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GLOSSARY

Adiabatic representation Representation in which the
electronic wave functions are calculated for fixed
(i.e., nonmoving) nuclei.

Avoided intersection Case in which two potential energy
surfaces come together but do not intersect.

Conical intersection Case in which two potential en-
ergy surfaces intersect such that their separation
decreases to zero linearly in the relevant nuclear
coordinates.

Diabatic representation Representation in which the
electronic wave function is not adiabatic.

Dunham expansion Taylor series expansion of a poten-
tial energy curve in the vicinity of its minimum.

Electron affinity Binding energy of an electron to a neu-
tral atom or molecule.

Equilibrium configuration Geometry of a molecule’s
nuclear framework corresponding to the minimum adi-
abatic energy.

Force field The gradient of the potential energy
surface.

Glancing intersection Case in which two potential en-
ergy surfaces intersect such that their separation de-
creases to zero quadratically in the relevant nuclear
coordinates.

Ionization energy Energy required to remove an electron
from an atom or molecule.

A POTENTIAL ENERGY SURFACE is an effective po-
tential function for molecular vibrational motion or atomic
and molecular collisions as a function of internuclear co-
ordinates. The concept of a potential energy surface is
basic to the quantum mechanical and semiclassical de-
scription of molecular energy states and dynamical pro-
cesses. It arises from the great mass disparity between
nuclei and electrons (a factor of 1838 or more) and may
be understood by considering electronic motions to be
much faster than nuclear motions. (When we say nuclear
motions and nuclear degrees of freedom in this article, we
refer to motions of the nuclei considered as wholes, i.e.,
to atomic motions.) This difference in timescales leads
to the so-called electronic adiabatic approximation and to
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10 Potential Energy Surfaces

electronic adiabatic potential energy surfaces. Under some
circumstances, however, it is convenient to use more gen-
eral definitions; this results in potential energy surfaces
variously known as diabatic or nonadiabatic, the latter ad-
jective being a useful double negative (it is convenient
to use this term because, except for a few small terms,
adiabatic surfaces may be defined uniquely but in gen-
eral diabatic surfaces are not; nonadiabatic has the useful
connotation then of “anything except the adiabatic”). The
concept of potential energy surfaces may be generalized
to systems in liquids, in which case one obtains potentials
of mean force.

I. INTRODUCTION

The separation of electronic and nuclear motions accord-
ing to time scales and the consequent introduction of
an effective potential energy surface for nuclear motion
was first considered by Born and Oppenheimer. Although
their method is seldom used in modern work, the modern
equivalents are still commonly called Born–Oppenheimer
approximations and Born–Oppenheimer potential energy
surfaces. The modern form of the derivation, which is
summarized below, dates to a later paper by Born and
to work by Born and Huang. Occasionally the phrases
Born–Oppenheimer and Born–Huang are used to specify
whether certain small terms are included in the poten-
tial energy surfaces, although, as mentioned above, it is
more common to refer to any adiabatic surfaces as Born–
Oppenheimer surfaces.

A potential energy surface is an effective potential en-
ergy function for the relevant nuclear degrees of freedom.
The latter are usually defined as all nuclear degrees of
freedom minus three overall translations and two or three
rotations of the nuclear subsystem. If an atom has N nu-
clei, it is common to consider the potential energy as a
function of 3N − 5 coordinates for N = 2 (since two nu-
clei always lie on a line and therefore, when considered as
point masses, have only two rotational degrees of freedom)
and 3N − 6 coordinates otherwise. Thus for N = 2 we ac-
tually have a potential energy curve (i.e., a function of one
variable), whereas for N ≥ 3 we have a potential energy
hypersurface (i.e., a function of three or more variables).
A potential energy surface would strictly speaking denote
the potential energy as a function of two coordinates in
a two-dimensional cut through the (3N − 6)-dimensional
internal-coordinate space. In this article, however, we fol-
low the very common language by which any potential en-
ergy hypersurface or potential energy function is referred
to as a surface.

II. QUANTUM MECHANICAL BASIS
FOR ADIABATIC POTENTIAL
ENERGY SURFACES

The Schrödinger equation for a system of N nuclei and n
electrons is

(H − E)�(r, R) = 0, (1)

where H is the Hamiltonian or energy operator of the
molecule:

H = − h2

2M
∇2

R − h2

2m
∇2

r + V (r, R) + Hrel(r, R). (2)

In these equations, h is Planck’s constant divided by 2π ,
and R denotes a 3N -dimensional vector of scaled nuclear
coordinates:

R1 =
(

M1

M

)1/2

X1, (3a)

R2 =
(

M1

M

)1/2

Y1, (3b)

...

R3N =
(

MN

M

)1/2

Z N , (3c)

where M j , X j , Y j , and Z j are the mass and Cartesian co-
ordinates of the nucleus j, M is any of the nuclear masses
or a convenient reduced nuclear mass, m is the electronic
mass, r is a 3n-dimensional vector of electronic Cartesian
coordinates {xk, yk, zk}n

k=1:

r1 = x1, (4a)

r2 = y1, (4b)

...

r3n = zn, (4c)

V (r, R) is the sum of all coulomb forces between the par-
ticles, Hrel(r, R) is the energy operator for relativistic ef-
fects including mass-velocity and spin–orbit coupling, E
is the total energy, and ψ(r, R) is the wave function. Notice
that the first two terms in Eq. (1) represent the nonrelati-
vistic kinetic energy of the nuclei and the electrons. Usu-
ally the change in ψ(r, R) is about the same order of mag-
nitude when we move a nucleus a small amount as when
we move an electron the same small amount. When this
is the case, ∇2

Rψ(r, R)/M is smaller than ∇2
r ψ(r, R)/m

by a factor of order m/M , which is less than about 10−3;
thus the first term in Eq. (2) may be neglected to a first
approximation.

The physical interpretation of this is that because of
their larger masses, the nuclei move so slowly compared
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with the electrons that the dependence of the wave function
on electronic coordinates is essentially the same as if the
nuclei were completely stationary (i.e., as if their mass
were infinite so that their kinetic energy was zero). Then
Eq. (1) becomes[

− h2

2m
∇2

r + V (r, R) + Hrel(r, R) − Uα(R)

]
× ψα(r; R) = 0, (5)

where Uα(R) and ψα(r; R) denote the eigenvalue and
eigenfunction, respectively, with index α. Notice that both
of these depend parametrically on the nuclear positions R
and also that the ψα(r, R) form a complete set of functions
of r for any particular value of R. In general the spectrum
{Uα(R)} contains a continuous part as well as a discrete
part, but the discrete part is the important part for the
concept of potential energy surfaces. We shall therefore
use only a discrete index α. This is adequate for almost
all practical work since the continuous part is usually ne-
glected in calculations. For a more rigorous derivation,
however, all sums over discrete α in the equations below
must be replaced by a sum and an integral.

To obtain the complete system wave function we choose
a trial function

ψ(r, R) =
∑

α

ψα(r; R)χα(R). (6)

Since the {ψα(r; R)} are complete, this trial function yields
the exact ψ(r, R) if we retain the complete set and solve
for {χα(R)} by the variation method. The best {χα(R)} by
this method satisfy the equation∫

dr ψ∗
β (r; R)(H − E)

∑
α

ψα(r; R)χα(R) = 0,

β = 1, 2, . . . ,∞. (7)

If we carry out the indicated operations, using Eq. (5)
and the orthogonality of the {ψα(r; R)} in r at fixed R,
Eqs. (7) become

− h2

2M

[
∇2

Rχα(R) + 2
∑

β

Fαβ(R) · ∇Rχβ(R)

+
∑

β

Gαβ(R)χαβ(R)

]
+ [Uα(R) − E]χα(R) = 0,

α = 1, 2, . . . ,∞, (8)

where

Fαβ(R) =
∫

dr ψ∗
α (r; R)∇Rψβ(r; R) (9)

and

Gαβ(R) =
∫

dr ψ∗
α (r; R)∇2

Rψβ(r; R). (10)

By the same argument given above for the variation of
ψ(r, R) with respect to r and R, we expect that the terms
containing Fαβ(R) and Gαβ(R) are usually much smaller
than the term containing Uα(R). When this is so, we may
neglect the small terms, and the set of coupled Eqs. (8) sim-
plifies to a separate uncoupled equation for each χα(R),
namely, [

− h2

2M
∇2

R + Uα(R) − E

]
χα(R) = 0. (11)

This has the form

(Hnuc − E)χα(R) = 0, (12)

where Hnuc is an effective Hamiltonian for nuclear motion
given by

Hnuc = − h2

2M
∇2

R + Uα(R). (13)

Since a Hamiltonian is usually the sum of a kinetic energy
operator and a potential energy operator, we may interpret
Uα(R) as an effective potential for nuclear motion. In fact,
Uα(R) is the potential energy surface that we sought to
derive. Recalling the origin of Uα(R), we see that it rep-
resents the total energy of the electrons, both kinetic and
potential, plus all the rest of the potential energy, when
the electrons are in state α. Alternatively, it represents
the entire (coulombic plus relativistic) potential energy of
all particles plus the electrons’ kinetic energy. When the
equations for the χα(R) decouple, as in Eq. (12), the elec-
tronic state is preserved during the nuclear motion. The
resulting quantized energy requirement of the electrons
plus the rest of the potential energy (given in the absence
of relativistic effects by the nuclear–nuclear coulombic in-
teraction energy) together constitute an effective potential
for nuclear motion.

When nuclear motion can be approximated by classical
mechanics (which is often reasonable, especially for atoms
heavier than hydrogen), Eqs. (12) and (13) are replaced by

MR̈ = −∇RUα(R), (14)

where R̈ is the nuclear acceleration, and the right-hand
side is the force on the nuclei. Since Uα(R) generates the
force function, it is sometimes called the force field.

Inclusion of the spin–orbit and other relativistic terms
in Eq. (5), as we have done, is, strictly speaking, the
most correct approach. This yields, as we have seen, a
set of nuclear wave functions χα(R) whose uncoupled
motion is governed by the potentials Uα(R) and which
are coupled only by the nuclear-derivative terms Fαβ(R)
and Gαβ(R). In practice, though, Hrel(R) is difficult to
treat on an equal footing with the coulombic terms in the
Hamiltonian. Therefore one sometimes works with
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nonrelativistic adiabatic potential surfaces, although the
adjective nonrelativistic is seldom stated explicitly. In
this approximation one temporarily neglects Hrel(r, R) to
solve Eq. (5). This yields a new set of nuclear wave func-
tions χα(R) and U α(r, R) that are easier to work with, but
the effect of Hrel(r, R) must be included later. The matrix
elements

Hrel,αβ(R) =
∫

dr ψ∗
α (r; R)Hrel(r, R)ψβ(r; R) (15)

provide both a perturbative correction to the nonrelativis-
tic potential energy surfaces, for α = β, and an additional
coupling mechanism that must be considered along with
Fαβ (R) and U αβ (R) for α �= β. In the rest of this article
we restrict our attention to the nonrelativistic approxima-
tion, and we assume that Hrel(r, R) has been neglected in
solving Eq. (5).

III. TOPOLOGY OF ADIABATIC POTENTIAL
ENERGY SURFACES

As shown in Eq. (5), an adiabatic potential energy surface
is an eigenvalue of a Hermitean operator, that is, one that
has only real eigenvalues. In most cases these eigenvalues
are nondegenerate. At some geometries R, however,
two or more eigenvalues may be equal, which is called
a degeneracy. Such degeneracies may be mandated by
symmetry or may be accidental. Points where two or more
eigenvalues are equal are particularly interesting, and we
may categorize some features of the potential energy sur-
faces in the neighborhoods of these points on the basis of
symmetry.

The nuclear configuration R, which appears as a param-
eter in the eigenvalue Eq. (5), may be classified by a sym-
metry point group, for example, D∞h for a homonuclear
diatomic molecule or another symmetric linear molecule,
C∞v for a heteronuclear diatomic molecule or other non-
symmetric linear molecule, Td for a tetrahedral molecule,
C2v for a symmetric nonlinear triatomic molecule, and
Cs for a planar molecule. Since the operations of such a
group commute with −(h2/2M)∇2

r + V (r, R), the eigen-
functions ψα(r, R) of this operator can be taken to trans-
form as irreducible representations of the group. We may
thus classify both the eigenfunctions ψα(r, R) and eigen-
values Uα(R) by these irreducible representations, e.g.,∑+

g , �u, or �g for D ∞h or A1 or B2 for C2v.
First consider the case of two nuclei. As already men-

tioned, the potential energy surfaces in this case are really
curves; they depend on only one scalar variable, the inter-
nuclear distance, which we may call �R. One can show,
on general grounds, that for a system with an even num-
ber of electrons, two Uα(�R) may be accidentally equal

FIGURE 1 An avoided crossing for a diatomic molecule. Ua is
the potential energy for electronic state a , �R the internuclear
distance, and �R ∗ the distance corresponding to an avoided
crossing.

at isolated values of �R if they correspond to different
symmetry but not if they correspond to the same symme-
try. When two Uα(�R) are equal, that is called a curve
crossing. Sometimes two Uα(�R) approach very closely
as if they are about to cross but then avoid crossing. This
is called an avoided crossing. An example is shown in
Fig. 1. When the system has an odd number of electrons
and exists in a magnetic-free region, the possibilities are
the same except that all Uα(�R) occur in degenerate pairs.
Imposition of a magnetic field removes the degeneracy.

Now consider the case of N ≥ 3 for which the potential
energy surfaces depend on three or more variables. Here
we also find potential surface intersections of states be-
longing to different symmetries and avoided intersections
of states belonging to the same symmetry, but there is also
a third possibility, namely, intersections even of potential
energy surfaces belonging to the same symmetry. Such
intersections in general occur in subspaces of dimension
3N − 8 or lower. If we consider a subset of two degrees
of freedom in which the intersection occurs at a single
point, the shape of the surfaces in the vicinity of the
intersection is as shown in Fig. 2, that is, the two surfaces
form a double cone. Such intersections are called conical
intersections. Another shape of intersection may occur at
linear geometries of polyatomic molecules. In this case,
the two surfaces may have zero slope at the point of inter-
section. Such intersections are called glancing rather than
conical.

FIGURE 2 Portions of two potential energy surfaces exhibiting
a conical intersection. Ua is the potential energy for electronic
state a .
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In general, for systems of three or more nuclei, some
potential energy surfaces that intersect when one neglects
spin–orbit coupling avoid intersecting when one includes
it.

IV. BREAKDOWN OF THE ADIABATIC
APPROXIMATION

We are now in a position to understand the limitations of
the adiabatic potential energy surface concept. First, how-
ever, we should understand the physical origin of avoided
crossings and avoided intersections. We begin by consid-
ering the diatomic molecule NaCl, and we let �R denote
the distance between the nuclei. At �R = ∞, the energy
of two neutral atoms is lower than the energy of a Na+

ion and a Cl− ion by the difference �E of the ioniza-
tion potential of Na and the electron affinity of Cl−. As
�R is decreased, however, the energy of the ionic state
decreases rapidly because of the long-range coulomb at-
traction, which may be represented by −e2 /�R where
e is the electronic charge, while the energy of the neu-
tral state stays approximately constant until much shorter
distances where the covalent interaction becomes appre-
ciable. Thus at some distance �R ∗ given approximately
by

�E ∼= e2

�R ∗ 
(16)

the hypothetical purely ionic state and the hypothetical
purely covalent state would have the same energy. Actu-
ally though, at this �R the corresponding eigenfunctions
of Eq. (5) have mixed character, partly covalent and partly
ionic, with about 50% partial ionic character. Since both
states have 1 ∑+

g character, their eigenvalues are different.
We call the energies of the hypothetical states with pure
valence characteristics U d

1 (�R) and U d
2 (�R), where d de-

notes diabatic (or nonadiabatic). Although U d
1 (�R) and

U d
2 (�R) cross, the adiabatic curves U1(�R) and U2(�r )

avoid crossing, having the shapes shown in Fig. 1. For
this case α = 1 corresponds to a covalent state to the right
of �R∗ but to an ionic state to the left of �R∗ and vice
versa for α = 2. Now recall the argument given above for
neglecting F12(R) and G12(R). At �R = �R∗, the wave
function is changing character very rapidly as a function
of �R, and the action of ∇R on ψ(r, R) is unusually large;
this means that F12(�R) and G12(�R) need not be negligi-
ble. In such a case, the dynamics governed by the nuclear-
motion wave functions χ1(R) and χ2(R) do not decouple
into independent motions governed by effective potentials
(i.e., the adiabatic potential energy surface concept breaks
down). Although we have given the argument for a par-
ticular diatomic molecule, the effect is general, and the

adiabatic approximation is expected to break down in the
vicinity of any avoided crossing or avoided intersection,
and also at actual intersections for which the symmetry of
the two states is the same at the intersection.

There are other circumstances under which the adiabatic
approximation may break down. We have considered the
case where ψ(r, R) varies rapidly with R because of the
factor ψα(r; R). A second case where the term containing
Fαβ(R) in Eq. (8) may be significant occurs when χα(R)
varies unusually rapidly, for instance, in highenergy col-
lisions of Na+ with Cl−. When the nuclear speed is large,
χα(R) must vary significantly on the scale of a very small
de Broglie wavelength.

We may summarize the two cases in a simple but ap-
proximate way as follows: When the nuclear kinetic en-
ergy is much smaller than the spacings between the adi-
abatic electronic energy surfaces Uα(R), these surfaces
serve as potential energy surfaces for nuclear motion.
When the nuclear kinetic energy is comparable to or larger
than the spacings between the Uα(R), the adiabatic ap-
proximation may, and often does, break down.

The adiabatic potential energy surfaces need not be
abandoned completely when the adiabatic approxima-
tion breaks down, especially if the region of breakdown
is fairly localized, as it often is when the breakdown is
due to an avoided or conical intersection. If the nonadi-
abatic behavior is localized to a small region, we often
employ the model of surface hopping. In this model the
nuclear motion is assumed to be governed by an adia-
batic potential energy surface until a nonadiabatic region
is reached. In such a region there is a nonzero quantum
mechanical probability that the system “hops” to another
surface. Based on this probability one portion of the quan-
tum mechanical probability density exits the nonadiabatic
region in one of the adiabatic electronic states, and the
other portion exits in the other one or more coupled adi-
abatic electronic states. After this the nuclear motions
again proceed independently as governed by single po-
tential energy surfaces until another nonadiabatic region
is reached. Although this model neglects certain coherency
effects that may be important for quantitative work, it is of-
ten useful for qualitative discussions and semiquantitative
calculations.

Another concept often invoked for qualitative discus-
sions and for calculations when the adiabatic approxima-
tion breaks down is that of diabatic potential energy sur-
faces. There are several nonequivalent ways of defining
such surfaces, each of which may be useful under some
circumstances. The simplest way is that already illustrated
above in conjunction with the NaCl example: namely, a
diabatic state is the effective potential energy function for
nuclear motion when the electronic state is artificially con-
strained to a state of prespecified pure valency.
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A second way to define diabatic electronic states and po-
tential energy surfaces is more mathematical. Notice that
the valency-character prescription leads to states coupled
by the operator

Hel = − h2

2m 
∇2

r + V (r, R) + Hrel(r, R) (17)

and also by −(h2/2M)∇2
R. From the point of view of the

nuclear motion, the former is sometimes called potential
coupling (since it involves only multiplicative operators
in the nuclear coordinates), and the latter is called deriva-
tive coupling. Since electronically adiabatic states have
derivative coupling but no electronic coupling, a natural
question is whether useful diabatic states can be defined to
have potential coupling but not derivative coupling. Un-
fortunately, this leads to states that are completely inde-
pendent of R and are not useful. It is possible, however, to
make one component (in one or another coordinate sys-
tem) of the vector coupling operator Fαβ (R) vanish for all
α, β. Furthermore, if Fαβ (R) is approximated as the gradi-
ent of a scalar (which can be a good approximation when
nonadiabatic effects are dominated by a narrowly avoided
intersection), then it is possible to make all components of
Fαβ (R) vanish for all α, β. Both of these prescriptions are
sometimes employed to obtain diabatic states. Consider,
for example, the case where Fαβ (R) is the gradient of a
scalar for all R; then it has zero curl. We define diabatic
electronic states by

φd
α(r; R) =

∑
β

φβ(r; R)Tβα(R). (18)

The states {φd
α(r; R)χd

α (R)} will be uncoupled by nuclear
derivative operators if we choose Tβα(R) for all β and α
such that

∇RTαβ (R) =
∑

γ

Fαγ (R)Tγβ(R), (19)

and this set of coupled partial differential equations does
have a solution if Fαβ (R) has zero curl. Furthermore, if
the state expansion α, β, . . . is truncated to a finite num-
ber of computationally important states, then the diabatic
electronic basis is not independent of R. In this way, one
can define a diabatic basis by a transformation from an
adiabatic one, and it spans the same space. The diabatic
potential surfaces are given by

U d
αα(R) =

∑
γ

|Tγα(R)|2U γ (R), (20)

and the potential couplings are given by

Uαβ (R) =
∑

γ

T ∗γα(R)U γ (R)Tγβ(R). (21)

As mentioned in Section II, the usual treatments of po-
tential energy surfaces neglect Hrel(r, R) in Eq. (5). Thus
one solves

[
− h2

2m
∇2

r + V (r, R) − U n
α (R)

]
ψn

α(r, R) = 0, (22)

where the superscript n denotes nonrelativistic. The
true adiabatic states are coupled only by −(h2/2M)∇2

R,
but these nonrelativistic adiabatic states are coupled by
both this operator and Hrel(r, R). Because of the latter
coupling, the nonrelativistic adiabatic electronic states
ψn

α(r; R) and their associated potential energy curves
U n

α (R), which are the most widely employed states and
potential energy surfaces in quantum chemistry, are ac-
tually diabatic. They are nevertheless usually called adi-
abatic although nonrelativistic is adiabatic is technically
more appropriate.

V. SHAPES OF POTENTIAL
ENERGY SURFACES

A. Diatomics

A schematic illustration of some typically shaped adia-
batic potential energy curves for a diatomic molecule is
shown in Fig. 3. All five curves shown become large and
positive at small internuclear distance �R. This repre-
sents a repulsive force between the nuclei and is due to
internuclear repulsion and the unfavorability of overlap-
ping the atomic charge clouds of the two different centers.
All five curves tend to constants at large �R. This is be-
cause the atomic interaction energy eventually decreases
to zero as the distance between the atoms is increased.
The constant spacings between the curves at large �R are
equal to the atomic excitation energies. Curves 1 and 2
are effective potentials for the interaction of ground-state
atoms, and curves 3–5 represent effective potentials for the
case where at least one of the atoms is excited. The figure
shows an avoided crossing between curves 2 and 3 and

FIGURE 3 Typical potential energy curves for a diatomic
molecule ordinarily thought of as bound. Ua and �R are as in
Fig. 1; De is the equilibrium bond energy of the ground state.
Curves 1–5 are discussed in the text.
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true crossings of curves 3 and 4 by curve 5. Curves with
deep enough minima, such as 1 and 3, may possess bound
states of nuclear motion. Classically, a pair of nuclei whose
motion is governed by one of these curves could show sim-
ple, almost-harmonic motion in the vicinity of the mini-
mum of the curve. Quantally, there could be bound vibra-
tional states localized in these regions of �R. Curve 1 has
the typical shape for the ground electronic state of a stable
molecule such as H2, N2, or HCl. Such a curve is often
represented in the vicinity of the minimum by a quadratic
potential:

Uα(�R) ∼= 1

2 
k(�R − Re)2 , (23)

where k is the force constant (actually the quadratic force
constant) and Re the equilibrium internuclear distance. An
analytic representation valid over a wider range of �R is
given by

Uα(�R) ∼= 1

2 
k11(�R − Re)2 + 

1

2 
k111(�R − Re)3

+1

2 
k1111(�R − Re)4 + · · · , (24)

where k has been renamed k11, and k111 and k1111 are anhar-
monic (cubic and quartic) force constants. Sometimes the
constant coefficient of (�R − Re) j is written 1/j! instead
of 1

2 so care must be exercised when using anharmonic
force constants. Equation (24) is called a Dunham expan-
sion. An approximate representation of a potential curve
like curve 1 in Fig. 3 that gives its approximate shape over
the full range of �R is

Uα(�R) = De {1 − exp[−α(�R − Re)]}2 . (25)

This is called a Morse curve, De the equilibrium disso-
ciation energy, and α the Morse range parameter. More
complicated analytic forms with more parameters are also
used.

Information about the various parameters (Re , k11 ,

k111 , . . . , De, and α) comes primarily from spectroscopy,
scattering or kinetics experiments, and quantum macha-
nical electronic structure calculations. These are also the
sources for information about potential energy surfaces of
systems with three or more atoms.

Figure 4 shows, to about the same scale as Fig. 3, some
typically shaped potential curves for a diatomic system
usually thought of as unbound (e.g., He2, HeNe, or ArH).
Notice that the lowest potential energy curve has only a
very small minimum at large �R. When this minimum
is important for the problem at hand, such a potential en-
ergy curve is often represented by a Lennard–Jones 12–6
potential:

Uα(�R) = 4ε

[(
σ

�R

)12

−
(

σ

�R

)6 
]
, (26)

FIGURE 4 Typical potential energy curves for a pair of atoms
ordinarily thought of as unbound. Ua and �R are as in Fig. 1.
See text for discussion of the curves.

where ε is the well depth and σ the collision diameter.
Notice that the minimum of Uα(R) occurs at �R = Rm

where

Rm = 21/6 σ (27)

and that

Uα(�R = Rm) = −ε. (28)

When the minimum of a predominantly repulsive poten-
tial curve is considered negligible, it may be represented
by a so-called anti-Morse curve:

Uα(�R) = DAM {exp[−2β(�R − RAM)]

+ 2 exp[−β(�R − RAM)]} + CAM , (29)

where DAM , β, RAM, and CAM are constants, or even by
the simpler

Uα(�R) =
(

β

�R

)
exp(−α�R). (30)

Equation (29) or (30) could be applied to curve 4 of Fig. 3,
to curve 1, 3, or 4, of Fig. 4, or even to curve 2 of Fig. 3,
for which it might be useful in the region to the right of the
avoided crossing and to the left of the shallow, large-�R
minimum.

Notice that the zero of energy is arbitrary for poten-
tial energy surfaces as long as it is chosen consistently
throughout a given calculation. In Fig. 3 we placed the zero
of energy at the bottom of the lowest potential curve. In
Fig. 4 we placed it at the energy of two separated ground-
state atoms.

B. Larger Molecules

Potential energy surfaces for systems with three or more
atoms are harder to illustrate because they depend on three
or more internal coordinates. Analytic representations are
also more complicated than for diatomics.
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Potential energy surfaces may be roughly classified
into those with deep enough minima to support one or
more strongly bound vibrational states and those with-
out such minima. We shall call the former attractive sur-
faces because of the role played by the attractive forces
between the atoms in creating the minimum. The latter
will be called repulsive surfaces. Because spacings be-
tween potential energy curves are usually much larger
than thermal energies, most molecular motions under or-
dinary conditions are usually governed by the lowest en-
ergy potential surface. Thus molecules that usually exist
as bound, stable entities (e.g., H2O, CO2, or CH4) have at-
tractive surfaces in their ground (i.e., lowest energy) elec-
tronic states, whereas molecules usually observed only as
transient species during collisions (e.g., FH2 which exists
during F + H2 or H + HF collisions or NeH2O, which ex-
ists during Ne + H2O collisions) have repulsive surfaces.
Systems like Ne2 or NeH2O may exist as stable but very
weakly bound (and thus easily and usually dissociated)
species because of shallow potential wells in predomi-
nantly repulsive potential energy surfaces. Such weakly
bound species are called van der Waals molecules. Sys-
tems with attractive surfaces in their ground electronic
states may have repulsive surfaces in excited (i.e., higher-
energy) electronic states, and vice versa. Examples of van
der Waals wells and repulsive excited states for the easily
illustrated special case of diatomic molecules may be seen
in Figs. 3 and 4.

The most well understood region of attractive potential
energy surfaces is usually the region near the minimum.
One usually describes the potential energy surface in such
a vicinity by a Taylor’s series about the minimum:

Uα(R) = Ue + 
1

2

∑
i

∑
j

ki j qi q j

+ 
1

2

∑
i

∑
j

∑
k

ki jkqi q j qk

+ 
1

2

∑
i

∑
j

∑
k

∑
l

ki jklqi q j qkql + · · · ,
(31)

where Ue , ki j  , kik j  , . . . are constants, and the {q j } are suit-
able internal coordinates defined to vanish at the location
of the minimum. As written, Eq. (31) contains no terms
linear in the {q j }, but if these are not related to Cartesian
coordinates by a linear transformation, it may be neces-
sary to include linear terms. Equation (31) is called an
anharmonic force field. If the coordinates are linear com-
binations of Cartesians and terms beyond the quadratic are
neglected, it becomes a harmonic force field. In the har-
monic approximation it is always possible to define the
{q j } in such a way that the cross terms vanish (i.e., ki j  = 0

FIGURE 5 Perspective view of potential energy surface for
collinear H + HCl → H2 + Cl. The vertical axis is potential energy,
and axes in the horizontal plane are nearest-neighbor distances.

if i �= j). If this is done and cross terms vanish in the kinetic
energy operator as well, Eq. (31) is called a normal-mode
expansion.

In the vicinity of the minimum of the surface, a two-
dimensional cut through an attractive potential energy sur-
face has the shape of a distorted paraboloid of revolution.

Figure 5 shows a perspective view of a cut through a
potential energy surface for a chemical reaction; in par-
ticular it is based on an approximate surface for the reac-
tion H + HCl → H2 + Cl. To represent the potential as a
function of two internal coordinates, the three atoms are
restricted for this figure to lie on a straight line. If the
hydrogens are labeled Ha and Hb, the left–right axis is
the Hb-to-Cl distance with large values at the left, and the
front–back axis is the Ha-to-Hb distance with large values
in the foreground; the third interpair distance is the sum of
these two. The vertical axis is potential energy. The figure
clearly shows the existence of a minimum-energy reaction
path from reactants in the foreground to products at the
back left. The highest energy point along the minimum-
energy path is a saddle point. This point is sometimes
called the transition state, and it primarily determines the
threshold energy for reaction to occur. The shape of the
reaction path is important for determining the reaction
probability as a function of the vibrational and relative
translational energy of the reactants.

Figure 6 shows the same information as in Fig. 5 but
in the form of a contour map (i.e., a set of isopotential
contours). The horizontal axis is the distance from Cl to
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the center of mass of H2, and the vertical axis is [(MCl +
2MH /4MCl]1/2 times the Ha-to-Hb distance. Because of
the mass scaling factor, the nuclear-motion Hamiltonian,
Eq. (13), in this coordinate system becomes

Hnuc = − h2

2µ

(
∂2

∂x2 
+ ∂2

∂y2

)
+ Uα(x , y), (32)

where

µ = 2MCl MH

(MCl + 2MH) 
. (33)

Since the coefficient of both derivative operators is the
same, this Hamiltonian is the same as that for a single par-
ticle in two dimensions under the influence of a potential
function Uα(x , y). This analogy is very helpful in mentally
visualizing the motion of a polyatomic system whose dy-
namics are governed by a multidimensional potential sur-
face. In Fig. 6 the H + HCl reaction is initiated at the lower
right, and products are formed when the system, having
passed through or near the saddle point (denoted + in the
figure), reaches the top.

For solutes in the liquid phase (e.g., an organic molecule
in aqueous solution), one can obtain an effective potential

FIGURE 6 Contour map of a potential energy surface for collinear
H + HCl → H2 + Cl. x is the distance from H to the center of
mass of HCl and y the mass-scaled distance from Cl to its
nearest H. Both axes are given in units of a0, where 1a0=
1 bohr = 0.5292 × 10−10 m.

function of the solute coordinates by adding the free en-
ergy of solution to the gas-phase potential surface. The
resulting potential function may be used in Eq. (14), and
it is called a potential of mean force.
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