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1 INTRODUCTION

Transition state theory [1] provides a basic conceptual framework for the
interpretation of chemical reaction rates, and this chapter presents an intro-
duction to this theory and its applications. Transition state theory is also
sometimes called activated complex theory; we use the former name consistently
without implying any distinction. We also use the convenient label transition
state theory (TST) to refer to various generalized transition state theories, such
as variational transition state theory, when it is unnecessary to make the
distinction.

Transition state theory is an inherently approximate theory. It is an object

-of this-chapter-to-show whatthe approxinmations are, what are their possible

consequences for conclusions that may be drawn from the theory, and how the
concepts of the theory may be used both for detailed calculations and for
semiempirical modeling. We hope to show that TST (and its generalizations),
despite its approximations, is useful for illuminating the main features of the
pathways by which chemical reactions occur. Indeed, for most such purposes,
TST is the only available approach that provides useful information.

2 ASSUMPTIONS AND DERIVATIONS

Transition state theory was first advanced historically for bimolecular
reactions, and this class of reactions presents the most straightforward
application of the theory. In order to focus most clearly on the assumptions of
the theory we first consider its application to gas phase bimolecular reactions.

[




ASSUMPTIONS AND DERIVATIONS

2.1 Definition of a Transition State

If the reactants have N atoms, that is, the number of atoms in reactant
A plus the number in reactant B is ¥, then the system AB may be described in
terms of 3N coordinates and 3N conjugate momenta; the 6/N-dimensional
space of these variables is called phase space. A transition state is a hypothetical
system localized to a phase-space hypersurface that divides the reactant region
of phase space from the product region. The transition state is described by a
(6N — 2)-dimensional subspace of the full phase space; the two missing dimen-
sions are the reaction coordinate and its conjugate momentum.

The above definition encompasses both conventional and generalized
transition states. A conventional transition state hypersurface is independent of
momenta and may be defined by a (3N — |)-dimensional hypersurface in the
3N-dimensional coordinate space. Furthermore, a conventional transition
‘state hypersurface passes through a saddle point on the potential energy surface
of the AB system. In the usual case a normal mode analysis at the saddle point
for a gas phase reaction yields (3N — 7) real frequencies for internal vibrational
motions, one imaginary frequency corresponding to the reaction coordinate,
and six zero frequencies that correspond to translation and rotation of the
whole system. The conventional choice of the transition state is obtained by
omitting the normal mode associated with the imaginary frequency. Since
normal modes are orthogonal in mass-weighted or mass-scaled atomic
cartesians, where the weight or scale factor for each atomic cartesian is pro-
portional to the square root of the mass of the atom, the missing coordinate is
orthogonal to the transition state hypersurface in a mass-weighted or mass- ‘
scaled cartesian coordinate system at the saddle point. The missing coordinate is
called the reaction coordinate s and its conjugate momentum is called p..
Except at the saddle point, the definition of the reaction coordinate is not
unique. It will be considered further in Sections 2.2.3 and 4.1.

In later discussions it is often convenient to refer to the transition state
hypersurface in phase space as simply the transition state dividing surface or
the transition state (TS).

2.2 Gas Phase Bimolecular Réactions

Transition state theory may be presented in terms of macroscopic quasi-
thermodynamic quantities like the concentration of activated complexes and
the free energy of activation and then translated to the molecular level by the
methods of statistical thermodynamics. Alternatively, it may be derived at the
molecular level by considering phase-space bottlenecks to the flow of phase
points from reactants to products. At the detailed dynamical level, TST may
be derived from two assumptions, an equilibrium assumption and a dynamical
bottleneck assumption. The equilibrium assumption is discussed in detail in
Section 2.2.1. The bottleneck assumption is fundamentally classical so we
restrict our discussion to classical mechanics in Sections 2.2.2 and 2.2.3, where
we discuss transition state theory in terms of the concepts mentioned above.
The molecular level derivation leads to a variational criterion that may be used
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to improve the accuracy of the dynamical bottleneck assumption, and this is
presented in Section 2.2.3. Although the fundamental assumption of transition
state theory is a classical mechanical one, quantum effects are very important
and must be included for qualitatively correct results. This is done in Sections
2.2.4 and 2.2.5. Section 2.2.6 discusses TST activation parameters.

2.21 Equilibrium Assumption

The equilibrium assumption of TST, sometimes called the quasi-equilibrium
assumption, is that TS species which originated in the reactant region of phase
space are assumed to be present in equilibrium with reactants, not just in total
amount but also in the way they are distributed in the transition state hyper-
surface in phase space (or, in quantum mechanical language, in their distribution
of internal state populations). To clarify this, consider a reaction

A+B-C+D (R1)

where A, B, C, and D denote atoms or molecules and where we assume that the
temperature of the system is maintained constant throughout the reaction. For
the forward reaction we can distinguish several different rate constants. The
most common is the phenomenologxcal rate constant k1 defined by the following
equation

dTA] d [C]

- ===+ =k[AlB] - ¢ [C][DJ 1)

where [A], [B],...denote concentrations and K is the equilibrium constant
for reaction (R1). (The distinction between concentrations and activities is not
. of concern here.) It is an almost universal fact that, after a transient period which
is usually too short to be studied, the simple kinetic order rate law Eq. (1) is
observed to hold for any elementary reaction (R1). In fact, when Eq. (1) does
not hold, one typically postulates a more detailed mechanism involving inter-
mediates or excited state species and analyzes the experimental data by a
complex rate law derived by assuming simple kinetic order rate laws for the
individual steps. This is reasonable and has been empmcally very successful

As pointed out by Denbigh [2] though;

there is no specifically thermodynamic reason why the measured rate law must be

. expressible as a difference of two terms.... The existence of the two terms must
therefore be given an interpretation which is kinetic, and it has become customary to
regard the observed reaction rate as being equal to the difference of the rates in the
forward and backward directions, these processes taking place simultaneously at
the molecular level. This interpretation is enhrely in harmony with a collisional
picture of the mechanism; at the same time there is clearly an element of convention
in identifying the two terms with the forward and backward rates.

In fact, this identification is an oversimplification [3-5]. We can define one-way
flux coefficients by
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where P2 is the probability that A is in state «, defined by a complete set of
quantum numbers; k,; is the reaction rate constant for collisions of A in state «
with B in state §; and so forth. Note that k,; is well defined in terms of reaction

cross sections [5]. Then we can also write

LAl dIC)

= = + S5 = K[AT[B] - KL,[C)(D] @

which superficially resembles Eq. (1). However, the essence of Eg. (1) is that k,
isindependent of extent of reaction, that is, of time. In contrast, even during the
period where Eq. (1) holds, ki and k., may change dramatically (because
P2, PE, PS, and P? are not constants). Thus kf and k%, are not the quantities
extracted from a phenomenological analysis using Eq. (1). Note also that the
ratio k{ /k* | is also in general a function of extent of reaction, tending to K
only as the system approaches chemical equilibrium.

A common assumption in collision theory [6-14] is that the rate constant
may be calculated from Eq. (2) with P2 and P} replaced by their Boltzmann
equilibrium values P2 and P§9. This is called the local equilibrium assump-
tion [4]. If the internal energy transfer rates in A and B are very fast compared
to the reaction rate (because nonreactive inelastic collisions of A and B with
each other or third bodies are much more probable than reactive collisions of
A with B), then P} and P} will approximately equal their equilibrium values
at the given temperature and k} will be constant with the value

: ks = 2 X PrePyeky, (5)
z f

This will be called the local equilibrium approximation to the rate constant or
the equilibrium flux- coefficient, or, for short, the equilibrium rate constant.
There are two possible sets of circumstances under which we can be sure that

1 is a good approximation to the phenomonological rate constant ky; both
sets of circumstances require that reaction is slow compared to internal relaxa-
tion so that kf is also equal to k5. Then k, equals k§ if also [5] either (1) the
transients decay [so that Eq. (1) holds with constant k, ] before back reaction
is appreciable, or (2) back reaction is slow compared to internal relaxation of
products so that k', also equals k% ,. Note that it is possible for k", to be
constant and equal k° | but kf not to be constant and k; not to equal k§. Note
also that the local equilibrium assumption of transition state theory is expected
to be most valid for slow reactions for which the reaction process cannot deplete
the Boltzmann distribution of reactive states faster than internal relaxation
processes can reestablish it.




18 TRANSITION STATE THEQRY

As stated at the beginning of this section, in transitiomn state theory we assume
an equilibrium distribution of those transition states that originated as reactants.
What is often not appreciated is that this is entirely equivalent to the local
equilibrium assumption of collision theory. In classical mechanics the equiva-
lence of these assumptions may be considered to be a straightforward con-
sequence [15, 167 of Liouville’s theorem [17-20] by which a system in thermal
equilibrium in one region of phase space will evolve into a thermal equilibrium
system in other regions of phase space. Thus if reactants are at equilibrium,
transition state species originating as reactants will be in equilibrium; transition
state species originating as products may be at equilibrium too, or they may
be in nonequilibrium or even missing. The equivalence of the collision-theory
and transition-state-theory equilibrium assumptions has been argued clearly by
Anderson [21, 227 and Miller [11], and the reader is referred to their contribu-
tions for further discussion.

In summary, the equilibrium assumption of transition state theory is equally
as valid as that of collision theory. Both are most valid if reaction is slow com-
pared to the internal relaxation processes that repopulate reactive states.

Quantitative estimates of the error caused by the equilibrium assumption
for fast reactions are not as readily available as one would wish. For transla-
tional equilibrium there have been several studies. A typical result is that of
Present and Morris [23] who estimated an error of 8% or less for cases where the
translational threshold energy is 5SRT or more, where R is the gas constant and
T is temperature. Reliable estimates for faster reactions are harder to obtain.
For vibrational and rotational equilibrium, the extent and effect of nonequilib-
rium in the reactants can in principle be ascertained by solving the set of coupled
state-to-state rate equations (commonly known as the master equation) in-
volving all reactant and product state-to-state energy transfer and reaction
rates, but the only attempt known to us to make a realistic estimate for a reason-
ably fast reaction is the study of C1 + HBr — HCl + Br at room temperature,
a case for which the activation energy is about 1.3RT [24]. That study yielded
one regime of phenomenological kinetics for which the local equilibrium
assumption holds very well and another for which there is a correction factor of
a factor of three. - : SR :

+2.2.2 Conventional Transition State Theory

In the previous section we discussed the fact that collision theory, as usually
applied, and transition state theory involve the same equilibrium assumption.
But they yield different results because they involve different assumptions for the
dynamics. Collision theory attempts to calculate [12] or approximate [9, 13, 14]
the global dynamics from reactant to product by numerically following the
evolution of specific collisions, either by individual trajectories [9, 13] or
quantum mechanical wave functions [12, 14]. Transition state theory, in
contrast, avoids the calculation of global dynamics by making a dynamic
bottleneck assumption. The dynamic bottleneck assumption has been called the
fundamental assumption of transition state theory [11, 25, 26]. As should be
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clear from the discussion in this section, another good name for it is the no-
recrossing assumption.

The transition state theory approximation to the rate constant of reaction
(R1) will be called k}. The simplest derivations of transition state theory,
which are readily available in textbooks [1], begin with the equation

- A s, ©)

where ¢ denotes an extended transition state species, [§]. the equilibrium
concentration of this species, the factor of one half yields the equilibrium ¢on-
centration of this species with reaction-coordinate momentum directed toward
products, and v is the probability that a single é with reaction-coordinate
momentum directed toward products does proceed to products in unit time.
In terms of the reaction coordinate s introduced in Section 2.1, the extended
transition state species § is defined to include a finite range of s as corresponding
to the transition state, and one calculates [ 8], by the equilibrium assumption as

[6]. = K3[A][B] Y]

where K9 is an equilibrium constant corresponding to this definition of 4.
Calculating v and K4 with a consistent transition state definition yields the
standard result [which will be presented below, Eq. (9) or (13)]. This derivation
makes the dynamic bottleneck assumption clear: The assumption is that all
transition state species with their reaction-coordinate momentum directed
toward products do convert to products and represent portions of trajectories
that start as reactants, pass through the transition state only once, and proceed
to products. If these trajectories did not start as reactants and end as products,
they do not contribute to &5 and transition state theory will err when it counts
them. Since transition state theory only counts transition state species with
reaction-coordinate momenta directed toward products, it will not count any
trajectories that start as products, cross the transition state once, and proceed
to reactants, but it will incorrectly count or overcount trajectories that start as
reactants, cross the transition-state-teward products; but Iater fécross, or those
that start as products, cross the transition state, and then recross toward
products. Now consider the trajectories that do start as reactants and end as
products. Since the transition state has been defined to divide reactants from

. products in phase space, these trajectories must cross it an odd number of times.

If, however, the same trajectory.crosses three or more times, transition state
theory will err by counting the two or more forward crossings, whereas the
whole trajectory clearly contributes only one net forward crossing to the
equilibrium flux coefficient kj. Putting all these considerations together we see
that in classical mechanics, transition state theory is exact if the local equilibrium
assumption is valid and if no trajectory recrosses the transition state, but it errs
otherwise. In fact, we note for use in Section 2.2.3 that if the local equilibrium
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assumption and classical mechanics are valid, transition state theory always
overestimates the rate constant because it overcounts the reactive trajectories,
that is, it counts all forward-crossing trajectories so it does not miss any con-
tributions to the equilibrium flux coefficient k{, but if recrossing occurs, it
counts some trajectories that do not contribute to k5, and/or it overcounts
some trajectories that do. Thus, classical mechanical transition state theory
provides an upper bound to the classical mechanical equilibrium rate con-
stant [27-31]. ’

The above method of derivation of k! is simple and correct, but the consistent
calculation of v and K¢ involves manipulations that may appear approximate.
For example, many derivations involve the assumption that the potential is
approximately constant or parabolic over a finite width § of the reaction co-
ordinate. Since  cancels out in the final answer, one suspects that the derivation
could be made more manifestly rigorous by carefully taking iimits as é — ds.
* This is indeed the case. In that limit the transition state becomes infinitesimally

narrow, that is, it becomes a hypersurface in phase space as we have defined it
here. (Mathematically one can restrict a system to a hypersurface by using
Dirac delta functions.) Derivations [10a, 11, 28-33] that do not involve a
fictitious formal partition function for the reaction coordinate treated as a
" free translation or motion over a parabolic barrier are preferable. Such deriva-
tions make it clearer that the equilibrium one-way flux from reactants to
products through a transition state dividing surface is given precisely by

R} = K[A][B] ' ®

where k} is the standard transition-state-theory rate expression. This dynamic
interpretation of k% as the flux through a surface [25] is more suitable for
discussing the validity and breakdown of transition state theory than is the
quasi-equilibrium interpretation implicit in Egs. (6) and (7), but the latter is
valuable for suggesting the quasi-thermodynamic activation parameters (dis-
cussed in more detail in Section 2.2.6) that are very useful for interpreting and
correlating reaction rates in solution. Both interpretations are valid; in fact,
they are.equivalent. Both interpretations lead to the following standard resuit
[now we drop the subscripts denoting reaction (R1)]:

kT @ _»
= e RT )
I t _t
kT @ s ob)

T oK,0%0® P RT

where k is the Boltzmann constant, h is Planck’s constant, ®* is the partition
function per unit volume of X (where X = A, B, or ], and 1 excludes the reaction
coordinate), Q! is the internal partition function of the transition state (excluding

overall translation and the reaction coordinate), ®X, is the translational parti-
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tion function per unit volume [2a, 34] for reactant relative motion, ¢* and
QP are internal partition functions of individual reactants, and V* is the potential
energy (per mole) of the saddle point. Equation (9b) is obtained from Eq. (9a)
by canceling out the partition function for overall translation of the whole
system in the numerator and denominator. In Eq. (9) and elsewhere in this
chapter the zero of potential energy is chosen as that of the reactants in their
classical equilibrium position, and symmetry factors are omitted.
Another useful form of the TST rate constant is

Kkt = (kT/mK* (10)

Here we should note the difference between K° in Eq. (7), which includes a
finite region of s in the transition state, and K*, which excludes the reaction
coordinate. Equation (10) may be obtained from the derivation based on
Egs. (6) and (7) by noting that the reaction-coordinate part of the statistical
mechanical expression for +K? combines with v to yield KT/h. Alternatively,
Eq. (10) may be considered a definition of K*. Since Q' excludes one internal
degree of freedom, it is not the internal partition function for any real species,
and K* is correspondingly not the equilibrium constant for any real reaction;
K! may be called a quasi-equilibrium constant. The quasi-thermodynamic
activation parameters, such as free energy of activation and enthalpy of activa-
tion, are derived from K* by analogy to the relation between changes in real
thermodynamic variables and real equilibrium constants. The fact that this is
merely a convention should always be kept in mind lest too much reality be
attributed to these quasi-thermodynamic parameters. Nevertheless, with this
caveat, they can often be usefully related to structural and/or mechanistic
features of reactions. By analogy of K* to a real equilibrium constant, we define
the (standard state) free energy of activation as

AG"® = — RT In(K*/K*?) (11)

where K% is the transition state reaction quotient evaluated at the standard

K9 is therefore the reciprocal of the standard state concentration (see Sect. 2.2.6
for an explicit formula). Combining Egs. (10) and (11) yields

K = (ET/mK*° exp(— AGHO/RT) ‘ (12)

2.2.3 Generalized Free Energy of Activation; Variational Theory

We have seen that in classical mechanics k* is always greater than or equal
to the local equilibrium rate constant &°. If the local equilibrium approximation
is valid, the best approximation to the phenomenological rate constant k can
be obtained by choosing the transition state to minimize k*; this is called the
variational theory of reaction rates or variational transition theory [11, 26, 29—
31, 33]. 1t is equivalent to maximizing the free energy of activation in the
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quasi-equilibrium version of TST, rather than making the transition state
assumption at the dividing surface of maximum potential energy, as in con-
“ventional TST. To take advantage of the variational bound principle, we could
introduce arbitrary definitions of the transition state dividing surface in phase
space, calculate the equilibrium flux coefficient through each, and choose the
smallest value as the best approximation to the true rate constant. A mere
practical procedure is to introduce a one-parameter sequence of generalized
transition states and minimize the calculated rate constant with respect to this
parameter [26, 31].

In the variational-transition-state-theory procedures employed by Garrett, ~
Truhlar, and co-workers [26, 31, 35—48), the first step is a global choice for the
reaction coordinate. Usually we choose this as the union of the paths of steepest
descent (also called the minimum energy path or MEP) in-mass-scaled coordi-
nates from the saddle point towards reactants and products. We label the
saddle point as s = 0, the range of s on the reactants’ side as negative, and the
range of s on the products’ side as positive. The MEP in mass-scaled coordinates
has the convenient properties that it matches the usual choice of s as the unbound
normal coordinate at the saddle point, its effective reduced mass is a constant,
and it tends to properly scaled A—B and C-D relative translational coordinates
in the s = —oo and s = +co limits, respectively [49]. Also, it has a simple
physical interpretation as the path followed by a classical trajectory that starts
at the saddlepoint but is continuously damped so as to always have only an
infinitesimal velocity (“trajectory in heavy molasses”) [50-53]; for this reason
Fukui introduced the name intrinsic reaction path for the MEP in mass-scaled
coordinates [50-52]. (For this choice of reaction path, s becomes the intrinsic
reaction coordinate.) The damped-trajectory interpretation of the MEP in

" mass-scaled coordinates explains why this quantity is invariant to arbitrary
orthogonal transformations of the coordinates [37]. Furthermore, it makes this
reaction coordinate particularly relevant in the limit of slow reaction-coordinate
motion, which is the important limit for most reactions with significant activa-
tion energy since the rate constants for such reactions tend to be dominated by

_ _contributions from energies near the threshold energy [54]. The choice of s as
the MEP in mass-scaled coordinates is also convenient for generalized transition
state theory, and we shall assume in what follows that this is the choice which
has been made. _

_For each value of s we define the generalized transition state divided surface
as the hypersurface locally perpendicular to the MEP in mass-scaled coordinates
but globally curved in such a way as to assure that it does divide reactants from
products. Again the result may be written in the form of Eq. (9) or (11), but now
the transition state quantities are replaced by generalized transition state (GT)
quantities that depend on the location s of the generalized transition state along
the reaction coordinate. We obtain the generalized transition state theory
rate constant expressions

kT ‘DGT(S) — Vuee(s)
h ©@® P RT

kGT( S) —

{13a)
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RT (14)
Canonical variational theory (CVT) is obtained by minimizing any of these
equivalent expressions with respect to s for a given temperature, that is, for a
given canonical ensemble. The resulting value of s is called s, , and it depends on
T. The resulting approximate rate constant is

KVT = min, kST(s) - (15a)

= k%(s,) (15Yb)

where min; is an operator that takes the minimum of the following function
over all possible s; Equation (15b) defines s, as the location of this minimum.

As noted in the first paragraph of this section, the variational procedure may
also be thought of as maximizing the generalized free energy of activation. Thus,

KT = (ET/mK*° exp{ — [max, AGST9(s)}/RT} (16c)
= (kT/mK*° exp[ — AGST(s,)/RT] (16b)
= (kT/MK*° exp{— AGVT-%/RT) (16¢)

Since total energy is conserved, we can rigorously consider the contributions
of each total energy to the thermal rate constant separately. Then a better
variational result can be obtained by optimizing the generalized transition
state dividing surface separately for each total energy, that is, for each micro-
canonical ensemble. Having done this, one can calculate the fixed-temperature
-rate-constant-by -averaging the fixed-total-energy results-over a canonical
distribution of total energies. This is called [26, 31] microcanonical variational
theory (uVT). One would expect that if the best transition state is a strong
function of total energy, it will also be a strong function of temperature. Thus,
if one performs CVT calculations as a function of T and does not find a strong
temperature dependence of s,, then one may probably assume that uVT
calculations are unnecessary. This has been found to be the usual case.

It is interesting to note that, with a different choice of reaction coordinate,
variational transition state theory can also be applied to barrierless reactions
without saddle points. The above formalism has so far been applied to only one
bimolecular case without a barrier, and s, was found to be a strong function of
T [46]. Furthermore, 4VT calculations gave significantly lower rate constants
than CVT calculations in this case [46]. This result suggests the intuitively
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plausible conclusion that uVT also is likely to be called-for by nearly barrierless
reactions, such as solution reactions whose rate approaches the diffusion limit,
and it suggests caution in the application of TST to such reactions.

2.2.4 Nonclassical Treatment of the Generalized Transition
States and Vibrational Adiabaticity

In the preceding sections we assumed classical mechanics for all internuclear

degrees of freedom. This is useful in developing the theory because the dynamic

- bottleneck assumption, which is responsible for the useful result that gener-

_alized transition state theory provides an upper bound on the equilibrium rate
constant, is intrinsically classical, that is, it violates the uncertainty principle
[25]. Any attempt to translate this assumption into quantum mechanics suffers
from the ambiguity of noncommuting operators [11]. Thus the theory is usually
quantized in an approximate fashion that takes advantage of the separation
of the reaction coordinate. First the motion in the reactants and the transition
state hypersurface is quantized. This affects Q*, Q* and Q® in conventional
transition state theory or Q%%(s), @*, and Q® in generalized transition state
theory. In classical mechanics these internal partition functions are phase-
space integrals; in quantum mechanics they are sums over states. Since the
unbound reaction-coordinate motion is excluded from the transition state, the
transition state has discrete energy levels and its sum over states may be calcu-
lated using the same methods as are standard for bound systems. This yields a
hybrid approximate rate constant in which the bound degrees of freedom are
treated as quantized, but the reaction coordinate is still treated as classical.
There is no rigorous variational theorem for this quantity, but since reaction-
coordinate motion is uitimately responsible for motion through the dynamical
bottleneck, it seems reasonable to minimize the hybrid rate constant with respect
to the location of the generalized transition state. This is called quantized or
hybrid variational transition state theory. It may provide a good approxima-
tion when quantal effects on the reaction-coordinate motion are small, but
otherwise one should include reaction-coordinate quantal effects as discussed
in Section 2.2.5.

It is interesting to consider the absolute-zero-of-temperature limit of the
generalized free energy of activation AG®T%(s) of Eq. (14) in the hybrid theory. -
At zero temperature all degrees of freedom are in their ground states and, aside
from contributions of symmetry numbers and electronic degeneracies, Wthh
are small, AG®T(s) approaches a simple limiting value:

s

AGST(s) T25 AV (s) (17
where we have defined
AVG(S) = VMEP(S) + Bmt(s) 1nt (18)

in terms of the ground state energy £S,(s) of the generalized transition state and
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the zero point vibrational energy eXC of the reactants. [The ground state
abbreviation G denotes the zero point state for vibrational motion and zero
angular momentum for rotational and orbital motions. When the relative
translational orbital motion is important, it is preferable to call £5,(s) the ground
state, s-wave energy to emphasize this.] The quantity AVE(s) has a simple
interpretation. At zero temperature all reactant modes are in their ground
states. If a zero temperature system were artificially advanced slowly along the
reaction coordinate and the other modes remained in the ground state, that is,
adjusted adiabatically, their energy requirement for any position s along the
reaction coordinate would be Vygp(s) + £2,(s). Thus AVE is the change in the
ground state adiabatic potential curve for reaction-coordinate motion as the
system proceeds from reactants to the generalized transition state. The deter-
mination of the variational transition state by Eq. (15a) is often dominated by
the s dependence of high frequency modes. When this is the case, since these
modes tend to remain predominantly in their ground states up to temperatures
quite a bit higher than room temperature, AV (s) provides a useful interpretive
guide to the location of the variational transition state even at room temperature
and above.

Adiabaticity of the internal modes with respect to the reaction coordinate
has an even more quantitative connection to variational transition state theory
{31, 37, 47]. In the adiabatic theory of reactions [8, 49, 54-61], one assumes

that all internal modes adjust adiabatically to motion along the reaction co-

ordinate, that is, as the system progresses from s = —co, all internal modes
stay in the same state. If we then treat the energy states g, (2, s) of the generalized
transition state for quantum numbers & as real, even though transition states
are artificially defined by the excluding one coordinate, the energy requirement
for the internal modes at location s along the reaction ccordinate is

AV, (2, s) = Viyep(s) + &im(®, 8) = &ine(®, s = —00) (19)

If we assume that all states-react-for-which the-relative translational energy
[ie., the initial (s = —o0) energy in the reaction coordinate] exceeds

AVi(a) = VMEP(S = 0) + Eini(a’ 5= 0) - sinl(a’ § = —CC) (20)

we obtain conventional transition state ‘theory. If, alternatively, we assume
adiabaticity of all other motions with respect to reaction-coordinate motion,
which is itself assumed classical, then the relative translational energy for
collisions beginning with the set of quantum numbers & must exceed

AVA(a) = max; AVS(s) (21)
and it can be shown [31, 37] that this is equivalent to microcanonical varia-

tional theory. This is a very interesting relationship between two different kinds
of theory since the adiabatic theory involves a different barrier location for
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each internal state, independent of total energy, and microcanonical variational

theory invoives a best dynamical bottleneck for each total energy, independent
of internal state. '

2.2.5 Nonclassical Treatment of the Reaction Coordinate;
Tunneling ,

Quantal effects on reaction-coordinate motion are expected to be especially
large at low energy because the average reaction-coordinate momentum is
small, small momentum implies a large deBroglie wavelength, and classical
mechanics becomes inaccurate when the potential energy changes significantly
over the course of a single deBroglie wavelength. Also at low energies only a
small fraction of systems have enough energy to surmount potential energy
barriers, so small probabilities of tunneling through barriers can make signifi-
cant or deminant contributions. The conventional way to account for this
effect is to include a transmission coefficient, that is, one approximates the rate
constant as ‘

Y = Y _ (22)

where Y denotes the method used for the transmission coefficient x*/Y, and k*
is the hybrid rate constant expression of the previous section. Alternatively, we
may correct the hybrid CVT rate constant expression by

kCVT/Y = KCVT/YkCVT ) (23)

where the transmission coeflicient is again based on a method denoted Y for
illustration purposes. Note that for a given method of treating tunneling effects
the transmission coefficient should be different for the different hybrid rate
constant expressions, and so we have used different symboals, k*/Y and «SYT'Y.

In quantum mechanics it is difficult to calculate thermally averaged rate
constants directly [33]. In general, definitive quantum mechanical treatment of
thermal rate constants requires calculating rate coefficients for all important
state-selected processes as a function of energy, then performing a thermal

""" average: Since—quantal—effects -on—reaction=coordinate-motion—become most
important in the low temperature limit, it is most important to estimate the
quantal effects on the ground state reaction probability at low relative transla-
tional energy. At low relative translational energy the reaction probability is
dominated by head-on coilisions, which are represented in quantal collision
theory by s waves, since they have zero orbital angular momentum of relative
translational motion. Thus, in the low temperature limit the transmission
coeflicient can be calculated from ground state, s-wave transmission probabili-
ties, which are here denoted PC,

In the low temperature limit, CVT becomes equivalent to xVT and hence
to the adiabatic theory of reactions. In this theory, as discussed in Section 2.2.4,
the effective barrier for reaction-coordinate motion is given by Eq. (18). Thus
the implicit ground state, s-wave reaction probability of canonical variational
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theory becomes the classical reaction probability P2S for the ground state,
-s-wave adiabatic potential curve; this is a unit step function at the energy of the
barrier maximum,

PéG = e[Erel — max; AVS(S)] (24)

d where 6 is the unit step function defined by

1 x>0
’ 25
b 6(x) {0, x<0 (25)

The transmission coefficient of 4VT, and hence of CVT in the low temperature

“limit, may then be approximated by the ratio of the thermal average of P% to
the thermal average of P2S. At nonzero temperatures CVT is no longer exactly
equivalent to 4*7, and the ground state reaction probability implied at nonzero
temperature is

PE'TC = OLE,q — AV{(s,)] (26)

The ground state transmission coefficient kY7 for CVT is the ratio of the
thermally averaged ground state quantal reaction probability to the thermally
averaged ground state classical one implied by the hybrid CVT calculation,

that is,
| Mo » ’
KCYTIG = [/J PCVT.G exp(— E../RT)dE,., (27a)
0
= exp[AVS(s*)]I /RT (27b)
where
= J PO exp(— Eo/RT) dE.,, (28)
0

Similarly the ground state transmission coefficient x*/C for conventional TST is

_ 6 _ ] / J’ O[E, — AVS(s = 0)] exp(—E../RT)dE.,  (29a)
g

exp[AVS(s = O)]I/RT (29b)

Notice that AVZ(s = 0} is the. classical barrier height [max, Vyuep(s)] plus the
zero point energy of the conventional transition state minus the zero point
energy of reactants. The importance of using the correct denominators in
Eqgs. (27a) and (29a) has been emphasized previously [41].
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In the high temperature limit the guantal effects on reaction-coordinate
motion should become unimportant, that is, the transmission coefficient should
tend to unity. (Note: In some treatments the transmission coefficient is defined
formally to include classical recrossing corrections, which are omitted here; if
these are included then the previous statement is not true. No practical yet
accurate methods, short of full dynamics calculations, are available to estimate
classical recrossing effects.) If we approximate PC by an accurate method at low
energy, then «"/% and «Y"® will be accurate at low temperature; if we approxi-
mate P such that it tends to unity at high energy, then x*/C and xSV will tend
to unity at high temperature. Approximate ground state transmission co-
efficients obtained from such approximate P® functions therefore have the
correct behavior in both limits, and they may actually provide reasonable
approximations over the whole temperature range. The difficulty is obtaining
accurate P functions at low energy, and this will be discussed next.

The formalism presented in Sections 2.2.1 to 2.2.4 is greatly simplified by
the dynamical bottleneck assumption. It is this assumption that allows one to
focus on the localized hypersurface defined as the transition state and to avoid
global dynamics calculations. Stated another way, it is this assumption that
reduces TST theory to a quasi-equilibrium theory involving standard methods
of statistical mechanics or molecular thermodynamics. The ground state
reaction probability reintroduces the global dynamics, and since we will con-
sider the estimation of P by calculations in a reaction-coordinate formalism,
the global definition of the reaction coordinate is necessary. As discussed in
Section 2.2.3, we define s as the path of steepest descent on the Born-
Oppenheimer potential surface as expressed in mass-scaled coordinates. The
use of mass-scaled coordinates is very important for developing physical
approximations. In mass-scaled cartesian coordinates, or any orthogonal
transformation thereof, the many-particle kinetic energy expression in the
Hamiltonian has no cross terms and every square term is preceded by the same
reduced-mass expression. Thus the many-particle problem with the many-
atom potential energy function V' has a one-to-one correspondence to a single
mass point moving in 3N dimensions under the same potential function, now

that the effect of the potential may be estimated using one’s real world intuition.
In a mass-scaled coordinate system, for example, if the steepest descent reaction
path (along which the reaction coordinate is measured) is curved, it will cause
internal centrifugal effects like bobsled effects. In other coordinate systems a
large curvature of the reaction path may simply be an artifact of the coordinate
definition with no physical consequences. We will consider the curvature of
the reaction path in more detail since it is now clear that it plays a very important
role in tunneling processes in chemical reactions [37, 39, 41, 43-45, 48, 62-70].

For atom transfer reactions involving a light atom transfer, the relative masses
of the acceptor (Ac), the donor (Do), and the atom transferred (At) place a
particularly strong constraint on reaction-path curvature. For such a reaction
the angle between the intrinsic-reaction-coordinate directions in the entrance
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and exit channels is

1/2
§ = arctan (—__""") (30)

MacMpo

where my is the mass of X and mi,, is the sum of the masses. For m,, much
smaller than the donor and the acceptor masses, § is very small, that is, the
intrinsic reaction coordinate almost turns completely around in mass-scaled
coordinates. Thus, the intrinsic reaction coordinate must be very curved in
such cases, and the curvature is expected to be reasonably localized near the
distance of closest approach of the acceptor and the donor. If the tunneling
region is symmetrical or almost symmetrical, as expected for a thermoneutral
or almost thermoneutral reaction, then the reaction-path curvature will be
large in the highest part of the MEP. Other things being equal, the relevant
reaction-path curvature is expected to be smaller for less extreme mass com-
binations and less symmetrical reactions.

It is useful to consider two extreme cases, the small curvature and large
curvature limits. For cases where the reaction path has large curvature in the

tunneling region so that the entrance and exit portions of the intrinsic reaction

path are almost antiparallel, the system is expected. to tunnel directly across
from the entrance portion to the exit portion without necessarily following the
minimum energy path all the way to the large curvature region [45, 71-75].
Such a treatment may be visualized as a sudden (or Franck-Condon) transition.
For small curvature cases the motions transverse to the intrinsic reaction co-
ordinate are often better represented by an adiabatic model than a sudden
model. The Marcus—Coltrin path approximation [37, 39, 41, 62, 63, 65] and
small curvature approximation of Skodje et al. [43, 68, 697 both incorporate such
vibrationally adiabatic approximations. Because of the adiabatic and ground
state approximations, the effective barrier in these methods is AVS(s). However
in the Marcus—Coltrin method the distance s is replaced by a shorter distance &
which measures distance along an assumed tunneling path that is shorter than
the intrinsic reaction -path. In the similar-but-more-general-small-curvature
approximation, one retains s but accounts for an effective path shortening by
using a smaller, s-dependent reduced mass. Both methods show that even
relatively small reaction-path curvature can have a large effect on the trans-
mission coefficient, and it is important to. model reaction-path-curvature
effects accurately. )
In both the small and large curvature cases the effect of reaction-path
curvature is a negative internal centrifugal effect. A positive or classical internal
centrifugal effect is a bobsled effect, that is, in classically allowed regions a
nonzero kinetic energy along a curved reaction path will force the system to the
convex side of the path. For classically forbidden tunneling the kinetic energy
along the reaction path is negative and so is the internal centrifugal effect,
that is, the system cuts the corner {56, 76, 77]. By cutting the corner, the system
effectively decreases the tunneling distance and so the corner-cutting path is a
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higher probability tunneling path than one along the intrinsic reaction co-
ordinate. The system wave function is actually largest along the path that
represents the best compromise between short tunneling distance and low
effective barrier. For small curvature the tunneling is dominated by a path near
the concave-side vibrational turning points of the transverse modes [37, 62].
For large curvature the dominant tunneling paths may be much farther from
the intrinsic reaction coordinate. An approximate variational principle (based
~on least imaginary action and not related to the classical variational principle
for the location of the generalized transition state dividing surface) has been
used to automatically locate the optimum tunneling path or paths for systems
“ with arbitrary reaction-path curvature [47, 75]. For small and farge reaction-
“path curvature, this method yields very similar results to the small curvature
and large curvature methods, respectively; but for intermediate reaction-path
curvature it leads to better results than either of these limiting approximations.
A few additional comments may be useful before ending this section. First,
it is very common to see transmission coefficients based on one-dimensional
tunneling calculations for Vypp(s). This procedure can be derived from the
small curvature approximation by neglecting the s dependence of 2 (s), which
is called the conservation-of-vibrational-energy approximation [49], and by
neglecting reaction-path curvature. Usually these are both poor approxima-
tions; they need not even give the correct order of magnitude [37, 49, 54, 60].
Another point worthy of comment concerns Eq. (22). If the effective potential
‘curve for tunneling is AVE(s), and if this peaks other than at s = 0, then as
tunneling effects decrease in importance (because the temperature is raised),
k'Y tends to a Boltzmann factor, unlike k7Y, which tends more directly to
unity, This occurs because x*¥ includes a classical correction for reflection at
the maximum of AVZ(s) of trajectories that are counted as successful in k*.
Thus, consistent transmission coefficients for conventional transition state
theory include some classical reaction coordinate variational-transition-state-
theory effects as well as including tunneling.
Finally, we note that the best tunneling path for a given system is not neces-
sarily independent of energy, and at a given energy the dominant tunneling

region need nof be Well [ocalizéd. Tn the small curvature limit the dominaiit

tunneling path does appear to be reasonably independent of energy and well
" localized, but these convenient properties tend to be lost as the curvature gets
““larger [75]. Thus in the large curvature limit we need to consider a tunneling
probability as a function of approach coordinate even at a single energy [47,
71-75}.

2.2.6 Quasi-Thermodynamic Activation Parameters

We have seen in Section 2.2.5 that the final rate expression of conventional
transition state theory with a transmission coefficient x*'¥ is

BIY = YET/WK exp[ — AGHO/RT] (31}
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and the final rate expression of” canonlcal variational theory with a ground
state transmission coefﬁcwnt KCVT/G §

kCVT/G — KCVT/G(kT/h)Kl,O exp[ - AGCVT.O/RT] (32)
If we define I as the nonequilibrium correction factor,
I' = kfk® (33)

where k is the phenomenological rate constant and k° is its local equilibrium
flux coefficient, and if we let y*¥ and yY7/ be the ratio of the exact local equilib-
rium flux coefficient k° to the estimates of Eqgs. (31) and (32), we see that the true
measured rate constant can be written as

k = YT Y(ET /WK exp[ — AGHO/RT] (34a)
= ySVIOT VS (RT /K exp[ — AGSVTO/RT] (34b)
It is interesting to write Eq. (34b) as
k =y TS exp[ —AGY-*/RT ]k 3s)
where we have defined
AGY® = AGTYT0 _ AGHO (36)

Equation (34b) provides an exact factorization of the observable rate constant
into several precisely defined factors, These factors may all be considered as
corrections to the conventional TST rate and they account for variational-
transition-state-theory optimization effects [i.e., classical entropic effects, the
exponential in Eq. (35)], quantum effects on the reaction coordinate (xC¥T/%),
nonequilibrivm effects (as given by I, which includes solvent friction effects),
and the breakdown of the no-recrossing assumption (y°V7°), We emphasize
that the factors are defined precisely by the equations; the word descriptions
are approximate. Thus, k“Y"S includes a small classical part, and I' accounts
for ali the errors in incorporating quantum effects in the theory, as well as for
the breakdown of the no-recrossing assumption.

The quasi-thermodynamic activation parameters are obtained by replacing
Egs. (34) by

k = (kT/h)K*° exp[ — AG*°/RT] (37)

where AG*? is defined as the empirical (standard state) free energy of activation,
and then treating AG*° by methods of thermodynamics.
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For gas phase reactions the standard state is usually chosen to be 1 atm.
Hence, the standard state reaction quotient of Eq. (11) may be written

K*"° = NukT/P° (38)
where P° denotes 1 atm, N, is Avogadro’s number, the exponent u is zero if the
concentration units in k are molecules per unit volume, and u is one if they are
moles per unit volume. Substituting this into Eq. (37) yields

k = (kT)?N4/hP°) exp(— AG*°/RT) (39)
or
0
AG = — RTIn P *_ (40)
(kT)*N;

Substituting the factorized expression Eq. (35) into Eg. (40) provides an
exact expression for the observable free energy of activation as a sum of a
conventional TST contribution and several precisely defined corrections,

AG*® = AGH® + AGY 4+ AGHOYT 1 AGF 4+ AGYCVT (41)
in an obvious notation.
Alternative partitions are provided by Egs. (34a) and (34b) which yield
CAG™® = AGY? + AG*! + AGT + AG™ (42)
and
AG»® = AGVT? £ AGHYT 4+ AGF + AGHOYT 43)

By analogy to standard thermodynamics equations, the miolar entropy,
enthalpy, and volume of activation are given by

0AG*° '
AS3,0 = — (T) (44)
14
AH*® = AG*® + TAS*® (45)
a,0
AV*® = RT (—-———a(AGa P/ RT)) (46)
T

Uéing Egs. (44)—(46), any of the quasi-thermodynamic activation parameters

may be partitioned as in Egs. (41)-(43). Since, as discussed in Section 2.2.5,

-
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'Y may contain a significant mixture of variational transition state optimiza-
tion effects along with tunneling effects, and since, as discussed in Section 3,
yEYTG js expected to usually be closer to unity than y*/Y is, Eqs. (41) and (43)
provide a better basis for the approximate interpretation of the quasi-thermo-
dynamic activation parameters than does Eq. (42). In particular, if we approxi-
mate y“V¥S, which primarily accounts for multidimensional recrossing effects
and the inadequacy of the tunneling calculations, as unity, we obtain

AG*® = GVT0 _ RT InT — RT In *VT/0 (47)

Substituting Eq. (47) into any of Egs. (44)—(46) yields three contributions to any
of the quasi-thermodynamic activation parameters, and one can use models or
other information to try to sort these out. It is unfortunately very common to
see interpretations based on the implicit equation of AG*® to AG"°. This
neglects — kg T InT and — kgT In «*¥, as well as — kg T In y*/Y, some of which
could be significant or have significant derivatives with respect to temperature
or pressure.
If the observed rate constant is represented as

k = B, T?: exp(— E,/RT) (48)

which fits almost all available data within experimental error, then Egs. (44)-
(46) and (48) yield

PO B2
AS™ = R|B, — 2+ In B2 (49)
(kT)*N}
AH*® = E, + (B, — 2)RT (50)
AVSO — ‘;—f} — RT 5‘% In B, T*: (5la)
.
= — RT 6;‘; (51b)

Setting By = A and B, = 0 yields the more usual results for an Arrhenius
fit to the rate data.

2.3 Gas Phase Unimolecular Reactions
Consider a reaction ’

%—‘ product(s) (R2)

Superficially the theory of Section 2.2 would need very little change. Equation
(9) becomes




34

TRANSITION STATE THEQRY

., kT
k= W oA PR (52a)
krot -t
and K*° becomes unity, so Eq. (12) becomes
K = (kT/h) exp(— AG"°/RT) . (53)
Similarly, Eqs. (13), (14), and (16) become
kT D(s) = Vuep(s)
GT( ) _ -~
k°N(s) = oA P gT (54a)
KT QHs) = Vaaee(s)
=7 0 exp RT (54b)
kST(s) = (KT/h) exp[ — AGS™(s)/RT] (55)
and
KYY(s) = (KT /) exp(— AGEYT/RT) (56)

Then Section 2.2.4 is applicable except that reactant B is excluded.

The additional complication is that the nonequilibrium correction factor can
be very large for gas phase unimolecular reactions. The reaction rate is often
dominated by highly excited states that react more rapidly than their popula-
tions can be replenished by energy transfer collisions. This leads to nonequilib-
rium factors I that may be one or more orders of magnitude less than unity and
that are strong functions of temperature and pressure. The procedure, often so
successful for bimolecular reactions, of estimating the equilibrium rate constant
k* and assuming that it represents a good first approximation to the phenome-
nological rate constant, is often useless for gas phase unimolecular reactions.
The more appropriate procedure is well known and dates back to early work by
Lindemann, Hinshelwood, Rice, Ramsperger, and Kassel. An excellent review
of the early theories has been given by Robinson and Holbrook [78]. The
simplest theory which yields qualitatively correct results involves a mechanism
in which energetic molecules of various total energies E are considered separ-
ately. Let E, denote the threshold energy for reaction (R2) and let molecules
with energies E in excess of E, be denoted A*(E). Then the mechanism is

A+M FH AXE) + M (R1%)

A*(E) =2, product(s) (R2%)
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and it is essential that k,(E) and k,(E) decrease and increase, respectively, as
functions of E. The observable rate constant is a consequence of the scheme
(R1*)—(R2*), and it is not possible to calculate it directly. Instead one must
calculate the fixed-energy rate constants k,(E) and k,(E) and the deactivation
rate constant k_, and insert them in the scheme (R1*) — (R2*). When this 1s
done the results show that in typical cases the important species A*(E) are not
in local equilibrium with A; instead the important states with energies above
E, are underpopulated. We mentioned in Section 2.2.3 that it is sometimes
necessary to calculate fixed-energy, that is, microcanonical, rate constants in
order to find good enough dynamical bottlenecks for transition state theory to be
quantitatively accurate. For unimolecular reactions we must calculate micro-
canonical rate constants for a different reason, namely because it is necessary
to distinguish different energy states in the mechanism. Transition state theory
as applied to the calculation of k;(E) for unimolecular reactions is called Rice—
Ramsperger—Kassel-Marcus (RRKM) theory. It has been treated thoroughly
in two excellent monographs [78, 79], and advances in unimolecular rate
theory since then have been extensively reviewed elsewhere [80-86].

As the pressure is raised, the local equilibrium assumption becomes valid
and equations (52)—(56) may be applied directly. At lower pressures we must
use the microcanonical analogues. ,

The fixed-energy analogue of Eq. (54) 1s [ 31, 37]

NSYE, s)

GT, _
S =g

(57)

where NYY(E, s) is the total number of internal states, excluding overall transla-
tion and the reaction coordinate, of the generalized transition state at s with
internal energy less than or equal to E, and ¢®(E) is the density of reactant states
per unit energy. Equation (57) is the generalized-transition-state-theory
analogue of the conventional transition-state-theory result [87-89].
As discussed elsewhere {46, 86, 90], the variational transition state location,

that is, the value s, (E) that minimizes k°T(E, s), may have a significant depen-
-dence on E, especially when the reaction in the exothermic direction shows no
barrier. Since s, is the same for the reverse as for the forward reaction, this is
reasonable by comparison to the case of barrierless bimolecular reactions
discussed above.

.. For unimolecular reactions K*'? is unity. This means that Eqgs: (49) and (50)
are replaced by

(58)

By~ 1
AS*® = R [Bz ~1+1n @i—}

and

AH*® = E, + (B, — 1)RT (59)
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There is no change in Eq. (51). The quasi-thermodynamic activation parameters
are most useful for interpretative purposes when AG"® or AGSVT? dominates
AG*°. Thus, except in the high pressure limit, the quasi-thermodynamic activa-
tion parameters are less useful for gas phase unimolecular reactions than for
bimolecular reactions.

2.4 Reactions in Solution

The basic ideas discussed above with regard to the transition state theory of
reactions in the gas phase are also applicable to reactions in solution. The two
‘main assumptions of TST, local equilibrium and a dividing surface that is not
‘recrossed, are formally the same in solution, but their validity must be re-
examined for the new context. In addition, the presence of the solvent changes
the effective potential energy surface representing the mutual interaction of
solutes.. Sections 2.4.1 and 2.4.2 discuss the effect of solvent on the potential
energy surface and the no-recrossing assumption. Section 2.4.3 discusses the
validity of the local equilibrium assumption in solution. Section 2.4.4 examines
the meaning of the quasi-thermodynamic activation parameters in the context
of Sections 2.4.1 to 2.4.3. Section 2.4.5 considers the mechanistic complication,
for fast reactions, of the distinction between rearrangement-controlled and
diffusion-controlled reactions.

2.4.1 Static Solvent Effects

Two approaches that include the solvent in the theoretical description of a
reaction in solution may be illustrated by considering the gas phase equations
(9)and (12). To include solvent in Eq. (9) we would replace the partition functions
and potential energy of the isolated reacting particles by those of the solvated
particles. In statistical mechanical language this involves the concept of a
potential of mean force [20b, 34a]. The potential of mean force for particles
in a solvent is defined so that if it is manipulated just like the Born-Oppenheimer
potential for gas phase species, one obtains the correct statistical and thermo-
dynamic functions for dissolved particles. The potential of mean force is an

. explicit function of the coordinates of the solute particles, but it is an equilibrium

- ‘quantity with respect to the solvent. In other words, the solvent contribution

© to the potential of mean force is the free energy of the solvent for fixed positions

~ of the solute particles. This means that, in solution, the equilibrium thermo-
dynamic properties of interacting solutes may be computed by including two
contributions in their intermolecular force function: their intrinsic interaction
and a force representing the work they must perform against the adiabatic
solvent reorganization.

An important question to be adressed in a theoretical approach to reactions
in solution is the primary system—bath separation. The traditional approach is
to include as a primary system those atoms and molecules, charged or un-
charged, appearing explicitly in the reaction as written, for example, (R1) or
(R2). The remainder of the solution is the “bath”. In a more detailed treatment,
one or more solvent molecules are involved in the primary system. These two
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approaches may be contrasted by writing, for example,

NH] (aq) + H,0(aq) - NH;(aq) + H;0 " (aq) (R3a)
or

NHJ (H,0)(aq) + 2H,0(aq) — NH,(H,O¥aq) + H;O3(ag)  (R3b)

In (R3a) the primary system contains 8 particles; in (R3b) it contains 14. While
(R3b) allows for a more detailed model, it also requires considerably more
information and effort. In general we try to reduce the number of solvent
molecules considered explicitly to the minimum (often zero) that will permit the
observables to be mimicked. However, solvent motions that play a significant
role in the reaction coordinate must always be treated explicitly. The treatment
of solvent molecules as a bath, as discussed above, assumes that{ solvent
molecules adjust statistically to changes in the primary system coordinates. In
some cases the solvent cannot adjust to rapid primary system motion. This is
sometimes called nonequilibrium solvation. The conceptually simplest way to
treat this is to include the most strongly interacting solvent molecules as
additional primary system constituents. If, however, many degrees of freedom
of the solvent are nonequilibrating with the solute, then it may be possible, and
practically simpler, to treat them by a collective coordinate, such as a polariza-
tion vector. The choice of which coordinates, individual and possibly also
collective, to include in the primary system affects the accuracy of the subsequent
theoretical development at every stage.

As mentioned above we can base TST for solution phase reactions on
partition functions corresponding to the primary system in an adiabatic bath.
This may involve important changes from the gas phase in the nature of the
normal modes. For example, free rotation is usually missing in solution and
is replaced by hindered rotations, librations, or even tight vibrations; these may
be called pseudo-lattice vibrations or phonon modes. Free translation is also
replaced by vibrational motions in a harmonic approximation [91]. Thus,
Egs. (9b), (13b), (52b), and (54b) are more convenient than Egs. (9a), (13a),
(52a), and (54a) for reactions in solution. Note that despite the solvent hindrance
of translational motions, the partition function of the transition state and each
chemical species is still proportional to the entire volume of the solution, and
one still needs the partition function per unit volume in Egs. (9a) and (13a).

If a calculation such as just described is actually carried out, one expects to
get more accurate resuits if one uses variational transition state theory than if
the transition state is simply placed at the saddle point of the potential-of-
mean-force surface.

“Since liquid phase partition functions are difficult to calculate, it is much
more common to base solution phase transition state theory on the solution
phase analogues of Eq. (12) or (53), and the associated Egs. (40)-(51), (58), and
(59) than on Eq. (9) or (52). In this approach one deals directly with the quasi-
thermodynamic activation parameters.
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The most common approach is to write
AG!,O — AG%,O - AG}“‘""‘S‘O (60)

thereby defining the free energy of formation of the transition state AGH°, One
can obtain AGF**#*':0 from experimental quantities like enthalpies of solvation,
and one can try to estimate AG!° by analogy. The study of structural and solvent
effects or: quasi-thermodynamic activation parameters is well advanced, and it
involves the consistent use of various thermodynamic and quasi-thermodynamic
~ cycles [92-96]. The interpretation of quasi-thermodynamic activation param-
" eters is discussed further in Section 2.4.4. o

One kind of solvent effect is easily treated in general terms by transition
state theory, namely, solution nonideality. As an example of how nonideality
enters, consider Eq. (6) for a bimolecular reaction. In continuing the derivation
we used the relation

. ol
K’i = __[_]_ (61)
[A1(B]
for the equilibrium constant of the forward-crossing  transition state species.
But equilibrium constants may be expressed in terms of concentrations only
in dilute gases and ideal solutions. In general, Eq. (61) must be replaced by

K? = a“z (62a)
A“B
L2 3 (620)

B [A1[B] 7avs

where ay and yx are the activity and activity coefficient of X, respectively. Use
of Eq. (62b} instead of Eq. (6f) yields "~ 7

[61. = K§ 222 [A](B] o ®
]
Instead of Eq. (7) and
kT — AGYN\ yay
P2 gho _=2d \/A/B 64
k hK exP(RT)ya (64)

instead of Eq. (12). Since the standard state free energy of activation refers to
an ideal solution, nonideality effects are included in the ratio of activity co-
efficients. When the nonideality involved is the effect of salts on the activities
of ionic reactants, this is called the primary salt effect [97]. (A secondary salt
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effect involves not the effect of salts on yx but the effect of salts on the con-
centrations of species entering into the phenomenological rate equation.)
Since the transition state includes only an infinitesimal range of the reaction
coordinate, y; is not quite the same kind of quantity as a real activity coefficient.

In the rest of this chapter, “potential surface” implies potential energy surface
for gas phase reactions and potential-of-mean-force surface for solution
reactions.

2.42 Effect of Solvent on Rate of Conversion of Transition States

As discussed in Section 2.2.1, transition state theory provides an approxi-
mation to the equilibrium rate constant. In the gas phase, if classical mechanics
were exact, transition state theory would always overestimate the equilibrium
_ rate constant because of recrossing effects. When quantum effects are included,
additional errors in cither direction are possible, but the quantum correction
for tunneling is often uncertain, and underestimation of the tunneling con-
tribution may cause transition state theory to underestimate the equilibrium
rate constant. In solution there are additional effects caused by the interactions
with a solvent. The dominant dynamical effect of solvent interactions on the
- equilibrium rate constant is to decrease the rate constant by inducing further
recrossing effects. Of course the solvent may also have a large static effect
associated with the free energy of solvation of the reactants and the transition
state, as discussed in Section 2.4.1. The static solvent effect may be included in
transition state theory with no change in the formalism. The dynamic solvent
effect, however, requires a generalized theory, such as the Brownian-motion,
one-dimensional, transition state theory of Kramers [98-100]. Kramers
generalized transition state theory to the case where the motion along the
reaction coordinate is interrupted by a series of frequent but weak outside
perturbations. The mathematical framework he used is that appropriate to
Brownian motion, that is, the motion of a heavy, slow-moving solute in a light,
fast-moving solvent, and thus the resulting theory corresponds to diffusion
through the bottleneck region of phase space, as compared to Liouvillean flow
in phase space for the gas phas¢ theory. The diffusive flow is characterized by a
new parameter, the friction coefficient for the reaction coordinate. To be useful
for quantitative calculations, Kramers theory would require several improve-
ments, among them: (1) generalization to multidimensional systems [101-104],
(2) a realistic incorporation of quantum effects [1004, 1057, (3) a more realistic
treatment of system—solvent interactions, applicable to arbitrary masses and
molecular sizes [106—110], and (4) a detailed prescription for the friction co-
efficient in terms of a molecular level characterization of the solute—solvent
interactions [108-1107]. Nevertheless, the simple Kramers treatment is very
instructive, and it provides useful guidance to the nature of the dominant effect
of dynamic solute-solvent interactions. We will present here a very slightly
generalized version of Kramers theory, incorporating improvement (1) in an
independent mode framework but presenting only qualitative discussions of
improvements (2)—(4).
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We should also mention an alternative approach to treating dynamic solvent
effects, which might be considered when the effect of solvent is dominated by
strong and specific interactions of the reacting system with a few solvent mol-
ecules. In such cases, just as for the static solvent effects discussed in Section
2.4.1, those molecules could just be considered part of the primary reaction
system. This makes the system much larger and harder to treat; for example,
the phase space has a higher dimensionality and the reaction coordinate must
have components in solvent coordinates as well as in the coordinates of the
original system, but it transforms dynamic solvent effects into effects that are
includable in a gas phase formalism [111]. Even when solvent effects really are
many-body phenomena, one can attempt this approach by using generalized
solvent coordinates such as degree of polarization. In the rest of this section
it is assumed that the system includes all reactants and possibly some specifically
coupled solvent molecules, such as a solvent molecule making an important
hydrogen bond at or near the reaction center, and that the bath includes the
rest of the solvent.

The original derivation of Kramers [98] was based on the Fokker—Planck
equation [20c, 112]; the theory can also be derived [113] from the equivalent
Langevin equation [20d]. Here we present a much simpler derivation, similar
to one of Helfand [114], which yields the high friction limit (often called the
Smoluchowski limit) of Kramers’ result as a consequence of simple dimensional
considerations for a pseudo-one-dimensional unimolecular reaction of a
reactant A. Assume that the potential of mean force along the reaction co-
ordinate has the harmonic shape

V(s) = Lfals — sa)%, S & sy (65)

in the reactants’ region (centered at s,, assumed negative) and the parabolic
shape

M) =V st 520 - (69)
in the vicinity of the transition state (at s = 0), where f, and f; are positive and

negative force constants, respectively. The root-mean-square displacement of
the reactant from its equilibrium separation is ~ ~

da = (((5 - SA)Z)A)I/Z (673)
A KUONCINIEE (67b)
= (kT/f)""? (67¢)

where we used the fact that the average potential energy of a harmonic oscillator
is [17a, 20e]4kT. The quantity dg provides a characteristic length scale for
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reactants and a similar quantity

d; = (kT/|f1))* (68)
provides a characteristic length scale in the vicinity of the parabolic maximum.
Consider a case where phenomenological kinetics holds even in the absence of
back reaction. Then the phenomenological rate constant reduces to the one-
way flux coefficient calculated in the absence of products, that is,

i = j(s = 0)/Ny (69)

where k% is the Smoluchowski high friction limiting rate constant to be derived,
J(s = 0) is the current of particles passing the barrier at s = 0 per unit time, and
N, 1s the number of reactants. In the limit of high friction, the motion across
the barrier satisfies Fick’s first law of diffusion [10b, 20f7]:

js=0)= —D@ ' (70)
ds 5=0

where D is the diffusion coefficient (with units of length squared per time) and
n(s) is the local concentration of reacting species at point s along the reaction
coordinate. For this one-dimensional example concentration has units of
particles per length, and the concentration in the reactants’ region may be
approximated by dividing N, by twice the characteristic reactant length d,,
that is, '

na(s = — sa) = N, /(2d,) (71)
Substituting Egs. (70) and (71) into Eq. (69) yields

D dn

==

/ nals = — s1) (72)

5=0

Since products are missing, n{s) must fall to zero within a few, say =, character-
istic lengths beyond the barrier. Then

dn n(s = ndy) — n{s = 0)
Ts = 73
dslsco ndy (73a)
n(s = 0)
= - — (73b)
ﬂd;

But for this one-dimensional example

n(s = 0) = n(s = —s,) exp(— V/RT) (74)
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Putting Eqs. (73b) and (74) into Eq. (72) yields

__ Db .- v
= Zndyd; P RT
and using Eqgs. (67c) and (68) converts this to
Dry2? 12 _ut
I = fA |fi| exp |4 (76)
2akT RT

which is exactly the high friction limit of Kramers’ result. Of course a dimen-
sional analysis such as we have just presented is not guaranteed to yield the
correct proportionality constant, but the precise value of the factor 2 and = in
Egs. (71) and (73) were chosen with the correct result in mind to make the
answer exact.

For later discussion it is useful to rewrite Eq. (76) in a different notation.
First, the usual notation for the reactant oscillator frequency is introduced:

ws = (fa/w)''? o (77)

where u is the reduced mass for motion along s, and we introduce thé usuat
imaginary frequency for the vicinity of the parabolic maximum

w; = (fi/m'? T (78)

Also we introduce the friction constant { defined such that the frictional re-
tarding force along the reaction coordinate is

ds
Ffric = - MC B—t (79)

where ds/dt is the speed. (Thus, the units of { are inverse time.) By Einstein’s
relations, the diffusion coefficient for reaction-coordinate motion is related to
the friction constant by [20d, 99]
kT
(== (80)
uD
Substituting Egs. (77), (78) and (80) into Eq. (76) yields

WA -V
ks - AL
22t P RT

(81)

which is another form of the high friction limit of Kramers’ result,
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In the diffusive limit the system zigzags back and forth across the transition
state(s = 0) many times during its motion from s 2 s, to s » 0. We can estimate
the recrossing correction to transition state theory by comparing Eq. (76) to
the conventional transition-state-theory result for the same unimolecular
pseudo-one-dimensional model. The usual result is obtained as the pseudo-one-
dimensional limit of Eq. (52). In the present case, Q" is replaced by unity since
the system has only one coordinate, which is the reaction coordinate and is
excluded from the transition state. Furthermore, the classical result for harmonic
oscillator partition function is [2b, 10¢, 19a, 34b]

kT
a_ 2n 82)
ha)A
Then Eq. (52) becomes
w -
H=2A —_— 3
2r RT (83)
We define a frictional transmission coefficient by ’
P = KK : (84)
and, using Eqs. (81) and (83), we obtain
)
== (85)

3
which is properly unitless and in the high friction limit is small. Thus the pre-

diction of this analysis is that TST overestimates the rate constant in the high
friction limit.

One can give an interesting microscopic interpretation to Eq. (85) by re-
writing it in terms of characteristic times. In terms of the friction coefficient,
the characteristic time for relaxation of momentum along the reaction co-
ordinate is [99]

t, =1/ (86)

Furthermore, the time scale for crossing the energy barrier, given enough
energy and the absence of friction, is

Ty = 1/6(): (87)

Comparing Egs. (85)—(87) shows that

P =1/, (88)
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that is, the high friction limit of the transmission coefficient is the ratio of the
relaxation time for momentum along the reaction coordinate to the time
scale for frictionless traversal of the energy barrier.

So far we have considered the high friction limiting form. The result actually
derived by Kramers [98] for the diffusion regime may be written

7= [r/2t)* + 112 — (z,/27,) (89)

The limits of Kramers’ result are

1/t \?
£ -~ l_i = 0
7 e 2, * 8 (r) ®0)
in the limit of very small friction and
3
ISP N
Y ol g Ts Ol

in the high friction limit. Equation (91) verifies that Kramers’ result agrees with
the result derived here in the high friction limit, as claimed above. The limiting
form, Eq. {81), (85), or (88), is called the Smoluchowski limit because it can be
derived from the Smoluchowski diffusion equation [99].

The simplest generalization of Kramers’ treatment is to consider a multi-
dimensional reaction but neglect the effect of solvent friction on all coordinates
except the reaction coordinate [101, 115-118]. This yields a friction-influenced
rate constant given by

K= (92)

where k' is now the standard multidimensional result. In this model T, 1S
independent of s so, with a proper interpretation of t,, the correction of Eq. (89)
could be applied to a hybrid variational transition state theory rate constant
with as good a justification as it can be applied to a classical conventional
transition-state-theory result.

In order for Eq. (88).0r.(89) to be useful for practical applications, we must
be able to estimate 7, or equivalently {, for real systems. One model that is
often used is Stokes’ law. Stokes’ law states that the frictional force on a sphere
of radius a, moving with velocity 7, through a solvent of viscosity #, is

Fro = — (6 ot dund (93)

where the 6 applies if the solvent sticks to the sphere and 4 applies if it slips
over the sphere {119-121]. Comparison to Eq. (79) yields

{ = (6 or 4ymna/u (94)

bl
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There is always a potential problem in determining atomic and molecular
parameters like { {from macroscopic observations, and the present example
provides a prime example. Even aside from the difficulty of estimating an effec-
tive value for a, Stokes’ law yields a friction coefficient appropriate for the time
scale of viscosity, which is a long time scale compared to the relevant time scale
1, for barrier crossing. One way to introduce the relevant time scales is to use a
generalized Langevin approach [106-110, 119]. In this approach the frictional
force of Eq. (79) is replaced by

it ds ‘
Fiie = — 1t [ {(r) — dr - 9%
0 dt t'=t—t

where {(1) is the generalized friction coefficient and the frictional force now
involves a memory of the whole past history of the particle, Grote and Hynes
[118] reconsidered the Kramers’ problem with this generalization, and they
derived a transmission coefficient given by

Y = (1 + L2012V = Ub) 20 (96)

where 1, is the reactive frequency, and f(l) is the Laplace transform of {(z) at
frequency A:

fy = r exp(— At)(z) dt ' o7

o

Equation (96) is identical to Eq. (89) except that the Brownian friction co-
efficient { is replaced by 5(1,). In principle, A, should be obtained self-consistently,
that is, it depends on {{4,), but in zero order it equals w;. .

Realistic models [122, 1237 of the generalized friction show that {(w) is
often small because w; is typically faster than the collective solvent relaxation
time which controls #. Thus E(w;) is dominated by infrequent hard collisions,
and the frictional retardation of chemical reaction-rates is-expected to be
considerably smaller than would be predicted by using Eqgs. (86), (89), and (94),
that is, by assuming the adiabatic solvent response of the Brownian dynamics
model. .

Other models of solute—solvent interaction can also be used, and in general
these agree with the generalized Langevin result that the effect of friction is
smaller than predicted by using Kramers’ theory with a friction coefficient
based on the viscosity [124, 125].

The models of solvent friction discussed above are classical and one-
dimensional. Quantal effects [100a, 126-130], shielding of the reaction-
coordinate motion from solvent interactions by other parts of the primary
reaction system [102], and other multiatomic and multidimensional effects
[101-104] have also been studied but are beyond the scope of the present
chapter.
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In the next section we consider the low friction limit where the local equilib-
rium assumption breaks down, and this has an easily recognized analogy to the
low pressure falloff regime for gas phase unimolecular reactions. The high
friction effects discussed in the present section also have analogies to high
pressure effects on gas phase unimolecular reactions, but these are not so
widely studied since one must consider pressures on the order of 102 atm to
observe them in the gas phase [131-133].

24.3 Effect of Solvent on Rate of Creation of Transition States

The treatment of Section 2.4.2 still assumes that the reactants’ phase space is
“populated at equilibrium and hence that those points in the phase space of the
-transition state that would eventually evolve to reactants if time were reversed

are also populated at equilibrium. Since reaction rates are not measured at
chemical equilibrium though, this is not a completely valid assumption. At
chemical equilibrium the most reactive regions of reactant phase space are
depleted by forward reaction faster than they can be repopulated by non-
reactive processes but, by microscopic reversibility, these reactive phase-space
regions are preferentially replenished by the reverse reaction. By the very
definition of equilibrium the depopulation and replenishment occur at exactly
the same rate and there is no net change in the phase-space distribution function.
However, in any actual case where there is net forward reaction, even very close
to equilibrium, the depopulation and replenishment do not balance. In general,
the depopulation of the most reactive states dominates, and the actual rate is
less than the (unmeasurable but in principle calculable) equilibrium rate
constant. Phenomenologically it is generally found that, after a short transient
period, the observed rate constant is, within experimental error, independent
of the extent of reaction. If the transient period is shorter than the time necessary
to build up appreciable back reaction, then the phenomenological, that is,
observed, rate constant may be calculated as if products are absent, but this
same rate constant will apply to any situation involving net reaction, even if the
system is infinitesimally removed from chemical equilibrium. To prove this
would require proof that there is only one slow time scale in the problem, and
that the fast time scales are indeed fast enough that the phenomenological
kinetic rate law holds-before back reaction isappreciable. Instead; we accept
this as an experimental fact for many systems. Then the consequences above
may be inferred. In this section we discuss the deviation of the observed rate
‘constant from the hypothetical equilibrium one.

Consider a reaction system A (for unimolecular reactions) or A + B (for
bimolecular cases) in a solvent bath S, and assume that the reactants are dilute
enough that we may neglect A—A, A-B, and B-B interactions. Also, on the
basis of the previous paragraph, assume that the back reaction is negligible.
If the interaction between reactants and the bath were very weak, the reactive
states (i.e., regions of phase space) of A and B would be completely depleted and
reaction would stop. Thus, after the transient period, the observed reaction rate
would be zero. As we consider a sequence of artificial systems in which the
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reactant-bath coupling is increased, the repopulation of reactive states occurs
more readily, and the observed rate constant increases. If the strength of the
reactant—bath coupling is measured by the friction constant { or E(}Lr) of Section
2.4.2, then the observed rate constant k should be a monotonically increasing
function of { until { is large enough so that repopulation is very fast compared
to reaction even for the most reactive states. Then k may become independent
of {. As { is increased still further, k should begin to decrease for the reasons
discussed in Section 2.4.2. In this case, a plot of k versus { should have the shape
shown in Fig. 1, part A, and labeled Kramers. This curve is labeled this way
because this actually is the result predicted more quantitatively by Kramers’
full treatment [98]. For the case he considered, there are no intrinsic recrossing
effects; that is, transition state theory would be exact in the gas phase if reactant
equilibrium could be maintained. Furthermore, the reaction was implicitly
assumed to be slow enough that a plateau could be achieved where friction is
“strong enough to repopulate reactive states but weak enough not to cause
diffusive slow down of transition state conversion to products. For other models
of the reaction system and the reactant-bath coupling, one might obtain the
other curve, simply (in fact, oversimply) labeled non-Brownian, in part A. Such a
result was obtained, for example, by Skinner and Wolynes [124], who studied
non-Brownian models for the reactant—bath coupling. They introduced a new
parameter y which is analogous to the ratio of solvent to solute masses for
hard-sphere interactions. Thus the Brownian limit corresponds to y — 0, and
in this limit they found that k is proportional to the first power of {. For high ,
however, this becomes {/y. Thus at high y, we are less likely to have a regime of
system-bath coupling strength where equilibrium is maintained at the barrier

k KE=k*

Kramers

~non = Brownidn

A
Fig.1 Schematic illustration of the dependence of the
k Lk# rate constant on-the solute-solvent coupling constant.
Case A is a case where the equilibrium rate constant is
K& given correctly by transition state theory and Case B
is a case where it is not. The two curves shown for Case A
high, narrow barrier represent typical results that would be calculated by

Kramers’ theory, with a Brownian treatment of the
solvent coupling and by a more realistic stochastic
treatment of the solvent coupling. The two curves shown
low, wide barrier for Case B illustrate two possible results that might be
B obtained by a stochastic treatment for different barrier
L shapes A.
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but no effective system—bath collisions occur during passage over the barrier.

For some cases, the Liouvillian phase-space flow already includes recrossing,
and the possible situations one may observe are illustrated in part B. The labels
“high, narrow barrier” and “low, wide barrier” are oversimplified; the com-
petition of reactive-state repopulation, reaction, and solvent interference with
product conversion depends on the details of the nonreactive degrees of freedom
and the frequency spectrum of the reaction coordinate motion. Nevertheless,
slow reactions allow for faster rise of the low-{ part of the curve and narrow
barriers make it harder for solvent interactions to impede the barrier crossing,
delaying the onset of the high-{ behavior [124, 134].

In an isomerization or in some bimolecular reactions the repopulation of
depleted reactive states of reactants is controlled by energy transfer from the
solvent. In other bimolecular reactions the depopulation by reaction competes
well even with the process of bringing reactants together. Since the reactive
transition states are not present at equilibrium this looks superficially like a
low friction case. A better analysis, however, is to use the following two-step
mechanism;

A+B=A B C : (R1**)

where A---B is an encounter complex, and we suppose that Step 1 is the
rate limiting step. If we then consider the reaction A---B — C, we will find a
nonequilibrium distribution of reactants; that is, depopulation of reactive states
of the encounter complex is faster than their repopulation by diffusion-con-
trolled creation of new complexes. The transition state, A--- B,inA---B>C
is thus also not in equilibrium with A + B,.but this transition state is not the
important one in this case, and we should not attempt to explain the friction
dependence of the observed rate by applying generalized transition state theory
to Step 2. Rather we should consider the transition states for the nonreactive
process of diffusion. The observed rate constant will be proportional to the
binary diffusion constant D,g, which is inversely proportional to the friction
coefficient. This familiar example illustrates the high friction limit for a transport
process but the general theory of Section 2:.4.2 shows that inverse dependence
of a rate on the friction coefficient can also occur for a reactive transition state.
In general parlance, the term diffusion-controlled reaction is generally applied
only to reactions where the effect of friction occurs on the long-range spatial
diffusion of reactants to form .a short-lived reactive complex. This kind of
diffusion-controlled reaction will be discussed further in Section 2.44. To
avoid confusion with this generally accepted use of the term diffusion-controlled
reaction, it may be preferable to use the term friction-controlled reaction to
describe short-range diffusive effects at reactive transition states, as treated in
Section 2.4.2.

The low friction limit in solution is very analogous to the low pressure
-unimolecular gas phase case discussed in Section 2.3. At low pressure or solute-
solvent coupling, the number of activating collisions is insufficient to maintain
the more reactive states of the molecule at equilibrium. The nonequilibrium
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correction factor I' depends on the frequency and the nature of these activating
collisions. Rather than using a detailed theory [135] of these nonreactive
collisions, it is often more appropriate to consider simple formulas [132, 134,
136, 137] for combining low-friction and high-friction corrections to transition
state theory. The simplest procedure is to multiply the low-friction and high-
friction corrections [132, 136, 137]. For the low-friction result we may use a
strong collision result for the pseudo-one-dimensional parabolic case [137]:

IS =1 — exp(— 2al/wy) 98)

and for high friction we may use the Smoluchowski limit Eq. (85). The product
approximation is particularly convenient for the analysis of Section 2.4.4.
Skinner and Wolynes [137] suggested using a Padé approximant:

o =251 2 ()] o

w4

to interpolate between I'S and 7%, and they obtained excellent agreement with
the product of I'S times 5. Garrity and Skinner [130] suggested the even simpler
Padé approximant:

s _ {/oy |
O = @ + ey oo

Skinner and co-workers have also constructed higher-order Padé approxi-
mants for other collision models and other barrier shapes [124, 134].

2.4.4 Quasi-Thermodynamic Activation Parameters
In solution the standard state is ordinarily taken as 1M. Then

K+ = VO/NY (101)

where ¥° is 10®cm?, and N, is Avogadro's number. Following the same
procedures as in Section 2.2.6 now yields

, “B, T®
AS*° =R[B,—1+1In hNAB. T (102)
Vo kT
and
AH*® = E, + (B, — URT (103)

For unimolecular reactions K*° is unity. Then Eq. (102) is replaced by

B>
AS*® =R (Bl —1+1In k—-ﬂ—) {104)
kT
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but Eq. (103) is unchanged. For either molecularity AV*° is still given by
Eqgs. (51a) and (51b).

In solution we expect that both I' and y may be important, and we have
given models for these two corrections in Sections 2.4.2 and 2.4.3. Then we have

AG*® = AG*® — RT InT? — RTIny — RTIn«} (105)
or

CAG*? = AGEVT? — RT InTT — RT Iny™YT — RT In kT (106)

where I'* and '™ are the nonequilibrium correction factors for conventional
transition state theory and canonical variational theory, respectively, ¥* and
yE¥T are the recrossing factors, and x* and «°V7 are the tunneling corrections
factors. We should include the effect of these quantities when interpreting
quasi-thermodynamic activation parameters, although they are often neglected.
Note that to a first approximation we may assume that y“VT is given by the
formulas of Section 2.4.2, but ' also includes recrossing of the conventional
transition state by trajectories reflected at the CVT dynamical bottleneck.
Thus, Eq. (106) may be more useful than Eq. (105).

245 Diffusion Control and Nearly Diffusion-Limited Reactions

In viscous media the rates of fast processes may be limited by the rate of
encounter of pairs of reactants. The rate constant of encounter-controlled
reactions, k, in reaction scheme (R1**), may be estimated from a steady state
solution of the diffusion equation [10d, 138—-140]. If k; in (R1**) is small, then
k_y » k,. In this case it may be useful to ignore the encounter complex and
consider the reactants in transition state theory to be A and B, as we have done
above. Alternatively, in this limit, we can approximate k as K,k, where K, is
ky/k-4 in (R1**), The choice is based on computational convenience and does
not reflect any change in the chemistry. For a fast rearrangement step or a slow
diffusional step, as at high viscosity, the mechanism changes and we find that
kequalsk,. .

It is important to distinguish the two different high friction limits that have
now been discussed in this chapter. In Section 2.4.2 we considered a high
friction limit where the mechanism does not change; the rate constant is' con-
trolled by passage across an energetic or entropic barrier to rearrangement on a
vibrational length scale, retarded by frequent interactions with a slowly relaxing
solvent. In this section we have considered a system where the mechanism
changes in the limit of high friction and/or fast covalency changes. The rate is
then controlled by the diffusional approach of reactants over a much longer
length scale of one or many solvation-shell radii.

3 TESTS OF TRANSITION STATE THEORY

Transition state theory has clearly passed one of the most difficult of all
tests, the test of time, in that it has been found useful for about 50 years. TST
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has many uses, ranging from ab initio prediction of rates to extrapolation and
correlation of rates or qualitative interpretation of rates in terms of force field
concepts. All the uses of TST can be tested by their internal consistency or
their agreement with other approaches to the same problem. In this section,
however, we will discuss only on a few attempts to most directly test the basic
assumptions of TST by applications to very well-defined prototype systems. A
more extensive review of this kind of test of TST has recently been published
elsewhere [129]. We are concerned with the absolute accuracy of various
versions of TST and also with their relative accuracy as compared to each other.

3.1 Tests for Gas Phase Reactions

Going as far back as 1930 or earlier, the H + H, reaction and its isotopic
analogues have provided a key focus for theories of chemical kinetics [141].
The reason for this is that the reaction involves only three etectrons and attempts
to actually calculate the Born—Oppenheimer potential energy surface have
always been more accurate for H + H, than for any other reaction {142]. At
the present time the H + H, surface is believed known to a chemical accuracy
of better than 1 kcal/mol [142-146]. Transition-state-theory calculations em-
ploying this potential energy surface and including tunneling calculations
calculated by the Marcus—Coltrin path or small curvature approximations, are
in good agreement with experiment (probably within experimental error) for
H+H, D+ D,, D+ H;, H+ D,, and Mu + H, [43, 146-148]. (Note
that Mu is an isotope of hydrogen in which the proton is replaced by a positive
muon, which is only one ninth as massive.) The Mu + H, comparison is particu-
larly noteworthy because the theoretical prediction, which is totally ab initio,
was published [149] prior to the experiment, and because the quantum mechan-
ical effects are very large for this system. The D + H, reaction is of special
interest because experimental results [150, 151] are available down to the
lowest temperature. for this case. At 200K the prediction of conventional
transition state theory is too low by a factor of 45 for this reaction, and canonical
variational calculations without tunneling are too low by a factor of 74. Includ-
ing tunneling along the minimum energy path decreases.the error to a factor of
13, but including the effect of reaction-path curvature in the tunneling calcula-
* tion decreases the error to a factor of 1.2, which is within experimental error.
" The H + H, reaction is also noteworthy for being the easiest reaction to attack
by accurate quantum mechanical scattering theory. Schatz and Kuppermann
[152] have reported reasonably well-converged quantal dynamics calculations
of the equilibrium rate constants of this reaction for a realistic potential energy
surface (but not the most accurate available surface). Transition-state-theory
calculations, including reaction-path curvature in the tunneling correction,
agree with these calculations within a factor of 1.2 at 300-600 K, but are too
low by a factor of 2 at 200 K [150]. This case involves very large tunneling cor-
rections at low temperature, and that makes it hard to treat with high quanti-
tative accuracy. There are two additional three-dimensional reactions for which
reasonably accurate quantal equilibrium rate constants for a given potential
energy surface are available [153]; such tests against accurate quantal results
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provide the most definitive tests of approximate dynamical calculations like
transition state theory because the same potential surface can be used. In
contrast, comparison to experiment suffers the disadvantage that errors in the
potential energy surface may either augment or partially cancel against errors
in the approximate dynamics, and to an unknown extent. The two additional
reactions for which comparison to quantal calculations is possible are H + BrH
and H + BrD, and in these cases transition-state-theory calculations, again
with a tunneling correction including reaction-path curvature, agree with the
quantal results within a factor of 1.2 over the temperature range 150-500 K
[153]. For H + BrH the tunneling correction is a factor of 1.6 x 102 at 150 K.
There are also a large number of comparisons of conventional and variational
transition-state-theory results to accurate quantal equilibrium rate constants
for a purely collinear world; these are reviewed elsewhere [26, 43, 1297]. The
conclusion of these studies is that, in general, transition state theory is able to
account adequately for quantum mechanical effects. When the conventional
and variational results differ significantly, and sometimes they do, variational
theory is systematically more accurate.

Several systematic surveys of the differences of conventional and variational
transition-state-theory rate constants for three-dimensional atom transfer
reactions with model potential energy surfaces have been reported [38, 154—
158]. The largest differences between the two theoretical predictions occur for
symmetric or nearly symmetric reactions in which the transferred atom is
much lighter than either the atom donor or the atom acceptor. The large effect,
which is due to a small zero point requirement in the vicinity of the saddle point,
has been confirmed with an ab initio potential energy surface for the reaction
37C1 + H33C1 - H3Cl + 3*C1[45] and also, to a lesser extent, for the reaction
OH + H, - H,0 + H [43, 44], which has a less extreme mass combination.
For a temperature of 200 K, the ratio of the conventional transition-state-
theory rate constant to the canonical variational theory one at 200 K is 110 for
the *7Cl + H?*Cl reaction and 2.7 for the OH + H, reaction. These ratios
decrease to 28 and 1.9, respectively, at 300 X; the temperature dependence of
this ratio is an indication that conventional transition state theory under-
estimates the energy of activation for the nontunneling contribution to the rate
~ constants because of a higher internal-energy requirement at the least-recrossed
* dividing surface as compared to the saddle point dividing surface. Both reactions
. also show large tunneling corrections which exhibit large reaction-path curva-
ture effects. Thus the tunneling corrections at 300 K are calculated to be 2 and 5,
respectively, when reaction-path curvature is neglected, but 28 and 17, respec-
tively, when it is included.

The comparisons of transition-state-theory results to accurate quantal
equilibrium rate constants test the accuracy of the no-recrossing assumption
and the incorporation of quantal effects. The validity of transition state theory
also requires the satisfaction of the local equilibrium hypothesis, as discussed in
Section 2.2.1.
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3.2 Tests for Solution Phase Reactions

The fundamental questions of where or whether transition state theory
applies to reactions in liquid solutions, and how to calculate the corrections
when it does not, have received very much attention in the last five years. Most
of this work is reviewed in a recent article on the current status of transition
state theory [129]. Recent advances in the theory of reactions in solution have
also been reviewed by Hynes [123]. In this section we provide a discussion of
some principal issues.

An important source of knowledge of the validity of transition state theory
in the gas phase is provided by comparisons to quantal-collision-theory calcula-
tions of equilibrium rate constants. This tests the dynamical bottleneck assump-
tion and the incorporation of quantal effects, but it does not test the equilibrium
assumption. The closest solution phase analogue is the comparison of transition-
state-theory predictions to the results of many-body classical dynamics simula-
tions. This tests the equilibrium and dynamical bottleneck assumptions but not
the incorporation of quantal effects.

An important ingredient in classical dynamics simulations of rate processes
in solution is the time-correlation-function approach [118, 159-166] to solution
phase rate constants; this represents a generalization of the use of time correla-
tion functions [20g, 167] for transport processes.

Two examples where full molecular dynamics calculations have been com-
pared to transition-state-theory calculations for reactions in solution are the
work of Allen and Schofield [168, 169] and Chandler, Berne, and co-workers
[164, 165]. Allen and Schofield studied a low barrier, atom transfer reaction in
the regime in which the rate constant increases with solute—solvent coupling;
Chandler, Berne, and co-workers studied a conformational isomerization.
They made stochastic simulations for both in the low and high friction regimes,
and they performed two molecular dynamics simulations, one for a viscous
solvent and one for a random, rigid lattice environment. The rate constant in
the rigid environment was only 23%; lower than that in the fluid, but a factor of
3.7 lower than transition state theory; they concluded that viscous continuum
effects do not account for the main part of the solvent effect. A simple interpreta-
tion of the solvent correction factor is that collisions with individual solvent
molecules are effective in transferring momentum to and from the reaction
coordinate, thereby causing trajectories to recross-the transition state. Further
studies of these effects would be valuable.

4 SEMIEMPIRICAL CORRELATION: RATES, EQUILIBRIA,
AND TRANSITION STATE STRUCTURES

In this section the emphasis is shifted from transition state calculations of
reaction rates from known or assumed potential energy (or potential of mean
force) surfaces to correlation of rates, using equilibrium data and transition state
concepts to replace the missing potential surface information. For this we use




54 TRANSITION STATE THEORY

the term semiempirical theory. The semiempirical theories considered here
involve simultaneous approximation of the internuclear dynamics and the
governing electronic-structure-based potentials, in contrast to transition state
theory per se, which is a statistical mechanical theory of the dynamics that
presupposes the potential surface, The semiempirical models involve transition
state concepts, but strictly speaking they are not transition state theory. A
primary object of using such semiempirical models is the testing of the physical
bases of the models and the characterization of TS structure.

_ Much of the work discussed in the foliowing sections involves the numerical
. evaluation or estimation of standard-state-dependent quantities. In all these
cases the standard state is a Raouit’s law solution with a concentration of 1 M.

4.1 The Concept of a Variable Transition State Structure

411 Structure Maps and Parallel and Perpendicular Effects

Even among stable molecules, the electron distribution and sometimes the
structure of a functional group shows systematic variation as attached sub-
stituents are varied. For example, the NMR chemical shift of F for meta-
substituted fluorobenzenes, which reflects the electron density, varies system-
atically and significantly with the inductive parameter, ¢,, of the attached
aromatic residue [170]. Transition states, which are less rigid structures than
stable molecules, should be even more sensitive to such perturbations. Two-
dimensional maps, showing the bond orders of two bonds for a set of transition
states in a series of related reactions, have been introduced and used fruitfully
to discuss these effects [171-173]. An example is given in Fig. 2.

" The map shown in Fig. 2 is for a nucleophilic displacement reaction

A7 + BA, > AB + AT (R4)
Ai-A..B-Ai Ai-"'Bf"Aj-
X T
nAiB
Ai‘B-"Aj A['B...Ai_
-~ nBAi

Fig. 2 A two-dimensional map for locating the transition state for the nucleophilic displacement,
A7 + BA; — A;B + Aj. The coordinates represent bond orders.
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In the map we use the formal designations

A7-BY-A7 and  (A-B-A)”

to denote noncovalent dissociative and hypervalent associative structures,
respectively. The upper left corner of the map corresponds to a system for which
the transition state has the reagents, still with their original covalency, correctly
positioned for the covalency changes to begin. The diagonal from upper left to
lower right is the locus of TSs for concerted displacement reactions in which the
sum of the two bond orders remains constant and, approximately, so does the
A~A; distance and the total electron density of B. The upper right corner of the
map corresponds to dissociative TSs, and the lower left corner to associative
- TSs. As compared to concerted TSs, the A;-A; distance should be larger for
dissociative TSs and smaller for associative ones. At least in a qualitative sense,
the sum of the bond orders, the A;—A; distance, and the formal charge on B
(positive for dissociative cases and negative for associative ones) are all cor-
related. Two parameters have been defined to locate the TS on the map experi-
mentally [174]. The first parameter, 7, is a measure of the tightness of the
transition state [175]. It is zero in the upper right corner, 2 in the lower left,
and 1 along the upper-left-to-lower-right diagonal. Thus it is formally equal to
the total bond order to B. The second parameter, y, is orthogonal to t and
increases from upper left to lower right; for a fixed total bond order of B, it
measures the A;—B bond order. The parameter y, which we call the Leffler—
Hammond parameter, has previously been represented by « [175], but « is also
used to represent the slope of a Brensted plot, and we will see that y and this
slope are not the same, except along the upper-left-to-lower-right diagonal of
the map. For historical reasons, and because of its relation to the Brensted
parameter, y is given the value 0.0-at the upper left corner, 0.5 at the center, and
1.0 in the lower right corner of the map {175]. For a three-atom, collinear
reaction, specification of the 7 and x values of the TS would be formally sufficient
to specify its structure.

Transition state maps such as Fig. 2 are convenient for illustrating the
changes that the conventional TS structure undergoes when reaction conditions
or the reactants themselves are changed. To some extent these rules may be
extended to apply to variational transition states; and thus these maps are
relevant to trends in AG*° or AGEVT0,

In the TS for (R4) the reacting bonds, A;-B and B-A, are partly ionic, and
we may consider the transition state to be 4 resonance hybrid with four valence
structures: A;-B"~A;«> A7 -BY - A7 <> A; - B-A;— A;-B- A . First, we con-
sider a case where i = j and the contributions of the third and fourth structures
are equal. If the energy of the second resonance structure is lowered, for example
by making the solvent more polar, then, because of the character of the variation
method for quantum mechanical energy and wave function calculations [176],
the contribution of the second structure to the resonance hybrid is increased.
Animportant point is that the change in the composition of the resonance hybrid
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and the resultant change in the bond lengths are mutually reinforcing, that is,
if the change in the resonance hybrid favors longer bonds, then longer bonds
further favor the increased component of the resonance hybrid. Such electronic
factors are reflected in the locations of the saddie points on the potential energy
surface. For this kind of change the potential energy factors are also reinforced
by partition function changes. Consider, for example, a low frequency spectator
vibration whose force constant is lowered by the change in the resonance
hybrid. This will promote a greater relative population of states with a large
amplitude for this vibration, and in turn systems at a large amplitude extension
of this vibration will favor the increased component of the resonance hybrid
even more. All these changes affect t in the same way, they lower it. These
effects are special cases of the general rule that, in any coordinate that is
orthogonal to the reaction coordinate, the transition state is expected to respond
to perturbations in the same way as a stable molecule—it becomes more similar
to any structure in its hybrid manifold that is stabilized; this is called Thornton’s
rule or the perpendicular effect {177, 178].

Next consider a case where i = j and the electronegativity of A, is increased
so that the hybrid structure is stabilized by increasing the contribution of the
fourth valence structure. Since geometries in which the fourth valence structure
is favored can only be reached by passing through structures in which the
B-A; bond is shorter, which therefore benefit less from the increase in electro-
negativity of A;, such an arrangement of the system now becomes the con-
ventional transition state. Thus, in the reaction coordinate, the geometry of a
conventional TS responds to a perturbation by shifting away from the stabilized
structure; this is called the Lefller—Hammond principle or the parallel effect
[178-181]. The final outcome for the electron density depends on the nature of
the perturbation, but, in the example given, the ionic character of A; in the
perturbed TS would still be somewhat larger than that in the unperturbed.
Such a change in the structure of A; will make (R4) faster rather than slower.

In more complicated systems more than two coordinates may need to be
considered explicitly, but the same principles apply.

A source of problems in complex cases is the difficulty in identifying the TS
reaction coordinate. The reaction coordinate is a normal mode of-the con-
_ ventional TS; at a generalized TS it may be identified with the minimum-
energy path [37, 44, 47]. It is orthogonal to all other normal modes, including
the molecular rotations and translations of the center of mass; a small dis-
placement along the reaction coordinate should not induce a reaction in some
other dimension. The reaction coordinate must be identified in order to decide
to which perturbations the parallel effect applies and to which the perpendicular
effect applies. '

We should emphasize the distinction between Fig. 2 and a potential surface
map. The points on Fig. 2 all correspond to tradition states, but for different
reactions. In contrast, a conventional potential energy [182] contour or perspec-
tive map shows the potential energy as a function of bond coordinates or bond
orders for a single reaction. A variable transition state map can be used to

»
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discuss AG*? or AGVT-?, but not AG*° except approximately when it is domi-
nated by AG"® or AGSVT°, However, a potential surface map for a single
reaction cannot be generalized to show free energy of activation since AGST?
is a function of the location of a dividing surface, not of the location of a con-
figuration point.

41.2 Marcus Formalism

Many of the ideas in Section 4.1.1 can be given simple and convenient
quantitative expression in the Marcus formalism [10e, 183-190], which is
summarized by

AG™® = WO 4 AGH (107)

AG* = (1 + AGY/1)*3/4 (108)

Equation (107) purports to partition the phenomenological AG*° into one part,
AG*, which arises from the covalency' and structural changes during the actual
rearrangement, called the  step, and which correlates with AG® and 1, which
are explained below, and another part, W™% which represents the free energy
(work) necessary to reach the configuration in which the * step can take place.
For bimolecuiar reactions in solution, this configuration corresponds to a
specialized encounter complex, perhaps with a particular orientation and a
certain degree of desolvation that must precede any covalency change. In
cases where the unchanged reactants have an affinity for each other, for example
have opposite charges or form a charge transfer complex, W*° may be negative.
The configuration immediately preceding the * step may be called a reaction
complex [191], or, more aptly, a precursor configuration, PC, and the analogous
quantity on the product side may be called a successor configuration, SC; these
terms are more suitable than encounter complex, which appears to imply the
necessity for a potential minimum or that the reactants only need to be in
contact. The numerical value of W™°, like AG*°, depends on the standard
states chosen. The overall free energy change for the x step is AGY. The quantity
4/4 1s called the intrinsic barrier, and it is AG* for the special case that AG' is
zero. The standard free energy for making the final, separated products into
N the SC is W*° and

AG” = AG® — W0 + WPO (109)

where AGY is the overall standard state free energy difference of products from
reactants.

Note that the PC and SC are introduced into the theory for two possible
reasons: (1) in some cases they are actual local minima in the potential surfaces,

tIn electron transfers, covalency changes are understood to include the transfer of an electron
from one atomic center to another. In that case the adiabatic location of the electron may be strongly
coupled to several varieties of interatomic distances and angles.
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that is, intermediates, and better semiempirical correlations can be obtained
by considering the unimolecular transformation between these species than by
considering the whole reaction; (2) even when intermediates do not exist, certain
contributions to AG*° are not expected to correlate with AG®; these contribu-
tions include gas-phase steric factors, orientation effects in a solution-phase
encounter complex, or specific desolvation effects such as desolvation of a
hydrogen bond for reaction to a non-hydrogen-bonding substrate [192]. In
case (2) the separation of the two kinds of contributions is somewhat arbitrary
but may still be useful.

The PC is not necessarily a metastable complex. In order for the PC to
serve the role discussed above, it may be necessary to define it as corresponding
to a restricted range of values for one or more coordinates. With this definition
one could then, in principle, calculate its partition functions and hence W"°.

Marcus theory was originally developed as a model for AG*? of outer-sphere
¢lectron transfer processes [183, 184, 193]. It was assumed that the actual-
movement of the electron in such processes is an electronically adiabatic
Franck—Condon process. The structural changes required to produce a critical
configuration, in which the diabatic electronic energy is the same with the
electron in either the donor or the acceptor parts, are regarded as producing
AG*. A possible derivation proceeds as follows. If the force fields of reactants
and products are harmonic, and the structural changes leading to the rearrange-
ment are regarded as linear combinations of displacements in orthogonal
coordinates x, of the donor and acceptor, then the energy required for a struc-
tural change beginning at the PC is

V=3 X fi%0 = xio)’ j (110)

where fTC is a force constant and x£, is the PC equilibrium value of x,. Since
the coordinates are orthogonal the dlsplacements may be written in terms of
their projections on a reaction coordinate x as

.= Xho) = G <x (111)
Combining these equations shows that the energy required to reach the critical
configurationis a parabolic function of the reaction coordinate with an effective

force constant f,; which is a weighted average of the force constants of the
coordinates involved. That is,

V=13 eff(x - xoc)2 (112)

ot = 2 o) (113)

n

After the electron has been transferred, relaxation to the SC is governed by
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similar equations, in the same coordinates, but with x3§ replacing x25. In
principle, fer is different for the precursor and successor complex, because the
individual f, are different, and the differences may be largest for those coordi-
nates with the largest weights in Eq. (113). Marcus theory assumes nevertheless
that [5G equals fE%. This is better justified for symmetric reactions than for
nonsymmetric ones. In terms of Eq. (113) and its analogue for deviations from
the SC, the reaction model becomes that shown in Fig. 3. 1 is defined as the
energy required to distort the structure of the PC to that of the SC, without the
eiectron transfer or other covalency change; therefore

= 3fAx? (114)
where
Ax = x3° — x¥°¢ (115)

for the particular case that AG’ = 0. Further algebraic manipulation yields the
following expression for the potential at the intersection of the parabolas

Vh = (1 + V'/)%(1/4) (116)

where V' is the potential difference between SC and PC. A special case for a
symmetric reaction, is

VYV =0) = i/4 (117)

PC [ SC
XO X XO
X —»

Fig.3 A model for a derivation of the Marcus theory of electron, atom, or group transfer. To the
left of the avoided crossing the lower potential curve represents ¥V = 3f,(x — x5¢)% and the upper
one represents V = 3 f (x — x3)2 + V. To the right of the avoided crossing the meanings of the

two curves are interchanged. Note that, as drawn, V'’ is negative.
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Next we introduce the resonance energy V., resulting from the combination
of the precursor valence structure and the successor valence structure at the
critical configuration. In the electron transfer example it is the delocalization
energy of the electron between the donor and the acceptor. The actual barrier
height is given by

V=V = Vi, (118)

Equations (115) and (118) plus the assumption that V,__ is small and the replace-
ment of potential energies by free energies of activation yield Eq. (108), which
was our goal. For reactions other than weak-coupling electron transfers, V.,
is generally not small; however, if it is constant within a family of related
reactions, the replacement is still approximately valid if A > V' and 4 is deter-
mined empirically, via Eq. (117).

The replacement of potential energies V with free energies of activation
involves the conceptual difficulties discussed in Sections 2.2.6, 2.4.4, and 4.1.1.
Its validity rests primarily on the correspondence of Egs. (107) and (108) with
experimental results.

The original Marcus theory for electron transfer [183, 1847 has been gen-
eralized to the case of proton and atom transfers [ 185, 186] and group transfers
[175). Now V,., which was electronic delocalization energy for the electron
transfer case, becomes the valence bond resonance energy for A™---B-A;
—A-B--- A", It also includes effects due to readjustment of bond lengths
along curvilinear reaction paths. Since the original theory was justified in the
limit of small V., that is, small overlap or weak coupling, this extension shifts
the justification for the resulting equations even farther in the empirical
direction.

The discussion above shows that the physical model behind the Marcus
relations is more closely related to AG"? than to AG*°. Thus one might expect
significant qualitative breakdown of these relations if variational-transition-
state-theory optimization effects, recrossing, tunneling, internal state non-
equilibrium, or solvent friction are important. However, with the introduction
of the empirically determined-7; Eq. (120) may become a better approximation
of AGSYT? than of AGH?.

Two further points are worth noting. The two parabolas in Figure 3 do not
refer to the donor and the acceptor, or to the A;-B and A;—B stretching modes.
Each parabola refers to the deformation of the whole system, including both the
donor and the acceptor in both cases, with appropriate contributions from their
solvation shells. In the case of electron transfer, the most important contributors
to x are probably the breathing modes of the inner ligand shells of the donor and
acceptor. In many cases, x is not easily visualized. The second point, is that it is
rot an improvement to replace the parabolas with Morse functions of modest
well depth [194], because this misrepresents the nature of x. In most cases the
further extension of x, without electron transfer or covalency change, beyond
the point at which such changes would normally take place, would lead to very

7
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large potential enecrgies, as nonbonding interactions would increase greatly.
As discussed above, an important assumption in the' Marcus model is that
Y& = [3% = f.¢. Another assumption is that neither f,, nor Ax varies along
the series of reactions being correlated. If these assumptions are not valid then
the conclusions drawn about transition state structure from the Marcus for-
malism may need modification [175].
The generality of Eqs. (107) and (108) may be emphasized by notmg that they

are equivalent to

AG® = ¢y + ¢,(AG®) + ¢,(AGO)? (119)
where
co = W 4+ [4 — (W0 — WPO)2/(4) (120)
ey = [1 — (W0 — WP)i]p2 (121)
c2 = 1/(44) (122)

/

Equation (119) is simply a quadratic free energy relation (QFER). Since linear
free energy relations (LFERs) are so widely applicable [195-197], QFERs
may also have a wide validity range. The Marcus relation, Egs. (107) and (108)
or Eq. (119), can be regarded as simply an extension and explanation of the
successful Brensted catalysis law [178, 198-201]; as such, it is likely to accom-
modate almost any set of rate and equilibrium constants in which there is a
systematic relation between the two. The accommeodation of data by the for-
malism does not prove that the model is correct. To the extent, however, that it
is, it provides us with parameters, 7 and y, that are related to transition state
structure, as will be discussed in Section 5.

We now consider a system of nucleophilic displacement reactions (R4) for
which rate constants are known for both symmetric variants:

A7 + B-*A, - A~B + *A[ (R3)

and
A + B—*A;,-> A-B + *A; (R6)

and for which all equilibrium constants are also available. In the TS for the
ii variant (R5) there are no A;—B bonds if the mechanism is dissociative (upper
right corner of Fig. 2), one if bond making and breaking are completely coupled
(on the diagonal of Fig. 2) and two if the mechanism is associative (lower left
corner of Fig. 2). In all cases there is one A;—~B bond in the reactant. The former
numbers, which are identical with the t values for these TSs, can be related to
d(AG}%)/d(AGY,), where AGY, refers to (R4), if a convenient A} is chosen and if
the A; form a series of structurally related nucleophiles in which both AG%°
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and AG}) respond lineatly to the bond order. A Hammett series of m- and p-
substituted nucleophiles is ideal for this purpose. The result should be inde-
pendent of the choice of A; because, regardless of that choice, (R4) forms a
full bond to A; and removes a unit charge, and (R5) does not involve A; . Since
it gives acceptable values at the extremes and on the diagonal and is experi-
mentally accessible, d(AG%°)/d(AGY)) is taken as the definition for (r — 1). For
the same reaction, if A] were varied instead of A;, d(AG%°)/d(AG}) would give
(1 — 1) '

The generalized Bronsted exponent o may be defined as d(AGY°)/d(AGY).
This has been thought to measure the symmetry of the TS [175]. However, we
note that o, so defined, will be zero for any TS with n, 5 = 0 if only A, is varied,
and will give the fractional B-A; cleavage if only A; is varied. Thus, « is not a
simple measure of TS symmetry and is not likely to be single-valued if both
A, and A; are varied.

If Equations {107) and (108) are accepted, an experimentally available,
single-valued parameter, identifiable with the similarity of the TS to reactants
or products, can be defined by AGJ/(24). This is  + [6(AG?;°/d(AGP)]A, which
has been incorrectly identified with the experimental « [185, 191]. It is more
reasonably identifiable with (y — 3). Therange of AG;/(24)is — 4 (for AGj= — 1;
TS = A7 - B-Aj) to + $(for AG], = 4; TS = A;-B - A}) over the range of
applicability of Eq. (108). A TS with AGg = 0 is modeled as having a structure
equally resembling reactants and products. This is true evenif ny g = np 5 = 0
in the TS. In that case, AG*° is the same for the forward and backward direc-
tions, and the TS is found in the upper right corner of the map. A line projected
from that TS, perpendicular to the diagonal from reactants to products, strikes
that diagonal halfway between them, as required.

The utility of this definition is apparent when d(AG%%)/d(AGY) is obtained
from Eq. (119). If AG” can be equated to AG*(W"° and WP° assumed equal)
we get

dAGE) 1 | AGY 1[ A da;, ]

—— = - +
dAGY) ~ 27 24 T 8| d(AGY) T d(AGY)

AGR d,  diy -
_ i It 123
842 [d(AGg + 18G9 (123

Which leads to
x =y & (- 12 F (- YIAGH*/22%)] (124)

when the definitions of @, 7, and y are appropriately substituted. The upper
signs apply if i is varied. The last term in Eq. (124) will frequently be small,
since AG}, < Zin many cases of practical interest. Figure 4 shows the appearance
of the Bronsted plots predicted by Eq. (124) for several values of 7.
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Fig.4 Bronsted plots corresponding to 7 = 0.5(A), ¢ = 1.0(B), and © = 1.5(C), with i-varied and j
constant. ;¢ = Aj; = 40 keal/mol; A; = A0 + 4t — DAGT; A = (A4 + A,)/2; W = WP0 =

ijs

2 keal/mol. AG*® was calculated according to Egs. (119)(122).

4.2 An Attempt at a Less Empirical Theory

In the semiempirical theory discussed above, most difficulties are circum-
vented by using experimental quantities. Although some structural information
can be obtained by this method, much remains ambiguous. The experimental
quantities implicitly contain the missing information. Levich, Dogonadze,
Kuznetsov, Ulstrup (LDKU), and their co-workers have made ambitious
attempts to model electron and atom transfer reactions from a less empirical
perspective [202-210]. Their models have a strong emphasis on the trans-
mission coefficient, which is treated in terms of transition probabilities along an
approach coordinate, as in the (historically later) large curvature approxima-

tions [45,47,71-75] discussed in Section 2.2.5. We will present a highly simplified
model based on their original treatments for a reaction dominated by inter-

. nuclear tunneling, The LDKU model for electron transfer has roots in the

original work of Gurney [2117] and Libby [212], which is also the starting point
for the Marcus theory. We will discuss the model for a solution phase proten
transfer from anacid, AH, to a base, B.

The model to be considered in this section visualizes the reaction occurring
in several stages. In the first, the reactants find one another and adopt a con-
figuration from which tunneling will occur. This configuration is analogous to
the PC of Section 4.1.2. The formation of this PC presumably brings the reactants
closer than they would be at minimum potential energy, which corresponds to a
hydrogen-bonded complex or other associated entity, depending on the reaction.
It also requires a solvent polarization. The energy of the solvated PC with
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respect to the separated reactants is AE#.. The formation of the PC reduces the
system’s partition function from the product of the two independent partition
functions Q. and Qy to the single partition function Qf., which is to be com-
puted with the distance between AH and B and their orientation confined
to narrow limits. The ratio of partition functions does not appear in the work
of Bruniche-Olsen and Ulstrup [207] and is not needed for the purposes to
which those authors have put this theory, but we insert it to make the present
treatment more realistic and more similar to our earlier discussions of TST.

The degrees of freedom of the PC, including the solvent with which it inter-
acts, are then divided into two classes: the high frequency, quantized oscillations
and the low frequency modes, which are treated classically. In the present
example, for which the PC is A~H - - - B, the high frequency modes include only
one mode coupled strongly to the reaction coordinate; this is the perturbed
A-H stretching mode; the low frequency modes include the solvent modes
that are coupled to the hydrogenic mode. This model assumes that, for reaction
to occur, one of the quantized energy levels of the PC must match an energy
level of the SC, which is A~ -- - H-B™. This matching cannot be achieved with
high probability by progressive excitation of the A-H stretching vibration or
by transfer to form a vibrational excited BH* because the vibrational states
in which a proton motion is excited are too widely spaced. For a harmonic
oscillator with a fundamental frequency of 3000 ¢cm ™, the first excited state
lies above the ground state by over 8 kcal/mol. For the most part, therefore,
matching is achieved by distortion of the low frequency modes and the solvent
structure, treated classically. For a given quantum number n, of the A-H
stretching mode, the frequency with which such structures wiil be achieved is
given by v exp(—~ AE¥/RT), where v is the effective frequency in oscillations
per unit time with which the classical modes explore the relevant domain, and
AE# is the energy which must be added to the classical modes in order to reach
the isoenergetic arrangement. Thus exp(—AE$/RT) is the Boltzmann factor for
an arrangement of the classical modes which makes the energy of quantum
state n of the PC equal to that of an allowed quantum state of the SC. If the
energy of the quantum state n of the A—H stretching mode is denoted AE,, and
the probability of erossing from a reactant structure to a product structure is
denoted k,,, then this model yields

x AE¥ AE¢ + AE
k= —————Qf:cQB exp [—— (ﬁgﬂ Vet Zn: K, €Xp [ — (»———SR-;, ")] (125)

For the rest of this discussion, we then simplify Eq. (125) by assuming that we
are dealing with symmetric or exoergic examples.

Order-of-magnitude estimates of Q};/Q.uQy and AEX. can be made [191,
206, 213, 214]. They also appear in the Marcus version of the theory and give
rise to W"° [183]. In evaluating the related quantities, AE¥, AE,, k,, and R*,
which does not explicitly occur in Eq. (125) but is discussed next, it has generally
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been assumed that the A—H mode is similar to that of the isolated molecule and
is approximately harmonic, with a frequency ¥ of about 3000 cm ™! assumed
when a particular value was required [204, 206], but a Morse function has also
been used. For our purposes we can regard R* as the distance across which the
proton travels in the dominant reaction path. It is determined by two counter-
vailing effects. Atlarge R*, AE¥ is small, but x, is very small because the proton
must tunnel a long way through a region of high potential energy (negative
kinetic energy). At small R*, x, is high, but EZ. is high, due to the mutual
repulsion of the reactants. Between these extremes a compromise is found which
maximizes k. For proton transfer below the top of the barrier, which is the
predominant route, k, is determined in this model by an overlap factor for the
vibrational wave functions of reactants and products at a distance R*, and this
factor can be estimated for particular values of R*.-R* has also been estimated
on the basis of the known structures of hydrogen bonded substances [204]. An
important, qualitative point in this model is that most product is formed via
the ground vibrational level of the A~H stretch, with n = 0 and AE, = }hc¥,
by tunneling through a barrier {207, 208]. For symmetric reactions most product
would, correspondingly, be formed in the ground vibrational state.

If the A—H and H-B* reactant and product vibrational modes are assumed
to be harmonic, AEg is given by [183, 185, 207]

AE¥ = (AEs, + SAG®/(4AEs ) (126)

The standard free energy of acid dissociation of BH™ less that of AH is called
S8AG?®; the reactant-to-product solvent reorganization energy for the particular
case that SAG® = 0O is called AEg o. We have followed the original authors here
in ignoring the difference between potential energies and free energies of activa-
tion. When the value of AE# from Eq. (126) is inserted in Eq. (125), the result is
readily cast in the form of Eq. (119). The coeflicients now have the values

QPcVeffKo> AES 0

Cog= —RTIn|=———)+ AE}. + - . 127

° ( N w2

) ¢ =12 ' (128)
c; = L/(4AEs ) - (129)

Comparison with Egs. (120)-(122) for the case that W"° = WP shows that
AE; , can be identified with /, and W™° can be equated to — RT In Qpeverrico/
O.uQr + AE¥.. When it is observable, the curvature of the Brensted plot
may permit AEg , to be estimated, although it should be noted that x,, which
occurs in ¢y, is a function of AG® and should alter this curvature. A straight-
forward modification of this treatment, introducing AG®, would deal with
endoergic examples. :

Since they are formally so similar, the same results that are consistent with
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the Marcus version of the theory are also consistent with the Levich—
Dogonadze—Kuznetsov—Ulstrup model. However several differences of inter-
pretation are apparent. In the Marcus version the origin of 4 is not specified,
and its value is to be obtained by averaging 2 for the two related symmetrical
reactions. In the LDK U model, the origin of AEg  is specified, and in favorable
cases it might be estimated. On the other hand, it is not apparent from the
LDKU model for AE; q that the averaging procedure, which appears to work
well in many cases [175, 215], should do so. Although there have been sug-
gestions that the Marcus W"° is not independent of AGP [191, 216, 217], it
has usually been assumed to be constant. The LDKU equivalent of w0
“contains kg, which clearly depends on AG®. Since K, < 1, the way it enters the
- LDKU expression for W*° would make that quantity larger, as would veg,
and AEg , could easily be small in the LDKU model. Large values of W*° and
correspondingly small values of 1 have been hard to explain in standard inter-
pretations of Marcus theory [191, 216]. Another attractive feature of the
LDK U model is that the predicted kinetic isotope effect is not directly related
to AG® and AEg , or to temperature, as it is in an interpretation based on the
original Marcus theory, which ignores tunneling [218]. Many failures of these
relations have been noted [191, 219]. An important asset of the LDKU approach
for proton transfer is that it starts with a model that is explicitly consistent with
our current understanding of hydrogen atom tunneling in comparable gas
phase systems [45, 71-75]. In mass-scaled coordinates proton or hydrogen
atom transfer between heavy moieties has an MEP with.very large curvature,
and for a symmetric reaction with such an MEP it was shown [74] that most
of the product originates by tunneling from the ground vibrational state of the
reactant channel to the product channel without reaching the saddle point,
ie, at large R*. '

An important problem of the LDKU model, at least as applied so far, is its
failure to take into account the modification of the hydrogenic potential as the
donor and acceptor approach each other. In the terms of model we would
say that the resonance of the reactant and product electron distributions,
(A-H---Band A™ --- H-B¥), leads to a strong compression of the local vibra-
tional energy levels. In certain, spontaneously formed, H-bonded complexes
the infrared spectra demonstrate such compression [2207. The substances whose
proton transfer processes are of interest typicaily do not form such complexes
spontaneously, but it seems reasonable to believe that a similar compression 1s
* generated when they achieve comparable configurations in energetic encounters.
This leads to a nontunneling zero point energy contribution to the kinetic
isotope effect (although VTST calculations [45] indicate that the nontunneling
KIE is often less than the conventional TST value for symmetric or nearly
symmetric hydrogen atom transfers between heavy moieties). The same reso-
nance effect that compresses the local vibrational energy levels also changes
the shape of the barrier along the straight tunneling paths utilized by large
curvature systems in such a way as to decrease the tunneling as compared to
what would be calculated in the LDK U model. At this point it seems that further
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work to establish the ranges of validity of the Marcus and LDKU models would
be valuable.

4.3 Mechanistic Compiications

The discussion of specific reaction mechanisms is beyond the scope of this
chapter; however, a discussion of TST for one-step reactions cannot be com-
pletely separated from a discussion of mechanism because of the difficulty of
unambiguously isolating an elementary reaction and especially the lack of
clear criteria, either operational or theoretical, of what constitutes an inter-
mediate [173, 221]. Short-lived arrangements of atoms may or may not corre-
spond to a minimum on the potential surface, and minima on potential surfaces
need not correspond to long-lived species. When such arrangements or minima
do not meet requirements for a real intermediate, they have been called virtual
intermediates [222]. In both conventional and variational TST it is formally
possible to ignore intermediates or virtual intermediates, but considering them
often makes it easier to model the TS and understand the observed results.

As an example, the protonation of simple nitronate anions, 1,

R, O

C=
/s
R, 0

1

where R, and R, are alkyl, aryl, or hydrogen groups, by moderately strong
oxygen acids in solutions containing H*, gives rate constants many powers of
ten smaller than the diffusion limit, although the reactions are strongly spon-
taneous [223]. In addition, when the structure of the nitronate is changed by
varying R; or R, its protonation rate and equilibrium constants sometimes
change in opposite directions, that is, the Brensted exponent is negative [223,
224], although normal Brensted behavior is observed when the structure and
acidity of the oxygen acid is varied. These observations and others become
more understandable when two additional facts are considered. First, de-
protonation occurs on nearly every encounter between CH,NO, and bases in
the gas phase, even when the reactions are only slightly spontaneous [225]. This
implies that the reverse reaction (which is protonation of 1 with R,=R,=H)
also takes place on nearly every encounter. (However, this observation does not
eliminate the possibility of a significant barrier, even in the gas phase [226].)
Second, trinitromethylate anion is protonated by H* in t-butanol at nearly the
diffusion-limited rate [227], although the reaction is less spontaneous than that
of CH,NO; with H* in water. Comparison of the gas phase and solution
results for protonation of 1 shows that the solvent is strongly involved in the
problem. The result with trinitromethylate implicates the high negative charge
on the NO, group of simple nitronates. For static and dynamic reasons the
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transition state for transfer of H* from H;O* or ROH; to carbon
H+ + R1R2C=NOZ— - R1R2CH-—NOZ (R?)

requires the reacting O—H bond to be directed toward carbon. But in 1 there is
a unit negative charge on the NO, group, with the result that the O—H bonds
of H;O" or ROH; spontaneously direct themselves towards the oxygens, not
the carbon. Work must be done to reorient this configuration before proton
transfer can take place. When the proton acceptor is the trinitromethylate
anion, the distribution of the charge over 6 oxygens makes the precursor
configuration much easier to attain. It is not clear whether the effect of solvent
in this case is static or dynamic (or both), in the language of Section 2.4. Appar-
ently, solvent reorganization does not participate strongly in the reaction co-
ordinate during the proton transfer itself, because that would substantially
increase the effective reduced mass of the reaction coordinate and make the rate
constant relatively insensitive to isotopic substitution, and such reactions show
large hydrogen isotope effects [207]. If these reactions are to be treated in the
Marcus formalism of Section 4.1.2, a substantial, structure-sensitive W™°
appears to be needed, and AE#. would perform a similar function in the LDKU
model, even though there is no evidence that the arrangement suitable for
proton transfer (the PC) is metastable. Elements of such behavior also occur in
other proton transfers.

Section 2.4.5 discusses another general type of system in which the decision
for or against the explicit consideration of an intermediate or virtual inter-
mediate depends on the theory being used.

One of the important benefits from the development and use of semiempirical
models of reaction rates is that they can often identify the existence of very
fleeting intermediates, virtual intermediates, or their absence. Ohno and co-
workers [228] have proposed a three-step mechanism for hydride transfer
among substituted pyridinium ions, consisting of electron transfer, followed by
proton transfer, followed by another electron transfer (the EPE mechanism).
This reaction is important-because it-is a-model-for a wide range of biologically
important redox reactions. Marcus formalism is successful in correlating a
large number -of such reactions, invelving a considerable range of structures
and 04V of redox potential (about 19 kcal/mol in AG®) [229]. If the EPE
mechanism .were correct, the rate limiting steps and hence the TSs would be
expected to be different for symmetrical and strongly unsymmetrical variants
of the reaction, and such a correlation would be expected to fail. Thus the
success of the correlation implies the absence of metastable intermediates. This
would be true even if these intermediates were regarded as virtual intermediates,
because Marcus theory depends primarily on the structure and quasi-
thermodynamics of the TS, rather than on the dynamics by which the surface
of no return is crossed. (Recent studies of kinetic isotope effects also support a
one-step mechanism for hydride transfer in these reactions [230, 231].)

These examples demonstrate that the problems of TS structure and dynamics
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are often inseparable from those of mechanism determination, particularly
when fleeting or virtual intermediates are suggested.

5 SELECTED APPLICATIONS

5.1 Electron Transfer Reactions

Among processes of interest to chemists, electron transfer is the most extreme
case of a light, fast particle moving under the influence of its interaction with
much heavier, sluggish particles. The allowed energy levels of an electron are
so widely spaced that only the ground electronic state is important for many
nonphotochemical reactions. Here we consider ground-electronic-state electron
transfer reactions. Thermal fluctuations of the reactants produce states in which
the diabatic electronic energy of the donor—acceptor pair is the same as that of
the donor minus one electron paired with the acceptor plus one electron. This
is accomplished by distorting the structure of the reactants (including their
solvent shells) in the direction of the product structures. The electron is trans-
ferred by tunneling, with an electronic transmission coefficient x,; that decreases
approximately exponentially with the distance between the donor and acceptor
centers. Because of the small mass of the electron this is assumed to be preceded
by a process in which the reactants achieve the proper separation, solvation,
and, if necessary, orientation; that is, achieve the PC discussed above. This
model for electron transfer is the same as the model for proton transfer in
Section 4.2, and it is very similar to that used to obtain the Marcus formalism

in Section 4.1.2. It leads directly to.

k = Kpvy ke exp(— AG*/RT) (130)

K, is the formation constant for the PC, with an appropriate solvent shell,
from the reactants. It is equal to exp(— W"%RT) in the notation of Section
4.1.2, and Sutin assumes that its variation with structure depends mainly on the
magnitude of the electrostatic repulsion term contained in W™° [232]. (Note
that Sutin [232, 233] uses the term precursor complex but we prefer precursor
configuiration, as discussed in Section 4.1.2.) In (130), v, is a frequency identified
with the pseudo-lattice vibrations of the solvent and/or the lower frequency
vibrations of reactants. AG* has the same significance as in Section 4,1.2. Only

K, is newly added, to take account of the possibility that a system may reach the

TS configuration and fall back without electron transfer.

For a small number of electron transfer reactions it has been possible to
evaluate the quantities required by Eq. (130) with enough reliability that &
values bearing some resemblance to observed values have been obtained [133,
341]. Several bimolecular examples are shown:

Fe(H,0)2* + *Fe(H,0)3* — Fe(H,0)}* + *Fe(H,0)2" (RS)

Ru(bpy)i* + *Ru(bpy); " —Ru(bpy)3* + *Ru(bpy);” (R9)
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Fe(H,O)" + Ru(bpy);™ — Fe(H,0)2* + Ru(bpy)3* (R10)

The partition functions in K, were reduced to volumes [232]. The energy re-
quired to form the PC was assumed to be mostly coulombic, and it was calcu-
lated by means of a formula for electrostatic interactions. When these factors
were combined for 2* ions reacting with 3* ions, values of about 10~ M ~*
were obtained for K. Values of 10'2 — 103 s, corresponding to spectro-
scopic frequencies of 30-300 cm ™!, were given to v,.. For symmetrical reactions
AG* was evaluated by means of

AG* = ()"out + ’lm)/4 (131)

where A, is the contribution of the outer-shell (solvent) reorganization to the
free energy of activation and ;, is the inner-shell (intramolecular) contribution.
The outer-shell contribution is the free energy that would be required to re-
organize the solvent from its configuration in the PC into the configuration
required by the SC if the electron remains untransferred. It was obtained

from [233]
1 1 -1 1 1
PREY (LS S IR S 132
ow = € (2rD N R)(Dop D,) (132)

“where e is the charge on the electron, rp, and r, are the radii of donor and
acceptor, respectively, R is the sum of the ionic radii of the donor and acceptor,
D, is the optical dielectric constant of the solvent (the square of its refractive
index), and Dj is the conventional, macroscopic dielectric constant. Values of
about 20-40 kcal/mol are obtained for A,,. A, is the energy that would be
required to distort the inner-shell structure of the PC to that of the SC, without
transferring the electron, It was obtained from [234]

)'in = Gﬁn(dD - dA)z (133)

where f, is a reduced force constant for the breathing vibrations of the donor
“and acceptor, given by ) - ’

Jin = 2fpfallfo + fa) (134)

in terms of donor and acceptor inner-sphere force constants, and the ds are
the metal-ligand bond distances in the inner ligation shells of the donor and
acceptor. For (R8) a value of 0.14 A was found for (dy — d,) from crystal-
lographic measurements, and fp and f,, were obtained from donor and acceptor
spectroscopic frequencies of 390 and 490 cm ™, using a reduced mass of 18 amu
(the mass of a water molecule) in both cases. For the unsymmetrical reaction
(R10), AG* was obtained according to the Marcus prescriptions (Sect. 4.1.2).
For the evaluation of «,,, the following variant of the Landau—Zener theory
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was used:

. - 2[1 — exp(— ve/2Vouo)]
o 2 - eXp(— vel/zvnuc)

where

3 2Hin 3 1j2
. =g (4RT AG*) (136)

where H,y is the resonance integral. It was obtained by a highly simplified
ab-initio quantum mechanical calculation for (R8) [2335, 236] and by an approxi-
mation scheme for (R9) [237], and it was taken as the geometric mean of the
other two for (R10). The results are summarized in Table 1.

Although no rate constants were used in these calculations, vibration fre-
quencies and crystallographic bond lengths were used, so it is not entirely an
ab initio calculation. These appear to be among the most satisfactory calculations
presently available for rate constants of ionic reactions in solution, even though
the agreement between calculated and observed rate constants leaves room for
quantitative improvement.

In contrast 'to the semiquantitative accuracy of the actual calculations of
rate constants, correlation of rate constants for electron transfer reactions has
been more successful. These correlations may illuminate TS structure, mech-
anism, or the structure of intermediates. For example, in the reactions (carried
out in acetonitrile solution at 298 K)

RM + FeL3* - RM™ + FeL3* | (R1D)
RM* - R + M*
R — ultimate products
, M* - ultimate products

L2

where the first step is rate limiting and the next three are fast, there are excellent

N Table 1. Comparison of Calculated and Experimenfal Electron Transfer Rate
Constants

KAVnuc ' AGD AG* k:alc kobs
Reaction (M~*s7!) (kcal/mol) (kcal/mol) &k, (M 's™!) (M 1s7Y

(R 10! 0 246 1072 1072 4
(R8) 1012 0 5.5 1 10° 4 x 10®
(R9) 1012 47 15.1 107} 108 5 x 108
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correlations between the standard reduction potentials E2, of the ferric com-
pounds and (AG*)*, according to

(AG*% = 1¥/2 + FEQ/(2A%) — FEL,/(24%) (137)
where & is the Faraday and EQy is the standard reduction potential of RM, for
a variety of radical ions derived from tetralkylstannanes, tetraalkylplumbanes,
and dialkylmercurials [2387]. Equation (137) is simply a reorganization of Egs.
(107) and (108), with the additional assumption that the work terms are negli-
gible, and with AG® replaced with its electrochemical equivalent, F(Egy — E£.).
‘In the original [238], WP is actually retained, but W*? is set equal to zero,

~and it may be more satisfactory to treat the two work terms consistently. The
final outcome is essentially the same.

Plots of AG*? against #Ep, for the oxidation of a single organometallic by a
series of iron compounds are linear. The slopes, 1/(24%), of the plots of Eq. (137)
are all the same, and they give a structure-independent value of 41 keal/mol for
1. The intercepts of these plots are [1¥/2 + Efy/(2A*)], and since A is available,
they yield the reduction potentials Egy of the organometallics. These cannot be
directly measured because their electrode oxidations are not reversible. The
existence of these correlations, with a constant value for 4, for a wide variety of
alkyl groups and ligands, is a powerful argument in favor of outer-shell electron
transfer between intact reactants as the rate limiting step in these reactions [238].
Any reorganization of the covalent bonds of the reactants seems likely to have
been sensitive to structure.

5.2 Hydrogen Atom, Proton, and Hydride Transfer

5.2.1 Proton Transfer

Acid-base reactions are a fertile field for testing relations between rate and
equilibrium constants because 4 large body of equilibrium constants is available,
both in solution and in the dilute vapor phase, and recently many rate constants

have also been measured. Proton transfer reactions resemble electron transfers -

in that, approximately, a light, rapidly moving particle can be considered to be
movingina field-established by the heavier atoms. Tunneling is again of concern.
.. Because of these similarities, proton transfer was one of the first reactions, after
electron transfer and the work of Ref. [186], to which semiempirical rate theory
like that in Section 4.1.2 was applied [213].

Many proton transfers, to and from carbon, in aqueous or partially aqueous
solution, can generate the reaction series wanted for the application of semi-
empirical rate theories. A commonly studied example is

i T
A—C—CH; + B~ - A—C=CH, + HB (R12)

where A is an alkyl group or functionalized alkyl group, and B~ is an anionic
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oxygen base. If B™ is varied with constant A, and log k values are plotted
against either pK,(BH) values or log K values for the reaction itself, strongly
curved Brensted plots are obtained [216, 239]. (pK,(BH) values and —log K
values are related to one another by an additive constant provided they refer
to the same solvent. The use of K,(BH) values from water with K values measured
in some other solvent deprives the theory of all its quantitative significance and
much of its qualitative significance.) Rates of symmetrical reactions are un-
available, but if W°° and 4 are assumed to be constant and WP° = W™, the
coeflicients ¢, of Eq. (119) are constant and can be obtained, and, from these,
values of W*°, 4, and, if it is not already known, pK.(ACOCH ). This results in
strikingly low values of 4/4, around 3 kcal/mol, and correspondingly high values
of W"° around 15kcal/mol [216]. These values were obtained from data
spanning about 15 units of pKgy for each series. On the other hand, if the &
values obtained by varying A, with B~ fixed as OH ™, are treated in the same
way, a W* value of around 4 kcal/mol and 4/4 value around 10 kcal/mol are
obtained [216]. The theory has been thought to require that A and W*° be
independent of the position where substitution is made [213], though Eq. (124)
and Fig. 4 show that this is not the case. Further work appears in order here.

Related observations have been made for the hydrolysis of diphenyldiazo-

‘methane (DDM) in 809 dimethyl sulfoxide—20%; water, catalyzed by various

oxygen acids, HA (carboxylic acids and phenols), covering about 8 units of
PKya [191]. A very strongly curved Bronsted plot is obtained, leading to a W*°
ofabout 17 kcal/mol and a A/4 value of about 1.5 kcal/mol. As pK, is lowered, the
rate constant plateaus at about 10 M™!s™! which leads to a consistent W*°
value of about 18 kcal/mol; however, the rate constant remains sensitive to the
introduction of substituents in the DDM. This leads to the formal conclusion
that the substituents change W™, rather than AG?, contrary to superficial
intuition at least.

There are also reactions which generate fairly straightforward results. Proton

‘abstraction from sulfanes and cyanocarbon acids, and reprotonation of the

corresponding anions, are examples [240, 241]. These reactions have W™°
values of about 4 kcal/mol and 1/4 values of about 3-4 kcal/mol. The strongly
spontaneous reactions in these cases have proton transfer rate constants of
about 10°-10° M ™' s™*, and they have sometimes been regarded as essentially
diffusion limited. However, they do not respond, as would a diffusion-limited

-rate, to changes in the viscosity of the solvent [242]. 1-Phenylvinylate ion has

been observed to react with H*, with a rate constant of 3 x 10° M~ !s~!
[243], a value which may be diffusion limited.

How may ‘the apparent anomalies be resolved? We would prefer not to
abandon entirely an approach which appears to represent many results with
useful accuracy, so we would prefer to reconcile these anomalies without
abandoning the basic framework of Section 4. Some of the sources of difficulty
are casily found. From the first evaluation of W™ for proton transfer reactions
[213] it has been suggested that part of the origin of W™° was in the desolvation
of the reactants and, particularly, in the removal of the innermost, hydrogen-
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bonded solvent from the oxygen acid or base. Intuition suggests [216] and
experiment has shown that this desolvation energy increases with the strength
of the acid or base, both in solution and in the gas phase [244—246]. Both linear

[245] and nonlinear [244] relations have been reported, and, in solution, there

seems to be a strong dependence on the structural type of the acid [246].
Desolvation is an example of an interaction which does vary linearly with
progress along the reaction coordinate. Kresge and Keefe, in another chapter of &
this volume, have attributed anomalous Brensted coeflicients to such inter- &
actions.

Tunneling is probably most important for energetically symmetrical cases,
decreasing in importance as the asymmetry in either direction increases. Both
of these effects could increase the curvature of a Brgnsted plot. For most types
of proton transfers the rate constants for symmetrical reactions have not been
available, so A has been obtained from the plot of In AG*® against In AG®. The
curvature of that plot is (24) " if W™° and 4 are constant. If the curvature were
increased by the variation of W*° or by tunneling and this were not anticipated,
the derived value of 2 would be too small and the value of W"® would be too
large [191, 213]. Also, the solvation energy is probably different for reactants
and products, making W"° and W?-° different and AG? different from the
observable AG®. Potential functions other than the. intersecting parabolas
of the simplest Marcus theory have been suggested, and these may somewhat
change the shape of the Brensted plot [247, 248]. Another effect not explicitly
included in Marcus theory or the conventional AG*° is that the nonequilib-
rium correction factor I' of Section 2.2.5 may depend systematically on the
energetics of the reaction. All of this suggests that the value of W"° should
not be taken too literally. The 4 derived from a series of oxygen acids or bases
reacting with a single carbon base or acid appears more likely to give a meaning-
ful A4 than variation of the carbon constituent, because A is probably quite
constant in the former case. This is so because proton transfer between oxygen
bases in a properly aligned complex is barrierless or nearly so [249]. Thus, the 4
for such a process-is just-half of A; for the carbonreactant; which 1s constant
because that reactant is not varied. Any other additive scheme for estimating 4
from the properties of the individual reactants will arrive at the same conclusion.
Overall, the results seem to sustain the conclusion that spontaneous proton
transfer to and from carbon has a small but nonzero A. When more substantial
activation energies are found they may have origins in the details of mechanism,
as discussed for nitronate reprotonation in Section 4.3.

5.2.2 Hydrogen Atom Transfer

" Hydrogen atom transfer has been studied in the gas phase as well as in
solution. For a small number of gas phase hydrogen atom transfers, enough data
is available to make a complete test of Egs. (108) and (119) and the cross relation.
For example, the rate constants for

37Cl- + H?3Cl - H*’Cl + 3°Cl- (R13)
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H+H2'—>H2+H

and
Cl-+ H, - HCl + H: (R15)

have been experimentally determined to be 3.1 x 10° [250], 8.5 x 10° [251],

and 3.7 x 107 [252], all in units of M ™! s at 3682 K; and (R15) has an

. equilibrium constant of 0.34 [253]. (Note that the rate constant given for (R14)
is the distinguishable atom rate constant [254] as determined from the experi-
mental result [251] for ortho—para conversion.) From the first two rate con-
stants and the equilibrium constant, the third rate constant can be calculated
by the model of Section 4.1.2. Assuming W"° = W0 = 0, the calculated value
is 1.0 x 10° M ™! s~ which is smaller than the experimental value by a factor
of almost 40. The result we obtain with the deuterium analogues [250, 255, 256]
is comparable. Although W™° = W?® = 0 has been assumed, any small,
constant value gives similar results. The agreement of theory and experiment
is much worse than that which has been achieved for hydride transfer and
alkyl transfer reactions in solution (Sects. 5.2.3 and 5.3). These reactions involve
polyatomic molecules and ions in solution. Many low frequency structural and
pseudo-lattice modes probably participate in the activation process, and solvent
motions may play a significant role in the reaction coordinate [257]. Marcus
theory, Eq. (108), was intended for such situations, and it deals with them fairly
well [258]. In the simple gas phase hydrogen atom transfers, such modes are
unavailable. The activation energies of these reactions are 5-6 kcal/mol—Iless
than the vibrational-energy-level spacing of either H, or HCI. A large fraction
of the activation energy must be translational, rather than coming primarily
from displacements in harmonic modes. The x of Eq. (106) is also important.
In spite of this failure of the cross relation, rate constants for the reactions
(R13) and (R15) can be correlated [259] with. rate .constants for analogous
Cl- + HX and X- + H, reactions using equations very similar in effect to
Eqs. (107)-(108).

Spectacular demonstrations of nuclear tunneling are obtained with hydrogen
atom transfer reactions. The radical pair shown'in Fig. 5 [260] was generated
by irradiating a crystalline sample of dimethylglyoxime [261]; Presumably H,
is lost in the process. The hydrogen-atom transfer was identified and monitored

" by ESR spectroscopy. ‘At temperatures above 100 K, the rate constant for
hydrogen transfer is strongly temperature dependent, leading to an apparent
activation energy of about 10 kcal/mol. At lower temperature, however, the
Arrhenius plot is sharply curved, and finally becomes almost flat, so that the
rate constants are almost the same at S0 K and at 4.2 K. At the lower temper-
atures, no reaction at all can be detected in the deuterated radical pair. A
kinetic isotope effect of 10'? and a fantastic-appearing hydrogen tunneling
correction of a factor of 107°* were estimated at 4.2 K by extrapolation from
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Fig. 5 The crystal structure of dimethylglyoxime [260] and the radical pair (A and B) generated
by irradiation with ionizing radiation. ‘

temperatures above 100 K [262]! The reaction

no e
(CH)LCo - _CICH.) (CH,).C C(CHS)
33 3'3 33 32
pogi.
- C(CHy)s C(CH3)5

gives a deuterium kinetic isotope effect for perdeuterated tert-butyl groups of
7 1.3 x 10* at 123K [262, 263]. This reaction also leads to a strongly curved
.. Arrhenius plot. The H variant has a rate constant of 107257 at 76 K, and
> this is lower by only a factor of 2 at 28 K [262]. These effects have been analyzed
“rusing a one-dimensional model in which a fraction of the zero point energy
in an X—H stretching vibration is used to provide a nonzero rate by tunneling,
even at temperatures approaching 0 K [264, 265]. This analysis shows that
tunneling is significant at all temperatures, even though its most obvious con-
sequences can only be observed at very low temperatures. The number of
systems that have been observed at temperatures below 100 K is small, and the
theory is still incompletely developed (see Sect. 5.5 of this chapter). However,
there is no doubt left about the reality of tunneling, and its importance appears
to be general. Even at room temperature, reaction (R16) is apparently faster
by a factor of about 10? than it would be in the absence of tunneling [263].
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5.2.3 Hydride Transfer

Hydride transfer between variously substituted and elaborated pyridinium
ions has recently proven to be a fruitful field for the application of semiempirical
rate theory because equilibrium constants and rate constants are available for
symmetrical reactions, as well as ordinary reactions. Rate constants have been
obtained for four analogous, nearly symmetrical reactions of the type:

3 Ho HH o HOH & Ho
: L OLT = 0L s OO &
: T ! * |\Il-i-
R ‘R R R

where the R group is either a methyl group, a benzyl group, or a substituted
benzyl group, X is either CN or CONH,, and the star indicates some sort of
labeling, and equilibrium constants have been obtained for the unsymmetrical
reaction

H eN H, H
OOT + Ol IO =

N N

R

CHgy
H H N H
Or T+ QIO
N N
| I+
R CH3

These studies have given a t value (Sect. 4.2.2) of 0.77 [174], indicating that bond

~order is not quite conserved. This value of r and the equilibrium constants give,
in Eq. (124), a value of 0.37 for the = of (R18). This is identical with the experi-
mental value [174]. '

-Measured equilibrium constants and rate constants for symmetrical reactions
permit the calculation of fourteen rate constants for unsymmetrical reactions,
using the Marcus relations [229]. The measured rate constants vary over a
range of 107, and the average discrepancy between measured and calculated
rate constants is a factor of about 1.5 [2297, In this calculation the cross relation,
Aij = (Ay + 4;;/2), was used to obtain the intrinsic barriers, which were assumed

« to vary from one ring system to another. However, no allowance was made for
the variation of A;; with substitution. That is, 1; for acridinium ion was allowed
to be different from that of quinolinium ions, which, in turn, is different from
that for pyridinium ions, and so on. But the systematic variation of A; with
K.j was not taken into account and may improve the fit still further. The agree-
ment is already far better than that described in Section 5.2.2 for gas phase
hydrogen transfer and suggests that the model is more suitable for reactions in
which many modes contribute to AG*°.

In this study W"® = W"° = 2kcal/mol was assumed. This raises the

(R18)
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question of why we can successfully assume that these quantities are small and
constant in this case, when they appear to be large and structure sensitive in
many examples of proton transfer. W*° and WP may reasonably be sub-
stantially smaller for reactions like (R17) and (R18) than for proton transfer
because no hydrogen bond has to be disrupted to reach the TS in the former
cases, and also because there is a negative contribution from charge transfer
interaction between the oxidant and the reductant, This leaves room, within g
the constraint of easily measured rate constants, for large values of AGH.
W™° probably remains structure sensitive, in ways that are not anticipated by
the semiempirical rate theory, but the contribution to AG*? from well-behaved
terms is now considerably larger. In addition, to the extent that the structure
sensitivity of W™ is an additive characteristic of the two reactants, it is taken
up in 4 when y is near 0.5, as it is in these cases. The more extended systems give
precursor complexes which are better stabilized by charge transfer interactions
and should have less positive values of W™°, but since W™° is held constant
in the calculation, reduced values of 4;; are produced instead. The combination
of these effects produces the excellent results noted.

Tunneling is probably a factor in hydride transfer, as it is in proton and
hydrogen atom transfer [266-268].

Semiempirical rate theory provides an insight into the general question of the
mechanism of hydride transfer reactions, suggesting when they may be expected
to occur in one step and when they will use the EPE mechanism (Sect. 4.3).
Short-range electron transfer and proton transfer have much smaller intrinsic
barriers (values of A/4) than hydride transfer. Although the exact values are
uncertain and somewhat structure-sensitive, the estimates are generally under
10 kcal/mol. Hydride transfers appear to generate 1/4 values of about 20 kcal/
mol [229]. Thus, the three-step mechanism will generally be preferred when the
intermediates are not extravagantly energetic. In many cases, however, AG° for
the formation of radicals and radical ions from closed-shell molecules and ions
is well above 20 kcal/mol. The one-electron redox potential of NADH, for
example, appears to be over 1V (24 kcal/mol) [269]. In such cases, in spite of
its large A, the hydride transfer is preferred because it leads directly to stable
products, and therefore has a negative or only slightly positive AG® for cases

of interest. ‘
All of this analysis still does not answer the interesting question-of why 4 is ®
so high for hydride transfer. Semiempirical rate theory cannot answer that =~ =

question; in fact, it is intended to avoid it. Ultimately it will have to be answered
by quantum mechanical calculations, although further experimentation, show-
ing how A varies with structure and solvent, may identify the particular features
that are crucial.

['h

5.3 Alkyl Transfer

Nucleophilic displacement reactions comprise one of the largest and most
important classes of organic reactions [270]. They can be regarded as alkyl
transfers and treated by the methods of semiempirical rate theory. In practice
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this has been difficult because of the paucity of systems in which rate and
equilibrium constants are both measurable, but some progress has been made,
particularly for methyl transfer reactions.

A 7 value 0.8 has been obtained for

Ar;SO; + CH;080,Ar; — Ar;8O3 + Ar;SO,CH, (R19)

by studying rates of symmetrical reactions [271]. When combined with the ¥
value of 0.5, expected when AG® is about 0, this leads to an o value of 0.60 for
variations of j (notation of Sect. 4.1.2). A value of 0.6 has been observed
[2717]. These results strongly support the long-held view [175, 270] that bond
breaking and bond making are well coordinated in such reactions, with a small
positive charge development on the central atom. A similar treatment of gas
phase methyl transfer by Brauman and Pellerite [272] is also successful, but,
puzzingly, their figure 2 suggests a t value around Q.5. Intuitively, one might
have expected the gas phase transition states to be tighter. The gas phase
experiments require several assumptions and approximations before the
“experimental” quantities are obtained, and the Marcus cross relation (Sect.
4.1.2) was assumed to evaluate barriers for symmetrical reactions, so the small-
ness of T may be exaggerated, but the qualitative result seems to be sound. Ab
initio calculations [273] support the general validity of the Marcus cross
relation for potential energy barriers in this kind of reaction.

There is also some evidence that parameters which have been thought to be
measures of TS structure lead to conflicting conclusions [274,275]. This problem
may be due to oversimplified interpretation of QFERs in terms of TS structure
or to the influence of y, T, and x [Eq. (106)] on the rate constants; theories of
TS structure will generally not anticipate the behavior of the latter parameters.
More work is inr order here and progress appears likely.

5.4 Other Reactions

The Marcus theory, or something very similar, can be arrived at in many
different ways [190, 276, 277] so the justifications given in Sections 4.1.2 and
4.2 are not the only ones possible. When none of the available justifications of
Eq. (119)-appear valid, it may be regarded as a purely empirical correlation if it
does fit the results. Alternatively, we may use thermochemical analogies to

-compute free energies of activation [278], or we may even attempt full transition-

state-theory calculations based on equations like Egs. (13)-(16) or (105)-(106).
In Section 5.4.1 we give an exampie of how semiempirical models of the type
introduced in Section 4 can be applied to a quite different class of reactions.
In Section 5.4.2 we discuss cases where the solute—solvent coupling effects are
more prominent and cannot be treated by this scheme.

5.41 Associations

Hine [279], Albery [215], and Guthrie and Cullimore [280] have applied
the Marcus theory to cation—anion recombination reactions and to nucleo-
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philic additions to carbonyl groups:

R* + N"" 2 RN®"1° (R20)
0 o}y
] l
A—C—B+ N2 A——(IZ——N"“”' (R21) ¢
B ¥

where R ™ is a carbocation and N™~ is a nucleophile of charge n™. These treat-
ments rationalize a large number of rate constants; they give intuitively reason-
able A values, the differences in which (under changes in N"~ or the electrophile)
tend to be similar, as suggested by additive theories of bond energy, with dis-
crepancies averaging < 1 kcal/mol. The a-value was calculated from an equation
equivalent to

i (138)

1,0 _ p,0
a:O.S[l-—(W 1% )+RT19K]
with A obtained from the equations of Section 4.1.2. (These treatments implicitly
assume that ¢ = 1.0, and thus make a and y identical.) Hine [279] took W™° =
24 kcal/mol and W?° = 14kcal/mol, if the definitions of this chapter are
used. Albery [215] simplified his arithmetic by taking both as zero. Experi-
mental values of ¢ were obtained by plotting log k against log K for homo-
geneous series of reactions. Two of the more extensive series are

H H CN
CONH CONH,,
féj/ ot = []
[
R

(R22)

T+
R

where R is an-alkyl or substftuted alkyl group, and

~{P(CHy),NICeH,} ,CAr*OH™ & {p-{(CH;);NICH,},C(OH)AR  (R23)

ﬁ F
where Ar is a m- or p-substituted aromatic group. The calculated values [279] |
were 0.48 for (R22) and 0.42 for (R23). Albery [215] gets 0.44 for (R22). The .

experimental values are 0.55 and 0.38, respectively [279].

Other interesting series for which data have been collected are hydroxyla-
tions of substituted quinolinium ions [281, 282]. For these the Albery-type
calculations {performed by M. M. K reevoy for the present discussion) give 0.45—
0.46. The Hine values would be very similar. The experimental values are 0.46,
0.45, and 0.36 281, 282], so the agreement is reasonably satisfactory.

Ritchie has objected to this kind of treatment [283] of recombination because
the lack of symmetrical analogue reactions makes it difficult to visualize the
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transformations which would generate the Marcus parabolas of Section 4.1.2,
Conceptually satisfactory reactions for generating such parabolas may be

written as

R X~ ->R* X~ (R24)
R-X-R--X (R25)

In (R24) the R* -+ X~ jon pair is compressed, without covalent bond forma-
tion, to the covalent binding distance. In (R25) the C—X bond of the covalent
compound is stretched to the ionic bond length. The AG® values for these
processes are not available by direct measurement although they might be
estimated spectroscopically. The force constants for (R24) and (R25) are not
necessarily more disparate than those of other pairs of reactions used to estimate
4 values. A key consideration in formulating (R24) and (R25) is the recognition
that the PC for recombination, R* - -- X~ is very different from the separated
reactants, so that the weak forces restraining the motion of the free ions in
solution do not have to be compared with the strong force restraining the
lengthening of the C—Y covalent bond.

Reactions (R24) and (R25) strongly resemble the processes by which the

-PCand SC in an electron transfer reaction are converted to the transition state.

In both cases electron transfer occurs when the appropriate structure is reached,
and relaxation follows. Electron transfer differs from ion recombination in the
nature of the SC and its ultimate disposition, but these factors only change the
value of W?°, The overlap integral is probably much larger than in weak-
overlap electron transfer, but this may be taken up in the experimentally
determined parameters, just as it appears to be in atom and group transfer
reactions.

Bronsted base reactions were also discussed in Section 5.2.1. In the cases
discussed there, for which « varies widely, such reactions were shown to generate
substantial, and probably structure-sensitive W™° values, typically 6-10 kcal/
mol. Except for the greater contribution of tunneling effects to the phenomenol-
ogical W™ values in the proton transfer case, W™° values for the present reac-
tions should be similar to those for proton transfers. The reason that the treat-
ments discussed in the present section do not require nonzero W*° values is
that contributions to AG*°® can be more or less arbitrarily shifted between
4/4 and W*°, as long as both are additive functions of reactant properties, and
as long as « remains about 0.5, as it does in these cases [215, 279].

5.4.2 Isomerizations

Conformational isomerizations of hydrocarbons are useful reactions in
which to look for dynamic solvent effects (Sects. 2.4.2-2.4.4) because static
solvent effects should be minimized. The conformational inversion of cyclo-
hexane has been studied in carbon disuifide, methylcyclohexane-d,,, and
acetone-dg at 213-225 K, over a range of pressures up to 5000 atm [284-286].
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The solvent effects on the rate constant are not large. At a single temperature
and a pressure of 1 atm the total range of rate constants is about a factor of
1.5 [285]. However, the effect of pressure on the rate is quite dependent on
solvent and pressure, in a way that strongly suggests dynamic solvent effects.
The effect of pressure on reactivity is most conveniently discussed in terms of the
volume of activation, AV*°, given by Eq. (51b). Jonas and co-workers assume
that AV*? can be divided into a conventional TST contribution, AV*®, and
another term, AV, associated with collisions with solvent molecules. In
the notation of Section 2, AV*°" is given by — RT&(InT"y)/dP. The mechanism
of chair—chair inversion is thought to involve the twist—boat as a high energy
intermediate, with two equivalent TSs resembling the two half-chair structures
[287]. Such a transition state resembles cyclohexene. By correction of the
molar volume difference between cyclohexane and cyclohexene for the addi-
tional two hydrogen atoms and the difference in length between a C-C single
bond and a C—C double bond, AV*° was estimated [285] to be about — 1.5 cm®.
It was assumed to be solvent-independent 284, 285]. In contrast, for a pressure
of 1 atm, AV*° varies from — 4.8 cm? in acetone-dg to — 1.3 cm® in methyl-
cyclohexane-d;,. AV*° becomes less negative with increasing pressure, but is
pressure derivative depends on solvent. The values of AV and their variation
with pressure are in qualitative agreement with theoretical treatments [124, 134,
137,165, 288] of " and 7. It has been noted that ¥*° is generally more negative
than anticipated, and not infrequently (as in the present case) more negative
than AV [289], where AV? is the molar volume of products minus that of
reactants.

Other interesting examples of solvent and pressure effects on an isomeriza-
tion in solution are provided by the torsional photoisomerization of electronic-
ally excited stilbene [290-294]. For example, Ladanyi and Evans [294] have
discussed this in terms of a potential of mean force for the torsional coordinate.
The potential of mean force includes two terms: a pressure-independent gas
phase part and a pressure-dependent term calculated from the cavity distribu-
tion function. They suggested that the pressure dependence of the latter term
may account for the density dependence of the observed yield of the cis isomer.
Further work-is required before all aspects of this interesting and well-studied
case will be understood satisfactorily [293].

The factors y, I', and x may be expected to perturb the absolute value of k
and its temperature derivative as well as its pressure derivative, although k
will often be less sensitive than the derivatives. The rate constants have been
studied for rotation about the phenyl-phenyl bond in substances of the general
structure 2 [295], where X and Y are a variety of atoms and groups.

Y
6o
X
CH3 CH3

2
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The two aromatic rings in 2 are not coplanar in the lowest-energy structure.
Various solvents and a range of temperatures were used. There was no observ-
able solvent effect on the rate constants, and the AG*® values given by Eq. (40)
for 340 K are a smooth monotonic function of the van der Waals radii of X and
Y [295], indicating that the AG*® values have approximately the significance
anticipated by conventional TST. However, the AS*® values given by Eq. (44)
vary from — 11 to — 30cal/mol/K, with no recognizable pattern. Values
around — 10 cal/mol/K might have been anticipated from the loss of a hindered
rotation in making the TS partition functions from those of the reactants
[296, 297]. The variation in AS*° has been attributed [295] to experimental
factors and some of it undoubtedly has that origin, but this does not explain
the observation that the typical value of AS*° is considerably more negative
than anticipated. The absolute values of AS>? suggest that y, T, and x together
- contribute a factor of about 10~ 2 to the rate constant in these reactions.

In reactions involving ions, large static solvent effects (Sect. 2.4.1) can be
expected. The direction, and, roughly, the magnitude of these can be estimated
by analogy. Even here, however, the origin of effects on thermodynamic quanti-
ties is not always well understood [298, 2997, so extrapolation to the quasi-
thermodynamic quantities of activation is uncertain. The conclusion we would
reach is that the values of quasi-thermodynamic activation quantities for -
solution reactions should be interpreted with great caution, even if there are no
significant experimental uncertainties. Isolated values, especially, should not
be given great weight in assigning a TS structure or a reaction mechanism.
Comparisons among closely related families of reactions, measured in the same
solvent, are probably more reliable [296, 297].

5.5 Kinetic Isotope Effects

The structure of the variational TS often changes under isotope substitu-
tion [37, 39, 66, 67, 300]. This does not involve a breakdown of the Born-
Oppenheimer approximation. It occurs because the allowed energy levels of
generalized transition states shift under isotopic substitution. As an example,
we will discuss the hypothetical gas phase reaction

*C + HC —» *CH + C (R26)

where the star indicates some form of labeling, and the four valence electrons
. of carbon are arbitrarily maintained in sp® hybrid orbitals. Thus, this is a three-
body model of the reaction

*C,Hzp41 + C.Hppiy = *C,Hy,hn + CHyu iy (R27)

This model gives the correct (skew) angle in mass-weighted coordinates between
the line of approach of the reactants and the line of retreat of products, at large
separation between the reagents. At small separations, where the reagents may
resemble a single molecule, the model may be much worse. The flexibility of an
alkyl chain suggests that the effective mass of a reactant, for short-range inter-
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actions, may be much less than its overall mass. This suggestion is reinforced
by the existence of numerous characteristic functional group frequencies in
infrared spectroscopy [301]. These are practically insensitive to the size of an
alkyl substituent once an ethyl group has been reached [301]. Nevertheless, we
proceed with this flawed model to see what insights it may give us, because full
multiatom calculations have not yet been performed for (R27). For reaction
(R26) CVT calculations have given two equivalent variational TSs, one on
either side of the saddle point [26, 38]. Additional calculations on reaction
(R26)have been performed for the present discussion (using a program described
elsewhere [41, 45]). The nontunneling parts of these calculations are like those
in Refs. [26] and [38] except that a LEPS-type potential energy surface [182,
302] was used. The Sato parameter [ 182, 302] of this surface was adjusted to give
a classical barrier height of 7.17 kcal/mol. Table 2 gives some of the results of
these calculations. _

In the table kST denotes the hybrid rate constant, with quantized vibrations
but classical reaction-coordinate motion, and k®T'C denotes that a large-
curvature-approximation ground state transmission coefficient [45, 74] has
been added to account for tunneling. For H transfer the variational TSs have a
lower potential energy, but a higher total energy than the saddle point, because
they have a higher, partially hydrogenic, breathing frequency. Some of the
observable characteristics of the reaction will be determined by averages over
the two equivalent dividing surfaces and will mimic a symmetric TS. For ex-
ample, a probe of the electronic symmetry of the TS by attaching substituents
at one, and then the other carbon, would indicate a symmetric TS. However,
the rate constant and the kinetic isotope effect (KIE) given by the CVT TS are
not the same as that given by conventional TST. For D transfer with mc = 12,
as one leaves the saddle point the ZPE does not rise as fast as the potential
energy falls, so the TS is not displaced from the saddle point. Thus, for mc = 12,
the CVT rate constants are below the conventional TST values for H transfer,
but not for D transfer. This reduces the hybrid value of the KIE by a factor of
about 2, as shown. If the masses of the donor and acceptor carbons are arbi-
trarily increased to simulate larger donor and acceptor groups, the D transfer
TS is also displaced from the saddle point and becomes very similar to the H
transfer TS. However, the etiergy changes for D transfer remain much smaller
than those for H transfer, and the hybrid KIE becomes even smaller than when
mc = 12 was used.

The calculated KIE is raised to a value somewhat above its original level,
for both m¢ values, by the addition of large curvature ground state tunneling.
When alight atom is transferred between two heavier atoms, tunneling does not
occur through the saddle-point geometry, but at a somewhat larger heavy-atom
separation [45, 74]. Thus, there are two effects that lead to structural differences
between isotopically different TSs: (1) CVT optimization effects and (2) large
curvature tunneling. Both effects should be considered in interpreting primary
and secondary KIEs. While the quantitative significance of these conclusions is
reduced by the difficulties mentioned above, connected with the three-atom
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Table 2. Characteristics of Reaction (R32)

Rey’ Rey® v Varreten” Voend 1073 9T koms
me  my  Theory  (A) A Qecalfmol)  (em ) (em™Y)  (M7PsT). MTPsTY)  KGTRGT KGTIO kGG
12 1 Conv. 129 129 717 562 585 837
12 1 VT 148 113 583 1921 522 415 318
12 2 Conv. 120 129 717 562 an 1.80 44
12 2 CVT 129 129 717 562 42 1.90 6.20 22 5.1
57 1 Conv. 129 129 717 258 576 8.79
57 1 CvT 146 113 607 1835 527 1.20 255
57 2 Conv. 129 129 717 258 409 1.85 47
57 2 VT 146 113 600 1306 372 098 482 12 52

“The masses of C and *C are the same in these examples.
*Properties of the conventional or the first .of the two variational transition states.
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model, the qualitative conclusions very likely apply to reactions of multiatomic
molecules as well.

Most one-dimensional treatments of tunneling in the literature (several
examples may be given [264, 265, 303, 304]) neglect the isotopic difference in
TS structure and in the effective potential for tunneling. This makes barrier
dimensions derived from them very unreliable. Tunneling permits H-, H™, or
H™ to be transferred at larger C—C separations than would otherwise be the
case. Although D also tunnels, the effect is significantly smaller. An obvious
experimental consequence may be larger steric effects on D transfer than on H
transfer. That is, unusually large kinetic isotope effects may -be observed in
reactions subject to steric hindrance. This effect has been observed [305, 306]
although it has been explained in other ways.

Chapter VIII treats ky/kp and its analogues for other isotopes in some detail.
Using Eq. (37) we can write this as exp[ —AG° — AG3%/RT], and then
Egs. (31) and (105) yield

ke /ky = (/78 et/ T o)t /b )b/ ) (139)

Most common treatments include only the last factor of Eq. {139) or the last
two factors with the transmission coeflicients calculated from an isotopically
independent potential curve. There are several possible sources of error in
such a treatment: (1) The best dividing surface does not in general pass through
the saddle point, and for this reason the last factor may be a poor representation
of the nontunneling equilibrium kinetic isotope effect. (2) The commonly
employed treatments of tunneling may not be a good representation of the
tunneling factor in the KIE, because in many cases most of the tunneling does
not occur directly under the potential energy saddle, nor does it occur along the
same paths for H and D. (3) and (4) Both y* and I'¥ are isotopically sensitive,
although little is known in general about the effect of deuterium substitution on
recrossing and reactive state depletion for reactions in solution. All of these
effects are larger for hydrogen KIEs than for others because hydrogen KIEs
are themselves the largest. However, it is not certain that heavier-atom kinetic
isotope effects can be interpreted with any greater security. All of this suggests
that KIEs should be interpreted with caution.

6 CONCLUDING REMARKS

We hope that the material presented here demonstrates the continued vitality
of TST in interpreting rate constants. We have also tried to illustrate the con-
siderable progress which has recently been made, both in improving the basic
theory and in obtaining useful approximations. In several areas, notably in
dealing with reactions having large reaction-path curvature, our current under-
standing is changing rapidly. Perhaps because of the quasi-thermodynamic
formulation, there has been a tendency among some experimentalists to regard
TST as an immutable part of the theoretical landscape, like equilibrium thermo-
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dynamics. It is not. It is a part of dynamics, not thermodynamics. It rests on a
cleverly chosen set of approximations, not on an exact derivation. It is very
important that users should be aware of the nature of these approximations
and their possible effects on the derived quantities. Nature provides us, in
experimental results, with the output of the ultimate analogue computer, but
gives no direct account of the mechanism by which this output is produced.
By making a semiempirical model reproduce the experimental output at as
many points as possible, we obtain an approximation to nature’s “program.”
The goal, as in all program writing, is to find and eliminate the bugs.
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