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Introduction

Molecular modeling of gas-phase molecular structure has
achieved tremendous success in recent years. In many
cases, theoretical structures and energies are more
accurate than experimental results. Perhaps even more
important though is the availability of reasonably reliable

theoretical results where no experiments are practical or

available. Theoretical chemistry can also be used to
predict dynamics and spectroscopy, and it can model
systems in the condensed phase as well as the gas-phase.
This paper summarizes some recent advances in these
areas, especially for molecular modeling of reaction
energies, activation barriers, and solvation.

Chemical reactions may be divided into two types,
electronically adiabatic and electronically nonadiabatic.
Even when one calculates the electronic structure step-
by-step along with the nuclear motion, the questions of
interaction potentials and dynamics are conceptually
separable. Interaction potentials will be discussed first,
then dynamics. The discussion of dynamics focuses on
rate constants and overall rate processes when state-to-
state information is not required.
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Interactions and Forces

For electronically adiabatic reactions, i.e., those in
which the adiabatically defined electronic state does not
change during the collision, the forces on the nuclei may
be obtained as the gradient of a single-valued adiabatic
potential energy function (PEF), also called the potential
surface (Truhlar et al. 1987, Schatz 1989, Truhlar 1992).
A potential surface is the expectation value of the
electronic Hamiltonian (including nuclear repulsion) for a
given electronic wave function with fixed nuclei; the
surface is a function of the positions of the nuclei. Thus
the calculations of forces between nuclei (i.e., between
atoms and atomic ions) eventually reduce to calculating
electronic wave functions as functions of coordinates.
Technically, however, some electronic structure methods
work directly with electronic densities rather than
electronic wave functions, or—in a hybrid way—they
work with wave functions and densities.

For electronically nonadiabatic reactions involving a
small number N of electronic states, which is the usual
situation for gas-phase photochemistry or condensed-
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phase photochemistry in non-electronically-conducting
media, the forces on the nuclei may be derived from N
adiabatic potential surfaces, V,, V,, ... V,, and (V" — N)/2
matrix elements of the nuclear momentum operator,
which is a 3N___-dimensional vector (thus one requires
3N_m(N2 — N)/2 elements). (Note: N___ is the number of
atoms.) When, as is usually the case for interesting
applications, the electronically nonadiabatic coupling
may be assumed to arise from changes in orbital
occupation rather than from the inability of electrons in a
given orbital to completely follow the nuclei due to their
finite speed, one may change the electronic representation
from an adiabatic one to a diabatic one (Garrett and
Truhlar 1981, Sidis 1992). In the diabatic representation,
the forces may be derived to a good approximation—but
pot exactly (Mead and Truhlar 1982)—from N diabatic
potential surfaces, U,, U,, ..., Uy, which are again
expectation values, but now calculated with diabatic
electronic wave functions, plus (N* — N2 off-diagonal
matrix elements of the electronic Hamiltonian, which is a
scalar operator. This is a great simplification. The final
situation is the case of chemical reactions in or on an
electronically conducting medium, such as reactions at a
metal surface. This case is hardest to treat although there
is some justification for continuing to use potential
surfaces, possibly with the addition of electron-hole pairs
to the model (Chester 1961, Marcus, 1964, Wonchoba et
al. 1994, Head-Gordon and Tully 1995, Billing 1998).

Electronically Adiabatic Reactions

Electronic structure calculations have so far had the
most success in the electronically adiabatic case, in part
because the adiabatic states are uniquely defined, and the
variational principle provides a convenient way to
approximate the lowest adiabatic state. Two
developments in this area have been the backbone of
most other advances: '

» Coupled cluster-type methods including the
“parentheses T™ terms, which is an explicit-
correlation approach, and which includes
coupled clusters with single and double
excitations and quasiperturbative triple
excitations, CCSD(T), and also quadratic
configuration interaction with single and
double excitations and quasiperturbative
triple excitations, (QCISD(T)) (Raghavachari
and Anderson 1996), and

e A density-based approach using hybrid
Hartree-Fock-density functional theory (HF-
DFT), which is justified on the basis of the
adiabatic connection method (ACM) (Harris
and Jones 1974, Harris 1984, Becke 1993).

Whereas CCSD(T) and QCISD(T) methods and
Mgller-Plesset perturbation theory, which may be thought
of as an approximation to these methods, employ explicit

forms for the many-electron wave function, DFT is
based—in principle—directly on the one-electron density.
But even so-called pure DFT methods are usually based
on the Kohn-Sham formulation, and therefore they use a
wave function to calculate the kinetic energy; whereas so-
called hybrid HF-DFT methods use a hybrid formulation
for the exchange part of the potential energy, calculating
a fraction of it by Hartree-Fock exchange integrals and
the rest by a functional of the density or a functional of
the density and its gradient.

Explicitly Correlated Wave Functions

The quasiperturbative triple excitations in the
CCSD(T) and QCISIXT) methods include both a fourth-
order term and a fifth-order term in a well balanced way
(Scuseria and Lee 1990, Stanton 1997), and they are
generally believed to give a result that is often close to
full configuration interaction for a given one-electron
basis (Lee and Scuseria 1995). However, (i) the methods
are expensive even for moderate (unconverged) basis sets,
and (ii) convergence with respect to the one-electron
basis is slow. There are four strategies for coping with
these problems.

The first is the Gaussian-x strategy (Curtiss and
Raghavachari 1998, Curtiss et al. 1999). To overcome
difficulty (i) by this strategy, one performs less complete
correlated calculations with a large basis and QCISD(T)
or CCSD(T) calculations with a small basis and assumes
that higher-order correlation effects and extended-basis-
set effects are additive. To make up for systematic errors
and help overcome difficulty (ii), one also adds in a so-
called higher-level correction, which contains 2 to 4
parameters and changes discontinuously when the number
of paired electrons change, e.g., during the process R- +
H- - RH.

The second strategy is basis set extrapolation.
Originally, this strategy was aimed primarily at very
small molecules by testing how well ome could
extrapolate from very large basis sets (e.g., correlation-
consistent polarized valence quadruple zeta or higher) to
the infinite basis set limit (Montgomery et al. 1994,
Martin 1998). More recently, it has been developed for
the more affordable choice of extrapolating from
polarized double and triple zeta to the infinite basis set
limit (Ochterski et al. 1996, Fast et al. 1999).

The third strategy is to extrapolate the many-electron
level of the treatment correlation energy, either ab initio
or semiempirically. Examples of the latter are the scaling
external correlation (SEC) and scaling all correlation
(SAC) methods (reviewed elsewhere: Corchado and
Truhlar 1998).

The fourth strategy is the multi-coefficient (MC)
approach that attempts to combine the advantages of all
three of these approaches (Tratz et al. 1999, Fast and
Truhlar 2000). The most general class of MC methods is
called multi-coefficient correlation methods (MCCMs),
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Table 1. Mean Unsigned Errors Per Bond for
82 Atomization Reactions’.

Scaling | Method MUE/bond | Cost®
{(kcal) (relative)
N single-level
methods
MP2/cc-pVDZ 7.8 8
MP2/MG3 24 100
MP2/cc-pVTZ 2.0 160
multi-level
SAC-MPYccpVIZ | 3.1 8
SAC-MP2cc-pVIZ |19 160
MCCM-CO-MP2 1.5 170
MCCO-CO-MP2; 1.3 150
MG3; 6-31+G
N* single-level
methods
MP4SDQ/cc-pVDZ 11.5 17
CCSD/cc-pVDZ 119 - 120
MPASDQ/cc-pVTZ 5.6 250
CCSD/cc-pVTZ 6.1 2300
multi-level
SAC-MP4SDQ/cc- 2.1 17
pVvDZ )
MCSAC-QCISD/6- 2.6 25
31G
MCCM-UT- 1.0 74
QCISD/6-
31G(2df.,p); 631G’
MCCM-UT- 0.8 180
MP4SDQ
MC-QCISD 0.7 120
N’ single-level
methods
QCISD(T)/6-31G 10.2 42
MP4/cc-pVDZ -19.6 92
QCISD(T)/6- 8.0 130
311G(d,p)
CCSD(T)/cc-pVDZ 10.3 260
MP4/6-311G(2df,p) | 3.5 540
MP4/cc-pVTZ 2.6 2250
CCSD(T)/cc-pVTZ 3.7 3600
multi-level
Gaussian-3 0.36 720
L MCG3 0.31 ~ 1210

%based on Tratz et al. (1999) and Fast and Truhlar (2000).
bCost: an average based on single-point energies for molecules with 5-
11 atoms. MP2/MG3 = 100.

and it includes the MCSAC, EIB, MCCM-CO, MCCM-
UT, MCCM-NM, MCG2, MCG3, G3S, and MC-QCISD
approaches. In the two papers just referenced, we

recommended eleven of these methods as providing the
best compromise of accuracy and economy for
calculating bond energies (or, more generally, for
calculating any gas-phase thermochemical quantities for
stable species). Table 1 compares the performance (mean
unsigned errors) of some of these methods (which, like
the Gaussian-x methods, may all be called multi-level or
dual-level methods) to the more traditional single-level
electronic structure methods. The computational
efficiency (defined as the cost for achieving a given
average accuracy) is striking, even though the cost
function is based on molecules with inly 5-11 atoms. As
system size is increased, the costs of the methods
eventually scale as (N__)", where nis 5, 6, or 7. Because
of these scaling properties, Table 1 has subsections for
each of these values of n. For very large systems, only
the smallest 7 calculations will be affordable. However,
for any n, the multi-level methods are much more
accurate for a given cost than the single-level methods.
An important area of current research is linear scaling
methods in which the algorithms are reformulated such
that n = 1. Only recently has there been progress on
developing linear scaling algorithms for methods with n =
5 and 6 (Ayala and Scuseria 1999, Schultz et al. 1999,
Scuseria and Ayala 1999).

All electronic structure methods become less
accurate when attention changes from stable species to
transition states. A special problem occurs for doublet
and triplet transition states; for these cases the most
popular explicitly correlated treatments, which are based
on unrestricted Mgller-Plesset perturbation theory, often
lead to wave functions that have significant contributions
from states with an incorrect expectation value of 52,
where S is electronic spin.  This so-called spin
contamination problem is corrected by restricted open-
shell Mgller-Plesset theory, but it appears that the fix-up
is not physical enough to guarantee more accurate results
(Chuang et al. 2000). The CCSD and QCISD approaches,
and especially CCSD(T) and QCISD(T), appear to be
more accurate in this respect, but a truly satisfactory
procedure seems to require a multi-configuration wave
function as a zero-order state for perturbation theory or as
a reference state for configuration interaction.
Conventional configuration interaction methods, whether
based on single-configuration references or multi-
configuration references, are not size-cBonsistent, and this
is a serious problem in predicting potential energy
surfaces. One promising method that includes both size-
consistency and multi-configuration reference states is the

. MRPT2 method of Hirao and Nakano (Nakano et al.

1997, Roberto-Neto et al. 1999, Kobayashi et al. 2000).
It will be interesting to test this method further when
computer code for analytic gradients (Nakano et al. 1998)
becomes available.  Other multireference perturbation
theory methods may also be recommended (e.g., Finley
and Freed 1995, Kozlowski et al. 1995, Staroverov and
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Table 2. Mean Unsigned Errors in Barrier
Heights and Reaction Energies for 20

Reactions’.
Basis Method Mean lerrorl | Cost’
(kcal) (relative)
V' | AE
MG3 MP2 4.3 29 100
B3LYP 3.9 2.1 50
BH&HLYP 23 3.0 50
MPWIPW91 | 3.6 1.5 50
MPWIK 1.6 1.7 50
QCISD(T)/ 1.3 14 100
MPWIK
6-31+G(d,p) MPWIK 1.6 | 20 7
QCISD(TY/ | 3.1 3.1 12
MPWI1K
multi-basis | MC-QCISD// | 1.5 1.2 10
MPWIK
%based on Lynch et al. (2000).

bCostanesﬁmaleforlOenetgia, 10 gradients, and 1 Hessian based
primarily on the reaction of amino radical with ethane. MP2/MG3 = 100.

Davidson 1998, Celani and Wemer 2000; see also
additional references in Sect. 1.2).

With these caveats about single-configuration
reference methods in mind, the MCCM methods may still
be recommended for transition states if used with
appropriate caution. We shall return to this subject in the
section below.

Density Functional Methods

Local density functional methods, with or without
gradient corrections, systematically overestimate binding
energies (Van Leuwen and Baerends 1994, Yxkinten et
al. 1997, Perdew 1999) and systematically underestimate
barrier heights (Porezag and Pederson 1995, Baker et al.
1996). (Sometimes gradient-corrected functionals are
called nonlocal, but here we reserve the word “nonlocal”
for integral operators like the Hartree-Fock exchange

operator.) Although the situation may improve in the

future with better density functionals or by including
multireference character in the computational scheme
(see next section), at the present time pure DFT cannot be
recommended for quantitative work on molecules (it is
better for solids).

Hybrid HF-DFT

The poor performance of local density functional
methods for molecular energies has been explained
theoretically (Becke 2000) in terms of the implied
locality of the exchange hole, and this explanation,
combined with the adiabatic connection method (Harris
and Jones 1974, Harris 1984), points to the need for

incorporating nonlocal operators, such as Hartree-Fock
exchange.  Apparently, at least 12% Hartree-Fock
exchange is required to incorporate the necessary
nonlocality (Becke 2000). Methods that mix local
density functionals (usually gradient-corrected) with
nonlocal Hartree-Fock exchange (Becke 1993) are called
hybrid HF-DFT methods. When compared to using
explicitly correlated wave functions, hybrid HF-DFT
methods provide remarkably high accuracy on a price-
performance basis, and for moderate-sized and large
systems, they will often give the best results of all
affordable methods. The most widely used hybrid
method is B3LYP (Stephens et al. 1994), with 20%
Hartree-Fock exchange, although a method employing the
same functionals but with 50% Hartree-Fock exchange
has often been reported to be more accurate for chemical
reaction barrier heights and for applications in surface
science. The newer MPWIK hybrid method, with a
modified exchange functional and 42.8% Hartree-Fock
exchange, is even more accurate; see Table 2 (Lynch et
al. 2000). Nevertheless, one must still be very cautious
about the reliability of DFT and hybrid HF-DF theory for
molecular modeling, as indicated by the poor
performance of DFT for hydration effects (Hall et al.
2000). The methods can be very useful when used in
situations where they have been validated, but they
cannot be used universally or uncritically.

Even with improved functionals of the one-electron
density, DFT or hybrid HF-DFT based on the Kohn-Sham
equations and a non-interacting single-determinant
reference state cannot handle all situations equally well.
That is because such a DFT formulation includes
dynamical (external) correlation effects but not static
(internal) ones; inclusion of static correlation requires a
multi-reference  treatment, ie., the wuse of a
multiconfiguration reference state, or taking account of
the two-electron density. In recent work good progress
has been made in sorting out the relevant issues and
taking initial steps toward practical multi-reference DFT
(Sancho-Garci4 et al. 2000, Grifenstein and Cremer
2000).

A separation of the kinetic or potential energy into
non-exchange and exchange parts is not unique, and one
must be careful not to overinterpret individual
components of the energy. Nevertheless such analyses
may be useful for designing better DFT methods. The
exchange kinetic energy, for example, is known to play a
critical role in realistic descriptions of bonding (Goddard
and Wilson 1972).

Another idea illustrated in Table 2 is the use of DFT
to optimize geometries. The notation “X//Y” refers to
optimizing a stationary point or calculating a reaction
path at level Y and then carrying out energy calculations
at these geometries (so-called single-point energies) by
method X. Table 2 shows that single-point energies with
the MC-QCISD method at MPWI1K stationary-point
geometries provides an economical way to calculate
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reasonably accurate barriers for chemical reactions. The
// scheme can also be applied along reaction paths, where
it is called ISPE or IRCmax, but it is less successful than
a method called /// that involves limited geometry
optimizations at the higher level (Chuang et al. 1999a).

Ldrge Systems

Very large systems typically require the use of lower-
level methods. Even DFT calculations may be too
expensive for some applications, or they may be
insufficiently accurate. One therefore tums to simpler,
less expensive methods, especially those with parameters
that may be adjusted semiempirically.  Molecular
mechanics (i.e., the use of valence force fields) is very
popular for conformational analysis of stable species, but
is inapplicable in its original form to reactions. Empirical
valence bond (Aqvist and Warshel 1993) and multi-
configuration molecular mechanics (Kim et al. 2000)
provide two ways to extend molecular mechanics to
reactive systems. Another approach is constituted by the
so-called quantum-mechanical-molecular-mechanical
(QM/MM) methods (Gao and Thompson 1998) in which
quantum mechanical methods, often semiempirical ones,
are used for a subsystem, and molecular mechanics is
used for the rest of the system. When the subsystem is an
entire solute not connected by bonds to the rest of the
system, a method based on link atoms (Field et al. 1990)
appears to be very useful. This approach has also been
used successfully (Ridder et al. 1998) when the subsystem
boundary is in the middle of a bond (which is essential for
modeling the critical residues of enzymes), although in
this case the generalized hybrid orbital method (Gao et al.
1998, Alhambra et al. 1999), which involves boundary
atoms, and the use of adjusted connection atoms (Antes
and Thiel 1999) appear more robust. Another QM/MM
method that allows the boundary of the subsystem to be
in the center of a bond is the integrated-molecular-orbital-
molecular-orbital IMOMO) method (Humbel et al. 1996,
Svensson et al. 1996, Corchado and Truhlar 1998b) or the
IMOHC extension for optimizing geometries (Corchado
and Truhlar 1998a). The IMOMO method is very flexible
and allows one to use explicitly correlated wave functions
for the subsystems, which is called the correlated capped
subsystem (CSS) method (Coitifio et al. 1996, Noland et
al. 1997, Coitifio et al. 1997); it is particularly powerful
for calculating substituent effects. Another approach,
which is similar in some respects to IMOMO but both
less flexible (a disadvantage) and simpler (a definite
advantage) is the use of locally dense basis sets (LDBSs),
as demonstrated by DilLabio and Wright (1998).

Atoms and molecules at nanosurfaces show different
behavior and reactivity from that of ordinary materials.
Furthermore, the properties of nanoparticles may be tuned
by size as well as constitution. Modeling the reactivity of
nanoparticles and large clusters efficiently may require
specialized models. When one is modeling a specific

system, one can often obtain more accurate results by
using specific reaction parameters (SRPs) (Gonzalez-
Lafont et al. 1991, Rossi and Truhlar 1995, Bash et al.
1996). For example, in work mentioned above, general
parameters have been optimized to give improved
thermochemistry via hybrid Hartree-Fock/density-
functional theories (HF-DFT) (Becke 1993, Lynch et al.
2000). Although these parameters have been optimized
to make the methods robust for a diverse set of
applications, for any one application, other values of the
parameters may prove more effective (Chuang et al
1999b). This approach can be implemented by means of
various bootstrap strategies. For example, if one can
afford to calculate the barrier height and/or transition
state geometry for a given reaction system by a more
accurate method, one can adjust an SRP (or SRPs) to
reproduce this critical region of the potential energy
surface. Then the specifically recalibrated HF-DFT-SRP
method provides an affordable engine for direct dynamics
calculations that should yield useful results for that
reaction system. Other strategies are also possible, e.g.,
one can optimize parameters on a smaller but similar
system or on a subsystem of a larger system.

As we move up in size in the intermediate-size
cluster systems, at some point we may find that even
hybrid HF-DFT-SRP methods present a prohibitive cost.
In that case there are two general strategies: (i) use an
intrinsically less accurate level of theory, but use SRPs to
calibrate it for the system of interest; (ii) use multilevel
techniques based on treating a subset of the atoms in the
cluster at a higher level than the full cluster.

Ab initio and hybrid HF-DF electronic structure
techniques can be used to understand which lower-level
methods are most reliable for various kinds of systems
(e.g., systems without ions or polar bonds) and, when
appropriate, to validate lower-level methods for such
properties. Even more powerful is the use of high-level
methods to parameterize semiempirical models that can
be applied to larger systems. There is a hierarchy of such
semiempirical methods that may be used. With respect to
using lower level theory with SRPs we note that we have
had considerable success using neglect-of-diatomic-
differential-overlap (Pople and Beveridge 1970) theories
as the lower level (Gonzalez-Lafont et al. 1991, Liu et al.
1993, Corchado et al. 1995, Chuang et al. 1999b). One
can use genetic algorithms to optimize the parameters, a
procedure that we have demonstrated successfully for
other systems (Rossi and Truhlar 1995, Bash et al. 1996,
Liu and Truhlar 2000). For even larger clusters, one can
use tight binding theory (Sutton et al. 1988, Ducastelle
1991, Galli and Mauri 1994, Wang and Mak 1995,
Wasserman et al. 1996, Elstner et al. 1998, Horsfield
1997, Galli et al. 1998, Liu and Truhlar 2000) to generate
the potentials. Tight-binding methods are especially
alluring when reformulated so the computational cost
scales linearly with N, . (Goedecker and Teter 1995,
Jayanthi et al. 1996, Horsfeld et al. 1998, Sternberg et al.
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1999, Bowler and Gillan 1999). As an example of the size
limitations, nonorthogonal, non-self-consistent tight
binding could be used for long simulations of up to 5000
atoms, but nonorthogonal, self-consistent tight binding is
probably most useful for long simulations in which the
system size is restricted to 2000 or less atoms. As a
starting point, it is important to understand the accuracies
of various general levels as well as to have universal
parameterizations available as starting points for specific
reaction parameterization. Tight-binding methods have
been most successful for homonuclear systems (e.g.,
silicon) and systems where all atoms have similar
electronegativity (e.g., hydrocarbons).

Potential surfaces for liquid-phase condensed-phase
systems may be modeled in the fall space of solute and
solvent (this is called the explicit-solvent approach) (for
collections of articles, see Jensen and Truhlar 1987, Gao
and Thompson 1998), or the effect of solvent may be
taken into account implicitly by replacing the solute
potential energy by a potential of mean force (for a recent
review, see Cramer and Truhlar 1999). The explicit
approach includes both nonequilibrum solvation effects
and equilibrium ones, whereas the implicit approach
usually includes only equilibrium solvation. In the
implicit approach, nonequilibrium effects, if significant,
can be added by using collective solvent coordinates
representing the deviation from equilibrium (Chuang and
Truhlar 1999). Explicit methods also have the advantage
of providing a seemingly more natural way to include
specific interactions in the first solvation shell, although
these can be included in an average way in implicit
models via atomic surface tensions. However, explicit-
solvent methods have several severe drawbacks, most
especially that they are expensive. As a result of this
chief drawback, such treatments usually neglect solute
and/or solvent polarizability effects or treat these in a
parameterized way.

Whereas explicit-solvent models require new
parameters for every new solvent to be considered,
implicit-solvent models have been parameterized in a
“universal” way for general organic solvents by
representing the solvents in terms of a small number
(about a half dozen) of solvent descriptors such as
dielectric constant, hydrogen bond acidity, and so fourth
(Zhu et al. 1998, Hawkins et al. 1999). The dielectric
constant accounts for bulk electric polarization of the
solvent, and the other descriptors account for deviations
from this due to cavitation, short-range forces, such as
dispersion forces and hydrogen bonding, and solvophobic
effects, if any. A critical element in calculating the
electric polarization effects is a realistic model of liquid-
phase electrostatics. Class IV charges calculated by the
self-consistent reaction field method in the liquid phase
provide a semiempirical, low-cost means of including
solute polarizability in such calculations (Zhu et al.
1998).

Electronically Nonadiabatic Reactions and Spectroscopy

The best current methods for calculating excited-state
potential curves or sets of coupled ground and excited
surfaces are multiconfiguration SCF (MCSCF)
calculations combined with perturbation theory for
dynamical electron correlation (both diagonalize-then-
perturb, e.g., CASPT2 (Roos et al. 1994, Roos et al. 1996,
Merchan et al. 1999), and perturb-then-diagonalize, e.g.,
QCMRPT2 (Nakano 1993, Hoffmann and Khait 1999),
procedures are available) and MCSCF followed by multi-
reference configuration interaction (MRCI) (Harrison and
Shepard 1994, Wemner 1995, Dachsel et al. 1977).
Diabatic states are usually defined by using valence bond
configurations, or state-averaged natural orbitals (Garcia
et al. 1997, Kliiner et al. 1999) but more systematic (and
systematically improvable) methods are available
(Atchity and Ruedenberg 1997), although they are not
still completely general.

Recent work has shown progress in practical
extensions of DFT methods to excited states, and there is
now considerable activity in this area.

A problem on the borderline between structure and
dynamics is the calculation of vertical excitation spectra
in the condensed phase. By the Franck-Condon principle,
the excitation is sudden on the time scale of nuclear
motion, but electronic polarization occurs on a faster time
scale. Recent progress has been made by combining a
two-time-scale treatment of electric polarization of the
solvent (treated as a continuous dielectric medium) with
additional terms for dispersion effects and hydrogen
bonding (Aguilar et al. 1993, Li et al. 2000).

Dynamics
Electronically Adiabatic Processes

A variety of molecular dynamics methods can be
used for the dynamics of the interacting atoms once
accurate forces are known. The most straightforward
methods are based on classical trajectories.  For
statistically averaged (i.e., microcanonical or canonical)
chemical reaction rate constants, generalized transition
state theory has some advantages. One advantage of
transition state theory is that although the original
fundamental justification of the theory was classical, it
has been shown that quantal effects may be incorporated
by a two-step process (Garrett et al. 1980, Truhlar et al.
1982, Isaacson and Truhlar 1982). First, one replaces the
classical phase space integrals that define the partition
functions of transition state theory by quantum
mechanical sums over states. This quantizes all degrees
of freedom of the reactant and all degrees of freedom of
the transition state except the reaction coordinate (which
is missing in the transition state partition coefficient).
This is done prior to optimizing the location of the
variational transition state so as to include quantum
effects on the location of the variational transition state as
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well as on the reactive flux that passes through it. In the
second step, one multiplies by a transmission coefficient
that accounts for the competition between tunneling and
overbarrier processes; this includes the quantum effects
on the reaction-coordinate motion. Variational transition
state theory with semiclassical multidimensional
transmission coefficients (VIST/SMT) has been well
validated against accurate quantum dynamics for a
diverse set of few-body systems (Allison and Truhlar
1998), but accurate quantum dynamics rapidly becomes
prohibitively expensive as system size grows.

At a deeper level, we mow recognize that the
transition state partition function, usually interpreted as a
Boltzmann average of sharp energy levels of the
transition state, can be also interpreted as a Boltzinann
average of transition state resonances with finite energy

- widths (due to their finite lifetimes) (Truhlar and Garrett
1992) or as a Boltzmann average of the transmission
probability for flux passing the quantized dynamical
bottlenecks (Chatfield et al. 1992, Chatfield et al.
1996)— either of these methods automatically includes
tunneling and other quantum effects on the reaction
coordinate, and they provide an alternative to the two-
step procedure. '

Other (closely related) approaches to including
quantum effects in transition state theory are called path
integral quantum transition state theory, PI-QTST (Gillan
1988, Voth et al. 1989; for a comparison to VIST/MT,
see Truhlar et al. 1996) and the instanton approach
(Miller 1975, Bendarskii et al. 1993, Smedarchina et al.
1995). The PI-QTST method has similar accuracy to
VTST/MT for symmetric bimolecular reactions in regions
of its validity (McRae et al. 1992), and work is in
progress on extending it to asymmetric systems and
metastable potentials (Jang et al. 1999). The instantan
approach has had considerable success for proton
tunneling rearrangements (Ferndndez-Ramos et al. 1999),
but in its current form it is not applicable to bimolecular
reactions or to unimolecular reactions with reaction paths
involving large-amplitude motions. A

An alternative approach that is being developed for
proton and hydride transfer reactions is to treat the
transferred atom quantum mechanically with the rest of
the system treated by classical mechanics (Hammes-
Schiffer 1998).

It is useful to compare transition state theory to
classical trajectories even in a classical mechanical world.
If a rate process is dominated by a single dynamical
bottleneck region, a very efficient way to calculate the
reactive flux by trajectories would be to sample at the
dynamical bottleneck region and integrate the trajectories
just far enough forward and backward to count how many
times they recross the bottleneck region. If one has
identified a true dynamical bottleneck, the trajectories
with positive momentum at the saddle point will proceed
directly to products and those with negative momentum
along the reaction coordinate will proceed directly to

reactants, where “directly” means without recrossing the
dynamical bottleneck. = This no-recrossing limit is
trapsition state theory, and it is often an excellent
approximation (Truhlar and Garrett 1980, Truhlar et al.
1996). Thus, in a classical world, transition state theory
may be thought of as an efficient way to carmry out
trajectory simulations, i.e., as a form of rare event
sampling.

When one considers condensed-phase systems, the
pumber of possible dynamical bottlenecks can become
large. Nevertheless in some cases one can still calculate
all the rate constants for elementary steps and predict the
complex-systems kinetics by a master equation or by
kinetic Monte Carlo algorithms However, when the
number of possible elementary processes becomes too
large to catalog, a classical mechanical simulation of the
entire complex system may still be used. At first it might
seem that transition state theory becomes less useful here, -
but that is not true. Voter has shown that combining
transition state theory ideas with full-system classical
dynamics provides an efficient means of rare event
sampling even when the dynamical bottlenecks are ot
pre-identified; the resulting method is called
hyperdynamics (Voter 1997, Voter and Sorensen 1999,
Rudd and Voter 1999). In a rough description,
hyperdynamics consists in flooding (filling in) the
minima to make it easier to surmount the barriers. This
may be compared to an alternative strategy (Ota and
Briinger 1997) of scaling down the barriers when the goal
is the computation of free energies of flexible molecules
rather than dynamics.

If energy transfer processes that replenish the
reactant Boltzmann distribution for reactive states are
slow compared to reaction, or if energy transfer events
that stabilize highly reactive states of reactants formed by
reverse reaction are slow, then one must add corrections
for nonequilibrium effects to either trajectory calculations
or to transition state theory, because the assumption that
reaction is sampling an equilibrium ensemble breaks
down (Lim and Truhlar 1986). A second circumstance in
which one must consider nonequilibrium effects is when
one or more of the reactants is a solute, and it is assumed
that the solvent is at equilibrium with it. This is often a
good first-order assumption, but we must consider
quantitative nonequilibrium corrections (Chuang and
Truhlar 1999).

Direct dynamics is the use of electronic structure
theory to calculate energies, gradients, and Hessians on
an “as needed” basis, or perhaps by local interpolation,
but without fitting this data to a global or semiglobal
potential energy function (Wang and Karplus 1973,
Leforestier 1978, Truhlar et al. 1982). In other words, the
dynamics are generated directly from the electronic
structure calculations. Car and Parrinello (1985)
pioneered an extended Lagrangian formulation for the
interface between the two elements in direct dynamics
calculations combining density functional theory (DFT)
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for the electronic structure element with purely classical
trajectories for the dynamics. In their method, the
electronic degrees of freedom are treated by fictitious
dynamics while the nuclei are treated with classical
dynamics. Direct dynamics has also been widely used
with other computational strategies and with other
dynamics methods. For example, there has been a
considerable amount of work on direct dynamics methods
for generalized transition state theory in the gas phase
(Truhlar and Gordon 1990, Truhlar 1995, Corchado et al.
1998c, Chuang et al. 1999a) and in the liquid state
(Chuang et al. 1999b). '

An especially difficult challenge for condensed-phase
dynamical studies is the incorporation of quantal
dynamical effects into enzyme catalysis, but recently
progress has been reported in this area by two especially
promising approaches (Hwang and Warshel 1996,
Alhambra et al. 1999, Alhambra et al. 2000).

Electronically Nonadiabatic Dynamics

The treatment of electronically nonadiabatic
collisions is much less developed than the treatment of
reactions that proceed on a single potential epergy
surface. In some cases when there is a dense manifold of
closely coupled electronic states, one may use statistical
theories even for electronic degrees of freedom (Truhlar
and Dixon 1979). For the coupling of the ground state to
this manifold or for couplings among a few low-lying,
widely separated electronic states, there are three main
approaches under cumrent study: trajectory surface
hopping (Tully 1998), self-consistent potential methods
(Meyer and Miller 1979, Topaler et al. 1998), and density
matrix evolution (Martens and Fang 1997). Recently we
have developed a method, called continuous surface
switching (CSS), that combines some of the more
desirable features of the TSH and Ehrenfest methods,
without having their worst drawbacks (Volobuev et al.
2000, Hack and Truhlar 2000). An alternative method
that accomplishes some of the same objectives by using a
stochastic Schrodinger equation has also been proposed
(Prezhdo 1999).

Methods are also available for the treatment of

electronically nonadiabatic processes in condensed-phase

systems (Prezhdo and Rossky 1997, Rabani et al. 1999),
and a review is available (Egorov et al. 1999).

Concluding Remarks

It is now well established that' molecular-scale
modeling competes with experiment for accuracy and
convenience on small systems, and the size of the system
that can be treated with useful accuracy is rapidly
increasing. = For complex systems, molecular-scale
modeling is not only a technique for predicting accurate
numerical values of system parameters, but also it serves
as a techniques of gaining insight and understanding.
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