling probability, P*OMT and it s
given by*!

PpHOMT _ mEax { ﬁiggg [238]

It has been shown that the WOMT transmission coefficients are comparable in
accuracy with the LAT transmission coefficients for atom—-diatom reac-
tions. % Often we just.say OMT without including the microcanonical speci-
Bcation in the algorithm (OMT can also mean canonical OMT in which we
first thermally average the SCT and LCT probabilities and then choose the
larger transmission coefficient). The resulting VTST/OMT rate constants
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have been tested carefully against accurate quantum dynamics,'%11%:112 34
the accuracy has been found to be very good.

Sometimes we just say VIST/MT. The MT acronym {“multi-dimensional
tunneling”) can denote ZCT, SCT, LCT, or OMT, all of which are multidimen-
sional, but we usually use SCT or OMT when we carry out MT calculations.

BUILDING THE PES FROM ELECTRONIC
STRUCTURE CALCULATION

For the vast majority of chemically interesting systems, a potential energy
surface (PES) is not available. When this is the case, there are two options: Create
an analytic potential energy function (PEF), or use direct dynamics.5%'1%132.The
traditional route of creating an analytic high-level PEF requires considerable data
(from electronic structure or experiment) and human development time. A new
method called multiconfiguration molecular mechanics (MCMM),133-13% which
allows more straightforward creation of a PES from limited data, has recently
been developed and is described below. For small to moderately sized systems
where electronic structure gradients and Hessians are not overly expensive, direct
dynamics is typically the method of choice.

Direct dynamics has been defined as “the calculation of rates or other
dynamical observables directly from electronic structure information, without
the intermediacy of fitting the electronic energies in the form of a potential .
energy function.”"*? In this method, information about the PES is calculated
by electronic structure methods as it is needed, i.e., “on the fly.” For example,
consider the calculation of the MEP using the steepest descent method. A
Hessian calculation is done by electronic structure theory at the saddle point,
and a step is taken in the direction of the imaginary frequency. At this new
geometry, a gradient is requested, which is then calculated using electronic
structure theory. That information is passed back to the MEP calculation, a
step is taken in the direction of the gradient, and once again a gradient is
requested at the new geometry. This iterative process continues until the
MEP reaches the desired length, and then it is repeated for the other side of
the MEP. In a CVT calculation, Hessians must also be calculated at several
points along the path to determine the vibrationally adiabatic ground-state
potential energy curve and free energy of activation profile for each value of s.

Achieving chemical accuracy by electronic structure calculations is
computationally expensive, and the time required calculating a rate constant
is governed almost entirely by the time spent calculating the gradients and
Hessians. In addition, the accuracy of the rate constant depends on the accu-

-racy of the electronic structure method. Therefore, the user must make judi-
cious decisions about the length . of the MEP, how often Hessians are
calculated, whether to use options like LCT that require extra information
about the PES, and which electronic structure method to use.
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Direct dynamics calculations can be carried out by interfacing an electro-
«nic structure package with POLYRATE, and several such interfaces are avail-
able, including MORATE,*'%*136 GAUSSRATE, 3" GAMESSPLUSRATE, 138
“MULTILEVELRATE,"** MC-TINKERATE,*° and CHARMMRATE. 14!
l A key point to be emphasized here is that using so-called “straight direct
“'dynamics” may not be the most efficient approach.'*? In straight direct
.dynamics, whenever the dynamical algorithm requires a potential energy, a
_gradient, or a Hessian, it is calculated by a full electronic structure calculation.
. Such algorithmic purity provides one extreme on the spectrum that spans the
‘range from straight direct dynamics to fitting a global potential energy
function. However, there are several intermediate possibilities in this spec-
trum, corresponding to more economical ways of combining electronic struc-
- ture theory and dynamics. As these algorithmic possibilities are fleshed out, it
_isnot-always possible to distinguish whether a calculation should be classified
as fitting, as local interpolation (a form of direct dynamics), or as direct.*3 In
ifact, such classification is less important than the ability of the algorithm to
“:reduce the cost for given level of accuracy and size of system, to allow for a
«given level of accuracy to be applied with affordable cost to larger systems, or
~ito allow more complete dynamical treatments such as large-curvature tunnel-

~+ing, a more expensive treatment of anharmonicity, or a trajectory-based esti-
 mate of recrossing. This section will consider interpolation schemes as well as
“straight direct dynamics.

Direct Dynamics with Specific Reaction Parameters

Direct dynamics with specific reaction parameters (SRPs)'32 involves the

/s of an electronic structure method that has been adjusted to reproduce
important data for a specific reaction, followed by determining the reaction
~Tate using direct dynamics. The adjusted method is typically parameterized
to-agree with the correct forward barrier height and possibly also with one
+‘experimental or high-level energy of reaction, but it may actually be parame-

“terized for any property that is important for the specific reaction, for
“example, the potential energy profile along the reaction path.'**

" When using experimental data, the barrier height is sometimes approxi-
-mated by the activation energy, although this is not recommended because
“they may differ by several kcal/mol. High-level frequency calculations may
“be carried out for reactants and products, yielding an approximation to their
- Zero-point energy and heat capacity, and these data may be used in combina-
;,:}floﬂ with the experimental enthalpy of reaction to calculate a good approx-
JAmation to estimate the Born-Oppenheimer energy of reaction. Alternatively,
:the barrier height and energy of reaction may be calculated from high-level
€Ctronic structure methods, such as a correlated wave function theory
I“density functional theory. Unfdrtuna,tely such calculations; although
ften affordable for stationary points, may become prohibitively expensive
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for direct dynamics due to the large number of gradients and Hessians
required.

In the original application,132 the SRP method was applied to the :
following reaction: ‘

CIm(H,0), + CH3Cl' — CH3Cl + QI (H20),, n=0,1, 0r2  [23)

In this particular example, a neglect of the diatomic differential overlap
(NDDO)145 146 1 ethod was created based on semiempirical molecular orbital
theory, namely AM1.147:148 The resulting method was referred to as NDDO-
SRP. The adjusted parameters were the one-center, one-electron energies, Uffu, E
which were adjusted to achieve the correct electron affinity for Cl and the cor= -
rect barrier height for the # = 0 reaction. The NDDO-SRP rate constants were:
compared with those calculated using an accurate PES; the errors for the CVT/
SCT rate constants ranged from 39% at 200 K to 30% at 1000 K for the
unsolvated complex. When considering the enormous amount of time required.
to create an accurate PES compared with the relatively fast SRP “direct
dynamics calculation, these results are very encouraging. The method also
gave good results for the solvated reactions of Eq. [239], where n =1 and
n=2.

Interpolated VIST

MCMM :

Multiconfigurational molecular mechanics (MCMM)133’135 is am
algorithm that approximates a global PES by combining molecular mechanics:
(MM) with a limited number of energies, gradients, and Hessians based on
quantum mechanics. (This is a special case of a dual-level strategy in which -
one combines a lower and a higher level.) MCMM is an extension of conven-
tional MM (which is only applicable to nonreactive systems) to describe reac:
tion potential energy surfaces. It extends the empirical valence bond:
method'™ so that it becomes a systematically improvable fitting scheme. :
This is accomplished by combining the rectilinear Taylor series method of -
Chang, Minichino, and Miller's%!3! for estimating Vi, in the local region
around a given geometry with the use of redundant internal coordinates71’_ .
for the low-order expansion of the PES and the Shepard interpolation meth- .
0d. 152153 The key to MCMM is the limited number of high-level quantum.
mechanical data required, because, whether or not one uses interpolatiomr O
MCMM, the vast majority of time required to calculate a rate constant is con=".
sumed by the electronic structure calculations. It has been shown that poten-.
tial energy surfaces created using 13 or fewer Hessians can yield accurate rate:
constants.!3* Even greater efficiency can be achieved if one is certain chat:';j
large-curvature tunneling paths need not be explored and/or if one uses partial
high-level Hessians.'*®
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In MCMM, the Born-Oppenheimer PES jg estimated as being the lowest
eigenvalue of the 2 x 2 potential matrix V: :

Vit=Vo Vip | 0 [240]
Viz Vo~V |~

where Vi, corresponds to the molecular mechanics potential function asso-

ciated with the well on the reactant side, V,, corresponds to the molecular

mechanics potential function associated with the well on the product side,

and V1, corresponds to resonance energy function or resonance integral.
The lowest eigenvalue V(q) of the matrix in Eq. [240] at a given geometry,

q, is given by

V(@) = 3{ (V2a(@) + Vaa@) = [V ) + Vg o wWa@?'} ey

- where V17 and V2, are calculated by molecular mechanics using the connectiv-
ity of reactants and products, respectively, and where q denotes either the R or
X coordinate set of Eq. [36] or a set of valence internal coordinates,28-68-72
such as stretch, bend, and torsion coordinates. Therefore

Vi2(9)* = [Vi1(q) - V(q)][Vaa(q) - V(q)] (242]

Using a suitable quantum mechanical electronic structure method, the energy,
gradient, and Hessian can be calculated at an arbitrary geometry, q®), which s
called an interpolation point or a Shepard point. Near q®, vy (q), V(q), and
V22(q) may be expanded as.a Taylor series, yielding

V(g k) VO 4 o' A gk +%Aq(")' R Ag® [243]

where
AqW) = g — g [244]

InEq. [243], V®, g® and £&) 4re the energy, gradient, and Hessian, respec-
tively, at reference point q®). The diagonal elements of ‘Van can be expanded
around reference point q(*), yielding

v o1
| Vel @iR) = VIO 1 gl Aq0 120010 0 Aqh) g
Where
an, :k) GZV,,,, .
Vi = Vin(q®), g0 = (——) £ = (- [24¢]
i 0q q=q® ? 9q0q g=q®
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Substituting these expressions into Eq. [242] yields an analytic expression for
V12(q) in the vicinity of reference point q%), given by

Via(qik) e (Vgle)_ V(/e)) ( Vz(k)_V(k)) s ( Vz(/a)_ V(k)) (ggk)_g(k)) t Aq®
X (ngJ_ V(k)) (ggﬂ_g(k)) f Aq® % (Vz(k’— V‘k)) Aql® (fgk)_ f(k))
x Aq®) 4 %(ka)— V(k)) Aqt® (fgk)_f(k)) AqW 4 [(gglﬂ_g(k)) ' Aq(@]

T
y [ (0 -g) Aq(k)J 247

Now that expressions for Vi1(q), Vi2(q), and V,, () are available in the vicj-
nity of q(¥), an expression must be derived for V(q) that is globally smooth as q
approaches different reference points on the PES. In MCMM, this is done
using a Shepard interpolation. 52153 Suppose that a collection of M “Shepard - -
points” is available, for which there are ab initio energies V), gradients gk,
and Hessians f*), By using the Shepard interpolation method, the resonance
energy function is given by '

M . ,
Vi2(@) = Y~ Wi(q) Viy (s &) [248] -
k=1
where the normalized weight is given by
wi(q)
W.(q) = 2\ 249
e = 249

in terms of unnormalized weights w, (discussed below) and in terms of the

normalization constant
M+2

w(@) = wiq) | [250},
I=1

where the upper limit of the sum is now greater than in Eq. [248] because this sum
also includes van der Waals minima (for biomolecular reagents) or chemical ‘
minima (for unimolecular reagents) corresponding to the two molecular -
mechanics structures; the resonance integral is zero by definition at these two
structures.

In Eq. [248], V), is a modified quadratic function given by
Via (G £)1° = [Via(q; k) Pu(q; &) sy

where u is a modifier given by

=5
k) = e""(W) a@RI>0 gy
0, [Via(q; k)P <0 | 3




Building the PES from Electronic Structure Calculation 195

where & is 107° E}, and E, is one hartree. In practice, the expression for
“ - Vi2(q; &) is given by

Vilai O =D 1+ () 42 (g ) ' a®)] ps3

~ Choosing constants in Eq. [253] such that Eq. [243] is reproduced when
Eq. [251] is substituted into Eq. [241] yields ‘

k k
D® = AV A YL o [254)
k
por _g —g® gl g 1255]
AvH AV
1 1 2
k k
CH = (81 — 8™ (gl — ) 4 (g — g®)
: (R) _ k) ) _ (k)
(k) _ (k)N £ —f £ -f
(g1 —g")' + N7 [256]
AVH = vy _ k) [257)

? We can recap this procedure as follows: Electronic structure calculations are
.- used to generate the Taylor series V(g;k) of Eqgs. [243] and [244] in the vicinity
.. of point ¢®, This V(q) and the Taylor series (Eqgs. [245] and [246]) of the reac-
~tant and product MM potential energy surfaces are substituted into Eq. [242]
+to yield a Taylor series of Vi, in the vicinity of q(k).

Next we will interpolate V;,, which is much smoother and easier to
i interpolate than the original V. As discussed further below, the interpolation
of V1, is carried out in valence internal coordinates®®%%72 1 avoid the neces-
< sity of achieving a consistent molecular orientation, which would be required
““for interpolation in atomic Cartesians. i v

: Finally, we must specify the weighting function wi(q) -to be used for
- Interpolation via Eqs. [248] through [252]. Several conditions should be met
. by the weight wy, associated with a Earticular geometry q'¥'. These conditions
- 'involve the behavior of wy near q'® and near the other interpolation points
4% with k' # k. The conditions assure that w, is smooth enough (zero first
and second derivatives near all interpolation points) that the left-hand side
»-of Eq. [248] has the same Taylor series, through quadratic terms, at q® as
. that of V7, (q; k). The conditions are

wi(@®) =1, allk [258]
wp(q®)) << 1, K #£k [259)
Gkl a0 alk [260]
0q |goqu) B
2.
Twel oo Ak 261]
oq? q=q(¥" ’
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A variety of functional forms could be chosen for the weight function. A good
choice is critical to the success and efficiency of the method. The choice made
in Refs. 133 and 134 is

-4
wi(q) = M[i‘(q“)]l | [262]
'; [di(q)*
where
d(@) = |3 (g— g2 | 1263)
j=1 :

Note that Eq. [262] is the smoothest possible function that satisfies Egs. [258] -
to [261]. The recommended jp,, for atom-transfer reactions is 3, where 41, 42, -
and g3 are the forming bond distance, the making bond distance, and the non-
transferring bond distance, respectively,

Although the PES is uniquely expressed in Cartesian coordinates, the She-
pard interpolation is done using internal coordinates to avoid ambiguities relat-
ing to the orientation of the system. Therefore, the data are first transformed’
from Cartesians to internal coordinates, the Shepard interpolation is then com- -
pleted, and the potential and derivatives are finally transformed back to Carte- -
sians. For a detailed description of how this is accomplished, see Kim et al.}¥

A decision must now be made on where to locate the Shepard points. In. -
addition to the three required Shepard points corresponding to the reactant
well, transition state, and product well, other points can be added to improve
the accuracy of the surface. A calculation with no additional points is referred
to as MCMM-0. A systematic method for choosing the additional points has
been presented by Albu, Corchado, and Truhlar.’®* The first supplementary
point is placed on the dynamical bottleneck side of the MEP, where the energy
is equal to one quarter the barrier height. This calculation with four She-
pard points is referred to as MCMM-1. Additional Shepard points may be
added systematically to yield a sequence of approximations MCCM-2,. .., ‘
MCMM-n, where MCCM-# uses 10 nonstationary points. The user may spe-
cify as many additional points as needed to achieve the best accuracy for the
PES. For a full discussion of the accuracy of rate calculations, see Ref. 134.
Once six nonstationary points have been used in MCMM-6, CVT/SCT rates. .
are typically within about 15% of the corresponding direct dynamics calcula- -
tions. MCMM thus provides efficient calculations of reaction rates using only
a small amount of high-level data. '

IVIST-M R
Interpolated variational transition state theory by mapping (IVTST-M)**
is simpler than MCMM in thar jt does not involve molecular mechanics.
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IVTST-M has two goals:

(1) to minimize the length of the path that must be calculated, and
(2) to minimize the number of Hessians that must be calculated.

4

The notation for an IVTST-M calculation is VT ST-M-H/G, where H and G
indicate, respectively, the number of additional Hessians and gradients used.

Interpolation of Vigp uses the G + 3 energies that are available. These
energies include those of the stationary points. corresponding to the reactant,

ducts for a bimolecular reaction are ats = —oo and s = +oo, respectively, and
because interpolation over an infinite interval is less desirable than interpola-
tion over a finite one, it is advisable to map the potential Vmep(s) onto a new
function, Vygep(z), based on a new variable z:

2 S — 8o
= Earctan( I ) [264]

‘where sy and L are parameters discussed in the next paragraph. This mapping.
- changes the interval for the potential function from ( —00,+00) for Vyep(s) to
- {=1,41) for VMep(z). '
The interpolation is more efficient if one calculates sy such that the new

function is centered where the important changes are occurring as the reaction
+ takes place. A simple approach is to set sa and s3 to the values of s where the
potential on the reaction path is equal to half the barrier height (measured
~ from_reactants and products respectively) and then to set' so equal to the
~ mean of s and s9, but this may cause unphysical values of s for very exother-
. “mic or endothermic reactions, Therefore, it is recommended that so should be
= calculated using s and sp defined as :

SA = —min (]sX],ng) [265]
sp = min (|s3],s9) ‘ [266]
where
[ VMmep(s = 0) — Vivgp(sg)
= —\/ o/ 267
_ [ Ymer(s = 0) — Vigp(sp)
= \/ |otu 2

0 which i js the reduced mass used to scale the coordinates of the system in
};:quﬁ {36], ot is the imaginary frequency of the transition state, and sg and sp
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correspond to the values of s at the reactants and products, respectively. Onge
sa and sg have been determined, s, is calculated using the arithmetic meap:

_ (sa+sp)
2

o [269]

The range parameter L js estimated from the width of the reaction path:

L= \__HSA;“B) 270]

VmEp(s) can now be successfully mapped to Vgp(z). Ten extra points are
then placed between the last gradient on the reactant side and 2= -1, and 10
extra points are placed between the lagt gradient on the product side and
z = 1. These points, whose energies are calculated in the following steps, are
used along with the gradient calculations to create a spline-under-tension
potential energy function along the reaction path.

The energy of these 20 additional points is estimated using the Eckart
potential in Eq. [271] whose terms are defined in Egs. [272]-{276]. ’

AY By

VMEP =m+m+c [271] |
_ Eck :
Y = exp (SL&TS?S)) 272] -
A = Vier(sp) — Viep(sg) 273]
C = Vmep(sg) (274
B = [ZVMEP(S = O) —A- ZC] + 2([VMEP(S = O) - C} )
X [Vmep(s = 0) — A — ) 275

sgk = —Bek (s)Iln (g) : [276]

where LE is a new function, [Eck i calculated for each nonstationary points
such that the Eckart potential goes through Vmep(s) at that s as well as at reac..

tants, products, and saddle point. At the saddle point only, LEk(s) js "
calculated using the imaginary frequency: : .

LE(s = 0) = x/zwm(w 0) = AlVauer(s = 0) 277
Hlot["B

The G + 1 values of LEk(s) are then mapped onto the [-1,+1] interval using;
Eq. [264]. The values of LEek(y =~1) and LE(z = 11) are approximated.;
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‘using a quadratic polynomial that has been fitted to the last two G points on
“the reactant and product sides of the saddle point, respectively. The
continuous function for LE*(z) (from z = -1 to z = +1) can now be calcu-
lated using a spline under tension based on values of LE*(z) and the saddle
point, the G nonstationary points, and the approximated values at z = —1
and z = +1. At this time, the energies for the 10 extra points on each side
of the saddle point are calculated using an Eckart potential of LE(z).

Finally, using the G + 23 energies between z = —1 and z = +1, Vmep(z)
is.calculated using a spline under tension. This provides an energy along the
‘reaction path from s = —co to s = +00. For more details about the minor
“adjustments to the theory needed to account for a unimolecular or association
reaction rather than a bimolecular reaction with bimolecular products, see

Ref. 154.

Once the MEP has been calculated, the moments of inertia I{s) and the
frequencies required to calculate the partition function must be determined.
“The determinant of the moment of inertia is calculated at the saddle point
and the G nonstationary points. (The values of this determinant for bimolecu-
“lar reactants and products are assumed to be infinity.) The G + 3 values of I (s)

are ‘mapped using Eq. [264] to yield I(z). Because the moment of inertia
“changes as the square of the geometry and to keep the interpolant in a conve-
/nient numerical range, one actually interpolates (I(z!)/I (2))"* rather than I(z)
atthe G + 3 points. Finally, a spline fit is created using this function to give I(s)
“for any s.

Interpolation of the frequencies is likewise done using a spline fit; for
each of the F — 1 bound modes, the frequency w(s) is calculated at the location
of each Hessian. These frequencies are then mapped using Eq. [264] and put in
canonical order, such that any avoided crossing or symmetry constraints are
ignored. Imaginary frequencies are treated as negative numbers. The canonical

order is defined so that the real frequencies are first in order of decreasing mag-
-nitude, following by the imaginary frequencies in their order of increasing
-magnitude followed by the six (five for linear systems) frequencies of smallest
. magnitude regardless if they are real or imaginary.
. The cost of using the IVTST-M algorithm is negligible compared with the
cost of calculating high-level electronic structure gradients and Hessians. The
method was developed to allow for a shorter sequence of reaction path data,
“_'«jbut even if long reaction paths have already been calculated, it is advantageous
_touse IVTST-M to map out the remainder of the path rather than truncating it.

Dual-Level Dynamics

Dual-level dynamics'*»!**155:156. refers to dynamics calculations that
- se two levels of electronic structure theory or two PEFs of different quality.
I the VIST/MT context, such methods use a low-level method to calculate
‘the MEP and gather some information along it followed by using a smaller
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number of high-level calculations to improve accuracy. Computing all of the
necessary data with a high-level method may be prohibitively CPU-expensive;
yet the low-level method may not provide the required accuracy; dual-level
methods attempt to use both levels to obtain the highest possible accuracy
at the lowest possible cost. '

Interpolated Single-Point Energies

Variational transition state theory with interpolated single-point energies
(VTST-ISPE), is a dual-level method!*® that uses high-level, single-point ener-
gies on a low-level MEP to correct the Vygp. POLYRATE has implemented
this by using a mapped coordinate as in the IVTST-M algorithm. The low-level
MEP is first mapped to the interval from z = —~1 to z = +1 using Eq. [264] as
before. Wherever a high-level, single-point energy has been evaluated, AV is
calculated as AV = Vi — Vi, where the subscripts denote high level (HL)
and low level (LL). Finally, the dual-level reaction path is evaluated using

VoL = Vi + Vspline(Av) Z) [278] -

where Vi, (AV,z) is a spline-under-tension fit.

Interpolated Optimized Corrections

The interpolated optimized corrections (IOC) method!**'%® uyses HL
energies, gradients, and Hessians at the high-level stationary points to improve
the quality of a Vigp and of frequency and moment of inertia profiles origin-
ally calculated at LL.

We have proposed two dual-level schemes for Vygp.'**'** The dual-
Eckart (DE) scheme is given by!*?

Vit = Vikep(s) + [VEL (5) ~ VB4 (9] (279
where |
Voo = 1‘11YY +a f_ 1;)2 +C [280]
Y=exp (S —LSO) | (281]
A= VMEP(S = +OO) -C [282]
C = Vymep(s = —o0) [283]
B= (2V1—A—2c)+2[(vi—c)(V¢—A—c)}% [284]

So=—LIn (AI + B)

B—-A

[285]
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where V* is Vigp(s = 0), the range parameter for VEL(s) is given by

(vt — t
L% = [— “—22((;)2 BA)J [286)

where all quantities on the right-hand side are calculared at the high level, and
L' is determined by fitting the low-level Viygp to an Eckart function at the
three stationary points and at one additional point s = s;, where

1 , .
Vi -Vil(s=g)= —{V,{L - VL (s = szgn(sL)oo)} [287]

MEP 2

The sign of sy is positive if ALY ig positive and negative if A™" is negative.
The single-Eckart (SE) scheme for correcting Viggp ist>®

Viizr = Vitee(s) + Vea(s) [288]

with Eq. [281] for Y, where the parameters in the single-Eckart potential are
given by

A=AV(s=+00) - C [289]
C=AV(s = —c0) | [290]

B=[2AVI—A—C)+2(AVI - C)(AV} — A — o]'* ey

along with Eq. [287] to determine L. In these equations, AV denotes the dif-
ference of VM from VL. Furthermore, we use the upper sign in Eq. [291]
when AV > AV(s = +00) and the lower sign otherwise. We have found
‘that sometimes the DE scheme is preferred,’*? but on average, the SE scheme
is betrer.1%6 '

In addition to correcting' Viygp, the frequencies and the determinant of
the moment of inertia tensor are also corrected.

The formula for the interpolation of frequencies in the original meth-
0d"** allowed for the possibility of negative frequencies, which was proble-
matic. Therefore, only the updated interpolation method™?® will be
discussed. The 3N — 7 real frequencies calculated using the lower level method
are denoted as wLl(s). The dual-level frequencies calculated using the high-

m
level corrections are given by

oPl = wll(s) exp [ ()] [292]

m
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where
A,,Y B, Y
IcL = “ Cm 29
! 1+Y 7 (14 v)? [293]
$ ~ S0,m
(s = +00)
A,=In (s = To) -~ Cp [295]
0El(s = ~oo)
G = In it = — [296]
wBL(s = 0) wPl(s =)
B~< In 5) ~Am = 2Cn | +2 lnm}nL(S:O)—Cm
wBL(s = 0) : .
JG="o e
Ay, + B, ’
So.n = —LIn (Bm — Am) [298]1i

in which L is defined using Eq. [286]. The frequencies are matched in order of:
decreasing magnitude, disregarding Symmetry and avoided crossings, and
setting the leftover modes to zero at s — +oo0.

The determinant I(s) of the moment of inertia. tensor is corrected by

Iui(s) = adyy (s) [299]
where

_ In(s = 0)
=G =0) [309] .
This simple formula was chosen so that no difficulties would arise as I(s)
approaches infinity at reactant and product states. -

IVTST-IOC can also be applied to reactions having reactant-side and/or
product-side wells. Furthermore, the theory explained here is readily applied
to VIST, ZCT, and SCT, but applying the theory to LCT requires additional
steps, all of which are explained in Ref. 155. -

AInterpolated Optimized Energies . ,

The interpolated optimized energies (IOE) scheme®® js like the IOC:
scheme except that ‘the frequencies are not corrected at the higher level:
Although the IOE method only uses high-level data at the stationary pOiIlfS'rf
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it is often more accurate than the ISPE method because it involves geometry
optimization at the higher level.»*?

REACTIONS IN LIQUIDS

Variational transition state theory can also be applied to reactions in
liquids when those reactions are not diffusion controlled. For instance, for a
general reaction of the type:

kp k
A + B AB — Products [301]

-D

where AB is a complex formed by the two molecules before reaction, applica-
tion of the steady-state approximation for the concentration of the complex
gives the following rate constant:'*”

kpk;

“Ep+k 302

k
If k, >> k_p, then k = kp and the reaction is controlled by diffusion. A typical
value for kp is 4 x 10° M~ 1571, Conversely, when k, << k_p, the process is
controlled by the chemical step, and we can use CVT to predict the thermal

rate constants. Specifically, the CVT bimolecular rate constant can be written
as

kV(T) = phlco exp {’— [GOT(CVT)V - G‘}(R)J / R_T} [303]

where C? is the concentration corresponding to the standard state, G3(R) is
the solution-phase standard-state free energy of reactants at temperature T,
and GY(CVT) is the solution-phase standard-state free energy of activa-
tion'6138-160" o the canonical variational transition state at temperature T.
As for the gas-phase case, the variational free energy of activation is given by

G(CVT) = max GY(GT,s) [304]

where G9.(GT, s) is the standard-state free energy of activation for a general-
_lzed transition state at a location s along the reaction path. The rate constant
€xpression is similar for a unimolecular reaction, the difference being that C?
Is.missing in Eq. [303].. :

= The quantity G%(R) is a standard-state free energy in liquid solution,
degoted GY(1), and it is obtained by treating the solute as a system interacting
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with a thermal environment. The system is the solute (or the solute plus a fey
closely coupled solvent molecules), and the environment is the (rest of the) sof-
vent. In the rest of this section, we will simply call the system the solute. The
liquid-phase free energy of the solute is the solute’s gas-phase free energy plys.
the free energy of solvation, which is defined by

AGY = G3()) - G (g) 1305]

In the Born-Oppenheimer approximation,

G1(g) = Ex(g) + RTInde + Guwr(T) [306]

where Eg is the ground-state electronic energy (including nuclear repulsion a5
usual) of the solute, dg is the degeneracy of the ground electronic state; and
Gyr1{T) is the vibrational-rotational-translational free energy in the standard’
state. Many methods are available for approximating the standard-state free
energy of solvation, but here we focus on those that use the SMx universal
solvent models.’®"'7! I these models

AG = AGenp(T) + Geps(T) [307) -

where AGgnp is the bulk electrostatic component of the solvation free energy

obtained by treating the environment as a homogeneous dielectric medium -
with properties of the neat solvent. When the solute is inserted in the solvent,
the latter is polarized, and as a result, it exerts a field, called the reaction field,

on the solute. AGgyp is composed of (1) a polarization energy Gp, which
represents the net free energy of inserting the solute in the solvent (accounts

for favorable solute-solvent interactions and the energy cost of the solvent:
rearrangement), and (2) the distortion energy AEgy, which represents the:
cost of distorting the solute geometry and electronic charge distribution to

be self-consistent with the solvent reaction field; i.e.,

AGene(T) = Gp(T) + AEgn(T) (308]
Note that the solute electronic ehergy in the liquid phase is

Een(l, T) = Een(g) + AEpn(T) (309]

The term Gcps accounts for the first-solvation-shell effects and is given
byl63-166 :

Gcﬁs = ; o (T)As ({rk; rsCD}) + 04, ({rk; rscs}) 310}

where k labels atoms, A, is the -exposed area of atom &, of is a partial”
atomic surface tension for atom k, and Ae({re;76%}), with X=S or D is the
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solvent-accessible surface area of atom & and is a function of a given set of
effective solute radii {r,} and of effective solvent radii, 7§S and r$P. Several sol-
vation models, such as SMS5.42, SM5.43, and SM6, have been created, and
they have different values for these parameters. SMé6 is recommended for .
most systems.

Equations [305]-[310] are strictly valid only for thermodynamic species,
which are ordinarily associated with stationary points on the potential energy
surface V(R), where R denotes the full set of solute coordinates. However, we
also use the SMx solvation models to calculate potentials of mean force,'”?
which are called W(R,T). The gradient of W(R,T) gives the force on the solute
molecule averaged over a canonical ensemble of solvent molecules and is a
generalization of the one-dimensional radial potential of mean force that
appears in Debye-Hiickel theory. Thus, we write

W = V(R) + AG)(R, T) [311]

where G2(R, T) is like GY(T) except that the nuclear coordinates of the solute
are fixed at R; thus, AEgn(T) does not involve a change in the nuclei, and it
may be written as AFg(R,

The simplest way to implement Eq. [303] for the liquid-phase reaction
rate is called separable equilibrium solvation or the SES approximation.!5®

~ In this approximation, one optimizes the stationary points and calculates the
reaction path and vibrational frequencies in the gas phase. Then, at every
stationary-point and reaction path geometry, one replaces the potential energy
V'by the potential of mean force W. If one also replaced V by W in calculating
partition functions, this would provide an exact expression for the flux
through the generalized-transition-state dividing surface in a classical mechan-
-ical world, although one no longer can obtain the exact rate constant by vary-
ing the dividing surface because the dividing surface depends only on the
subset R of the total set of solute and solvent coordinates. However, in
the SES approximation, the partition functions are still calculated using
V. Note that the location of the variational transition state along the reaction
Path may be different in the gas phase and in the SES approximation to the
liquid-phase rate, ¢ven though the reaction path is unaltered. :

The SES approximation also replaces V by W for the tunneling calcula-
tions, which is called the zero-order canonical-mean-shape approximation!”3
(CMS-0). Note that the tunneling turning points and hence the tunneling
Paths may be different in the gas phase and in solution in the SES approxima-
tion, even though the reaction path is unaltered.

Algorithmically, because one only corrects the potential energy surface
along the reaction path, the IVTST-M algorithm can be (and is) used for
SES calculations where W plays the role of the high-level surface and V plays
‘the role of the low-level surface. 4
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Because the transition state geometry optimized in solution and the soly-
tion-path reacton path may be very different from the gas-phase saddle point
and the gas-phase reaction path, it is better to follow the reaction path given
by the steepest-descents-path computed from the potential of mean force. This
approach is called the equilibrium solvation path (ESP) approximation. In the
ESP method, one also substitutes W for V in computing the partition func-
tions. In the ESP approximation, the solvent coordinates are not involved in
the definition of the generalized-transition-state dividing surface, and hence,
they are not involved in the definition of the reaction coordinate, which is
normal to that surface. One says physically that the solvent does not partici-
pate in the reaction coordinate. That is the hallmark of equilibrium solvation,

A third approach is to incorporate nonequilibrium solvent (NES) effects.
In POLYRATE, this is accomplished by replacing the many degrees of freedom
of the solvent with a single collective solvent coordinate.!”* Further discussion
of equilibrium and nonequilibrium solvation effects on liquid-phase reactions
is provided elsewhere.33162,167,169

ENSEMBLE-AVERAGED VARIATIONAL TRANSITION
STATE THEORY

The concept of reaction coordinate plays an important role in VTST. In
fact, there is more than one reaction coordinate. Globally the reaction coordi-
nate is defined as the distance s along the reaction path, and this coordinate
plays a critical role in tunneling calculations. Locally the reaction coordinate
is the degree of freedom (sometimes called z, but often also called s) that is
missing in the generalized transition state.

The treatment of VTST given so far is well suited for bimolecular reac-
tions with tight transition states and simple barrier potentials. In such cases, it
has been shown that the variational transition state can be found by optimiza-
tion of a one-parameter (s) or few-parameter (s and orientation of the dividing
surface) sequence of dividing surfaces orthogonal to the reaction path, where
the reaction path is defined as the minimum energy path through isoinertial
coordinates. (See also Refs. 76, 77, and 81-89 for extensions to gas-phase sys-
tems with loose transition states, where more general reaction coordinates are
considered.) In this section, we discuss the extension of VIST for condensed-
phase reactions to allow the generalized-transition-state dividing surface. to
depend on more than just the solute coordinates; for example, it can depend
on the solvent, or for an enzyme-catalyzed reaction, it can depend on protein
coordinates. To include these different kinds of cases in a single formalism, we
generalize the solute/solvent or system/environment separation, and we speak .
of a primary subsystem (or primary zone) instead of a solute or system and a
secondary subsystem (or secondary zone) instead of a solvent or environment.
As the reaction coordinate is the degree of freedom that is. normal to the.
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generalized transition state, allowing the generalized-transition-state definition
to depend on secondary-subsystem coordinates is equivalent to allowing the
definition of the reaction coordinate to depend on secondary-subsystem '
coordinates, that is, to allowing the secondary subsystem to participate in
the reaction coordinate. Thus, this extension of VTIST allows one, for
example, to include protein motions in the reaction coordinate for enzyme-cat-
alyzed reactions. This is accomplished by ensemble averaging,'”>"180 and the
extension is called ensemble-averaged variational transition state theory (EA-
VTST); although it is more general than just for enzyme-catalyzed reactions,
EA-VTST will be explained here mainly in the enzyme context.

For simple reactions, all, or almost all, of the reaction flux {at least in the
absence: of large-curvature tunneling) passes through the TS in a quasi-harmo-
nic valley centered on a single reaction path passing through a single saddle

‘point. EA-VTST is designed for applications to complex reactions in the con-
densed phase where an appropriate reaction coordinate may be very compli-
«cated, and where reaction proceeds through a large number of reaction paths,
each passing through a different saddle point. These saddle points might differ
trivially (for example, by a torsion around a far away hydrogen bond) or they
“might differ more substantially. But the essence of a liquid-phase reaction is
that the number of saddle points-is so numerous that they must be treated
by statistical mechanical theories of liquids. This means, algorithmically,
that we must sample rather than examine all contributing configurations. As
for the single-reaction coordinate version of VSTS described in the previous
sections, EA-VTST may be combined with multidimensional tunneling or opti-
~mized multidimensional tunneling, using the canonical mean-shape approxi-
mation, but now in an ensemble-averaged extension.

When applying EA-VTST to enzyme reactions, another kind of system/
‘environment separation is made. Here the reactive system is considered to be
the substrate and perhaps part of the enzyme or coenzyme (and perhaps
including one or two closely coupled water molecules), and the environment
is the rest of the substrate-coenzyme~enzyme complex plus the (rest of the)

‘Surrounding water. In what follows we will sometimes call the reactive system
the “primary subsystem” and the environment as the “secondary subsystem.”
: For the treatment of reactions in liquids that was presented earlier, the solvent
-Was replaced by a homogeneous dielectric medium, which greatly simplifies
‘the calculation. For enzyme-catalyzed reactions, we treat the environment
explicitly at the atomic level of detail.

3 For enzyme-catalyzed reactions, we consider the unimolecular rate con-
Stant for the chemical step, which is the reaction of the Michaelis complex.
j';"Fhe EA-VTST/OMT method involves a two-stage or three-stage procedure,
:‘?Vhere the third stage is optional. In stage one, a user-defined, physically mean-
Angtul reaction coordinate is used to calculate a one-dimensional potential of

‘Mean force. This provides a classical mechanical free energy of activation
along that coordinate that is used to identify a transition state ensemble. In
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stage two, the transition state ensemble is used to sample a set of transition
pathways (reaction paths) to determine the transmission coefficient and the
_quantum mechanical tunneling contributions. The reaction coordinate for
stage 1 is called a “distinguished reaction coordinate,” (DRC) which is the
generally accepted name for a coordinate that has been “picked out” or
assigned to serve as a reaction progress variable 64181-183 ’

In the first step of stage 1, all atoms (5000-25 000 atoms for a typical appli-
cation to an enzyme-catalyzed reaction) are treated on the same footing. In this
step, one calculates a one-dimensional potential of mean force (PMF) as a func-
tion of the distinguished reaction coordinate 2 by a classical molecular dynamics -
simulation. Any method for calculating classical mechanical PMFs could be
used; for example, one can use the CHARMM program184 to carry out this
step by employing molecular dynamics simulation with umbrella sam-
pling.lss“lw As discussed below, this provides an approximation to the free
energy of activation profile for generalized transition states (1., transition state
dividing surfaces) orthogonal to this reaction coordinate.*? The umbrella sam-
pling method involves several “windows,” which are sampled separately, and
then the results from all the windows are merged. During the umbrella sampling
calculations, configurations are saved at regular intervals; these saved configura-
tions are sorted into bins based on their value of z and are later used at selected
values of z in the second step of stage 1 and the first step of stage 2 described
below. (Windows and bins are both spaced out along the reaction coordinate.
Windows overlap, but bins do not. Bins are spaced more closely than windows.)

Stage 1 is the calculation of the PMF along the distingished reaction
coordinate and various types of reaction coordinates can be used, for example,
proton and hydride transfer reactions could be evaluated with a geometry-
based distinguished reaction coordinate described by the difference between
the breaking and forming bond distances as

g = 74D — THA [312]

where ryp is the distance of the proton or hydride atom that is being trans-
ferred to the donor atom and rya is its distance to the acceptor atom. Selecting
a different reaction coordinate should not, in principle, change the final calcu-
lated rate constants significantly because stage 2, which uses the transition
state ensemble of stage 1 to sample a set of reaction paths and uses an ensem-
ble of more optimal reaction coordinates to calculate the rate constants.

The first step of stage 2 treats the system and its environment together,
without distinction, as a supersystem. In all subsequent steps (that is, in step
two of stage 1 and in stage 2 as well as the optional stage 3), the N-atom sys-
tem is divided into two subsystems, a primary subsystem with Ny atoms and
secondary subsystem with N atoms, such that :

Typically N; ranges from 25 to 43 atoms.
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In the second step of stage 1, vibrational quantization effects are
included in the vibrational free energy,®® where the number of vibrations trea-
ted quantum mechanically is

M, =3N; -7 (314]

This is done for each z bin by computing the frequencies by using a rectilinear
projection operator to remove the reaction-coordinate motion from- instanta-
neous normal mode analyses at the sampled points. Second, the vibrational
frequencies are averaged over an ensemble of sampled points in a given bin,
and the vibrational free energy is calculated from the average frequencies by
both the quantized and the classical formulas for the free energy of a collection
of harmonic oscillators. Because the sampled points have been sampled at var-
ious distances from the bed of the reaction valley, this analysis implicitly
includes anharmonicity. The difference of the quantized and classical calcula-
tions is added to the classical PMF, and the resulting adjusted PMF, called the
quasi-classical PMF, corresponds to the M, nuclear motions being quantized,
with the remaining motion being classical. At the end of the first stage, the rate
constant is given by '

£ = Bl—hexp [-ac$/rT] [315]

where

AGYH = WMT,2) + AWM(T 2) + C(T, z)

— [WOM(T, z0) + W, + AWENO(T, w)]|  [316]

in which WOM(T,z2) is the classical mechanical PMF of stage ‘1-step 1, z» is
value of z that maximizes the right-hand side of Eq. [316], zg is value of 2z
where WM(T,z) has a minimum corresponding to reactants, A\vaf‘).(T,z’ ) is
the ensemble-averaged correction to the vibrational free energy for quantiz-
ing the M, highest frequencies at z = 2/, C(T,z) is the correction>? for a curvi-
linear z, and WgM: is the nonseparable vibrational free energy of the
reaction coordinate at z = zg. Equation [315] is a quasi-classical rate con-
Stant because it includes quantization in transverse vibrational coordinates
but not in the reaction coordinate (but it is not the final quasi-classical
Tate constant of the EA-VTST treatment). Equation [316] can also be written
as

AGY = A*WMY, 2) + Weore(T) [317]
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where
A*WM(T 2) = WM(T,z,) — wM(T, ZR) [318]
'and

Weore(T) = =W\ + C(T,2.) + AWMIT, 2y — AWI(T 2) [319]

where
Mp=F=M,+1 [320]

The vibrational frequencies @, at z = z, are calculated from a Hessian that
has the reaction coordinate projected out, but the reactant frequencies o
are calculated without projection.

In the second stage, a transition state ensemble is selected. This ensemble
is defined as theset {i=1,2,...,] } of I saved configurations from the ymbre|-
la sampling that have z nearest to z,. The individual values of z for these
ensemble members are called z.,. For each of these geometries, the primary
system is optimized to the nearest saddle point, with fixed coordinates for
the secondary zone. An isoinertial MEP of the primary system is then com-
puted, again with the secondary zone fixed. Note that each value of 7 corre-
sponds to a different secondary zone and, hence, a different saddle point,
Each MEP (i =1,2,...,I) corresponds to a different valley through the super-
system consisting of the reactive system plus its environment. Furthermore,
because each MEP has a different reaction coordinate corresponding to a dif-
ferent set of coordinates for the secondary zone, the reaction coordinate
depends on the coordinates of the secondary zone. In this way the entire super-
system (including the enzyme and solvent) participates in the definition of the
reaction coordinate, ] ‘

For each MEP, VTST and VIST/OMT calculations are carried out using
the progress variable s; along MEP i as the optimized reaction coordinate.
(Note that s; is the variable s for ensemble member i.) The improved reaction
coordinate for ensemble member ; yields a recrossing transmission coefficient
[y, given by ’

™ = exp { [AG%"T o <s*,,-) ~ AGSTe (so,i)J / RT} [321]

where s, ; is the location of maximum free energy of activation for ensemble
member i along its own reaction coordinate s; and sy, is the value of s; for
which z = z.;. These recrossing transmission coefficients are averaged over
the I members of the TS ensemble. The actual calculation of AGVTo(s )
and AGGT’°(50‘,.) for the embedded primary system of transition ensemble
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member i is carried out with the CHARMMRATE module of CHARMM.
(Note that CHARMMRATE is based on POLYRATE.) The transmission coef-
ficient calculated from this step of stage 2 is

r® = ) [322]

where < ... > denotes an ensemble average (i=1,2,...,I). The resulting rate
constant is '

KEAVIST _ p@)(T)4(1)(T7) [323)
(T)

 This stage-2, step-1 rate expression kEAVTST is the final quasi-classical rate
constant of the two-state process. Equation [323] has sometimes been called
. the static-secondary-zone rate constant without tunneling, but this term is
deceptive because the secondary zone changes from one ensemble member
to another and, hence, is not really static.
At this point one can include optimized multidimensional tunneling in
each (i=1,2,...,1) of the VIST calculations. The tunneling transmission
" coefficient of stage 2 for ensemble member ; is called Kfz and is evaluated
~ by treating the primary zone in the “ground-state” approximation (see the sec-
. tion titled “Quantum Effects on Reaction Coordinate Motion”) and the sec-
. -ondary zone in the zero-order canonical mean shape approximation explained
- in the section titled “Reactions in Liquids”, to give an improved transmission
coefficient that includes tunneling;

1 = (@@ [324]
_ with the final stage-2 rate constant being
KEAVIST/OMT _ )y (7y [325]

The procedure just discussed for stage 2 includes the thermal energy and
entropy of secondary-zone atoms in K"™(T) and in the determination of each
S0 that is used in stage 2, but the s dependence of these contributions is not
*.included in each MEP. Optionally these effects could be included in a third

* stage. However, when secondary-zone dynamics are slow on the time scale
~-over which s crosses the barrier!® (or on the time scale of a wave packet tra-
“-versing the tunneling segment of the reaction path), one is in what Hynes has
" called the “nonadiabatic solvation imit.”"*1?2 I this limit, the transition
State passage occurs with an ensemble average of essentially fixed second-
‘:ary-zone configurations'®'*? hecause the secondary zone cannot respond
- o the reaction coordinate motion to provide equilibrium solvation; in such
 Acase, allowing the secondary zone to relax could provide less accurate results
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than stopping after stage 2. Contrarily, if the adjustment of the secondary zone
is rapid on the time scale of barrier passage, one can improve the result by add-
ing a third stage,'”*!”® which we call the equilibrium secondary zone approx-
imation. If invoked, this stage uses free energy perturbation theory all along
each MEP to calculate the change in secondary-zone free energy as a function
of each s;. That change is added to the generalized transition state theory free
energy of activation profile for the calculation of both the quasiclassical CVT
rate constant and the quantum effects on the reaction coordinate.

GAS-PHASE EXAMPLE: H + CH,

In this section, CVT/uOMT theory is applied to the H + CH; —
H; + CHj reaction by using the Jordan—Gilbert!®? (JG) potential energy sur-
face. We select this example because it is one of the tew polyatomic systems for
which accurate quantum dynamics calculations are available. 1?4196 (By accu-
rate quantum dynamics, we mean that the nuclear quantum dynamics are con-
verged for a given potential energy surface.) All the VTST calculations have
been carried out with POLYRATE-version 9.3.1, and the calculations dis-
cussed here reproduce the CVI/WOMT rate constants obtained previously
by Pu et al. 111,112

First, the reactants, products, and saddle point are optimized. The ima-
ginary frequency at the saddle point of this example has a value of 1093; cm™,
The energies calculated at these points yield a classical barrier height of
V*# = 10.92 kcal/mol and an energy of reaction, AE, of 2.77 kcal/mol. From
the normal mode analyses performed at the stationary points, the vibrationally
adiabatic ground-state barrier at the saddle point is calculated to be
AVIC = 10.11 kcal/mol, where :

AVIS = VIS _ yG(s = _o0)  [326)

and the reaction, for the assumed potential energy surface, is slightly exother-
mic, AH§ = —0.01kcal/mol, where H is the enthalpy. Notice that
AHS = AGZ at T=0K.

The MEP was followed over the interval —2.50 @, < s >2.50a, by using
the Page~Mclver algorithm with a step size of 0.01 a,, and curvilinear Hessian
calculations were performed at every step. The scaling mass that transforms
mass-weighted coordinates to mass-scaled coordinates has been set equal to
1 amu. The vibrationally adiabatic ground-state barrier is located at
sAG = 0.182 a,, and the vibrationally adiabatic ground-state barrier height is
found to be AV}S = 10.44 kcal/mol. The meaning of A is that this is V& atits
maximum (denoted by A) relative to the value of V& at reactants, whereas VAG
without A refers to VS relative to the energy at the classical equilibriun
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Figure 6 Plot of the MEP (dotted line) and the vibrationally adiabatic ground-state
potential curve as calculated in curvilinear (solid line) and rectilinear (dashed line)
coordinates for the H 4+ CHj reaction. ’

structure of reactants; this is about 38 kcal/mol as shown in Figure 6. In
Figure 6, we plot Viygp and the vibrationally adiabatic potential with vibra-
tions orthogonal to the reaction path treated in both curvilinear and rectilinear
(Cartesian) coordinates. It should be noticed that both the MEP and the poten-
tial Vivgp along the MEP are the same in both systems of coordinates; however,
the vibrationally adiabatic potential energy curves are different at nonstation-
ary points because the vibrational frequencies at nonstationary points depend
on the coordinate system. The values of the vibrational frequencies along the
reaction path are more physical in curvilinear.coordinates, as discussed.
Once the MEP and the frequencies along it have been calculated, one can
calculate the generalized-transition-state-theory free energy profiles, as shown
in Figure 7 for T = 200,300, and 500 K. As indicated in Figure 3, the
maximum VAS of the adiabatic potential need not coincide with the maximum
AGCVTo(T) of the free energy of activation profile at a given temperature. The
values of sCVT(T) are 0.177, 0.171, and 0.152 4, at T = 200, 300, and 500 K,
respectively as shown in Figure 7. Thus, the CVT rate constant is lower than
the conventional TST rate constant because the best dividing surface (the bot-
tleneck) is located at s # 0. For instance, at T = 300 K, the value of the CVT
rate constant is 2.2 x 1072%cm® molecule ™ s, whereas the conventional
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Figure 7 Generalized-transition-state free energy of activation along the MEP at three
different temperatures for the H + CH, reaction.

TST rate constant is 3.6 x 10~ cm® molecule™'s™!. These rate constants
include quantum effects in all the F — 1 degrees of freedom perpendicular to
the reaction coordinate, but the reaction-coordinate motion is classical; thus,
we sometimes call these rate constants hybrid (in older papers) or quasi-clas-
sical (in more recent papers). The quantum effects on the reaction coordinate
are incorporated by a transmission coefficient as described earlier. Because the
maximum of the vibrationally adiabatic potential curve and the maximum of
the free energy of activation profile at a given temperature do not coincide, one
must employ the classical adiabatic ground-state CAG correction of Eq. [163]
in the calculation of the CVT rate constant.

Tunneling effects are important at low temperatures for this reaction
because a light particle is transferred. The curvature of the reaction path
was calculated by Eq. [166], and it is plotted in Figure 8. The small-curvature
approximation to the effective mass along the reaction path is calculated by
Eq. [174], and its ratio to the scaling mass is also plotted in Figure 8, which
shows how the effective mass is reduced along the réaction path. This reduc-
tion in the effective mass also reduces the imaginary action integral and there-
fore increases the tunneling probability. The ZCT transmission coefficients use
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k Figure 8 Plot of p./u and the reaction path curvature x along the MEP for the
- H+ CHy reaction.

an effective mass that is always equal to the scaling mass, because the curva-
ture along the reaction path is neglected in ZCT, and therefore, ZCT transmis-
~sion coefficients always predict less tunneling than SCT transmission
coefficients. The LCT transmission factors are calculated using the procedure
. described in the section entitled Large Curvature Transmission Coefficient.
The larger of the SCT and LCT tunneling probabilities at each tunneling
energy is the yuOMT transmission probability. Thermally averaging these gives
the pgOMT transmission coefficient, which is is 18.7 at T = 200 K and 1.57 at
T =500 K.
The effect of tunneling on the reaction is further analyzed by finding the
- energy that contributes most to the ground-state transmission coefficient.
Making a change of variable, i.e., letting x = E — VAG, in Eq. [160] and by
using Egs. [162] and {163}, then
o—VAG

LCVT/UOMT _ kCVT(T) BKCVT/CAG(T) {JO P(x) exp(—Px)dx
E

+ Jw P(x) exp(—Bx)dx} [327]
0
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Figure 9 Plot of the first integrand of Eq. [327] versus x = E — VAG at three different
energies for the H+ CH, reaction. The maximum of the curves indicates the
representative tunneling energy. The top of the barrier is located at x = 0.

The first integral yields the tunneling contribution to the transmission coef-
 ficient, and the integrand is plotted in Figure 9. The curves are the product
of the tunneling probability multiplied by the Boltzmann factor. The
energy at which this product has a maximum is called*'® the representa-
tive tunneling energy (RTE). At a given temperature, the RTE indicates the
energy at which it is most probable for the particle to tunnel. For
instance, at T =200K and T = 500K, the RTE is located 2.02 and
0.31 keal/mol below the barrier top, respectively. The HOMT transmission
factor is larger at lower temperatures because the area under the curve is
larger.

The CVT/WOMT rate constants are 7.1 x 102! and 4.1 x 10~cm?
molecule™'s™! at T =200 and 500 K, respectively, whereas the accurate
quantum  calculations'®* % are  9.0x10°2! and 3.8 x 10~ cm®
molecule™'s™" at those two temperatures. The average absolute deviation
between the CVT/uOMT and the accurate rate constants is only 17% in the
range 200-500 K. The performance of CVT/uOMT for this reaction is aston-
ishing, considering that the quantum calculations for this system took several




Liquid-Phase Example: Menshutkin Reaction 217

months, whereas the VIST/uOMT results require only a few seconds of
computer time. In particular, the calculations were carried out in less than
30 seconds on an old computer, including full LCT calculations without
even using the faster spline algorithm. The calculations are so fast thar the
slowest part is setting up the input file.

LIQUID-PHASE EXAMPLE: MENSHUTKIN
REACTION

In this section, VTST is applied to the bimolecular Menshutkin reaction
in aqueous solution:!’

CICH; +NH; — CI™ + H;CNH; (328]

An important difference of this example from that given earlier is that in this
case no analytical potential energy surface was provided to the program,
Instead, the electronic structure data needed for the dynamics were calculated
“on the fly” by the MN-GSM'®” program; that is, direct dynamics was used.
The gas-phase electronic structure calculations were carried out with the HF/
6-31G(d) method, and the MEP was followed by using the Page-Mclver algo-
rithm with a step size of 0.01 a, with analytical Hessian calculations every
nine steps. Generalized normal modes were calculated using redundant curvi-
linear coordinates. The calculations in solution were performed with the pro-
gram MN-GSM-version 5.2, which incorporates the SMS 42, SM5.43, and
-SM6 solvation models into Gaussian 98.1%8 The dynamics calculations were
carried out with GAUSSRATE-version 9.1, which in this case was modified
to serve as an interface between the MN-GSM-vS.2 and POLYRATE-version
9.3.1 programs.

The SES calculations were carried out along the gas-phase MEP. In an
SES calculation, the solvent is not considered when constructing the MEP,
and solvent effects are added separately to create the potential of mean force
using Eq. [311]. The solvation free energy was evaluated with the SMS.43
model, and therefore, the SES calculations are denoted as SMS.43/HF/
6-314-G(d)//HF/6-31G(d) or simply as SMS.43/HF/6-31G(d)//g.

The ESP calculations, which include solvent effects when determining
geometries of stationary points and points on the reaction path, are denoted
as SMS5.43/HF/6-31+G(d). The stationary points within the ESP approxima-
tion are optimized using the potential of mean force, where this potential has a
minimum for reactants and products and a maximum for the transition state in
solution. The reaction path was obtained by using the Page~Mclver algorithm
with a step size of 0.01 @,. We evaluated numerical Hessians, including the
effect of solvent, by central differences at every ninth step. Vibrational
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Table 1 Bond Lengths of the Stationary Points in A

Gas Phase ESP

- B

Rnc Rca Rnc Reg

Reactant fos) 1.785 0 1.805
van der Waals complex 3.419 1.793 — —

Saddle point 1.876 2.482 2.263 2.312
Ion pair 1.548 2.871 — —
Products 1.507 00 1.476 o)

frequencies were calculated in redundant curvilinear coordinates. In the ESp
approach, we consider the liquid-phase saddle point on the potential of
mean force surface of the solute as the dividing surface for the conventional
transition state theory calculations. ' -

For Reaction [328], the Cl, C, and N atoms are collinear. The bond
lengths between these three atoms in the gas phase and in solution are listed
in Table 1, and the energetics of the stationary points are listed in Table 2. For:
this reaction, solvent effects are very large for products. The aqueous solution
stabilizes the charged products, as shown in Table 3. The gas-phase Vigp and;
the SES canonical mean-shape potential U(s|T) are plotted in Figure 10. Note
that :

UGSIT) = Vie(s) + AG(R(s), T) (329

In the gas phase, a transition state exists for reaction only because there is a
slightly stable ion-pair structure, which disappears when the geometry is
optimized in solution: The maximum of U(s|T) in the SES approximation is
located at s = ~1.60 go. The maximum of U(s|T) along the reaction path at
the SMS.43//HF/6-31G(d) level is much closer to reactants than in the gas
phase, which was expected, because in solution, products are much more
stabilized.

Table 2 Zero-Order Mean- Shape Potential of the Stationary Points Relative to
Reactants (in kcal/mol)

Gas® SES? ESP?
van der Waals complex : -=2.0 -(.98 —
Saddle point _ 36.1 ' 2.61 13.4
Ion pair .- 30.6 =27.5 —
Products 111.7 ~38.6 : -35.6

"Reactants absolute energy (in hartrees): —555.277509 (gas);  —555.285927 (SES);
—555.286366 (ESP). )
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Table 3 Standard-State Free Energies of Solvation of the
Stationdry Points in kcal/mol

Level SES ESP
NH; —-4.6 -5.1
CH;Cl -=0.7 1.4
CICH;. . .NH; -4.2 —
Transition state ~78.8 -20.1
Cl™...CH;NH; ~78.9 —
Cl- -72.0 -72.0
CH,;NH?} ~83.6 ~84.3

The potentials along the reaction
plotted in Figure 11 using
ference between the breaking and the formin
the breaking and forming bond distance in t
reaction coordinate is used only for plotting
the actual reaction coordinates are distance
SES cases and along the liquid-phase MEP for ESP).
tials show similar profiles and therefore similar

50

a common reaction

paths in the SES and ESP approximations are
coordinate consisting of the dif-
g bonds along the path involving
he gas-phase transition state (this -
the two cases on a common scale;
along the gas-phase MEP for the
The SES and ESP poten-
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Figure 11 Zero-order canonical mean shape potential U for reaction [328] calculated

at the HF/6-31G(d) (gas phase), SM5.43//HF/6-31G(d) (SES), and SMS5.43/HF/6-
31G(d) (ESP) levels as functions for the Menshutkin reaction:.

temperature (see Table 4). The exception is the conventional TST rate constant
in the SES approach, which is about six orders of magnitude higher than the
CVT rate constant. This is caused by the very different location of the maxi-
mum of the potential in liquid-phase solution as compared with the gas phase.
As expected, tunneling is not very important for this reaction, and therefore,
the SCT approach for tunneling suffices for this case.

Although the above reaction is quite simple, the similarity between the
SES and the ESP profiles is stunning if we consider the great difference between
the gas-phase and liquid-phase potentials. From this example, we can conclude
that, although the ESP allows a more reliable description of the reaction in
solution, the SES approach is an inexpensive approach that can sometimes
provide a reasonably accurate alternative to the ESP method.

Table 4 Rate Constants in cm? molecule™! ™1

k SES ESP
" TST 3.7x 10718 3.7x107%
CvVT 2.0 x 10725 1.9x10°%

CVT/SCT 29 %10~ 2.6x1072
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CONCLUDING REMARKS

Transition state theory is based on the assumption of a dynamical bottle-
neck. The dynamical bottleneck assumption would be perfect, at least in clas-
sical mechanics, if the reaction coordinate were separable. Then one could find
a dividing surface separating reactants from products that is not recrossed by
any trajectories in phase space. Conventional transition state theory assumes
that the unbound normal mode of the saddle point provides such a separable
reaction coordinate, but dividing surfaces defined with this assumption often
have significant recrossing corrections. Variational transition state theory cor-
rects this problem, eliminating most of the recrossing.

Variational transition state theory has.proved itself to be a flexible and
practical tool for finding better transition state dividing surfaces in both simple
and complex systems. Such dividing surfaces are called generalized transition
states, and the optimum or optimized generalized transition states are called
variational transition states. Real chemical reactions involve reactants with.
quantized vibrations, and this feature must be included in realistic rate con-
stant calculations. Much more accurate rate constants are obtained if vibra-
tions are treated as quantized both in the generalized transition state
dividing surface and in the reactants. The reaction-coordinate motion, which
is unbound for bimolecular reactions and therefore does not have quantized
vibrations, also exhibits quantum effects, especially tunneling and nonclassical
reflection. For thermal reactions that involve: significant tunneling contribu-
tions, it is necessary to treat the overbarrier and tunneling processes in a con-
sistent framework because the fraction of reaction that occurs by a tunneling
mechanism tends to decrease gradually as the temperature is increased; this

-consistency can only be achieved in general if a variational criterion is used
to optimize the overbarrier contribution; after such optimization is carried
out, the ground-state transmission coefficient approximation and the canoni-

“cal-mean-shape approximation provide ways of consistently Incorporating
tunneling effects into variational transition state theory for gas-phase and
liquid-phase reactions, respectively.

For simple reactions, one needs to consider only a single reaction co-
ordinate, and the isoinertial minimum energy path provides a good choice
that is often sufficient. Early work took the transition state dividing surfaces
to be hyperplanes perpendicular to the isoinertial minimum energy path and
optimized the location of such hyperplanes along this path. The pext genera-
tion of algorithms either optimized the orientation of hyperplanes or used cur-
vilinear coordinates to define more physical dividing surfaces. The most
complete algorithms consider an ensemble of reaction paths. In this way one
€an account, at least in part, for recrossing the dividing surface defined by a
single reaction coordinate.

It is not sufficient to merely treat tunneling consistently with over-
barrier Processes; it must be treated accurately. For overbarrier processes,
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the nonseparability of the reaction coordinate shows up as recrossing, and the
nonseparability of the reaction coordinate is even more important for tunnel.
ing than for overbarrier processes. Two kinds of nonseparability are recog-
nized. First, the effective barrier along the tunneling coordinate depends on
all other degrees of freedom. Second, the tunneling paths themselves tend to
be shorter than the minimum energy path, and this path shortening, called cor-
ner cutting, depends on the multidimensional shape of the potential energy
surface. For small curvature of the minimum energy path in isoinertial coordj-
nates, the effective potential may be calculated vibrationally adiabatically, and
tunneling-path shortening may be calculated to a good approximation from
the reaction-path curvature. For large curvature of the minimum energy
path in isoinertial coordinates, the effective potential is vibrationally nonadia-
batic, and one must average over a set of nearly straight tunneling paths that
usually cannot be represented in coordinate systems based on the minimum-
energy path; special procedures called large-curvature tunneling approxima-
tions have been worked out to treat such tunneling consistently with varia-
tional transition state theory.

This chapter has included a discussion of algorithms for treating all
these issues, especially as they are incorporated in the POLYRATE computer
program. The POLYRATE program requires information about the potential
energy surface, and this can be included in a variety of ways. These include
global analytical potential energy surfaces and direct dynamics. In direct
dynamics, the energies, gradients, and Hessians required by the algorithms
are computed “on the fly” by electronic structure calculations whenever
the algorithms call for them. This is called direct dynamics. POLYRATE
also includes several interpolation schemes in which the needed energies, gra-
dients, and Hessians are locally interpolated from a small dataset of electro-
nic structure calculations; this is ‘a particularly efficient form of direct
dynamics.
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