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. INTRODUCTION

The calculation of reliable thermal rate constants for elementary gas-phase chemical
reactions has been a subject of great interest since the advent of quantum mechanics.
Examples of current areas for which thermal rate information is indispensable include com-
bustion chemistry and atmospheric chemistry, especially in the study of pollutants. In this
chapter we shall concentrate on generalized transition-state theory (GTST) calculations of
the rates of bimolecular reactions of the general form:

A+B—C+D (la)

where A, B, C. and D are atoms or molecules. We will also consider the high-pressure
limit of unimolecular reactions. such as unimolecular decompostition:

A—->C+D (1b)
or tsomerization:
A—C (1¢)

The extension of the methods presented here to reaction Equations 1b or ¢ at low pressures
requires the additional consideration of energy-transfer activation steps; this extension will
not be treated.

The scope of this chapter can be illustrated by a simple example, the reaction of an oxygen
atom with an OH radical. This reaction has been studied experimentally at low pressure
where the dominant mechanism is atom transfer:

O+OH—H+ 0, (Id)

Although the stable intermediate HO, must be formed temporarily. the pressure is low
enough that stabilizing collisions are rare and one can ignore the side reaction:

O + OH + M— HO, + M (le)

The methods presented in this chapter can be used to study reaction Equation 1d or its
reverse in the low-pressure limit where only binary collisions need be considered, or to
study reaction Equation le or its reverse in the high-pressure limit where they become second
and first order, respectively; however. these methods are insufficient to study the competition
between these routes at intermediate pressures. In transition state theory (TST) the funda-
mental assumption (discussed in more detail below) is that all transition state species have
been created directly from reactants and will directly convert to products. The transition
state approximation to the rate is the rate of formation of transition states so the products
are not explicitly invclved in the calculation. Thus. identical, TST calculations would be
performed and identical results would be obtained for the binary-collision rate constant for
reaction Equation 1d and for the high-pressure limit of the rate constant for reaction Equation
le.

The calculation of a rate constant requires a knowledge of the potential energies of the
reacting system; thus, we assume that a Born-Oppenheimer potential energy surface is
available for the system under consideration. It is very important to keep in mind that the
accuracy of the computed results is limited by the accuracy of the potentiai energy surface.
The collision theory approach for obtaining the thermal rate constant involves a Boltzmann
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average of the energy-dependent reaction cross section. ' which can be approximated with
either classical trajectory calctlations (recently reviewed by one of the authors and Muck-
erman;** see also Chapter 1 of Volume III) or quantum mechanical coupled-channel cal-
culations (see. e.g., two reviews **), Unfortunately. even if truly accurate potential energy
surfaces were available, accurate cross section calculations are not practical for three-di-
menstonal studies of reactions that involve more than three atoms. In fact. quantal cross
sections or rate constants that are numerically converged for a given protential energy surface
are available only for the H + H, reaction.®” An alternative to collision theory is provided
by TST. Since this theory. especially in its conventional formulation. is relatively easy to
apply. this approach has become quite popular, and it is discussed in several monographs
and texts.™ " From the standpoint of classical dynamics. the fundamental assumption of TST
is that the net rate of forward reaction at equilibrium is given by the flux of trajectories
across a predetermined surtace in phase space in the product direction.'® This surface must
divide reactants from products. In conventional TST. this phase space dividing surface is
chosen to be a function of just the coordinates (not momenta) and is located in such a way
that it passes through the saddle point of the potential energy surface. which is the highest
energy point on the minimum energy path (MEP) from reactants to products. A conseguence
of the fundamental assumption is that classical TST will only provide the exact classical
rate constant if every trajectory passing through the dividing surface toward products crosses
it only once."” In other words, if the dividing surface were located at a perfect bottleneck
to reaction. to which trajectories. having left, never returned. then classical TST would yield
the exact classical rate constant. However, there often exist trajectories which do cross the
dividing surface more than once. Some examples of such trajectories for the collinear Cl
+ HD system on the Stern-Persky-Klein potential energy surface'®" are shown in Figure
15 further discussions are provided elsewhere.?2' Since such recrossing trajectories lead to
an equilibrium flux across the dividing surface that exceeds the net reaction rate, the classical
TST rate constant will overestimate the exact classical result when recrossing occurs. Stated
another way, this says that classical TST provides an upper bound to the true classical rate
constant.

There are several reasons why the classical upper bound of conventional TST is unsat-
isfactory. First, the amount by which classical conventional TST overestimates the true
classical rate can be large. and it can be expected to increase with increasing temperature.
For example. for the collinear reaction CI + HD — CIH + D. the conventional classical
TST rate constants are larger than the exact classical values by factors of 1.1 at 300 K, 2.8
at 1500 K, and 9.6 at 4000 K.*' Second, accurate information about the potential energy .
surface for the reacting system, including the height of the barrier to reaction, is not often
available. In fact, a widely used procedure is to estimate such information by adjusting the
surface parameters so that conventional TST reproduces experimental rate constants, acti-
vation energies, or kinetic isotope effects. Hence, the dynamical errors in conventional TST
are compensated for by errors in the empirically derived potential energy surface. However,
the most serious difficulty with the classical upper bound is that quantal effects play a major
role in most chemical reactions.

The fact that classical TST yields an upper bound to the true classical rate constant suggests
that one way of improving the results would be to vary the location of the dividing surface
through which the equilibrium flux in the product direction is calculated in order to obtain
the minimum rate constant.”'*” In this way. one obtains the lowest upper bound to the true
classical rate constant within the space of variations of the dividing surface. which in this
context is labeled a generalized transition state. The method used in the present chapter is
to consider a one-parameter family of dividing surfaces perpendicular to a prespecified
reaction coordinate. which is a degree of freedom along which we may measure progress
from reactants to products. We variationally optimize the dividing surface parameter for a
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FIGURE 1. Two trajectories (heavy curves) for the collinear reaction ClI + HD — CIH
+ D on the Stern-Persky-Klein surface'*'? superimposed on potential energy surface contours
(lighter curves). The trajectories start at the lower right. cross the conventional transition
state (indicated by a straight line through the saddle point) more than once, and either do
not react (return to lower right) or eventually react (exit interaction region toward top of
figure). The abscissa x is the distance from Cl to the center of mass of HD; the ordinate y
is the HD internuclear distance scaled so that the reduced mass for y motion is the same as
for x motion.

calculation in which the motion across the dividing surface is treated classically (but other
degrees of freedom except possibly rotation, for which the classical approximation is usually
adequate, are quantized), and then we use this calculation as a foundation on which to add
quantal effects on reaction-coordinate motion. The most complete calculation we perform
is to find the variationally best dividing surface for each total energy;*** this is called
microcanonical variational theory (wVT). For some reactions it may be desirable to go
beyond this and find the variationally best dividing surface for each total energy and angu-
lar momentum. For most reactions. though, it is sufficient to find the best single compro-
mise dividing surface for all energies and angular momenta contributing significantly to
the rate constant at each given temperature. The latter procedure is called canonical-ensem-
ble variational TST. or simply canonical variational theory (CVT). This approach has
proved to be a practical method for calculating thermal rate constants for atom-diatom re-
actions**3°*7 and has also been applied successfully to the OH + H,= H,0 + H reaction
and its isotopic analogs using a general polyatomic formalism.™-** [n this chapter we present
the equations necessary for calculating the rate constant by both wVT and CVT, with the
simpler CVT equations considered first. We shall also present the equations for improved
canonical variational theory (ICVT).* This method is a threshold-corrected version of CVT
that may give comparable accuracy to .VT at low enough temperatures whiie requiring only
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a slightly more involved calculation than CVT. The methods in this chapter may also be
used to perform conventional TST calculations as a special case similar to CVT: the only
difference is that the dividing surface is positioned at the highest saddle point rather than
being determined by the minimization of the rate constant.

As mentioned above, it is not accurate to calculate reaction rate constants in classical
terms. A proper description of chemical reactions requires the inclusion of quantum me-
chanical effects, especially at lower temperatures. Such effects are usually incorporated into
conventional TST as follows.*'* First, a reaction coordinate is separated out, with motion
along this coordinate treated classically. The remaining degrees of freedom of the transition
state are then assigned quantized energy levels just as in the case of a bound state. This
implies that one must deal with quantized energy levels and that the transition state contains
zero-point energy. In addition. quantum effects on the reaction coordinate are treated by
multiplying the rate constant by a transmission coefficient. which primarily corrects for the
degree to which the reaction proceeds by tunneling through the barrier to reaction rather
than by classically surmounting it. As mentioned in the previous paragraph, we adopt a
similar approach in variational transition state theory (VTST). A major topic of discussion
in this chapter concemns the details of how quantum mechanical effects can be tacorporated
in a consistent manner in both conventional TST and VTST by procedures of this kind.
Once these effects are included in the VTST calculations, one no longer obtains a strict
bound by varying the transition state location to minimize the calculated rate constant.
Nevertheless, the evidence obtained to date indicates that this kind of approach to including
quantum effects is capable of providing rate constants of useful accuracy for a given potential
energy surface. Furthermore, the VTST formulation often offers significant improvement
over the results of conventional TST. (See reviews®=**-**47 and four more recent pa-
pers. 32334930y In many cases, an important element in this success is the ability to reliably
calculate tunneling contributions. and the present chapter contains a detailed discussion of
this topic.

Another topic that is discussed in this chapter is anharmonicity, which is important in
TST because the quantized degrees of freedom of the generalized transition state corre-
sponding to vibrations of the reacting system are bound by a potential energy surface that
is, in general, anharmonic. There have been several studies?®3%48-5!-% of the effect of an-
harmonicity on conventional TST and /or VTST calculations. These studies show that in
many (but not all) cases rate constants computed with anharmonic vibrations ditfer signif-
icantly from the harmonic results. Thus, a practical method for including anharmonicity in
the calculation of the vibrational energy levels is needed, and the inclusion of anharmonicity
in a practical manner in conventional TST and in VTST calculations is discussed in this
chapter.

This chapter does not attempt to review the entire literature of TST or even of generalized
TST. The goal here is to explain the general features of the theory and to illustrate them by
describing in detail some of the methods we use in our own calcuiations. Although there
has been a large amount of fundamental work applying TST to one-dimensional systems
(collinear reactions}, the present chapter is concerned almost entirely with reactions in a
three-dimensional world. We give some examples and references involving collinear reac-
tions, but the treatment is general and all equations apply to reactions involving any number
of atoms in the fully three-dimensional world.

Section II describes those parts of a generalized TST rate-constant calculation that are the
same for a classical or quantal world, namely finding the saddle point, calculating the reaction
path, normal modes, generatized normal modes, and moments of inertia, and numerical
procedures for finding the variational transition state: Section Il discusses the rest of a CVT
rate-constant calculation for quantized bound degrees of freedom and classical reaction-
coordinate motion; Section IV discusses the incorporation of quantum effects on the reaction-
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coordinate motion; Section V gives formulas for improving on the CVT calculation by using
ICVT or pVT to obtain a less recrossed dividing surface; Section VI discusses improving
any of the variational results by using the unified statistical theory or unified dynamical
theory to estimate the recrossing of the variationally optimized dividing surface: Sections
VII and VIII contain concluding remarks.

This chapter also includes an appendix in which TST is related to an exact collision theory
treatment involving cross sections. We hope that this will contribute to a better understanding
of the assumptions of TST. A second appendix contains a derivation of the cut-off rotational
partition function and sum of states that are needed for ICVT calculations. The final appendix
is an alphabetical list of abbreviations.

II. CLASSICAL CANONICAL VARIATIONAL THEORY

A. General Theory

In this section, the basic procedures for the application of CVT to the general thermal
reaction of Equation Ia, b, or l¢ are presented. We begin with a definition of the coordinate
system. Assume that there are a total of N atoms in the reacting system (with N, in reactant
A.etc.) and let i = [.2,..,N label the atoms. Suppose R,,, for vy = x, y or z, are the
laboratory-frame cartesian coordinates of atom i with respect to the center of mass of the
system. We employ a mass-scaled coordinate system** defined by

Xy = (M/WR, 0= 12Ny = Xy, 2 el

where m, is the mass of atom i and p is an arbitrary mass. Our convention for reaction
Equation la is that p is the reduced mass of reactant relative translational motion:

p = m,mg/(m, + mg) (3a)

where m, and mj are the masses of reactants A and B, respectively. For reaction Equation
1b we take:

M = mempi{me + mg) (3b)

and for reaction Equation lc we take p equal to the mass of one of the atoms in the system.
The motivation for the choice of coordinate system in Equation 2 can be seen by considering
the kinetic energy of nuclear motion, which simplifies from:

T = Y, >, m, >, (dR,/d1)? @

i=1 Y

in cartesian coordinate space to:

T = '",p >, > (dx,/dN)? (5)

i=1

in mass-scaled cartesian coordinates, where t denotes time. Thus, the kinetic energy of
nuclear motion is diagonal (i.e., contains no cross terms) as a quadratic form in the momenta
with the same mass for all x,, coordinates. That is, the same mass (i) is associated with
motion in any direction, so that motion of the many-atom system governed by the potential
energy surface V([R,,]) is equivalent to the motion of a point of mass, w, governed by the
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potential V[x;)]). As discussed below. this property of the mass-scaled coordinate system
greatly simplifies the calculation of vibrational energies and partition functions, because the
normal coordinates of vibration.”” in which the kinetic energy and the potential energy
through quadratic terms are simultaneously diagonal. can be obtained by a linear transfor-
mation involving only the potential energy.

Conveniently, for any coordinate system in which the kinetic energy is diagonal as a
quadratic form in the momenta and in which the same mass is associated with motion in
any direction. the path of steepest descent from the saddle point to reactants and products,
obtained by following the direction of the negative of the potential gradient (producing a
path which is everywhere perpendicular to equipotential surfaces of potential energy), will
be the same.* Furthermore. the steepest-descents path in such a coordinate system is very
suitable for dynamical interpretations.®*' It corresponds to the “‘intrinsic’” reaction coor-
dinate. i.e.. to the zero-kinetic energy trajectory given by the solution of Hamilton’s classical
equations of motion for a system whose instantaneous motion is continuously damped to an
infinitesimal speed.*-®' This path will be callied the minimum energy path (MEP) in the
present chapter. and we will usually take this path as the reference path used to define the
sequence of dividing surfaces.

The present choice of coordinate system is quite similar to the conventional mass-weighted
coordinates *” used in vibrational spectroscopy. in which each R,, coordinate is muiti-
plied by m/ =. The advantage of the mass-scaled coordinates used here is that distances have
units of length. whereas distances in the mass-weighted coordinate system have units of
(mass) ' * length. A third example of a set of coordinates in which the nuclear kinetic energy
is diagonal and the same mass is associated with motion in any direction is the mass-scaled
Jacobi coordinate system,**'-** which is very convenient for describing collisions in collinear
atom-diatom systems (denoted here by a + bc). In this case, one coordinate is the distance
from the atom (a) to the center of mass of the diatom (bc). while the other coordinate is the
bc internuclear distance scaled by (p,./w)"*. where the diatomic reduced mass (p,.) is

By = (mym)/(m, + m,) (©6)

Figure 2 illustrates the potential energy surfaces and MEPs in mass-scaled Jacobi coordinates
for three systems that will be discussed later in this chapter.

The reaction coordinate(s) is defined as the signed distance along the reference path. As
mentioned above, we usually take the reference path to be the MEP. Then, if there is at
least one saddle point along the MEP. s is measured from the highest saddle point (or earliest,
if there are two or more of equal height). For reaction Equation la values of —x, 0. and
% refer to reactants. saddle point, and products, respectively. The reactant, saddle point,
and product values of s are denoted s®, 0. and % for reaction Equation 1b, and they are
denoted s*. 0. and s* for reaction Equation lc. For reactions of the form of Equation la or
1b that do not have a saddle point, one must follow the path of steepest descent by starting
with A and B (or C and D) at large but finite separations; in such cases s = 0 has no special
meaning.*” [n CVT. the generalized transition state (GTS) dividing surface through which
the equilibrium flux is computed is assumed to be a function only of coordinates and not
of momenta. For systems with four or more atoms or for three-atom systems with noncollinear
reference paths.* we take the GTS to be a hypersurface in x,, coordinates which is para-
metrized by the value of s at which it intersects the reference path. We further require the
GTS to be perpendicular to the MEP at and near the point of intersection, but far from the

*

Although the procedures discussed in this chapier are general and could be applied to atom-diatom reactions
with linear MEPs. we have used many special procedures for that simplest of all cases. Only a few of these
are discussed in the present chapter: others are discussed in References 21. 33. 34 and 58.
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FIGURE 2. Potential energy contours, MEPs. and tunneling paths for three collinear atom-
diatom reactions plotted in scaled and skewed coordinates obtained by mass-scaling the Jacobi
coordinates as described in Figure 1. In each part, the solid diamond indicates the location
of the saddle point, and the heavy curve passing through the saddle point is the MEP. (A)
Contours for the H + H, reaction on surface no. 2 of Reference 168 are from 4 to 32 kcal/
mol spaced every 4 kcal/mol. The MCP is the path on the concave side of the MEP. The
optimum LAG tunneling path (« = 0.432) for a total energy of 8.8 kecal/mol starts and ends
on the MEP and crosses the MCP in the saddle point region. (B) Contours for the Cl + HD
reaction on the potential of References 18 and 19 are from 3 to 2| kcal/mol spaced every 3
kcal/mol. Tunneling paths for @« = 0. 13, 2/3, and | at a total energy of § kcal/mo! are
shown. The o = 0 path is the MEP and the o = I path is the straighi-tine path. (C) Contours
for the Cl + HCl reaction on the potential of Reference 49 are from 4 10 16 kcal/mol spaced
every 2 kcal/mol. The straight line between the MEP in the reactant and product channels
is the LCG tunneling path between the reaction-coordinate turning points for a total energy
of 7.8 kcal/mol.

intersection with the MEP. we allow the GTS to bend if necessary in order to truly divide
reactants from products up to the lowest dissociation energy of the system.

In certain circumstances it may be desirable to calculate the equilibrium flux through
dividing surfaces which are orthogonal to paths other than the MEP. For example. if the
potential energy surface is very flat in the region of the saddle point, following the gradient
1s numerically difficult because it is small, and it might be more convenient to choose an
arbitrary smooth path through this region than to follow the gradient. Another example of
a case in which the MEP might not be the best path to follow arises when a system exhibits
multiple saddle points separated by low barriers.™ The present discussion does not deal with
reference paths other than the MEP; for completely general choices of the reaction path,
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one requires a more general expression for the reaction-path Hamiltonian. as discussed
elsewhere.">%* (See also further work.**%) In the rest of this chapter we will assume that
the reference path is always taken as the MEP.

If. as just discussed. we take the reference path as the MEP and set s = O. the above
definition of the GTS provides the conventional TST dividing surface. For a canonical
ensemble of reacting classical mechanical systems characterized by a temperature T, the
conventional TST rate constant ki(T) is the equilibrium one-way flux coefficient of phase-
space trajectories through this dividing surface in the product direction. This may be cal-
culated as the net density of forward-crossing states per unit time divided by the density of
reactant states per unit volume. and the resulting approximate expression for the thermal
rate constant may be stated in terms of equilibrium partition functions of the reactants and
a quasiequilibrium partition function of the transition state as follows:

o QM
Bh BL(T)

k(T) = exp(—BV7) (7a)

Here B is (kzT) ', where kg is Boltzmann's constant, h is Planck’s constant, and QX(T) is
the conventional transition state ciassical partition function with its zero of energy at the
saddle point. PE(T) is the reactants classical partition function per unit volume for reaction
Equation la or the unitless reactant classical partition function for reaction Equation Ib or
Ic; In any case, its zero of energy is at the overall zero of energy. which cormresponds to
infinitely separated reactants, each at its own classical equitibrium position, i.e., Vi, (s
= —x) = O, for reaction Equation la, or to the reactant classical equilibrium position for
reaction Equation 1b or lc, i.e., Vi (s = s%) = O. These classical partition functions
are phase-space integrals involving exp( — BV), so that the fact that QX(T) is calculated with
its zero of energy at the saddle point gives rise to the exponential factor in Equation 7a.
where V* is the classical potential energy of the saddle point measured from the overall zero
of energy. In both these partition functions, the rotational symmetry numbers have been set
to unity because the symmetry factor (o) in Equation 7a represents the reaction path mul-
tiplicity, i.e., the number of equivalent reaction paths from reactants to products.'? For
example, in the case of an atom-diatom collision, o = 2 if the diatom is homonuclear but
o = | if the diatom is heteronuclear. in addition, note that neither QL(T) nor ®X(T) contains
a contribution from overall translation of the system. We could include this contribution in
both the numerator and denominator of Equation 7a, but it would cancel.
If desired we can inciude a transmission coefficient in Equation 7a. This yields:

k(M) = «"(T) kY(T) (7b)

where the transmission coefficient kZ¥(T) may be used to account for effects such as quantum
mechanical tunneling along the reaction coordinate. Y is a generic label that denotes the
method used to calculate the transmission coefficient. This is discussed in Section 1V: in
this section we set kZ"(T) to unity.

With regard to applying Equations 7a and 7b. or the generalized TST expressions discussed
below to high-pressure unimolecular reactions, it may be useful to make an extra comment
about the treatment of rotation. Since we have included all degrees of freedom in QN(T)
and ®XT), we have implicitly assumed that all degrees of freedom exchange energy freely
in the energized reactant. The standard terminology for this is that all modes are active. It
is more common in the theory of unimolecular reactions to assume that all vibrations are
active but that rotations are adiabatic. The reader is referred to standard references. e.g.,
Setser’s review® and references therein. for the changes this makes in Equation 7a; rotational
effects in unimolecular reactions will not be discussed further in this chapter.
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Notice that although we have defined the TST rate constants in dynamical terms (flux
through a dividing surface), the resulting rate expression has an appealing quasiequilibrium
(or quasithermodynamic) interpretation. We define a transition state quasiequilibrium con-
stant by

Q&)
KUT) = Gam) SXPCBY) (70)
so the rate constant becomes
k{T) = o(Bh) ™" KXT) (7d)

[Note: Since DE(T) has different units for reaction Equation 1a than for reaction Equation
Ib or Ic, so does KXT). In particular. KX4T) has units of inverse concentration (volume
per molecule) for reaction Equation la but is unitless for reaction Equation 1b or l¢.] The
quantity (h)~! in Equation 7d is sometimes called the universal transition state frequency
factor. Equation 7d gives the same rate constant we would obtain if we postulated that
transition states are in equilibrium with reactants and they unimolecularly convert to products
with the rate constant (Bh)~ ' for each of o symmetry-related elementary reactions. (Actually,
it is more correct to say that transition states are in “’quasiequilibrium’” with reactants since
transition states are localized on a surface. i.e.. they have one less degree of freedom than
chemical species.) This equilibrium postulate is employed in the most popular derivations
of TST in elementary textbooks, but it is important to emphasize that the theoretically most
justifiable derivation of Equation 7a or 7d does not rest on this simple picture. In the collision
theory derivation, the factor (3h) ™' is just an accumulation of physical constants arising
from the calculation of the flux through a dividing surface. Because the relationship of TST
to collision theory is very important, it is discussed further in an appendix to this chapter.

If we now consider a GTS which intersects the MEP at some nonzero value of s, we can
define a generalized TST rate constant k&7(T.s) at temperature T for this dividing surface
by a straightforward extension of Equation 7a:”'

o Q&'(T.s)

Bh q)g(—r) cxp[ _BVMEP(S)] (8)

kI(T,s)=

where V,,..(s) is the classical potential energy at point s on the MEP relative to the overall
zero of energy, and QET(T.s) is the classical partition function for the GTS dividing surface
with its zero of energy at V,,.(s) and with all rotational symmetry numbers set to unity.
As discussed in Section I, for a fixed temperature the lowest upper bound on the true classical
rate constant for the assumed set of GTS dividing surfaces is found by varying the location
of the GTS in order to minimize k&™(T,s). Thus. the CVT rate constant [kKE¥T(T)] is given

by

il

KE(T) = mijn kE'(T.s) (9a)

kT, (D] (9b)

where s&YT(T) is the location of the CVT transition state for temperature T.

Another interpretation of the CVT rate constant can be seen by generalizing
the quasithermodynamic forrmulation of conventional TST. In this approach, quasiequilibrium
between the reactants and systems at the GTS dividing surface at s is described by the
equilibrium constant:

1.21.30.48.67.68
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QEN(T.s)

KE(Ts) = ~“4n o
C

expl — BVyee(s)] (10)

where the exponential factor again arises from the fact that the zero of energy for the GTS
partition function is at V,..(s). while the zero of energy for the reactants partition function
is at the overall zero of energy. The standard-state free energy change AGE™*(T,s) for the
formation of the GTS at s from reactants is then given in terms of the equilibrium constant

by
AGE™T,s) = —RT In [KEW(T,s)/K°] (1D

where R is the gas constant and K°, the value of the reaction guotient evaluated at the
standard state. is taken to be | cm' per molecule for reaction Equation la or simply unity
for reaction Equation 1b or lc. Rewriting Equation 11 gives:

K&(T,s) = K°expl — AGE™T,s)RT] (12)

and a comparison of Equations 8. 10, and 12 shows that the GTS rate constant is given by
KST(T,5) = EUE K® exp| — AGE™(T,s)/RT] (13)
where. by combining Equations 10 and 11. we have:

(14)

GT,
AGE™YT,5) = RT[BVMEP(S) - In gﬂi)]

DR(T)K®

Equation 13 shows that the minimum in kS'(T,s), which occurs (by definition) at s&V7(T),
corresponds to a maximum in AGE™(T.s), the generalized free energy of activation curve.
Thus, CVT is equivalent to the maximum free energy of activation criterion,'-2!.30.3.67.68
These considerations also demonstrate that CVT is more internally consistent than conven-
tional TST in that the criterion for the conventional dividing surface involves only the
potential energy. whereas the criterion for the CVT dividing surface involves both *‘entropic™”
effects associated with the QE*(T,s)/PT) factor (as well as zero-point effects when quantum
partition functions are used. as in Section III) and energetic effects associated with the exp(-
BV :x(s)] factor. Both theories include both factors in calculating the free energy of activation
(and hence. the rate constant) for a given dividing surface, but only CVT involves both
factors in choosing the dividing surface. In addition. CVT is more accurate. For example,
Figure 3 shows the classical free energy of activation curves?' at various temperatures for
the collinear reaction CI + HD — CIH + D on the same potential energy surface'-'” as
used for Figure 1. At 4000 K, the CVT dividing surface is located about 0.3 a,, later than
the conventional transition state. This decreases the amount by which TST overestimates
the true classical collinear rate constant from a factor of 9.6 for the conventional theory to
a factor of 4.9 for CVT. Similarly. at 1500 K the error is reduced from a factor of 2.8 to0
a factor of 1.9.

B. Practical Procedures

We now turn to a discussion of practical procedures for evaluating the quantities needed
for calculating kEV™(T) from a given potential energy surface.

The saddle point. if any exists, is found by a Newton-Raphson search® for the solution
of VV(R) = 0in a (3N — n)-dimensional subspace of the R coordinate system. where 1
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FIGURE 3. Classical generalized standard-state free energy of activation for collinear Cl
+ HD — CIH + D as a function of reaction coordinate at three temperatures. The standard
state is | molecule and per centimeter, anharmonicity is included by the Morse | approxi-
mation. The saddle point is located at s = 0.

= 6 for a nonlinear transition state and m = 3 for a linear one. Here the point R is the 3N-
dimensional column vector of cartesian coordinates R,, and the gradient VV(R) is the 3N-
dimensional column vector of first derivatives dV(R)/dR, evaluated at R. To remove n
degrees of freedom corresponding to overall translations and rotations of the system. the
(3N — 7)-dimensional subspace of independent cartesian coordinate variations can be defined
by fixing (somewhat arbitrarily) the vatues of 1 of the R,, coordinates. For example. in the
nonlinear case we could require that atom 1 be at the origin, atom 2 lie on the x axis, and
atom 3 lie in the xy plane. This leaves a restricted set of 3N — m coordinates represented
by R’ in which to consider variations. Starting from a reasonable guess for the position of
the saddle point. an improved guess (R, . \)is obtained from the previous guess (R;) by
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Ri. = R; — [M(R)]"'VV(R)) (15)

where M(R)) is the (3N — 7 X (BN — 7) restricted matrix of second derivatives of the
potential 4? V(R)/r)R - evaluated at R;, and VV(R) is the (BN -~ v)-dimensional re-
stricted vector of f1rst derlvanves dV(R)/dR evaluated at R;. In practice. whenever possible,
we compute the gradient of the potential analytlcally This is straightforward when V itself
is analytic. and the direct calculation of analytic derivatives has recently also become practical
for ab initio energy calculations.™’" The elements of M are obtained by a two-point central
difference method involving the analytic gradient:

#*V(R) 1 , ,

m . = 5‘8' {VV(RJ + Se,y) - VV(RJ - 88-.,,)1”' (16)
for a small stepsize 3 (typically 0.0001 a,). where e, is the unit vector in the R,, direction.
Iterative use of Equation 15 until all the coordinates are constant thus provides an efficient
method for converging on the saddle point position. This approach. which is based on a
Taylor expansion of VV(R) through linear terms about a point where VV(R) is zero, is
similar to, though somewhat simpler than, the method described by Mclver and Komor-
nicki.” which is based on a Taylor expansion of [VV(R)[* through quadratic terms about a
point where it goes 10 zero. Next. to properly define the mass-scaled x,, coordinates of the
saddle point. we redefine the 3N-dimensional set of cartesian coordinates R, such that the
center of mass of the system lies at the origin. This is accomplished by subtracting the
cartesian coordinates of the center of mass from the saddle point position R,:

R?V=Rw—(i )/(2 ). TN (7

i=1 .

The saddle point geometry in x,, coordinates (x*) is then found from Equation 2.

If the surface has a saddle point. the MEP is obtained by following the potential gradient
in the “*downhill’” direction, starting at the saddle point. Since the gradient in X;, coordinates
[VV(x)] is zero at the saddle point, a first step off the saddle point must be taken in order
to follow the steepest-descents path. At the saddle point the direction of the MEP is given
by the unbound normal mode® associated with an imaginary frequency (i.e., a negative
force constant) because it is along this direction that the potential has a true barrier. Thus,
in order to find the direction of the MEP at the saddle point, a normal-mode analysis must
be performed there. An extra benefit of this approach is that this information can also be
used to calculate Q(T). That is. since the normal modes form an orthogonal set.”” the bound
modes are perpendicular to the direction of the reaction coordinate at the saddle point, and
hence span the conventional transition state in the region of the saddle point. Thus, the
bound normal modes at the saddle point are useful in evaluating QX(T); further details are
discussed in Section III. where we consider the quantized partition function Q*(T). Note
that a subscript C denotes a completely classical quantity. and its absence denotes quantized
vibrations or quantized vibrations and rotations.

Taking the saddle point as our local zero of energy and using the fact that all the first
derivatives are zero there. the potential energy for small displacements from the saddle point
X* can be approximated by

Vix — x%) = ,(x — x*)' F(x*)(x — x%) (18)

where 7 denotes a transpose and F(x*) is the 3N X 3N force constant matrix in mass-scaled
coordinates evaluated at x*:
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F iy (X)) = PVXVIX, 0% | » 11 = 1.2, Ny vy = x,y,2 (19)

and higher-order terms in (x — x*) have been neglected. We note in passing that the elements
of F(x) are related to the elements of the matrix M evaluated at the corresponding cartesian
point R as shown in Equation 16 by

Fiy(X) = —B‘TE M, (R) (20)
(m;my;)

To define a set of normal coordinates {Q.. m = 1,2,...,3N}, which are linear combinations
of the components of (x — x*) corresponding to directions of independent motions through
second order m the displacements, we require that both the kinetic and potential energies
be diagonal in {Q,}.¥ In such a case, the set of 3N equations for nuclear motion:

4 oT v
—_t — =0 . = 1,2,....3N
dt 3dQ/dn | aQ. -m @b

simplifies to:™

d3
—d?—;' +kQ,=0 ., m=12,...3N (22)

which have solutions:
Q. =¢tsink +5%5) , m=1,2,..,3N 23)

where t}, is the turning point of mode m. Equation 23 shows that these modes describe
harmonic motion with all the atoms moving in phase, and so they are the normal modes we
desire. But since the kinetic energy T is already diagonal in the x,, coordinates and hence
in the components of (x — x*), the linear combinations we seek, corresponding to the
normal-mode directions. can be obtained just by diagonalizing the matrix F.>-7* That is, we
perform the unitary transformation (which does not change the diagonal character of T):

L(x")' F(xHL(x%) = A(XY) (24)

where L(x*) is a unitary matrix whose columns L_(x*) provide the linear combinations of
the components of (x — x¥) corresponding to the normal-mode directions at the saddle point
and A(x*) is a diagonal matrix with eigenvalues \_(0), which are the normal-mode force
constants at the saddle point, and are related to the normal-mode frequencies w_,(0) at the
saddle point by

@ (0) = A O)/]'"? , m=12..3N (25)

Out of the 3N eigenvalues X _(0). 3N — m — 1 are positive and correspond to bound modes,
one is negative and corresponds to the unbound mode (i.e., the reaction coordinate). and m
are zero. corresponding to overall translations and rotations. The unbound mode has an
imaginary frequency (w’) given by Equation 25 and a direction provided by the eigenvector
L.(x*).

Beginning at the saddle point x* = x(s = 0), we next compute a set of geometries [X(s;)]
and classical potential energies [V ..x(s;)]} along the MEP by taking steps of length 8s. Since
L (x*) gives the direction of the MEP at the saddle point, the first step from the saddle point
is taken in the direction = L (x%):
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x(s, = %£3s) = x(0) = s L(x%) (26)

where the choice of sign dictates whether we head toward products or toward reactants.
Once we step off the saddle point, VV[x(s)] is no longer zero. so that subsequent steps can
be taken in the direction of the negative of the normalized gradient:

VV[X(Si_ 1)]

X(s WVIx(s, )|

= 5_, = 8s) = x(s;_,) — 85 27

i

where VV(x) is the 3N-dimensional vector of first derivatives dV(x)/dx,, evaluated at x
which is given in terms of the analytic cartesian derivatives evaluated at the corresponding
cartesian point R by

aV/ax,

W = (/M) VISR g (28)
To maintain accuracy and stability of the results. quite small steps (typically around 0.0001
a,) must usually be taken. Otherwise. the calculated points x(s;) will oscillate about the true
path, especially when the potential “*flattens out’’ outside the region of strong interaction.
The calculation of the reaction path. which tvpically needs to be carried out to a distance
of a few bohr in each direction from the saddle point. thus involves a large number of
potential energy and gradient evaluations. For this reason. it is highly desirable that V and
VV be analytic functions of R. In cases where this is not feasible or in which the evaluation
of V and VV is time-consuming (as in ab initio calculations), it may be more efficient to
use larger steps and then refine the guess to the point on the MEP .47

For atom-diatom systems with collinear MEPs, we use special procedures. The gradient
is followed as described above until it begins to oscillate. Incorrect oscillation of the computed
gradient vector is checked by comparing its values at the current and previous steps; if the
cosine of the angle between the two vectors is less than 0.9, the gradient is considered to
oscillate too much. In this case, the coordinates and gradient vector are reset to values from
several steps back (typically ten steps). Incorrect oscillation of the computed gradient may
occur in regions where the potential flattens out, e.g., in the asymptotic regions. A check
is made to see if the system is in an asymptotic region by comparing the current calculated
value of the gradient vector with that for the asymptotic region: if the angle between these
two vectors is less than some small value (typically 0.05 to §.5°), the system is assumed to
be in the asymptotic region. In the asymptotic regions the gradient vector is no longer
followed, but steps are taken along the direction of the asymptotic vector. After each step
a search is performed to find the minimum of the potential normal to the asymptotic vector,
and the point on the MEP is set at this minimum.

In the case that the potential has flattened out but the system is not in the asymptotic
region, the following procedure is used. First, a check is made to see if the system is in a
van der Waals well by searching for the location at which the first derivatives vanish. If a
van der Waals well is found, the gradient is followed into the well from a point in the
asymptotic region. If a van der Waals well is not found, the MEP is found by finding the
minimum of the potential along an arc of constant radius from the last point found on the
MEP. This procedure is continued to the point at which the reaction path information is
saved, then an attempt is made to follow the gradient in the usual fashion again.

For cases with two or more saddle points or a saddle point and a well. or, in general,
two or more nonasymptotic stationary points (i.e.. points where all the first derivatives
vanish) on the MEP, the MEP must be constructed by parts, following the gradient down
from saddle points, and, when the potential is attractive at long range, from asymptotic
points, into wells, and then joining the segments to create a continuous reference path.
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In order to calculate the equilibrium flux through GTS dividing surfaces other than the
conventional one and obtain Q%'(T.s). a normal-coordinate analysis for the bound-mode
frequencies and directions needs to be carried out at regular intervals (As) (typically every
0.01 a,) along the MEP. Since in general the first derivatives of the potential at points on
the MEP are not zero except at the saddie point, the procedure used for this part of the
calculation 1s different from the above calculation of the saddle point normal modes. The
procedure we use Is based on a recent paper on the reaction-path Hamiltonian by Miller et
al.” We first consider the case of a nonlinear system; the linear case is dealt with below.
As above, suppose x(s) is a point on the MEP. Then, for general points X near x(s), the
potential can be approximated by

V(x) = VIx(s)] + VV[x(s)] - [x — x(s)] + ';[x — x(s)]" F(s) {x — x(s)] (29)

where F(s) is the force constant matrix of Equation 19 evaluated at x(s). and where higher-
order terms in [x — x(s)] have been neglected. By suitable linear combinations of the
components [x — x(s)];,. displacements [£,(s)] may be obtained in directions orthogonal to
VV([x(s)], in which case the second term in Equation 29 is zero. so that the potential is
quadratic (but not necessarily diagonal) in the displacements £, (s). Thus. normal coordinates
[Q,.(s)] for vibrations orthogonal to the MEP can be found by projecting out of F(s) those
contributions that come from motion along the reaction coordinate prior to diagonalization.
In addition, since motion along the reaction coordinate is, in general, coupled to overall
translations and rotations of the systermn, the normal coordinates must be chosen in such a
way that they are also orthogonal to the six directions corresponding to infinitesimal trans-
lations and rotations. Normal modes orthogonal to the reaction path at x(s) are thus found
by diagonalizing the projected force constant matrix:™

F?(s) = [1 — P(s)]E(s)[1 ~ P(s)] (30)
with the elements of the projector P given by

P, (8) = v ()v;(s) + (m, + mg) '(mm,)"? 8,

+ > , oo OIS ey %o () &)
o.f.a’ B -
where
vi(s) = = VVIx(s)I/VVIx(s)]| (32)

3,,- is the Kronecker delta and e
rank 3:7

«pv 1 the completely antisymmetric unit pseudotensor of

0, aBy not all distinct
I, aBy an even permutation of xyz
— 1, aBvy an odd permutation of xyz (33)

€py =

and I3(s) is the 3 X 3 moment of inertia tensor at x(s):’8

2 2z
N X-iy + xjz - xixxiy - xixxxz
= 2 2 —
I(’;(S) - 2 - xixxiy xix + xiz xiyxiz (34)
i=1 — 2 2
' — XXz XiyXiz Xix + Xj
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The first term in Equation 31 projects onto the direction along the reaction path, the second
onto the three directions corresponding to overall translations, and the third onto the three
directions corresponding to overall rotations. The projector {1 — P(s)] thus provides a
projected force constant matrix F*(s) for which motion along these seven directions has been
removed.

In a linear system, there are only two degrees of freedom corresponding to overall rotations.
and hence there is an additional bound internal degree of freedom. In addition, due to the
symmetry of the system. the projector in Equation 30 has a much simpler form in this case.
Assuming that the systern lies along the z axis, the elements of the projector P are given
bym

Piy.i'y’(s) = Viy(s)vi’y'(s)a-yza'y'z + (mA + rnB)—l(rnirni')”2 8-,-y

Xir(S)Xi-(S)
T (87-7’ - 6-yza-y'z) (35)
where I(s) ts the moment of inertia, which is given in mass-scaled coordinates by

Its) = p 2 [x(s)] (36)

The matrix F"(s) is ther diagonalized through the unitary transformation:

(L) FAS)ILE(s)] = A(s) (37

which yields y + [ zero eigenvalues, corresponding to overall transiation and rotation and
motion along the reaction coordinate, and 3N — m —~ | posttive eigenvalues A, (s) corre-
sponding to the bound modes of the GTS orthogonal to the reaction path at s. These
generalized normal modes have frequencies w,,(s) given by

w.(s) = N (sVp]'?, m = 1,2,..3N (38)

and directions LET(s) given by the corresponding columns of LET(s). The modes obtained
from Equation 37 should be called generalized normal modes since true normal modes are
defined only at stationary points (e.g., minima or saddle points) of potential energy surfaces:
for convenience, though, we will simply call them normal modes. In addition, since the
system has a total of F = 3N — 7 internal degrees of freedom. we also find it convenient
in this chapter to order the orthogonal modes obtained from Equation 37 such that the first
F — 1 modes are the bound normal modes at s, and mode F is the reaction coordinate. This
convention differs from one of our onginal papers on polyatomic systems,* in which the
reaction coordinate was taken to be mode 3N.

The above discussion has assumed that an analytic representation of the potential energy
surface is available and has described the calculation of second dertvatives and vibrational
frequencies from this surface. An alternative procedure is to calculate the second derivative
matrix directly as part of the electronic structure calculations: a recent discussion of this
approach, with references to earlier examples. is given by Osamura et al.” In some cases,
however, it is uneconomical either to calculate enough points to allow an analytic fit to the
surface or to accurately follow the MEP and compute second derivatives along it. In such
cases an alternative is to use global interpolation based on analytic fits to information
calculated only in the vicinities of reactants, saddle points. and products® or based on
assumed range parameters.®-%*
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The generalized normal-mode frequencies discussed above are used in the computation
of Q¥(T.s) as discussed in Reference 21. or in the computation of QST(T.s) as discussed
in Section lII. The calculation of the classical rate constant k&(T.s) or the rate constant
kYH(T.s), corresponding to quantization of the reactants and the generalized transition state,
for a GTS at s [or, equivalently, the generalized free energy of activation AGE™(T,s) or
AGET-9(T,s)] also requires the reactants partition function per unit volume ®(T) or dXT)
for reaction Equation la or the unitless reactants partition function for reaction Equation 1b
or lc. @YT) is discussed in Reference 21. As shown in Section III, P®(T) is obtained from
the properties (i.e.. the equilibrium positions and energies and the normal modes) of reactants
A and B for reaction Equation la or of reactant A for reaction Equation 1b or lc. Starting
with a reasonable guess for the geometry of reactant A. its equilibrium position is found
quite efficiently by a Newton-Raphson search in a restricted (3N, — m,)-dimensional
cartesian subspace for the point where VV(R) = 0 by the procedure discussed above for
locating the saddle point. Here 7, is six if A is nonlinear and five if it is linear. Once the
center of mass of reactant A is placed at the origin through the use of an equation analogous
to Equation 17, a 3N ,-dimensional set of mass-scaled coordinates defined by Equation 2 is
used to obtain the 3N, — m, bound normal-mode frequencies and directions for reactant A
in exactly the same manner discussed above for obtaining the normal modes at the saddle
point. For reaction Equation la. this procedure is then repeated for reactant B. Of course,
if a reactant is an atom. such calculations are unnecessary. The special case of a diatomic
molecule can be treated by a Morse potential. For Morse parameters D, and B,, [Herzberg?®
calls this B, but we wish to distinguish it from (kyT) ~*} and equilibrium interatomic distance
r,. the vibrational frequency and moment of inertia of a diatomic molecule are given by*’

2D\ 12
©, = By, ( =)’ (392)
Mope
and
I = prl (39b)

where . is given by Equation 6.

Given the partition functions QZ(T.s) and ®&(T), the generalized free energy of activation
curve AGET(T.s) is computed from Equation 14. The maximum of this curve. located at
sEYT(T), is obtained by interpolation from a quartic fit to AGE™*(T.s) at five values of s
nearest the maximum. That is, AGET{T,s) s fit in the region of the maximum to the form:

AGETT,s) = a(T)s* + b(T)s® + c(T)s? + d(T)s + &(T) 40)

where the coefficients of the fit are determined from the values of AGZ™(T,s) at five points
$isS; 4+ [+---8; + 4 around the maximum by solving the set of five simultaneous equations:

AGE™(T,s,) = a(T)si + b(Ms2 + «(T)sz + d(D)s, + e(T),

n=1ii+ 1,1+ 4 (41)

by standard methods. Here we assume that the five s values are in general not equally
spaced. as occurs. e.g.. when refinements are made in the calculation of the MEP. The
position of the maximum in AZ"%(T.s) is then approximated by the analytic solution™ to
the cubic equation:
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0= a(isAGST"’(T,s) = 4a(T)s® + 3b(T)s* + 2¢(T)s + d(T) (42)

yielding sg¥(T). The value of AGE'[T.s&¥"(T)] is then found from Equation 40, and the
CVT rate constant of Equation 9a is calculated from Equation 13. For comparison. the
conventional TST rate constant [kK(T)} is obtained from AGE™%T.s = 0) by Equation 13
also.

III. QUANTUM EFFECTS ON BOUND DEGREES OF FREEDOM

In Section Il the calculation of the CVT rate constant was discussed from a purely classical
mechanical standpoint, in which the motion of the system along the reaction coordinate is
treated classically and the partition functions for the reactant and transition state degrees of
freedom are given by classical phase-space integrals. However. as noted in Section I, the
incorporation of quantum mechanical effects is indispensable for obtaining reliable rate
constants for real reactions in that the effects of quantized energy levels (especially the
existence of zero-point energies) as well as dynamical effects, such as barrier penetration,
can be large. These effacts must therefore be included in CVT in order to obtain rate constants
which can be compared meaningfully with experiment. Since the fundamental assumption
of TST relies on simultaneously specifying the momentum and position of the system aiong
the reaction coordinate, the inclusion of quantum mechanics in TST leads to an ambiguous
result.?” As noted in Section I, the quantization of conventional TST is usually accomplished
by the assumption of a separable reaction coordinate with ad hoc quantization of the energy
levels for the remaining bound degrees of freedom of the transition state and for the reactants,
together with the use of a multiplicative transmission coefficient to include other effects
arising from motion along the reaction coordinate.®'5-5® This is also the approach used here.
As also noted in Section I, when quantum mechanics is included in this fashion. TST no
longer provides a rigorous upper bound to the true quantal equilibrium rate constant for a
gtven potential energy surface (unlike the classical case), so that the variational optimization
of this quantized TST rate constant (as in CVT) might be questioned. In actuality, however,
we have found that this quantization scheme does lead to accurate numerical results, and it
provides a useful basis for discussion and interpretation of rate constants in a quantum
. mechanical world.>20-30-%0.58-87-92 Egr example, the quantized conventional TST rate constants
for the collinear reactions CI + HD — CIH + D and Cl + DH — CID + H computed
from the Stern-Persky-Klein potential energy surface'®'® predict a collinear HD/DH intra-
molecule isotope effect (i.e., the ratio of the rate of CI + HD — CIH + D to that of Cl
+ DH — CID + H) of 1.59 at 300 K, as compared to the CVT and accurate quantal results
of 0.53 and 0.68, respectively.*#-**-%5 This large difference between the conventional and
CVT results is due to the greater effect of varying the dividing surface for the reaction of
Cl with the H end of HD than for reaction with the D end. Conventional TST thus predicts
the wrong direction for the HD/DH kinetic isotope effect, which points out the danger of
using conventional TST in fitting surfaces to experimental data, since artificial errors are
introduced into the empirically derived surface in order to compensate for the errors made
by conventional TST.*”

A. Separable, Harmonic Approximation

As described above, the first step in the quantization of TST is the replacement of the
classical partition functions in Equation 8 by their quantum mechanical analogs. The gen-
eralized transition state quantal partition function [Q®"(T,s)] thus involves a summation of
Boltzmann factors over the s-dependent quantized electronic-vibrational-rotational energy
levels of the degrees of freedom orthogonal to the reaction coordinate at s. If we neglect
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the couplings between electronic, vibrational, and rotational energies, the GTS partition
function can be written as the product of partition functions for the electronic, vibrational,
and rotational degrees of freedom as follows:

QT(T,s) = QG™(T,s) QINT,s) QTN(T.s) (43)

where QYI(T,s) and QSN(T,s) are the values appropriate to the ground electronic state. The

rot

quantum mechanical electronic partition function is given by
QSY(T.s) = 2 dS7(s) exp{ ~BleST(e.s) ~ Vienls)]} (44)

where o = 0.1,...,d%7(s) is the degeneracy, and €§%(a,s) is the energy of electronic state
a measured from the overall zero of energy, with €§T(a = 0,5) = V,.x{s). Because the
spacings between electronic energy levels are generally large, the summation in Equation
44 usually converges rapidly; ordinarily, only the energetically lowest electronic multiplet
needs to be considered. In addition, we usually take the generalized transition state electronic
partition function to be independent of s, i.e., QST(T,s) is set to QS'(T). Since the rotational
energy levels are generally closely spaced, little accuracy is lost if we approximate the
quantal rotational partition function by the corresponding classical one.” This approach has
been shown to give an error in the CVT rate constant of not more than about 1% for atom-
diatom reactions.™ For a linear GTS, the classical rotational partition function is given by

SN(T5) = o) @)

B

where I(s) is the moment of inertia in mass-scaled coordinates given in Equation 36. For a
nonlinear GTS, the classical rotationai partition function is given by

eX(Ts) = [(;38)3171A(5)Is(8)1c(5)]“2 (46)

where the product of the three principal moments of inertia (which are related to the eigen-
values of the moment of inertia tensor I3(s) of Equation 34) can be evaluated readily from

L()Ig(®)l(s) = w det[IX(s)] 47)

Note that the symmetry number is absent from the rotational partition function, since it is
incorporated into the symmetry factor o of Equation 8.

The projected force constant matrix of Miller et al.,”® discussed in Section II, provides a
set of frequencies {w_(s), m = 1,...,F ~ 1} for the bound modes of the GTS at s. From
these frequencies. we can construct a harmonic approximation to the potential energy for
general points x near x(s) by

V($.Qu-Qe-i) = Vae®) + okt 2 [0, (8Qu ) (43)

where Q,(s) is the normal-mode coordinate for mode m when the system coordinates are
X, l.e.,

Qu(s) = [x — x(s)] - LZT(s) (49)
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The vibrational energy levels for this potential are given by
F-| :
€Sl(n,,0ys.. .0 _1,8) = 2 (n,, + ' Dhw (s) (50)
m=1
Thus, in the harmonic approximation. the vibrational partition function is separable:

Foi
on(T,s) = I1 Q¥ .(T.s) Sh

m=]

where the vibrational partition function for mode m is

ST (T.s) = >, expl—PeST, (n,.5)] (52)

with the vibrational energy of level n, €5, (n,,.s). measured from the bottom of the local
vibrational well [i.e.. at V ,..(s)]. The summation in Equation 52 should be terminated with
the last term for which €5 _(n,..s) is less than the lowest dissociation energy of the sys-
temn.'™-2"** However. assuming that the contributions from higher energy levels are negligible
for the temperature being considered. the summation can be extended formally to include
all harmonic levels €57 (n,..s) = (n, + ",)hw,(s), in which case Equation 52 can be
replaced by the analytic result:

am(T:8) = exp[—Ao(s)B2H1 ~ exp[ —Aw.(s)BI} (53)
The reactant partition function per unit volume can be factored as
OXT) = PA(MQAHDQXT) (54a)
for reaction Equation 1a and for reaction Equations 1b and 1¢ we have

PXT) = QXT) (54b)

-In Equation 54a, ®2;*(T) is the relative translational partition function per unit volume given
by

PLHT) = 2mu/Bh*)™ (35)
and in Equations 54a and 54b Q*(T) and Q®(T) represent the partition functions for the
internal degrees of freedom of species A and B, respectively. If reactant A is a molecule,
QA(T) is treated in a similar fashion to the GTS partition function. except that an additional

vibrational mode must be considered (giving a total of F, = 3N, -~ 7, total vibrational
modes for reactant A):

QMT) = QAMQLDQL(T) (56)

where QJ(T) is given by

QAT = 2, d2 exp[ —BeA(e)] (57)
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in terms of the degeneracies d* and term values €}a), with €j(a = 0) = 0. Q}(T) is
approximated classically using the equilibrium moments of inertia given in Equations 36 or
47 but with only the atoms of reactant A considered, and Q2 ,(T) is given in the separable-
mode approximation by

Fa
AT = O {Z exp{—seab_mmmn} (58)

m

where the vibrational energies €2, .(n,) are measured from the overall zero of energy and
are evaluated in the harmonic approximation from the frequencies obtained by a standard
normal-mode analysis for reactant A. In this case, a result similar to that of Equation 53
can be obtained. Of course. if reactant A is an atom. then Q*(T) is given by QA(T) alone.
Similar considerations apply to reactant B.

Having incorporated quantal effects in the partition functions for the bound degrees of
freedom. we obtain the hybrid (i.e.. quantal bound degrees of freedom, classical reaction-
coordinate motion) generalized TST rate constant k%'(T.s). By analogy to Equations 9a and
9b we denote the value of the reaction coordinate that minimizes k°™(T,s) as sS¥(T) and
we denote the minimum value of k¢T(T.s) as kEVI(T).

In Section IV we will make extensive use of the vibrationally adiabatic ground-state
potential curve VI(s). This is defined by

Vi) = Vier(s) + €ils) (39

where €5, (s) is the total vibrational zero-point energy:
F—1 ;
€5(5) = X €0, = 0.5) (60)
m={
In the harmonic approximation:
F-1
€S = LA D .s) (61)
m=1

B. Inclusion of Anharmonicity

Up to this point, we have presented procedures for the calculation of the reaction rate
constant under the assumption that the vibrational modes of the reactants and the GTS can
be treated harmonically. These procedures are based on the harmonic approximation to the
potential energy along the reaction path, given by Equation 48, which leads to the separable
vibrational partition function of Equation 51 and to the zero-point energies used in calcutaring
the vibrationally adiabatic ground-state potential curve V&(s) of Equation 59. In general,
however, the vibrational degrees of freedom of the reactants and the GTS are bound by an
anharmonic potential which contains terms in normal coordinates of order higher than two.
Since these higher-order terms affect the quantized vibrational energy levels of the bound
modes, substantial differences can be obtained between CVT rate constants computed from
harmonic and anharmonic vibrations. For stretches, anharmonicity effects are most important
for tight transition states and at low temperatures, where small fractional changes in the
zero-point energies of high-frequency modes can significantly affect the results. The an-
harmonicity of bending vibrations, however, may have a greater effect at high temperatures.
Another important kind of anharmonicity, which is harder to treat.** is mode-mode coupling,
i.e,, cross terms. Cross terms couple vibrational modes to each other and also to rotational
modes.
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As an example of anharmonicity effects we note that for the three-dimensional C1 + HD
~— CIH + D reaction using the Stern-Persky-Klein'*'® potential energy surface, the rate
constants calculated with the harmonic approximation are 25 to 42% larger than those
obtained by including Morse anharmonicity in the bound stretching motion and quartic
anharmonicity in the bends.* Moreover, for a set of atom-diatom reactions that we have
modeled with rotated Morse bond-energy-bond-order potential energy surfaces, the harmonic
approximation for the transition state bend overestimates the quadratic-quartic approximation®
for the conventional TST rate constant by an average factor of 1.5 at 600 K.*-*!-3* Effects
associated with anharmonicity of bending degrees of freedom are significantly larger than
this average for some of the cases studied, especially at high temperature.™ As a final
example of the effect of including anharmonicity in the calculation of quantal CVT rate
constants, we consider the reaction OH + H, — H,O + H, which has been studied*® using
an analytic potential energy surface obtained by Schatz and Elgersma®® by a fit to the accurate
extended basis set configuration-interaction electronic structure calculations of Walch and
Dunning.”” For this reaction, it was observed that the harmonic approximation to the CVT/
SCSAG rate constant, which is described in Section IV and which is the most accurage
available calculation for this reaction. overestimates the anharmonic result obtained within
the independent normal-mode (INM) framework presented below by factors of 2.27 at 298
K and 1.32 at 2400 K. The first of these results indicates that the inclusion of anharmonicity
may affect the calculated rate constants for polyatomic reactions to a somewhat larger extent
than has been found in typical atom-diatom studies at room temperature.

The first and largest part of this section gives detailed expressions for including Morse
and quartic anharmenicity in the INM approximation.*® This is followed by brief discussions
of several possible alternative ways to treat anharmonicity.

To include vibrational anharmonicity in polyatomic CVT calculations. we require an
approach which allows for the practical calculation of anharmonic vibrational energy fevels,
so that the vibrational partition function can be computed without undue effort. In the INM
approximation we accomplish this by neglecting the mode-mode couplings and including
anharmonicity in an approximate manner for each of the normal modes of the reactants and
the GTS. To be specific, in this section we will consider the vibrational degrees of freedom
of the GTS. Within the INM framework, the separable approximation for the vibrational
partition function and total zero-point energy, as given by Equations 51 and 60, is still valid,
so 1t is sufficient to consider a single mode m at s. with a corresponding normal coordinate
Q..(s) given by Equation 49. The potential energy along this mode is given by

Val$:Qel8)] = K pn(Qu(8) + Knam(SHQml(8)]
F Kommm(SHQn($)]* + ... (62)

where K,,.(S), Knnum(8)s Knmmm(S). €tc. are called the principal normal-coordinate force con-
stants to denote that all subscripts are the same. {A nonprincipal force constant would be
the coefficient in a cross term like K nm (8)5[Qn(8)PQA(8) OF Ko m (SN Qo (S)F1Q ().
The principal normal-mode force constants are related to the second. third., fourth, etc.
directional derivatives of the potential energy along the normal-mode direction. That is, the
quadratic normal-mode force constant [k, .(s)] is given by the eigenvalue X,(s) of the
projected force constant matrix defined below Equation 37, whiie the higher-order force

constants are obtained from numerical directional derivatives of the analytic gradient:

Kimm(S) = é {¥VIx(s) + 3LS(s)] + VV[x(s) — SLET(s)]

— 2VV[x(s)]} * LET(s) (63)
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L
48%°

+ 2VV[x(s) — 8LET(s)] — VV[x(s) — 28LT(s)]} - LET(s) (64)

Knmme(8) = {VVIx(s) + 28LT(s)] — 2VV[x(s) + 8LIT(s)]

etc. for some small stepsize & (typically 0.0001 a,,).

We next need to compute vibrational energy levels for the one-dimensional potential given
by Equation 62, so that the vibrational partition function for mode m can be calculated from
Equation 52. From collinear atom-diatom studies.***® it was found that a satisfactory ap-
proach to treating the bound stretching motions is provided by replacing the general potential
of Equation 62 by a Morse function:**

VM.m[Sva(S)] = Dc(s){exp[_BM.m(S) Qm(s)] - ]}2 (65)

where D.(s) 1s the local dissociation energy for the vibrational potential on the potential
energy surface:

Dus) = D = Vygp(s) (66)

(where D represents the lowest dissociation energy of the system) and where the range
parameter B, .(s) is chosen so that the Morse potential has the correct force constant at its
minimum:

BM.m(S) = [kmm(s)/zDe(S)]UZ (67)

We refer to this method of choosing D.(s) and B,,.(s) as the Morse approximation I.3!-4-3%
The energy levels of this potential are given by**
€S (ns) = Aw,(s)(n + )1 — Xy (s)n + )] (68)

where n is the level index, w,(s) is the harmonic frequency given by Equation 38. and
Xm.m(S) 1s the unitless Morse anharmonicity constant given by

Xum(S) = few(s)/4D.(s) (69)

Although this is not the only method of fitting the vibrational potential to a Morse function,
it has the advantage that the energy levels will always increase monotonically up to the
dissociation energy D, so that the vibrational partition function can be computed straight-
forwardly. It should be pointed out that rate constants obtained using Morse approximation
[ in quantal atom-diatom studies®® and in the study of the OH + H, system™ agreed well
with those obtained by fitting the Morse function to the second and third derivatives of the
true potential at its minimum.

Vibrational modes that have no cubic anharmonicity [i.e., k_..(s) = 0] cannot be well
approximated by a Morse model. Examples of such modes include bending motions of linear
systems, out-of-plane bends of planar systems, and certain stretching motions (such as the
asymmetric stretch in the water molecule). A practical prescription is to treat the modes for
which k,,..(s) is nonzero by Morse approximation I, while the modes having zero cubic
anharmonicity are treated by a quadratic-quartic model, which has been shown to fit non-
series-expanded bend potentials much more accurately than the harmonic model does for
atom-diatom systems.™ In the quadratic-quartic model. the potential of Equation 62 is
truncated after the quartic term. yielding:
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V’-lq.m[s?Qm(s)] = I/Ikmm(s)[Qm(s)lz + kmrnmm{an(S)]4 (70)
(For atom-diatom reactions. the quadratic-quartic potential is written more conveniently —
and more accurately — in terms of the bending angle rather than the normal coordinate. In
the INM approximation we use normal coordinates, but we will discuss the coordinate

question again below.) Accurate approximations to the energy levels for the quadratic-quartic
potential of Equation 70 can be determined by a perturbation-variation method which yields:**-**

€nm(ms) = oMy + M7 IEE) T Knmmal$IM, €x(s) (71)
where €/(s) is the harmonic energy of level n:
el(s) = hw,(5)(n + ') (72)

3R%20 + 2n + Dd[pe, (5] (73)

il

€.(s)
and where m? is determined by solving:
M- M= 2,=0 (74)
with
Cra = 2Kimmm{S)EN(S)/€Y(S) (75)

Since Equation74 is a cubic equation in m;, it can be solved to give:* -

2 [2cos(8,/3)/3'2, ci, < 1/27
" (Cl.n + Cl.n)”} + (Cl.n - Ci.n)]B’ C‘Jl.n = 1727
(76)
where
8, = arccos(3*%¢, ) (77)
and
. 1 712
CZ.n - [cl.n - E] (78)

Using the anharmonic energy levels given in Equation 68 or 71, the anharmonic vibrational
partition function for mode m is determined by Equation 52, where the summation is
terminated with the last term for which €97, (n,,,s) < D. Within the INM framework assumed
here. the total anharmonic vibrational partition functions are given by Equations 51 and 58
for the GTS and reactants. respectively. From these, anharmonic approximations to k¥(T)
and kYT(T) may be calculated. Since anharmonicity affects the zero-point energies of the
vibrational modes. the vibrationally adiabatic potential VE(s) given by Equation 59 will also
be affected, resulting in different values for the transmission coefficients discussed in the
next section. The small curvature approximation transmission coefficient (see Section IV)
is additionally affected by changes in the values of the turning points for the anharmonic
potentials.
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In some cases it may be appropriate to treat hindered internal rotors by special techniques.
These have been discussed by several authors. %

The neglect of cross terms in the INM approximation may lead to significant quantitative
errors in some cases. The importance of cross terms can be minimized by using curvilinear
coordinates.'** For atom-diatom collisiens this is our standard procedure,’-33-%4-54-55 byt for
TST calculations with more than three atoms we have so far retained the normal-mode
approximation because of its convenience. As discussed above. normal modes are linear
combinations of (mass-scaled or mass-weighted) atomic cartesians: hence. they are not
curvilinear. A second advantage of curvilinear coordinates. in addition to the fact that cross
terms tend to be smaller. is that principal force constants can often be predicted reasonably
accurately by simple models in curvilinear coordinates.'® An example of the advantage of
modeling the anharmonicity in curvilinear internal coordinates rather than cartesian normal
coordinates is provided by the work of Morino et al.'”® on NH,. They classify the force
constants in internal coordinate space as “‘principal’’ for terms with all subscripts the same,
and “‘subsidiary’’ for terms coupling two or more internal coordinates. Going beyond the
“*anharmonic valence force field”, which includes the principal but not the subsidiary force
constants in internal coordinates. they modeled the potential energy surface for NH, by an
anharmonic valence force field through quartic terms plus an H-H van der Waals interaction.
This yields nonzero values for only 6 of the 14 independent cubic force constants in internal
coordinate space, but the evidence from experiment is that the omitted force constants are
all smaller than the largest principal cubic force constant by at least an order of magnitude.
In fact, in internal coordinate space, 13 of the 14 independent cubic force constants are
more than an order of magnitude smaller than the largest principal one. whereas in normal-
coordinate space the largest cubic force constant is not a principal one and only 5 of the 14
independent cubic force constants are more than an order of magnitude smaller than the
largest cubic force constant. Thus. anharmonicity is much easier to model in internal co-
ordinates, but, if the calculations are to be completed in normal coordinate space, they are
more difficult because the transformation from the modeling space of internal coordinates
to the computational space of normal coordinates is nonlinear and in the general case
somewhat unwieldy.

[f the mode-mode couplings are included by any method in any coordinate system, and
if the vibrational energy levels are then represented as

€9Tn,s) = X, Ahws) [(n, + 1) — x.(5)(n,, + )]

= 2 2 X ()@ + )0+ 1) (79)

where n denotes the set of quantum numbers {n,,,m = 1,2,....,F — 1}, one can still obtain
reasonably simple analytic approximations to the vibrational partition functions and free-
energy contributions by power series methods and by the definition of effective frequencies
that take into account the leading anharmonic corrections under the assumption that anhar-
moni¢ terms are small. 00112

Another procedure for estimating the partition functions without assuming separable nor-
mal modes is the Pitzer-Gwinn method. ''-''*1'3 This approximation scheme is based on the
fact that the ratio of anharmonic to harmonic quantal partition functions. with the zero of
¢nergy at the local zero-point level, is given correctly by the ¢iassical approximation in both
the low- and high-temperature limits. The approximation is to assume that this ratio is given
correctly by the classical limit at all temperatures. Then the quantum mechanical anharmonic
partition function needed for the rate constant calculation can be calculated from four quan-
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tities. all of which are more easily obtained. namely, the quantal and classical harmonic
partition functions. the anharmonic zero-point energy. and the classical anharmonic partition
function. The harmonic quantities may be obtained analytically.''® The quantal zero-point
energy may be calculated by perturbation theory .>*-''"''* The classical anharmonic partition
function may be evaluated by Gauss-Hermite!'* or Monte Carlo'®-** numerical integration
of the phase-space integral. Monte Carlo methods may also be applied to evaluate semi-
classical partition functions directly.'"?

In evaluating bound-state partition functions for equilibrium-constant calculations, Bron
and Wolfsberg''® found that the main correction due to vibrational anharmonicity at room
temperature arose from the anharmonicity correction to the zero-point energy. Thus. in some
cases it may be adequate to include arharmonicity only as far as its effect on zero-point
energies.

In principle. the partition functions could also be calculated by direct summation of
Boltzmann factors involving energy levels computed from accurate quantum mechanical
variational calculations, quantum mechanical perturbation theory, or a spectral method based
on a Fourier transform of a quantum mechanical time correlation function.'™-'?” This will
generally be too expensive since energy levels are required up to high quantum numbers at
each s. Furthermore, perturbation theory is expected to break down for high quantum numbers
and sometimes even for low quantum numbers.

Other promising approaches for evaluating partition functions for coupled oscillator sys-
tems are thermodynamic perturbation theory'**'** and varational approaches based on trace
inequalities for the partition function.'®'"'™ So far, these techniques have not been applied
in the context of rate calculations.

We will discuss the evaluation of the sum of states N°T(E.s) in Section V. The density
of states may be evaluated by numerical differentiation of N°7(E,s), and the partition function
may be evaluated by a Laplace transform of the density of states.® However, if one wishes
to calculate both Q°™(T s) and NOT(E,s), it may be more convenient to evaluate Q“7(T,s)
directly and obtain NYY(E,s) by inverse Laplace transformation.™

IV. QUANTUM EFFECTS ON REACTION-COORDINATE MOTION

The treatment given in Section III provides a ‘*hybrid”’ quantized GTS rate constant, in
that, while motions in the GTS degrees of freedom orthogonal to the reaction path are treated
quantumn mechanically. motion along the reaction coordinate is still treated classically. By
analogy to the classical theory of Section II, it seems physically reasonable that a better
dynamical bottleneck can be obtained by variationally optimizing the location of the GTS
dividing surface to minimize the rate constant calculated with quantized vibrations but
classical reaction-coordinate motion. As discussed near the end of Section I[1.A. this yields
KEYN(T), the hybrid analog*-** of the classical result defined by Equaticn 9a. Since this
result still neglects tunneling. k“V™(T) often underestimates the true quantal rate constant,
especially at low temperatures.2** One convenient way to correct this deficiency is to use
a multiplicative transmission coefficient «(T) as in Equation 7b:

kCVT/Y(T) - KCVT/Y(T)-kCVT(T) (80)

to account for the dynamical quantum effects of reaction-coordinate tunneling and nonclass-
ical reflection, as well as the nonseparability of such effects from other degrees of freedom
because of the curvature of the reaction path, which couples reaction-coordinate motion with
vibrational motions. It is important that the transmission coefficient be consistent with the
way the quantized partition functions are defined above.

For conventional TST we use:
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k*’Y(_T) = " (DkT) (8D

where
k¥T) = k°"(T,s = 0) (82)

for the case of a conventional transition state located at a saddle point. The simplest and
most common method of approximating reaction-coordinate tunneling in conventional TST
is by the semiclassical Wigner correction to lowest order in fi, which yields:'**-'%

KWT) = 1 + Ela|ﬁm$[3|2 (83)

where w* is the imaginary frequency at the saddle point. For this correction to be valid,
contributions to tunneling must come only from the saddle point region of the potential
energy surface, where the transverse vibrational frequencies do not vary appreciably and
the potential along the reaction path is well approximated as an inverted parabola. In addition
to these severe restrictions. the reaction-path curvature must have a negligible effect, and
the scattering by the parabola must be treated accurately by truncation at the (Ap)* term.
For these reasons, use of the Wigner correction is justifiable only at very high temperatures
where it is near unity; when it differs appreciably from unity, the assumptions of its derivation
are not satisfied and it is often found to be inaccurate 5#7-14

To include dynamical quantum effects more consistently and accurately than can be done
with the Wigner expansion, we must distinguish between two extreme kinds of dynamical
behavior, one of which is expected for systems with small reaction-path curvature and the
other of which is expected for systems with large reaction-path curvature. For the former
we may assume that the dominant quantal correction to reaction-coordinate motion comes
from tunneling through the saddle point region. To treat this we describe the motion of the
system in an approximate way as one-dimensional motion along the reaction coordinate
governed by an effective one-dimensional potential and an effective reduced mass. The
potential is obtained by assuming that the bound degrees of freedom orthogonal to the
reaction coordinate adjust adiabatically (i.e., remain in the same quantum state) as the system
moves along the reaction path.™-**'** This approach is based on the assumption that motion
in the vibrational, rotational. and electronic degrees of freedom is fast compared with the
motion of the system along the reaction path, and. although not strictly true, it is the most
consistent way of including one-dimensional tunneling in the hybrid quantal rate constant
defined above,*¥39-142.145-15V Within the Born-Oppenheimer approximation used in calculating
the potential energy surface, the electronic motion is already taken to be adiabatic, and since
the lowest-energy state has no rotational energy, only vibrational adiabaticity has an explicit
effect on the effective potential. Furthermore, at low temperatures, where tunneling is most
important, a quantized system is in its ground state, so that the one-dimensional adiabatic
potential governing the reaction-path motion is taken to be the vibrationally adiabatic ground-
state potential energy curve of Equation 59. Thus. neglecting the curvature of the reaction
path, the motion of the system is described by the Hamiltonian:

|
H(s.p) = n p: + V() (84)

where p, is the momentumn conjugate to the reaction coordinate s. Equation 84 shows that
the vibrational adiabatic approximation reduces the full quantum scattering problem to the
one-dimensional motion of a point of mass (i) on the adiabatic potential curve VZ(s). Based
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on the adiabatic theory of reactions with a proper zero-point energy correction for the implicit
threshold energy VS[s¢¥(T)] of the hybrid quantal CVT rate constant,”*** the adiabatic
ground-state CVT transmission coefficient is given by the ratio of the thermally averaged
quantai transmission probability P(E) to the thermally averaged classical transmission prob-
ability for the same vibrationally adiabatic barrier:™">

fo ) PSAS(E) exp(— BE)dE

KCVT,’SAG(T) = _ (Ssa)
J; 8{E — VS[sSVI(T)]} exp( —BE)E
f: PSAS(E) exp( — BE)E
T (85b)
4[/5"15?"7(1-” exp( - BE)dE
= B CXP{V_,G[SSVT(T)]} j(;x PSAG(E) cxp(_ BE)dE (85(:)

where 0(x) is the Heaviside unit-step function. We will see that the fact that the integrals
in Equations 85a to c extend to infinity also allows for the inclusion of nonclassical reflection
at energies above the barrier. (Strictly speaking, the integrals should only extend up to the
lowest dissociation energy of the system. As before. the presence of the Boitzmann weighting
factor in the integrand allows us to use the more convenient infinite upper limit for the
integral since the added contributions are assumed to be negligible at the temperatures under
consideration.) Although the transmission probability {P(E)] in Equation 85a to ¢ could be
obtained by a quantum mechanical calculation. it is much more convenient to use semi-
classical methods.'*'"'*” which generally have been found to yield results within 10% of the
accurate quantal values.™*-'57 Thus, by PS*S(E) in Equations 83a to ¢ we mean the one-
dimensional uniformized semiclassical approximation to the one-dimensional transmission
probability at total energy E through the vibrationally adiabatic ground-state potential
V$(s).**'*7 Note that later in this section, after we introduce reaction-path curvature effects.
it will be convenient to rename the present approximation PMEFSAG(E), If VAS denotes the
* maximum value of V&(s), then for E < VA¢ the uniform semiclassical approximation to the
transmission probability is given by

PSAS(E) = {1 + exp[20(E)]}~! (86)

where the imaginary-action integral 8(E) is
8E) = £~ f> {2u[V3(s) — E]}'*2ds (87)

which is just 21 times the action integral between the classical turning points s.. and s., [the
locations at which V&(s) = E] for reaction-coordinate motion along the tunneling path
through the classically forbidden region. In order to perform the Boltzmann average in
Equation 85¢, the tunneling probability must also be approximated for E > VA9, for which
the effects of nonclassical reflection should be incorporated. If the barrier in VS(s) is assumed
to be parabolic in the region of the maximum, then it can be shown semiclassically that for
energies above but near the barrier:'**
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PSaS(VAG 4+ AE) = | — PSAG(VAS — AE) (88)

where AE = E — V*9, Since P**9(V*9) given by Equation 86 is /., Equation 88 provides

a continuous extension of the transmission probability for energies above V*S. In addition,

the presence of the Boltzmann factor in the integrand of Equation 85¢ allows for the use of

Equation 88 at energies well above the barrier, since the contributions from such energies
are assumed to be small. Thus, denoting the quantal threshold energy by E,:

E;, = max[Vi(s = —x), Vi(s = +%)] (89)

the full semiclassical prescription for the transmission probability is

0. E<E,
{1 + expf20(BE)1}, E, < E < va¢
PPEE) =97 - PSAS(2VAS — E), VAG < E < 2VAS — E, (50)
1 2VAS — E < E

The semiclassical approximation to the transmission coefficient is obtained by substituting
Equation 90 into Equation 85¢, which can be written conveniently as

KEVTSAST) = exp{VE[sSVI(T)} — VA9)
X {1 + ZBL ‘PS"G(E) sinh[B(V*¢ — E)]dE} on

If the integration of the imaginary-action integral 8(E) is carried out along the MED
as indicated above. the resulting semiclassical transmission coefticient is denoted by
KCVIMEPSAS(T) Tt is indeed reasonable to evaluate the imaginary-action integral along the
MEP in the absence of reaction-path curvature, since in that case there are no internal
centrifugal forces that would tend to make the system leave the MEP."**'* However, it
is also possible to modify the tunneling path in order to include the effects of reaction-
. path curvature. which have been found to be important in obtaining reliable results in
many cases. 1934858791 131-159.160 Eor example. accurate quantal calculations of the rate con-
stants for the collinear H + H, and D + D, reactions demonstrate that the transmission co-
efficients obtained by measuring the vibrationally adiabatic barrier along the MEP are not
accurate.'*""** One generally successful approach to incorporating curvature for atom-
diatom collisions with collinear MEPs is to choorc e tunneling path in the classically
forbidden region as the path of concave-side zero-point energy turning points for the mode
coupled to the reaction coordinate by reaction-path curvature.*-5%57.151 This path, which
was shown through numerical trials by Marcus and Coltrin'*' 1o be the optimum tunneling
path for collinear H + H, by analytically continuing the classical mechanical least-action
principle into the domain of complex momenta, corresponds to *“cutting the corner’” of the
potential energy surface (cf. Figure 2), and can be understood in the sense that in the
classically forbidden region the kinetic energy is negative (corresponding to the momentum
being imaginary). leading to a negative internal centrifugal effect. i.e.. motion toward the
inside of the MEP (**corner cutting™") rather than toward the outside (*‘bobsledding’").'*10%
% Within the semiclassical adiabatic approximation, the effective potential is V(s) if the
tunneling path remains within the ground-state vibrational amplitude around the MEP.'*'
Thus. the shortening of the path by corner cutiing simply contracts the effective barrier for
the tunneling calculation. i.e.. makes it thinner. and there is less exponential damping for
a given total energy. Hence. a larger value of PS*Y(E) is obtained than for tunneling along
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the MEP. The path chosen as just described is called the Marcus-Coltrin path (MCP), and
transmission coefficients obtained in this manner are denoted by k“YPMPSAS(T) As an
example of the MCP, consider the three-dimensional D + H, and H + D, reactions.* In
these cases. the MEP s collinear, so there is no curvature coupling of the reaction coordinate
to the bending modes and the tunneling path is chosen to be the path of outer turning points
of the bound stretching mode: this leads to good agreement with experiment.* To generalize
the phystcal model that underlies the MCP to many-dimensional systems that have curvature
coupling of the reaction coordinate t0 more than one bound degree of freedom, we and
Skodje have developed a new approximation called the smali-curvature (SC) approxima-
tion.***!1% This approximation is based on an alternative approach in which we treat the
effect of reaction-path curvature by using an effective mass for reaction-coordinate motion.
That is, if £ measures the distance along an arbitrary tunneling path. then the 1maginary-
action integral becomes

£>
8(E) = &' L {2ulVS(®) — EIM? d§ (92)

However, since £ is related to s through a metric factor M(s) by

d§ = M(s) ds (93)
Equation 92 can be rewritten as
o) = 5~ | T oIV - 2 ds ©4)
where
Per(S) = pIM(s)P (95)

To describe the SC approximation in detail, recall that the harmonic approximation to the
potential energy for points near the reaction path can be written in terms of the reaction
coordinate s and the F — | orthogonal normal-mode coordinates Q,.(s) as in Equation 48.
(Anharmonic effects are considered below after the complete presentation of the harmonic
limit.) For a discussion of dynamical effects, we thus need to express the kinetic energy in
these same coordinates. For the case of zero total angular momentum (for which we can
neglect rotation-vibration coupling), the kinetic energy is given by’®

] =l
T(svpstI""’QF—nPlr"'ipF-!) = 2_- 2 Pi‘l(s)
P' m=1

[ps - E ’zl Qm(s)pm’(s)Bmm’(S)]z
+ — m=1 m'=

Foi ;
1+ S QB |

(96)

where P_(s) and p, are the momenta conjugate to Q,(s) and s, respectively,

bl d
B.w(s) = E > {E LS,Tm(S)]L,‘iTm-(S) (97)

i=1 ¥
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and

dv.
B.:(s) = —[sign(s)] >, > Vgs(s) L3T (s) (98)

where v, ,(s) is the iy component of the normalized gradient vector defined in Equation 32.
[In another notation,™°' k,(s) is used to denote B, .(s) so the denominator of the last term
in Equation 96 becomes 1 — k(s) - Q(s)]>. Here the quantities B, .(s) are Coriolis-like
couplings between the modes arising from the twisting of the normal modes about the MEP
[with B, (s) = 0], while B,,«(s) is the component of the reaction-path curvature:

Fol 12
<@ = { 3 BuloF ) 99)

along the direction of mode m at s, which is chosen such that the product Q,.(s)B, (s) is
negative when Q, (s) is taken on the concave side of the MEP. If we neglect the Coriolis-
like couplings [which do not appear in the Marcus-Coltrin path method since P_(s) = O at
a turning point of mode m] and treat the motion in the vibrational degrees of freedom
adiabatically (i.e.. averaged over a vibrational period), the Hamiltonian of Equation 84 for
the one-dimensional motion of the system along the reaction coordinate is replaced by

<A> (s)

#(s.p) = o

p: + Vi(s) (100)

F

where < A >(s) denotes the appropriate average of [1 + 21‘" Q..($)B.£(s)] 72 over the
vibrational degrees of freedom along the tunneling path. Thus, the effective mass Leea(S)1
can be thought of as the ratio of , to < A >(s), so that the quantity [M(s}]> of Equation 95
can be'viewed as an approximation to [< A >(s)]', hence providing an effective mass
for motion measured along the MEP. Of course, for tunneling along the MEP, as in
KCVTMEPSAS(T)  the curvature is ignored, so that < A >(s) = | and uMf(s) = . If the
tunneting path is chosen to be the Marcus-Coltrin path of concave-side turning points, as
in KCVPMCPSAS(T), the metric factor M(s) in Equation 93 relating an element of length (d¢)
along the tunneling path to an element of length (ds) along the MEP can be shown by
analytic geometry to be®'

M(s) = {{l + };l B, () ()] + §_‘, [dtm(s)/ds]z}m (101)

where t,(s) is the value of the mass-scaled normal coordinate Q,,(s) at the zero-point energy
turning point of mode m on the concave side of the MEP, which in the harmonic approx-
imation is given by = [fi/pw,(s)]'/,, where the sign is chosen to be opposite that of B, «(s)
[Recall that the sign of B_(s) is chosen such that the product B, g(s)t,,(s) is negative]. Thus,
curvature lowers the effective mass of Equation 95:

F—1 F-1
wi© = {1l + 3 BuOoF + 3 lduonsk)] (102)

m=1

and hence lowers the barrier penetration integral 6(E) in Equation 94 and raises the tunneling
probability PSAS(E) in Equation 86. For cases in which the curvature is large, however, the
magnitude of the first summation in Equation 102 can be larger than one (i.e.. the sum can
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be less than —1), corresponding to a breakdown of the reaction-path coordinate system
which allows the tunneling path to *“wrap around’’ on itself (see, e.g., Figure | of Reference
58). To avoid this difficulty. we treat the MCP effective mass in Equation 102 as an expansion
in the SC limit and we '‘unexpand’’ it to remove the singularity in the coordinate system
to infinity. In addition, if the curvature component B (s) for mode m is zero, we require
that this mode have no effect on the effective mass. This yields:*?#!

' {eXP{—Zam(s) = [a,(9)]* + [dt (s)/ds]?} (103)
1

F-
p(s) = p I min
m=1

where
a,(s) = --B_ )t (5) = [Bp(s)t, () (104)

Use of the SC effective mass [uig(s)] leads to the SC approximation to the semiclassical
adiabatic ground-state transmission coefficient, k“V"*34%T). Though this method could be
applied to large-curvature systems without singularities, we have found that it is most accurate
for systems with small to intermediate curvature. In fact. it has already been shown to give
reasonably reliable results in atom-diatom studies,*®*'**® while still being sufficiently prac-
tical for polyatomic systems.**-%

The curvature components B, (s) appearing in Equation 104 are computed from Equation
98 at each of the locations (here assumed to be equispaced) along the MEP at which a
generalized normal-mode analysis is performed, with-the derivative of the gradient obtained
by one-sided numerical differencing with a step size 8s equal to that used for computing
the MEP (typically 0.0001 a,):

dv,(s)/ds = {vi(s) = vi[s — Bs sign(s)]}/ds (105)

A numerical method which is more stable with respect to step size 3s is to use central
differences to compute this derivative. We have incorporated this improvement in our studies
of atom-diatom reactions and have obtained significantly better stability. The turning-point
derivative terms [dt_(s)/ds]® are computed at s by a two-point central-difference method
using the turning-point results obtained at adjacent locations at which the normal modes are
found:

[dt (syds]? = {[t.(s + As) — t (s — As)]/2AsP? (106)
where As denotes the separation between the equispaced normal-mode analyses (typically
0.01 a). For the first (s,) and last (s,,) points on the MEP from the saddle point at which

a normal-mode analysis is performed. the turning-point derivative term is obtained by La-
grangian interpolation:®

[dt (s yds]® = {[—3t,(s,) + 4t.(s)) — (55 — 8P (107a)
[dt (suVds]* = {[tm(sM-Z) — At (Spyo) + 3t (sl (Sm — SM—z)}2 (107b)

Since VV = ( at the saddle point, the curvature components cannot be determined accurately
there by the method described above. Instead. the effective mass at the saddle point is found
from a linear interpolation between the two closest values of uS{(s):

SSs = 0) = [pSS(s = +As) + pSis = —Ag)2 (108)
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For convenience. the effective mass [u35(s)] and adiabatic potential [VY(s)] are fit by cubic
spline functions. The imaginary-action integral 8(E) of Equation 94 is then obtained by
quadrature as follows. '’ First, the limits of integration s.. and s.. are found by Newton root
searches for points where

Vi(s) - E = 0 (109)

between two close points on either side of the crossings. (Although s and s.. could have
been obtained from the solutions of cubic equations involving the spline coefficients, the
present approach is more general.) Next. by a suitable change of variables. we reduce the
integration interval to the region [ — 1.1]. for which we choose a set of 2n + | quadrature
points g, and weights w, by Kronrod’s improved Gaussian quadrature method.'®” This method
provides both an n-point Gauss-Legendre estimate and a (2n + 1)-point quadrature estimate
such that n of the nodes of the latter are restricted 1o be the same as in the former. thus
providing a convenient convergence test of the quadrature size. Rather than performing the
numerical integration with the points g,. faster convergence can be obtained in some cases
by an alternate choice of quadrature variable y,, given by

gly) = (2/m)y(l — y)'2 + arcsin y) (110)

which is based on approximating VS(s) as a symmetric parabola between s_ and s... The
quadrature points y,; are obtained from the g, values by inverting Equation 110 numerically
with Newton's method of iteration, which gives the (j + 1) iterate for y; in terms of the jik
iterate as

Y9N = g9~ [2 arcsin y? — mgla{l — [y (111)

Applying this quadrature scheme to the imaginary-action integral of Equation 94 yields:

2n+ |

8(E) = (wA/4%) Z W{2pe(s)IVE(s) — EI}? (112)
where
s = Al + yp) + s (113)
with
A= (s, — s.)2 ' (114)
and
W, = w(l ~ y)=2 (115)

In Equation 112, p{s) is taken to be p for tunneling along the MEP or w3(s) for the SC
approximation. Although extra computational effort is required for generating the y, and W,
values, note that for a given quadrature size these quantities need be determined only once.
In atom-diatom studies, (Zn + 1) values of less than 20 are often sufficient for convergence
to 1% or better between the n- and (2n + 1)-point results, although a (2n + 1) value of
61 was needed for similar convergence for the OH + H, system. In practice, the semiclassical
tunneling caiculations are not the most expensive part of the calculation, so we often use
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(2n + 1) equal to 41 to 61 to ensure good convergence with less checking. Some potential
functions have more than one local maximum, so that at certain total energies there is more
than one classically forbidden region. In such a case, the overall imaginary-action integral
is taken to be the sum of the results obtained by a (2n + 1)-point quadrature in each
classically forbidden region.

The semiclassical transmission probability PSAS(E) is obtained from 6(E) by Equation 86,
and the Boltzmann average for the transmission coefficient k“V7S*%(T) in Equation 91 is
performed with straight numerical integration using Kronrod’s method. The numbers of
quadrature points required to converge the integral over energy are similar to those required
to converge the integral over s as discussed above. Within the assumptions discussed above,
the quantal CVT rate constant is obtained from the hybrid quantal one by

kCVTIMEPSAG(T) = kCVT(T) KCVT/MEPSAG(T) (]16)

when the tunneling path is taken to be the MEP (i.e., curvature is neglected), and by

KCEVTSCSAG(T) = KCVT(T) kCVI/SCSAG(T) (117

when tunneling is calculated under the SC approximation.

The parabolic approximation for nonclassical reflection, as embodied in Equation 88 and
the third line of Equation 90. may be justified as a mapping of the SCSAG tunneling
probabilities onto the semiclassical solution for one-dimensional scattering by a parabolic
potential. One could argue, though, that at energies above the barrier maximum it is phys-
ically inappropriate to base the results on PS®SAS(E), which depends on p3%(s), since the
tunneling-path model that leads to pu35(s) does not apply at energies above the barrier
maximum.'>® An alternative model for nonclassical reflection is to replace the third line of
Equaticn 90 by

P(E) - 1 — PMEPSAG(E) . VAG =< E < ZVAG —_ EO (]18)

If the SCSAG model is used for tunneling and Equation 118 is used for nonclassical reflection,
we call it the SC tunneling semiclassical adiabatic ground-state (SCTSAG) model to em-
phasize that pS$(s) is used only for tunneling energies.'*® The SCTSAG methed yields rate
constants very similar to those obtained by the SCSAG method, but slightly larger and
usually slightly more accurate.

To include anharmonicity in the MEPSAG, SCSAG, or SCTSAG transmission coefficient,
we first replace the harmonic VI(s) by the anharmonic one. In addition, since the SCSAG
and SCTSAG transmission coefficients involve the distance from the curved reaction path
to the vibrational ground-state classical turning point on its concave side, we must use the
anharmonic value for the turming-point distance. For a Morse oscillator with the potential
given in Equation 65, the concave-side turning point of the ground-state level is found as
follows. Define:

z(s) = =[eSf (n, = 0, syD.(s)]"* (119

vib.m
where the sign of z(s) is given by
sign[z(s)] = —sign[B,«(s)]sign[Kmmn(s)] (120

Then the concave-side turning point for this mode is given by
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t(s) = In[1 + z(s)]sign{K mm(s)] (121)

. 1
BM,m(S)

For a quadratic-quartic oscitlator corresponding to the potential of Equation 70, the concave-
side turning point is found by solving the equation V, .[5.Q,(s)] = €5} (n,, = 0,s). which
1s quadratic in [Q,(s)]*. This yields: '

(122)

where the sign of t,(s) is chosen to be opposite that of B_(s).

As mentioned below Equations 85a to c. instead of finding the tunneling probability by
the uniform semiclassical approximation, we could solve the effective one-dimensional
Schradinger equation numerically. For the MCP and SC approximations this involves a
contracted adiabatic barrier.””-**#7 Although the numerical quantal solution is, in principle,
more accurate than the semiclassicat one, the differences for realistic potentials are not
great.> "7 Since the numerical quantal solution is much more expensive, we prefer the
uniform semiclassical method.

As noted above, the CVT/SCSAG and CVT/SCTSAG methods generally provide signif-
icantly more reliable results than does the CVT/MEPSAG method. A recent review of several
cases is presented in Reference 39. For example. in the collinear H + H, reaction, the
CVT,”® CVT/MEPSAG.* and CVT/SCSAG™ rate constants calculated for the potential
energy surface of Truhlar and Kuppermann'** underestimate the accurate quantal results'*
for this surface at 200 K by factors of 29, 14, and 1.3, respectively. At 400 K. the
corresponding factors are 2.0, 1.8, and 1.2, respectively. (The results quoted in this paragraph
include the effects of anharmonicity. The CVT results used for this comparison are the
hybrid ones; in contrast, we note that the classical CVT rate constant underestimates the
accurate results by factors of 7.4 X 10* at 200 K and 67 and 400 K.*') Similar effects are
observed for the H + H, reaction in three dimensions, namely the CVT,**** CVT/MEP-
SAG,* and CVT/SCSAG™ rate constants calculated for the realistic Porter-Karplus surface
no. 2'** underestimate the accurate quantal values® (see also Reference 55) for this surface
by factors of 23, 7.1, and 1.6, respectively, at 300 K. and by factors of 2.2, 1.7, and 1.1,
respectively, at 600 K. These results demonstrate that in order to obtain reliable rate constants,
quantum effects must be properly and consistently incorporated into the theory. In particular,
tunneling corrections must be employed that account for reaction-path curvature. As another
example we consider the reaction OH + H, — H,O + H. Our CVT/SCSAG calculations*®
for this system, based on the Schatz-Elgersma analytic representation® of the ab initio
Walch-Dunning potential energy surface” and including anharmonicity, agree with the
recently recommended experimental results,'*® based on an evaluation of all available data,
to within a factor of 1.6 at all temperatures in the range 298 to 2400 K. Over this range the
rate constant varies by a factor of 2000, and k“Y"'SCSAC varies by a factor of 17.3. The use
of conventional TST or the neglect of anharmonicity or reaction-path curvature significantly
worsens the agreement with experiment.

[t is important to emphasize that the SCSAG method, which is based on the SC approx-
imation, works quite well for H + H,, for which the effect of reaction-path curvature is
large. Nevertheless, we classify the reaction-path curvature itself as small to intermediate
for this reaction. Large reaction-path curvature is often encountered in the tunneling region
in systems with small skew angles. We define the skew angle § for a multidimensional
system as the angle between the gradient VV{x(s)] in the product channel and the gradient
in the reactant channel. [We use {8 for the skew angle for consistency with our published
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work. We assume there will be no confusion with (k,T)~' which B represents in other
contexts in this chapter.] For the bimolecular reaction AX + B — A + BX. where A, X,
and B are comprised of one or more atoms, the skew angle 1s defined by

cos B = [m,mg/(m, + my)(m, + my)]"? (123)

where m,, m,, and my are the masses of the A, X, and B moteties, respectively. The
reaction-path curvature and skew angle are related as follows: The tangent vector to the
reaction coordinate at x(s) is x(s), where an overdot denotes a derivative with respect to s,
ie.,

x(s) = d[x(s)]/ds (124)

From the definition of s as the arc length along the reaction path. it follows that X(s) is a
unit vecror.'”'** It is related to v(s) of Equation 32 by

X(s) = +sign(s) v(s) (125)

For the present discussion X(s) is more convenient because it is a continuous function of s,
whereas v(s) changes sign discontinuously at s = 0. The curvature vector is defined by

K(s) = d[x(s)]/ds = %(s) (126)

The magnitude k(s) of k(s) is the curvature of the reaction path at x(s). and the unit vector
in the direction of «(s) is the principal normal of the reaction path.'’®!"”* The projections of
k(s) along the normal-mode coordinates are the negatives of the quantities in Equation 98
(see the remark in brackets after Equation 98). Defining the values of X(s) in the reactant
and product channels as x® and x". respectively. the skew angle is related to the curvature
by

[ f k(s)ds] * x® = (x* — x®) -+ xR (127a)

= —(1 + cos B) (127b)

Notice from Equation 123 that B lies in the range 0 < B < B/2. Thus, the curvature must
satisty the relation:

1 < IJ_ [w(s) - xR]ds| < 2 (128)

for the fragment-transfer reaction AX + B — XB. Furthermore, small skew angles. which
occur when my is much less than m, and my, require larger components in the x® direction
of the reaction-path curvature. In general, from this kind of analysis. we expect large reaction-
path curvature whenever a light atom or fragment is transferred between two heavy moieties.

As an example of a small skew angle system, consider the transter of a hydrogen atom
between two heavy atoms such as chlorine. For this symmetric reaction the reaction-path
curvature becomes very large in the region around the saddle point (see Figure 2C). In the
asymptotic reactant and product valleys the motion along the reaction path corresponds to
the motion of a Cl atom relative to an HCI molecule, and the bound motion perpendicular
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to the reaction coordinate is the HCI vibration. In these regions the adiabatic separation of
the HCI vibration from the slower Cl, HCI translation is expected to be valid. At the saddle
point the symmetric, bound motion corresponds to the slow movement of the two Cl atoms
relative to each other with the H atom fixed: motion along the reaction coordinate is the
faster motion of the hydrogen between two fixed Cl atoms. In this region we expect the
vibrationally adiabatic approximation to break down.

When reaction-path curvature is large in the tunneling region, we expect that the vibra-
tionally adiabatic mode! used for the MCPSAG and SCSAG transmission coefficients breaks
down there. For this situation we use more general semiclassical ground-state (SG) trans-
mission probabilities PS¢(E). For large-curvature atom-diatom systems with collinear tun-
neling paths we have presented a nonadiabatic approach,*** the large-curvature ground-
state (LCG) tunneling method, that is similar to models employed by Ovchinnikova'™ and
Babamov and Marcus.'”” The physical picture of the LCG method is that the reactants

approach adiabatically from s = —= to the turning point on the adiabatic potential energy
curve and then retreat back to s = —x. All along this path (from s = —= to the urning

point and back out), using the CI + HCI reaction as an example, there is a probability that
the hydrogen will tunnel from one CI atom to the other. The tunneling is assumed to occur
along the most direct path between the reactant and product valleys with no vibrational
adiabaticity relative to the reaction-coordinate motion. For the collinear C! + HCI reaction
on the potential surface of Reference 49, the tunneling path for an energy of 7.8 kcal/mol
is shown in Figure 2C as the straight line between the MEP in the reactant and product
channels. For the symmetric example considered here the tunneling motion corresponds to
the Cl atoms remaining fixed with the hydrogen atom tunneling from one CI to the other.
With this picture in mind we now present a more detailed description of a more general
method for calculating transmission coefficients for large-curvature systems. When it is
necessary to make the distinction. the method presented here will be called LCG3 (large-
curvature ground-state approximation, version 3). The LCG3 method is based on the same
physical model as the LCG and LCG2 methods of References 44 and 49, but it does not
reduce exactly to either of them. even for the special case of atorm-diatom reactions with
collinear tunneling paths. It has been changed to allow for easier applicability to polyatomic
systems and also to be similar to a special case of the least-action ground-state (LAG) method
discussed below. Numerical calculations on'the Cl + HCl reaction and several other reactions
have shown. however, that the LCG. LCG2, and LCG3 methods yield similar results.

We will present the LCG3 and LAG models for the special case of symmetric or almost
thermoneutral reactions for which only the ground states of reactants and products are
important at the low temperatures for which the transmission coefficients differ significantly
from unity. For less symmetric reactions one would calculate the ground-state transmission
coefficient in the exoergic direction by summing the state-to-state reaction probabilities over
all important states of the products.

For a tunneling energy E such that E is less than the maximum VAS of the ground-state
adiabatic potential, the two outermost turning points (s, and s,) on the adiabatic ground-
state potential are defined by

Véis)=E , i=0,1l (129)
where Vi(s) < E for s <'s, and s > s,. If T,.(§,) is the amplitude for tunneling at the

location §, along the reaction path, then the total amplitude for tunneling on the way in is
obtained by averaging the amplitudes for tunneling at each §, between §, = —x and s,

>
T()(E) = f_x v}: I(Evg()) T l(go) Tlun(go) d§0 (]30)
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where the adiabatic approximation to the local speed along the reaction coordinate at s is
2 - 172
VaES) = {2 [E - Vel (131

and 77! (§,) is the number of collisions per unit time that the reaciants make with the potential
wall separating reactants and products. We have not included a survival factor in Equation
130 because we are calculating the primitive semiclassical amplitude which is only valid
when the tunneling probability is small. The tunneling path for each §, is a straight line
through the mass-weighted coordinates x the end points are x(5,) and x(§,), i.e., they lie on
the MEP. The end point in the product valley is determined by the resonance condition:

VoG, = VIGE) (132)

The total amplitude for tunneling along the way in and back out would be 2T(E); however,
to ensure the method satisfies microscopic reversibility, we define the total amplitude as

T(E) = T(E) + T\(E) (133)

where T\(E) is the amplitude for tunneling from products to reactants averaged over the half
collision from §, = s, to §, = =,

The definition of 7(3,) is straightforward for a collinear three-atom system at low energy
in the limit of very large curvature where the tunneling path is almost perpendicular to the
MEP: it is the period of the vibrational motion normal to the reaction coordinate §,. The
extension to polyatomic systems is not as obvious. One possible extension is that proposed
in another context by Slater'’® in which 7(3,) is expressed as the geometric mean of the
periods for the independent normal modes. This does not contain the correct physical picture
for systems in which there is only one mode with large curvature and the rest are only
spectator modes throughout the tunneling process. For this case, the vibrational period should
depend mainly on the one mode that is strongly coupled to the reaction coordinate. To
accomplish this we define the vibrational period in terms of the tunneling path, which is
given by

§— & :
X® =%+ (—2) 6 - % (134)
Xo £ - &, 1 — X
where x; denotes x(3;) fori = 0 or 1, £ measures the distance along the tunneling path, and

§ is the value of € 2t §,. This path involves motion in both the normal Q,, and the reaction
coordinate(s). In the classically allowed region near the MEP, the normal- and reaction-
coordinate motions are treated separately under an adiabatic approximation; therefore, we
assume that the vibrational pertod 7(5;) depends on only the normal-coordinate motions at
8- The tunneling path is projected onto the (F ~ 1)-dimensional hyperplane of bound normal
coordinates Q perpendicular to the reaction path at §,. The normal coordinates along this
projected path are given by

Qu€) = £.4.aG) » m=1,..F -1 (135)
where £ ;. measures the distance along the projection of the tunneling path, and the components

of a unit vector in the tunneling direction in the bound normal-coordinate space are given
by '
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o — (= %) LG
(3 6 - teer)”

m=1,.F—1 (136)

Notice that £, measures a length in the (F — 1)-dimensional hyperplane and & measures a
distance in the full 3N-dimensional space. In an harmonic treatment, the square of the
frequency for the motion in the projected tunneling direction specified above is given by

E—1
@l%) = 2 [0x60q. w(GT (137)

and the vibrational period is given by'”’

27

So)

1(8) = (138)

w, (

A more complete treatment is to define 7(5,) semiclassically:

E

§,I__| ! — 172
TG = Q)= L {ES%I(n =0,5) - 3 V[ Qm<§g>1} &, (139)
1.0 m=1

where €, , and £, | are the turning points of the zero-point motion in the cne-dimensional
potential

F—1
2 Vals Qu(E]

Using this prescription, anharmonicity can be easily included in the definition of 7(§,).
The tunneling amplitude [T,,,(5,)] is calculated semiclassically as

Ttun(go) = exp[ - 9(50)] (]40)

where 8(5,) is the one-dimensional imaginary-action integral along the tunneling path. The
imaginary-action integral is defined by

_ _ (2'_L)l/2 €1 ) .
0(5) = O[E..(50)] = 5 e Vel ® — E, (8] & - 2(8)dE (141)

where
E..Gy) = VI(E) = VIGE) (142)

is the energy available for tunneling, V(&) is the effective potential for tunneling, £ is the
unit vector along the tunneling path, and #(£) is a unit vector in the dynamical tunneling
direction. Notice that part of the energy, namely, E — V9(,), is assumed to be localized
in the reaction coordinate, which is perpendicular to the tunneling direction in the large-
curvature limit, and hence unavailable for motion along the tunneling path. Each value of
€ defines a unique point X(5,,£) in the mass-scaled coordinates by Equation 134 and each
such point corresponds to at least one point in the curvilinear coordinates [s(3,,£),Q(5,.£)]-
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A unique value for s(5,,§) is determined as follows. First we define s(§,.§,) = $,, then for
some & near &, a root search is performed to find the value of s such that the vector from
x(s) to x(§,.£) is normal to the vector v(s) at s. This process is repeated using the value of
s at & to begin the root search at § + A& and thereby to construct a single-valued and
continuous function s(5,,&). [In practice. this root search is carried out in terms of s(a,y)
described below as a special case corresponding to a = 1]. The system is considered to be
in the adiabatic region of the potential if the normal coordinates Q(S,,£) are within their
outer turning points, i.e.,

sign{t,.[s(5,ONQu(0.8) < ItIsGo 8] . m = 1. F ~1 (143)

and if [3(5,.£).Q(5,.£)] lies within the locally single-valued region of the curvilinear coor-
dinates, i.e.,

2 BrelsGH1QnG0d) < | (144)

The first point in going from §, at which either Equation 143 or 144 is not satisfied is called
&, Similarly, the first point in going from §, at which either Equation 143 or 144 is not
satisfied is called £]. For & < & < & and for §, > £ > &, the system is assumed to behave
adiabatically in the (s,Q) coordinates and the effective potential V_.(5,.&) is set equal to
VE[s(3,,£)] and Z is set equal to the unit vector along the MEP at s(5,,§). For § < & <
&), the tunneling is assumed to occur directly along the path defined by Equation 134: Z is
set equal to & and the effective potential is approximated by

. ] N (E-& . .

Valia) = VING0D] + Va8 + (572 ) Vet = Vel 149)
1 )

The first term is the actual potential energy surface and V_,(§)) corrects for the zero-point

energy in the modes which are still within their turning points:

Verl€) = 2 {eF [0, = 05E)] ~ V,[5(6).Q. ()]
Om<tm

+ V,_I[s(§), 01} (146)

The reason for using linear interpolation between &; and & is that the zero-point energy in
the modes which are still within their turning points is not uniquely defined there. It is
possible for &, to be larger than &, in which case the two adiabatic regions (the one near
§, and the one near §)) overlap. In this overlap region there are two distinct values of s(£),
one obtained from the procedure described above, starting at §,. and the other cbtained by
starting at §,. The ambiguity is resclved by choosing the value of s(§) variationally, i.e..
the contriubtion to the phase integral is taken to be the minimum of the two values of the
integrand evaluated at the two values of s(£).
The primitive expression for the tunneling probability is given by
PLoME) = [T(E)]? (147)

prim

Because of the integration over s in Equation 130, PLSS(E) is not bounded by one. To
remove this inconsistency we propose the following uniform expression which goes to 1/2
atE = vae;
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o , I i) !
PLCCXE) = {l + /2[PLcc3(VAG) - 1] PLCGE(VAG)}/I:] + p’-CG-‘(E)j, ’

prim prim prim
E, < E < VAc (148a)
Note that in the deep tunneling region, for which PLSS¥(E) is very small, PL°°%(E) tends to
PLCG3(E)
prim N

For E > VA%, nonclassical reflection is included by the zero-curvature parabolic unifor-
mization scheme of Equation 118, i.e..'™

I — PMEPSAG(QVAS — ) VAG < E < 2VAS — E,

1 . E>2v4s — E, (1480)

PLCSHE) = {

The transmission coefficient k“V"“““*(T) is then obtained from the tunneling probability as
in Equations 85a to c.

Thus, to obtain a transmission coefficient. the major numerical effort is involved in the
mtegrals of Equations 85a to ¢ and 141. Each of these integrals is calculated by repeated
Gauss-Kronrod quadrature. typically with two subintervals with about 61 to 81 quadrature
points in each.

For systems with small to intermediate reaction-path curvature (such as H + H,), adiabatic
models such as the MCP and SC approximations, which are based physically on nearly
optimum tunneling paths defined with respect to the MEP. provide a reasonably accurate
description of the tunneling process. In both of these models tunneling is basically in the
reaction-coordinate direction and the effective tunneling path is at or near the path of outer
turning points for the bound vibrational motions coupled by reaction-path curvature to the
reaction coordinate. i.e., for those motions with nonzero B, .. In systems with large reaction-
path curvature (such as ClI + HCI), a reasonable model is that the tunneling occurs along
the shortest path between the reactant and product valleys, leading to the LC method. In
this method. tunneling is basically in the vibrational direction. The reactions Cl + HD and
O + H, are examples of systems with intermediate reaction-path curvature; for these types
of systems the optimum tunneling path must be intermediate to the two paths mentioned
above. To treat all three kinds of systems on a consistent basis we have developed a least-
action ground-state (LAG) tunneling method that chooses the best tunneling paths from
sequences of parametrized paths: the choice of paths is based upon a least-action principle
— the paths are chosen to give the least exponential damping in the tunneling region. The
model includes both the vibrational and the reaction-coordinate contributions to the tunneling
probability.

We first consider a case where there are only two reaction-coordinate turning points for
the adiabatic potential curve: we call these s, and s,. The sequence of tunneling paths for
a given available energy is specified by a set of basis paths depending on a single parameter
o such that & = 0 yields the MEP and o = I corresponds to the large-curvature tunneling
path for this availabie energy. We choose a set of basis paths as

x(a,y) = (1 — )x[s(0.v)] + OL{X(S‘,) + vy[x(s)) — X(Su)]} (149)

where vy is a progress variable along the path such that at y = 0.x(x,0) = X(s,) and at vy
= |,x(a,l} = x(s,), and

s(0.y) = so T ¥(sy — 8) (159)

where s, and s, are defined by Equation 129. Thus. along the MEP;
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Y = (s — §)/(s, — 8y a=90 (151)

Examples of the basis paths x(«,y) for the Cl + HD reaction on the Stern-Persky-Klein'®:"®
extended LEPS potential and for the H = H, reaction on the Porter-Karplus surface no.
2'%* are given in Figures 2A and 2B, respectively. For the CI + HD reaction basis paths
for a total energy of 8.0 kcal/mol are shown fora = 0, 1/3, 2/3, and 1. For the H + H,
reaction, the MEP (a = 0) and the basis path for the « value corresponding to the least
exponential damping (« = 0.432) are shown for a total energy of 8.8 kcal/mol.

For a given «. the imaginary-action integral for available energy E, (3,) is defined by

(2“')111
#

[ F) ,
L Elo,y) - o) —E(j?—) {Voilo,y) — VOGP dy  (152)

0(a,8;) =

where &(a,y), the distance along the tunneling path, is found by numerical triangulation.
Notice that V3(3,) is equal to the available energy. [Notice also that, as discussed below,
although the tunneling path is always determined by the basis path. it is not always the same
as the basis path. in which case £(«,y) must be computed as the distance along the tunneling
path, not the basis path]. Notice also that in the LCG method the progress variable is £
whereas in the LAG method the progress variable is -y, and £ is a function of a and y. The
unit vectors, £ and 2, have the same definitions as in the LCG method and V. (c,y) is also
defined in a similar manner as in the LCG method. For a fixed o, each vy can be associated
with a unique value of the curvilinear coordinates [s(e.y),Q(c,v)] in the same manner as
described for the LCG method. [In the root search for s(a,v), the value of s(a,y) is used
to begin the root search at s(a,y + A<y). The value of Ay is the spacing between points in
the quadrature grid for Equation 152.] The system is assumed to be in the adiabatic region
of the potential if all the normal coordinates lie within their turning points (Equation 143)
and if the point lies within the locally single-valued region (Equation 144). In adiabatic
regions the effective potential is set equal to the ground-state adiabatic potential, and the
tunneling path is given by the basis path (Equation 149). Since the tunneling path is no
longer restricted to be a straight-line path (as was the case in the LCG method), the unit
vector &(c,y) is computed numerically. It is defined by

dx(o,y)
dy

ox(a,y)|
oy |

Eay) = (153)

where the derivative is computed from a quadratic fit of x(a,y) as a function of y. The two
critical values of 'y which bound the nonadiabatic region of the potential are defined in terms
of & and &, described previously by

flay()] = & ., i=0,1 (154)

For + between these two values, the tunneling path is no longer defined by Equation 149,
but instead, is taken to be the shortest path between the points x[et,vo()] and x[ox,y3(a)]:

Y = Yola)

vi(e) — ‘Y;,(a)]{x[a’%(a)] = X[, Yo()]},

x(e,y) = x[a,y(e)] + [
Yolo) < ¥ < vy(a) (155)

Along this path the effective potential is defined by Equations 145 and 146.
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The optimum tunneling path is the one which minimizes the imaginary-action integral
0(a.8;). Starting with a grid of 11 equally spaced points i «, the smallest value and two
closest values of 0(a,5,) are fit to a quadratic in «. A new value of 8(x.§,) is computed at
the value of o corresponding to the minimum of the fit. The value of a that gives the
minimum in 8{x,5,), &, is obtained by repeating this procedure until either 0(a,5,) is con-
verged to a relative change of 10~* or « changes by less than 102,

Equations 149 to 155 all apply for a given §, and §,, although the dependence of x(a,y),
s(a,y), E(ay), 20.y). Viu(a,y). Qla,y), &, v), Yola) and vy,(a) on §, and §, and of
6(o.5,) on §, is only implicit in the notation used here. When there are only two reaction-
coordinate turning points, §, and §, are themselves unique functions of a single variable E, .
We now consider a case where there are four or more reaction-coordinate turning points for
the adiabatic potential curve. The LAG procedure described above is carried out using the
two outermost turning points s, and s,. as also used in the LCG method. This corresponds
to a direct tunneling process from the reactant to the product valley. When there are four
or more reaction-coordinate turning points. the amplitude for this direct process is compared
with the amplitude for a process in which the tunneling takes place sequentially through the
multiple barriers. The amplitude for the sequential process is obtained by carrying out the
above LAG procedure for each pair of turning points and taking the product of the amplitudes
for tunneling through the individual barriers. The amplitude for tunneling is taken to be the
maximum of the direct and sequential values. For the sequential process with four turming
points there will be different optimum o values associated with the segments close to reactants
and products; we call these &, and &,. In this case 0(a,,5,) becomes 6(&,,&,,5,). For six or
more turning points this becomes 8(&,,& &-.5,) and so forth for sequehtial tunneling, but it

remains 6(&.5,)) with & = &, = &, = ... for a direct tunneling process. The general case
will hence be denoted 8(&,,.-..5)-
For direct (nonsequential) tunneling and a = 1, the tunneling paths are the LCG paths.

In this case, the tunneling direction may be nearly normal to the reaction-coordinate motion
and there is a possibility of tunneling with each vibration against the potential in the bound
normal-coordinate direction. For this case the tunneling amplitude should be constructed
using an expression simtlar to Equation 130. For @ = 0, the tunneling path is the MEP and
tunneling at values of s less than the turning point s, shouid not be included. A primitive
expression for the tunneling probability which interpolates between these two mechanisms
is constructed as follows. The amplitude for tunneling due to the component of vibrational
motion in the direction of the tunneling path when the reaction coordinate is in the ranges

§, = —>»tos,and§, = s, to +o¢is given by
’[‘LAG(E) ='T(l)_A0(E) + TlI_AG(E) (156)
where
SO
TEAC(E) = f 77 1(8g) Vi "(E.8)expl — B(&y,5)Isinx{@o,50)d5, (157)

and x(&,.5,) is the angle between the tunneling path for @ = &, and the MEP at s = §,,.
A similar expression is used for T+*S(E). The angle x(G,,8,) is given by

cos X(Bo.50) = V(5o * £(So) (158)

The total probabiiity for tunneling at an energy E is obtained by adding the tunneling
contributions from vibrating against the barrier to the contribution for tunneling at the
reaction-coordinate turning point. This yields:
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PLAYE) = [TLAG(EHZ + {[COS X(&,50)

prim

+ cos x{@,,s)128 expl — 26(&,,-..,5,)] (159)

Notice that the last argument in the last term is s, which is the value of §, for all the energy
being available, i.e., it is the reaction-coordinate turning point for VS(s) at total cnergy E.
A uniform expression for P*%(E) similar to the expression for the LCG method (Equation
147) is used, and Equation 148b is used to include nonclassical reflection in the LAG
method. The transmission coefficient is obtained from the tunneling probabilities by Equation
85a to ¢, yielding k©¥7A%(T).

We can now see more clearly how large-curvature approximations in the LAG method
lead to the LCG3 method. Along the LCG3 path used in Equations (41 to 146, s{§) = s[a
= 1,y(§£)]. Furthermore. in the large-curvature limit x(&,5;) = m/2 so Equations 156 to
159 reduce to Equations 130. 133, 140, and 147.

The LAG method provides a physically motivated model for including tunneling in systems
with small, medium, or large reaction-path curvature. The method smoothly interpolates
between the MEP method in the limit of zero curvature and the LCG3 method in the limit
of large curvature. For large-curvature systems, the optimum tunneling paths are very near
o = }. For example, for the Cl + HCI reaction at a tunneling energy of 7.8 kcal/mol, the
optimum path is for @ = 0.9; the probability for tunneling along this path is given by
expl —20(&.5,)] and 1s 5.9 x 1077, whereas for o = 1 the probability is 4.8 X 1072, The
LCG3 and LAG transmission coefficients agree well; at 200 K they are 41.3 and 43.2,
respectively, compared to the accurate value of 90.9 and at 300 K they are 10.0 and 10.2,
respectively, compared to the accurate value of 15.9. The Cl + HD reaction has intermediate
reaction-path curvature and for this system the optimum tunneling paths lie in the range of
a from 0.3 to 0.6 for energies at which the probabilities range from 10-7 to 10~2, At 8
kcal/mol the probabilities for tunneling along the o = 0, 1/3, 2/3, and 1 paths are 1.1 X
107°,3.7 X 1074, 1.5 x 107% and 1.1 x 1073, respectively. The optimum path has «
= 0.444 with a tunneling probability of 5.4 X 107*. These values can be compared to the
probability of tunneling along the MCP of 1.0 x 10~°. The transmission coefficients for
this system at 200 K are 2.0, 3.8, and 7.9 for the MCP, LAG, and accurate quantal methods:
at 300 K these values are 1.7, 2.8, and 3.2, respectively. The H + H, reaction is a system
for which the MCP and SC methods were quite successful, as discussed above. Figure 24
indicates that the MCP and optimum tunneling path (o« = 0.432) are quite close near the
conventional transition state. For the portion of this path which lies between the MEP and
MCP the contribution to the tunneling integral 8 will be very close to that obtained from
the MCP over a comparable portion of the path because both methods use the adiabatic
potential in this region. At 8.8 kcal/mol the tunneling probabilities for the MCP and o =
0.432 path are quite close: 2.7 X 107% and 3.9 X 107%, respectively. The transmission
coefficients at 200 K are 29, 46, and 45 by the MCP, LAG, and accurate quantal methods;
at 300 K these values are 5.1, 7.3, and 8.7, respectively.

V. IMPROVED CANONICAL VARIATIONAL THEORY AND
MICROCANONICAL VARIATIONAL THEORY

So far we have emphasized canonical vanational theory, in which a single generalized
transition state is optimized for a canonical ensemble. Microcanonical variational theory is
more complete because it recogrizes the conservation of total energy. In wVT a separate
generalized transition state is optimized for each total energy (in principle one could also
consider a fixed-energy, fixed total angular momentum ensemble. but we shall not do this
here). In improved canonical variational theory the generalized transition state is optimized
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microcanontically for energies up to the microcanonical variational threshold energy and
canonically for higher energy contributions. This means that ICVT has the same threshold
as pVT, but the caiculations are almost as simple as for CVT. In particular, we choose the
generalized transition state at the maximum of VZ(s) for energies below this maximum; then
for each temperature we choose a single dividing surface for all higher energies. This single
dividing surface is found as in CVT except that the canonical ensemble is truncated from
below at the threshold energy. In this section we give detailed expressions for the ICVT
and pVT rate constants. analogous to the expressions for the CVT rate constant in Sections
II and III.

As in Section III, we consider general polyatomic systems, we assume electronic, vibra-
tional, and rotational energies are separable, we treat vibrations quantum mechanically, and
we eventually treat rotation classically. At the beginning of the derivations. however. we
treat rotation as quantized.

In improved canonical variational theory we enforce the vibrationally adiabatic ground-
state threshold for all contributions to the generalized transition state partition function. For
this purpose it is convenient to define the vibrational-rotatioral partition function of the
generalized transition state by

QT(T.5) = QUUT.$)QTT,s) (160)

to denote the collection of vibrational quantum numbers by the arraym = {n,, m = 1,2,...,F
— 1}, and to give each rotational state a unique label k. As in CVT, the vibrational-rotational
partition function is based on the ground electronic state. The adiabatic potential curve for
the quantum state with quantum numbers (n k) may be written:

Vink.s) = Vyee(s) + exi(mk,s) - (161)

where €57(n.k.s) is the vibrational-rotational energy of quantum state {n.k) of the generalized

mt

transition state at s:

€2T(n,k,s) = €Zl(n,s) + €Sl(k,s) (162)

nt

The contribution to QS'(T,s) from each quantum state is exp{ — BleST(n.k.s)]}. To eliminate

the contribution from below the vibrationally adiabatic ground-state threshold, we must

replace this exponential by exp{ —B[V*® — V,x(s)]} whenever V*C exceeds V (nk,s).*
It is convenient to define cutoff partition functions® by

QS (T.s; €) = > >, exp{— BleZT(n.k,5)]} (163)

and
QSI(T.s; @) = 2 exp{— BleST(k.9)]} (164)
k

where the primes on the summations mean we include states only if their energy (vibrational-
rotational energy in Equation 163 or rotational energy in Equation 164) is less than the
argument e following the semicolon. We also define cutoff sum of vibrational-rotational
states and sum of rotational states functions for the generalized transition state by

NS(e,s) = >, > 1 (165)
n k
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and

NCT(e,s) = o, 1 (166)

k

where the primes denote that only those levels for which €ST(n.k.s) or eZT(k,s) is less than
€ are included. Thus, NS"(e,s) and NST(e,s) are the number of vibrational-rotational or -

Tot

rotational states with €€1(n k,s) or €CT(k,s) less than e. Notice that no degeneracy factors

int rot

occur in Equations 163 to 166 because every state has a unique index. In accordance with
the prescription of the previous paragraph, we define an improved generalized transition
state partition function by

Q¥T(T.s) = QS(T,s) — QlL(T,s) (167)
where we have also defined:

QL.—(T95) = QS'[T,s; VAaé - Vuer(s)] — exP{_B[VAG - VMEP(S)]}
X NETVAS = Vyep(s)s] (168)

Using the assumed separability of vibration and rotation this becomes
L(T,s) = X (expl~ BeSim s)IQETIT,s; VA — Vyyerls) — €%5(n,s)]

— exp{—BIVAS — Vyeo(S)INGTVAS — Vi ep(s) — €55(n,s),5)) (169)

The classical approximations to Equations 164 and 166, analogous to Equations 45 and 46
for the complete (noncut-off) partition function. are

3 2 3 12 .
2r&(5> [(ﬁ) I A(s)IB(s)Ic(s)] , nonlinear GTS  (170a)

SH(T.s; €) =

2T, (1) ;(Sé linear GTS (170b)
and
4 [ /2€\3 12 .
5 [(EE) [A(s)la(s)lc(s)] , nonlinear GTS (171a)
NS)T(E‘S) =
2el(s)/A?, linear GTS (171b)

where [',(p) is the incomplete gamma function defined by

e = J; wP~! exp( — w)dw 172

Equations 170 and 171 are derived in Appendix 2 by introducing a cutoff into the standard
classical expression'*'™-1”* for the rotational partition function.
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Combining Equations 167 and 169 to 171, the final expression for the improved generalized
TST rate constant for quantum mechanical vibration and classical rotation is

KIST(T.s) = EM?W Q(T.s) exp[ — BV ies(s)] (173)
where
Q(T.s) = Q(T.s) — QSN(T,s) 2 c(s) (174)
[ZSIA(S)IB,S Ao (Fa<(§) B~ exp| — Be%i(n,s)]
- 2[«5_,,;5)_]_2 exp{ —B[VA° — VMEP(S)]}), nonlinear GTS  (175a)
(8) =
2::5) (el 1B 'expl — BeST(n,5)] = €,(5)
X exp{—B[V*C® — V,eu(s)]D), linear GTS (175b)
and
€ls) = VA = V() ~ Slm,s) - (176)

The prime on the sum in Equation 174 denotes that it includes only those vibrational levels
for which €,(s) is positive. Finally, k'V¥(T) is defined as

KVIT) = mén k'S™(T,s) a7

The microcanonical variational rate constant may be written as

k#¥T(T) heR(T) (178)
where
IN(T) = fo exp(—BE) N*YT(E) dE (179
and
NeYI(E) = mgn NET(E,s) (180)

Here QGT(T,s) is assumed independent of s in the bottteneck region and NST(E.s) is the sum
of vibrational-rotational states with total energy less than E, i.e., the number of vibrational-
rotational states with V (n,k.s) less than E. Again we assume separable vibration and rotation,
which yields:
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NET(E,s) = 2 O[E — Vye(s) — €SI s)INST[E — Vyeels) — €55(m,s),s]  (181)

For N&T(e,s) we use the classical approximation given by Equations 1712 and b.

In order to use the VT one must calculate the sum NST(E.s) over the vibration-rotation
states or the approximation of Equation 181 to this sum. Many techniques for the evaluation
of this sum have been proposed, with special reference to unimolecular reactions 180190
The most popular are the semiempirical method of Whitten and Rabinovitch'-'¥? and the
direct-count method.#*'8¢18 It is possible to include Morse anharmonicity and hindered
rotors in direct counts, but the methods that are efficient for large counts still involve the
INM approximation. These techniques can also be used for bimolecular reactions. The most
important difference is that NST(E.s) is usually required at relatively lower energies for a
bimolecular case; hence. for a given number of atoms, NS'(E,s) is a smaller number. and
greater accuracy in its evaluation may be both desirable and possible.

One possibility for evaluating Equation 181 when it is small is to use the INM approxi-
mation of Section III.B for the vibrational energy leveis and direct summation. However,
this may become unwieldy as E and NET(E. s) become large. If so, direct Monte Carlo
evaluation of the classical anharmonic sum-of-states integral and use of a sum-of-states
analog to the Pitzer-Gwinn partition-function approximation for the ratio of the anharmonic
to the harmonic sum is one alternative,'0?-!!3-113.120-126 Apother aiternative is the inversion of
the Laplace transform that relates NST(E,s) to Q€T(T,s).?*'%318 This may be especially useful
if QST(T,s) is calculated without the INM approximation.

Since microcancnical variational theory is equivalent to the adiabatic theory of reac-
tions,?"** wVT calculations could also be carried out in an adiabatic framework. This method
has been used for collinear atomn-diatom reactions,?'-* but it is more difficult to apply in
general because the adiabatic state correlations become more complicated when noncollinear
reactions are considered.8!-8%.190.191-207

Inclusion of tunneling effects in ICVT and pVT can be accomplished very similarly to
the procedure described in Section 1V for CVT.** Thus,

KISVTSS(T) = k59(T) kiCVT(T) (182)
and
K=VTSS(T) = «S9(T) k*VT(T) (183)

where, by analogy to Equations 85a to c,

fo " psoE) exp(— BE)E

K5°(T) = (184a)

fv AG exp(— BE)dE

CVTISG exp{ —BVI[s$V" (D))}
« () exp(—BVAY)

(184b)

Here, as introduced between Equations 128 and 129, PS(E) represents a general semiclassical
ground-state transmission probability. The ratio in Equation 184b accounts for the
different thresholds in ICVT and pVT as compared to that of CVT, i.e., for the different
denominators in Equations 85b and 184a. -
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For some reactions it may be desirable to go beyond the ground-state approximation for
the transmission coefficient. Procedures for calculating excited-state tunneling probabilities
in the adiabatic theory of reactions are discussed elsewhere .57 (A statistical-diabatic model
has also been considered.?®”) As an example of how excited-state tunneling probabilities
may be included in the calculation of the rate constant. we consider microcanonical variational
theory. We write the wVT rate constant expression in adiabatic theory form as™

aQS'(T.s) f exp(— BE)NYA(E) dE

KYNT) = o (185)

where
NYAE) = > > P¥A(n.k.E) (186)

and PY4(n,k.E) is the vibrationally and rotationally adiabatic transmission probability for
state (n,k). If P¥*(n.k,E) is approximated semiclassically, it becomes P5*(n k,E); a special
case is PSAS(E), considered in Section IV. which corresponds to (n.k) being the ground
state. [f we approximate PYA(n.k.E) by its generalized transition state value 8[E — V (n.k.s)],
then NV~(E} and k¥A(T) reduce to N*(E) and k*(T) when s is set to zero., and Equations 183
and 186 reduce to microcanonical variational TST when s is chosen at the maximum of
V.(n.k.s). Instead, however, we can include tunneling and nonclassical reflection effects
by calculating PS*(n.k,E) as a one-dimensional tunneling probability using methods similar
to those described in Section 1V for PSS(E). but with two important differences. First, in
adiabatic approximations (or adiabatic regions for methods like the LCG appreximation),
VE(s) is replaced by V (n.k.s). Second. the tunneling path [or p.3%(s) in the SC approximation]
is a function of (n.k). Equation 185 was first suggested by the authors in the context of
bimolecular reactions,* and an identical expression has been suggested by Miller*® in the
context of unimolecular reactions. A generalization of the above treatment is to write:

oQS™(T.s) J; exp(—BEINS(E) dE

RVTS — 187
k ) (187)

and
NS(E) = 2, > PS(n.k,E) (188)
n k

where P%(n.k.E) is the most accurate available semiclassical approximation to the reaction
probability of state (n.k) at total energy E. Equation 187 allows for general state-dependent
semiclassical transmission corrections to microcanonical variational theory. If PS(n.k.E} is
replaced by the exact reaction probability. then we obtain the exact equilibrium rate constant.
This kind of comparison of the TST expression to the exact result is discussed in more detail
in Appendix .

V1. RECROSSING CORRECTIONS

So far we have discussed using the transmission coefficient to include quantal effects on
reaction-coordinate motion. Another kind of effect that one can attempt to include in the
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transmission coefficient is the breakdown of TST itself. In particular. if one has a theoretical
rate constant [k*(T)] that one believes is more accurate than conventional TST or hybrid
CVT, one can define a corresponding transmission coefficient by

K*H(T) = kHTYkHT) (189)
or
KYTZ(T) = kHTYkV(T) (190)

In general, this is not too useful since accurate k*(T) values are not usually available.
However, there have been some practical approaches suggested for calculating transmission
coefficients that include, to some degree, estimates of the breakdown of the fundamental
assumption of TST. These approaches are based on a TST model, but they include somne
estimate of the effect of classical recrossing of the conventional or generalized transition
state dividing surface. The approaches to be considered are (1) the unified statistical approach,
(2) an analytical mechanics approach due to Miller. (3) reduced-dimensionality transmission
coefficients, and (4) the unified dynamical model. Method 1 is a statistical theory and is
discussed in Section VI.A; methods 2 to 4 are dynamical and are discussed in Section VI.B.

A. Unified Statistical Model

The unified statistical (US) model was first suggested by Miller,* rederived by Pollak
and Pechukas,?' and extended in various ways by the authors,*>%2!! Chesnavich et al.,?'?
and Miller.?" In this section we review some of this work and also present some new
extensions. The US model interpolates between wVT in the limit of direct reactions with
only one bottleneck and the statistical phase-space theory'3-2'# in the limit of complex-forming
reactions with two bottlenecks. The US model was first derived by applying the Hirschfelder-
Wigner branching analysis®'® in a microcanonical ensemble. The US model rate constant is
given by

us = M’_S) ) _ us
KS(T) = — D) exp(— BE)NUS(E) dE (191)
where
NUXE) = NyYI(E) RY(E) (192)

In Equation 192, N®VT(E) is the microcanonical variational TST approximation to the cu-
mulative reaction probability as given by Equation 180, and RY3(E) is the US model recrossing
factor. The recrossing factor is defined by

RYS(E) = [1 + NEVT(E)NT™E) — NeVI(E)ND(E)) ! (193)

where N=(E) is the second-lowest minimum of NS'(E,s) as a function of s, and N™*(E)
is the highest maximum of NST(E,s) that lies between the two lowest minima. If there is
only one minimum in NST (Es), then RYS(E) is unity, and the US model reduces to pVT.

The same analysis can be applied to a canonical ensemble to give the canonical unified
statistical model (CUS). A classical version for collinear atom-diatom reactions was presented
previously;®'! here we present the equations for general bimolecular polyatomic reactions
with quantized vibrations. The canonical-ensemble average of the flux through a dividing
surface at s for a temperature T is proportional 10 the generalized transition state partition
function:
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qS(T,s) = QUN(T.s) expl — BV uep(s)] (194)

where QST(T,s) has its zero of energy at the overall zero of energy at the minimum of the
potential well of the reactant. Applying the Hirschfelder-Wigner branching analysis?'® in the
canonical ensemble we obtain:

KCUS(T) = KEVT(T) REVS(T) (195)
where the recrossing factor is defined by

REU(T) = [1 + ¢S (DVmX(T) —qS ™ (THgmn(T)] ™ (196)
In Equation 196, g5¥7(T) is evaluated at the highest maximum of the generalized free energy
of activation curve AGST9(T,s) as discussed in Section II, g2**(T) is evaluated at the second-
highest maximum of AGY"%(T,s), and gJ'"(T) is evaluated at the lowest minimum between
the two highest maxima of AG®T(T,s). [Note that in Equation 6 of Reference 211, q&"(T)
should be deleted from the numerator; its presence in the numerator is a typographical error].

Both the US and CUS expressions for the rate constant incorporate quantum effects in
the bound degrees of freedom orthogonal to the reaction path, but treat motion along the
reaction coordinate classically. First we consider including quantum effects on reaction-
coordinate motion in the microcanonical US model. The adiabatic model provides a consistent
method of including quantum mechanical tunneling effects into VT through a multiplicative
factor k*V™SAS(T). Let us consider the case where the ground-state adiabatic barrier has two
maxima. For this case Miller® has shown that Equations 192 and 193 can be obtained from
a WKB treatment of transmission through the double-barrier potential. Therefore, a consistent
method of including tunneling effects in the US model at low energies (where only one
adiabatic state is open) is to replace the cumulative reaction probabilities in Equations 192
and 193 by WKB tunneling probabilities through the individual barriers. At sufficiently low
energies this yields a ground-state reaction probability of

PYKEUSS(E) = ppy/[py + P2 — PiP:l (197)
where
p, = U[L + exp(20)] , i =0,1 (198)

and @, are the WKB imaginary-action integrals through each of the single barriers of the
double-barrier potential. This expression is derived from a uniform expression for tunneling
through a double-barrier potential,*'*-*""

Puniform(E) = plpzlll + (1 - pl)(l - Pz) + 2\/1 - P. \% 1 - Pz C052¢] (199)

where the angle & is related to the phase integral for the classically allowed motion in the
well between the two potential barriers. For the case of a symmetric system with p, very
much less than one, Equation 197 is equal to p,/2. However, under these same conditions,
the uniform expression (Equation 199) goes like p? when the system is not near a resonance.
At these low energies, the physical picture for the US model is that p, is the probability of
tunneling through the first barrier into the well between the two barriers. The system is
trapped in this well and the branching ratio for going on to products vs. returning 1o reactants
is just p,:p,. The uniform expression has this physical picture only near a resonance, i.e.,
at an energy corresponding to a bound state in the well between the two barriers. At energies
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not near a resonance the system is not trapped in the potential well and the probability of
reaction is proportional to the product of the tunneling probabilities through the separate
barriers. We prefer the latter picture of the tunneling process and therefore abandon the
uniform semiclassical approach to putting tunneling effects into the US model.

An alternative approach for including quantum effects on reaction-coordinate motion in
the US model is suggested by the form of Equation 192, in which the cumulative reaction
probability is written as the pVT one multiplied by a recrossing factor R¥S(E). Note that
NeVT(E) is zero for energies below the ground-state adiabatic barrier maximum and that
RUYS(E) reduces to unity for these energies. As previously suggested,* we use this recrossing
factor to correct the adiabatic expression for the cumulative reaction probability, thus pro-
viding a quantally unified statistical approximation:

NJUS(E) = NJAE) R¥(E) (200)

where NY*(E) is given by Equation 186. Alternatively, we could have used the semiclassical
approximation to NYA(E) in this expression, Equation 200 has the desirable features of
approaching the VA limit at low tunneling energies as RYS(E) goes to one and approaching
the US limit for high energies where tunneling effects are no longer important. Another
method of including tunneling that also has these correct limits is*

KUSSAS(T) = kYS(T) kSAS(T) (201)

where the transmission coefficient k®A%(T) is discussed in Section V.

It is more problematic to incorporate reaction-coordinate quantum effects into the CUS
model. In the same spirit as above, k““>(T) could be corrected by multiplying Equation 195
by a ground-state transmission coefficient for the CVT method, yielding: -

KCUS'SAG(TY = KCUS(T) kCVT'SAG(T) (202)

However, this does not have a satisfactory limit at low temperatures. For sufficiently low
temperature the free energy of activation curve approaches the ground-state adiabatic potential
curve and k“V(T) approaches k*V'(T). However, the CUS recrossing factor R“V5(T) does
not necessarily go to one in this low-temperature limit and we do not recover the correct
VA limit.

To test the quantized CUS and CUS/SCTSAG models, we compared their predictions to
accurate quantal rate constants for 23 collinear atom-diatom systems. These comparisons
have not been published previously; we summarize them here. For the 23 systems studied.
the CUS recrossing corrections are usually negligible at temperatures below 1000 K. but
the quantized CUS theory does provide a useful correction to variational TST in a few cases
at high temperature. For the cases studied, the CUS recrossing factors improve the accuracy
more often than they worsen it. One case for which the recrossing factor worsens the accuracy
is a model HFH system,” which has two symmetrically located saddle points separated by
a shallow local minimum. For this system, the ratios of CVT/SCTSAG and CUS/SCTSAG
rate constants to the accurate quanturn mechanical one at 100 K are 0.53 and 0.27. respec-
tively. This is an example of a system in which R“YS(T) incorrectly approaches one half at
low temperatures. Even for this system, though, the CUS recrossing factor improves the
accuracy at 7000 K. Another case where the CUS/SCTSAG model is less accurate than the
CVT/SCTSAG one is the H + H. system on surface no. 2 of Porter and Karplus.'®* For
this system the ratios of CVT:SCTSAG and CUS:SCTSAG rate constants to the accurate
quantal one at 2400 K are 0.97 and (.58. respectively.
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We have also applied the CUS and CUS/SCTSAG models to many atom-diatom reactions
in three dimensions. For these cases we find that the CUS recrossing corrections are generally
small (less than 20%), but they may be important for accurate calculations of kinetic isotope
effects. The general smallness of the US correction to VTST is encouraging, although of
course the actual recrossing effects will sometimes be larger than those predicted by the US
model.

B. Dynamical Approaches

A model that incorporates recrossing effects on more dynamical grounds has been proposed
by Miller.*"* In this model. a dynamical approximation is made that is different (and, one
would hope. better) than the fundamental dynamical approximation of conventional TST.
Alternatively, this approach can be viewed as employing a TST-type approximation in a
curvilinear coordinate system rather than in a coordinate system obtained by a linear trans-
formation from cartesians. We first review the purely classical version of the theory and
then discuss the incorporation of quantum effects. Miller first derived the expression for the
classical cumulative reaction probability for a dividing surface located at the saddle point;
however. a general expression when the dividing surface is at a general location s is

NEYE,s) = kEE,s) NE'(E,s) (203)
where the curvature correction term kSS(E,s) has the properties:

=1 , E<E%s)
CC
< (E.s) { <1 ., E>E%) (209
and E%(s) is a critical energy given (within the harmonic independent normal-mode approx-
imation) by

F—1

ES(S) = Vauesls) + (w/2) {2 {Bmp(symm(s)P}" (205)

m=i

Miller chose the saddle point location s = O for evaluating NS™(E,s) in Equation 203, but
suggested that a better approximation to NE© may be obtained by evaluating kS(E.s) at the
value of s corresponding to the maximum of curvature. The dynamical approximation sug-
gested by Miller does not provide an upper bound to the exact classical rate constant and,
therefore. it is not totally justified to variationally optimize s to minimize NES(E.s). Instead
we suggest that a better approximation may be obtained by evaluating Equation 203 at the
value of s that minimizes NZ™(E,s). In this way one would obtain a recrossing correction
factor evaluated at the wVT dividing surface, which is the best GTS dividing surface for a
given energy. A problem, however, is that this recrossing correction factor is based upon
the reaction-path curvature evaluated at just one point along the reaction coordinate, and it
may be highly sensitive to the location at which the recrossing factor is evaluated.

Miller has also given an expression for the canonical rate constant with the recrossing
correction evaluated at the saddle point. As in the microcanonical case, a general expression
for the canonical case can be derived for any location of the dividing surface. We suggest
that a good approximation may be to evaluate the general expression at the CVT generalized
dividing surface to give:

kE(T) = kEX(T) kE(T) (206)

where the recrossing correction factor is given by**¥
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kE(T) = '/, + erf[{E[sSVTT)] — ViyeelsSVH(DIVKTY2 (207)

Miller’s transmission coefficient, like the US and CUS corrections, is always between
0.5 and 1.0. We know that for many reactions the exact transmission coefficient in classical
mechanics for conventional TST is less than 0.5 and that Miller’s correction is inade-
quate.?'-5%-21:21° Mijller has pointed out that quantization of the bound degrees of freedom
is difficult but can be accomplished. We expect that the recrossing correction will be very
different in a quantized world. As we have pointed out previously ,*® variational effects can
be very large in a quantized world at low temperatures whereas they would be negligible
in a classical world.

The form of the recrossing correction factor given in Equation 207 indicates that it depends
upon the dimensionality of the system only through the critical energy EC. Miller has pointed
out that only modes which are coupled to the reaction coordinate contribute to determining
EC. This would seem to indicate that reduced-dimensionality calculations can be useful for
calculating recrossing corrections for the full-dimensional system. However, as has been
pointed out elsewhere,* corrections for quantum effects along the reaction coordinate must
include effects from all the bound degrees of freedom, even if only within an adiabatic
framework. The effect of dimensionality on transmission coefficients will then depend on
the character of the transition state and the character of the modes removed when dimen-
sionality is reduced.

An approach that attempts to include quantal effects more directly is the use of accurate
quantal reduced-dimensionality transmission coefficients. In this approach one calculates
k*#T) by Equation 189 where k*(T) is a reduced-dimensionality TST rate constant and
k#(T) is the accurate quantal result for the same reduced-dimensionality problem. So far,
applications of this approximation have been limited to atom-diatom problems with collinear
reaction paths, where the reduced-dimensionality problem is taken to be the purely collinear
collision. Exact collinear transmission coefficients for atom-diatom collisions were first
calculated by Truhlar and Kuppermann,'** and collinear transmission coefficients have been
used to obtain three-dimensional rate constants and cross sections for several reactions by
Kuppermann®® and by Bowman and co-workers.*-*?” This kind of transmission coefficient
is expected to exhibit systematic errors because of the neglect of the contribution of the
bending zero-point energy to the shape of the effective potential barrier for the tunneling
dynamics. Because of this, the two mathematical-dimensional exact collinear transmission
coefficients are expected to provide less accurate three-dimensional rate constants than one
mathematical-dimensional approaches like the SCSAG approximation discussed in Section
IV. A better procedure is to solve the two mathematical-dimensional collinear tunneling
problem with an effective Hamiltonian that inciudes the effect of the bending degrees of
freedom. Transmission coefficients computed this way were first reported by Mortensen,**
and more recently this idea has been used by Bowman and Lee.**” A similar approach has
been applied by Hayes and Walker*® in their bend-corrected rotating linear model. When
recrossing is negligible, reaction-path curvature is small, and the system is approximately
adiabatic in the bottleneck region, these methods are expected to be comparable in accuracy
to SCSAG for thermal rate constants. However, they may be more accurate than SCSAG
when recrossing is significant or when reaction-path curvature is large. So far, though,
although the success of the LCG and LAG methods for a few test cases is encouraging, the
two mathematical-dimensional approximations have not been applied to large-curvature
systems, and there is not enough experience with such systems to draw general conclusions
about these approaches.

In contrast to the reduced-dimensionality methods, the unified dynamical (UD) model*®
includes recrossing effects from classical trajectories calculated in the full-dimensional space.
Consistent with variational TST, quantum effects on reaction-coordinate motion are included
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by the use of semiclassical adiabatic transmission coefficients or more general semiclassical
methods. This model can be viewed as a method of including quantum tunneling effects
into quasiclassical trajectory calculations as well as a method for including recrossing effects
into variational TST. The UD mode! is an attempt to improve upon the variational theory
of reaction rates as employed by Keck and Anderson and co-workers.?!-2426-230-222 The method
they emploved yields purely classical rate constants from trajectories started in the strong
interaction region. In the UD method we use a quantized Keck (QK) methed (similar to the
approach taken by Smith®?) in which the initial conditions are selected from a quasiclassical
ensemble: i.e., the bound degrees of freedom orthogonal to the reaction coordinate are
quantized in the same manner as described for the generalized TST calculations.

The QK reaction probabilities P?*(n.k,E) are calculated for each adiabatic state (n.k).
The trajectories are started from a dividing surface which is orthogonal to the reaction
coordinate and located at the maximum s2(n.k) of the adiabatic potential curve V (n.k,s).
For energies above the adiabatic barrier maximum V4(n,k), the initial conditions for the
trajectories are selected from a microcanonical ensemble located on the dividing surface
such that the energy in each of the bound modes equals €57 [n,.,s2(n.k)]. Each trajectory
is integrated forward (toward products) and backward (toward reactants) from the dividing
surface and given a weight:

W(Xo,po) = [1 — (= 1)M®0-P0)2M(X,,Po) (208)

where M(x,,p,) is the total number of times the trajectory crosses the dividing surface, and
P, 1s a vector of initial momentum components conjugate to X, the starting position of the
trajectory. The probability for reaction from state (n,k), P?%(n.k,E), is obtained from the
proper phase-space average of these weights.

The dividing surface is a hyperplane in the multidimensional space. For each vibrational
mode in the dividing surface, a transformation is made to the action-angle variables (q,,,N,..).
The reaction probability is then given by

2

27
PX(nk,E) = (2w)-<F-”L J; W(q,N) dq (209)

where the numbers n, = N, -~ ;. m = 1,2,...,F — [, are required to be integers. In
cach mode the transformation between the angle variable and the normal coordinate is given
by

Qm

Q {Eg‘g.m[nm95§(n9k)] - V:ff,m[Q;n’Sf\(nsk)]}_Uz de

m<

4(Qn) = e (210)
4rmh fom {5 mln, st k)] = Voo[Qns8m K1} dQ,

where the effective potential V. .[Q. .s2(n k)] is the actual one-dimensional potential for
mode m in the dividing surface with all other normal coordinates set to zero, and Q,,. and
Q.. are the turning points in this potential. In the calculations of P?*(n.k.E) the integral
over the angle q,, is done by Gauss quadrature and a value of Q,, for each q,, is determined
from Equation 210 by a root search procedure. The vibrational energy level is determined
from the anharmonic approximation to the effective potential.

As an example of an application of the above method, we consider a collinear atom-
diatom reaction in which case F = 2 and the dividing surface is one dimensional, and near
the reaction coordinate, the dividing surface is a straight line perpendicular to the reaction
coordinate. However, the effective potential along this straight line need not necessarily
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have a turning point on the dissociative side of the reaction coordinate. Consistent with the
Morse I approximation, which assumes that the bound mode dissociates to three separated
atoms, the dividing surface is defined to be this straight line only to the point at which the
potential is a local maximum. Beyond this point, the dividing surface is defined as a straight
line which goes out to the dissociative three-atom limit parallel to the bisector of the skew
angle. In this manner the dividing surface is made up of either one or two straight-line
segments such that the effective potential along the dividing surface has the correct disso-
ciation limit.

The momenta in the Q,, and s directions are determined by energy conservation and are
given by

sz = zp{és;i:.m[nm7sé(n,‘k)] - veff[Qm’s'A(n-k)]} (211)
and
p? = 2u{E - -V [nk.s2(n.K)1} (212)

Specifying the momentum P, in this manner yields a value for the action integral which is
only approximately equal to n, + '/, as required by the quasiclassical condition. This
procedure is used to ensure that the adiabatic barrier maximum implicit in the trajectory
calculations is the same as that used in the tunneling calculation that is incorporated into
the UD methed as discussed below.

Another problem anses in this procedure because the dividing surface is not a periodic-
orbit dividing surface***2* (PODS). If a dividing surface were chosen to be a PODS, a
trajectory started on the dividing surface with no momentum normal to the surface would
remain in the surface forever and never recross it. If the PODS is not straight. this same
trajectory recrosses our dividing surface an infinite number of times. Similarly, a trajectory
which is slightly perturbed from the PODS would never recross the PODS, but would recross
our dividing surface many times before leaving the interaction region. This becomes a critical
problem in trying to evaluate the amount of recrossing for energies near the adiabatic barrier
maximum where the momentum in the reaction-coordinate direction is very small. To perform
the calculations at these energies it is necessary to specify criteria for defining when a
recrossing corresponds to a “‘true’’ recrossing, i.e., one which would have recrossed the
PODS. Alternatively, the QK probabilities at these energies could be obtained by extrap-
olation from higher energies where this is not a problem.

For energies below the adiabatic barrier maximum, tunneling may be accounted for by
any of the previously mentioned tunneling methods. First consider a semiclassical adiabatic
model in which a primitive expression for the tunneling probability is given by

Pim(nk.E) = exp[—20°4(n k,E)] (213)
We wish to define a uniform expression for the UD reaction probability which includes
tunneling for energies below V*(n.k) and includes nonclassical reflection and classical

recrossing corrections for energies above V*(n.k). Defining the quantal threshold energy
for state (n,k) as ‘

€, nk) = max[V,(nk,s = —), V,/(nks = +x)] (214)

such an expression is given by
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{2/P*[nk,VA*(n,k)] — 1 + /PS4 (n.kE)}~",

prim
€n(mk) < E = VAn.k)
pvesank E) = { (1 — {I + I/P5;

prim

[nk,2VAnk) — E}}~")P(n.k.E),
VAm,k) < E = 2VAnk) — €,(n.k)
P?¥(n k,E), 2VA(n.k) - €, (nk) <E (215)
For very low energies PY®54(n k.E) reduces to the primitive tunneling probability P/ (n.k.E);
at E = VA(n.k), P33, (n.k,E) becomes one and the UD/SA probability goes to
P%(m k.VA(n,k)]/2; for energies in the range VA(n.k) < E =< 2VA(n,k) — €,(nk), the
UD/SA probability is equal to the probability obtained from the quasiclassical Keck method
multiplied by a probability for nonclassical reflection. Instead of using semiclassical adiabatic
tunneling probabilities, more general tunneling probabilities, such as quantum mechanical
probabilities for tunneling through the adiabatic barriers, could be used in Equation 215.
To provide the correct limiting value near the adiabatic barrier maximum, these more general
probabilities must be replaced by a primitive-type expression that goes to one at the adiabatic
barrier maximum. A general prescription to define a primitive-type tunneling probability
corresponding to a general tunneling probability P(n.k.E) is given by

Poin(nK.E) = ((P,K,E)] ™" — {Plnk,VAm,K]}~' + D7 (216)

At low energies, where the probability becomes small. the first term inside the brackets
dominates and the primitive expression reduces to the general one, while at the barrier
maximum the first two terms inside the brackets cancel and the primitive expression becomes
one.

For caiculating thermally averaged quantitics we consider the thermal rate constant for
the ground electronic surface in the following equation. The tunneling method is left general
and denoted by Y. Satte-selected thermal rate constants are obtained from the reaction
probability by

kUoY¢n k,T) = afh®R(T)] 'exp{BV.(nk,s = —x)]

X fr exp( — BE)P"®¥(n k,E) dE (217)

thr(n k)

where @&, (T) is the partition function per unit volume for the asymptotic reactant relative

translational motion. The thermal rate constant, including electronic surface factors, is then
given by

kUPY(T) = QSH(MIQHMQLM]!
> expl—BV,nk,s = =)k (nk,T) (218)

where

QYMQNT) = QM) (219)

At low temperatures, where the thermal rate constant is dominated by the ground state, a
UD transmission coefficient can be defined by
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kYPYS(T) = k¥*Y(n = 0,k = 0,T)/k*n = 0k = 0,T) (220)
where

_ agexp(— BV*°)
"~ BRDE(Mexp[—BVI(s = —=)]

k*n = 0k = 0,T) 221)

It is useful to define approximate expressions in which the rotational degrees of freedom
are treated classically, as in the VT expressions given in Section V. Also. since tunneling
effects are most important at low temperatures and therefore may often be adeguately
described by tunneling through the ground state, Equation 218 may be approximated by

KUPY(T) = {exp[—BV.m = 0k = 0,s = —x)k"”Y(n = 0.k = 0,T)
+ > expl=BVinks = —o)k¥mk,THQR(T) (222)

(n.k)#=(0.0)

where k?¥(n k.T) is defined in terms of P?*(n k,T) of Equation 209 analogously to Equation
217.

VII. COMPARISON TO TRAJECTORY CALCULATIONS

The accurate calculation of chemical reaction rates by quantum mechanical collision theory
15 a very complicated rearrangement scattering problem that involves too many open chan-
nels to be generally practical. One alternative to a quantal calculation is a trajectory calcula-
tion.*5232-2%7 In a trajectory calculation. one may directly sample from a thermal distribution
of energies rather than numerically average a cross section computed as a function of energy
and the relevant quantum numbers. However, a trajectory calculation suffers from the
difficulty of incorporating quantal etfects at the most critical stage of the reaction. Although
quantization can be easily enforced in the initial or final asymptotic region. it requires
complicated classical S matrix calculations to enforce it in both places or to include barrier
penetration. ™ >*" In addition. both quantal scattering theory and trajectory calculations re-
quire the whole potential energy surface as input. In contrast. conventional TST with unit
transmission coefficient enforces bound-mode quantization at the transition state and requires
only a knowledge of the saddle point region of the potential energy surface. The three most
serious deficiencies of conventional TST are (1) neglect of barrier penetration, i.e.. tunneling.
(2) neglect of classical recrossing effects. and (3) the assumption of a separable reaction
coordinate. Variational TST with vibrationally adiabatic transmission coefficients. as dis-
cussed in this chapter. provides a practical and consistent improvement with respect to the
first two difficulties. In variational TST with SC transmission coefficients, the required
knowledge of the potential energy surface is intermediate between that required for full
scattering calculations and that required for conventional TST; what is required is aknowledge
of the MEP and a normal-mode analysis at a sequence of points along it. More general
semiclassical ground-state transmission coefficients. like the LCG or LAG approximations.
require information about the surface farther from the MEP.

Another important difference between trajectory calculations and generalized TST for
thermal rate constants is caused by the differing amounts of vibrational nonadiabaticity at
the critical point in the interaction region. The quantization scheme we use for generalized
TST assumes complete quantization of bound degrees of freedom in the generalized transition
state. This is in accordance with the standard practice of using quantized partition functions
in conventional TST. Trajectory calculations, on the other hand. involve some nonadiabat-
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icity, i.e., even though a trajectory may be started with zero-point energies for all degrees
of freedom of the reactants. some reactive trajectories have less than the local zero-point
energy in their bound degrees of freedom when they pass through the conventional or
generalized transition state. The true quantum mechanical dynamics also involve some
vibrational nonadiabaticity, so trajectory calcuiations cannot automatically be faulted in this
regard.”*! However, the evidence so far is that trajectory calculations involve too much
vibrational nonadiabaticity, so that the extent of their agreement with accurate quantal
calculations is sometimes helped by a canceilation of errors, i.e., the overestimation of
vibrational nonadiabaticity partly compensates for the neglect of tunneling. (One of the
motivations for the unified dynamical theory discussed in the previous section is to incorporate
quantization at the dynamical bottleneck while simultaneously including quantal tunneling
and classical recrossing effects.) The tendency to overestimate vibrational nonadiabaticity
in a trajectory calculation is understandable since the finite. and often large. energy-ievel
spacings in quantum mechanics promote adiabaticity to a greater extent than classical me-
chanical dynamical factors do. For a similar reason. the vibrational adiabaticity assumption
is expected to be best for high-frequency stretches and worst for low-frequency modes like
bends. Even for bends. however, accurate three-dimensional quantum mechanical calculations®
indicate that vibrationa] adiabaticity is useful for a quantitative understanding of the value
of the threshold energy. For collinear reactions, the nature of vibrational adiabaticity of
stretching vibrations in the threshold region is even better understood. Although there is
definite evidence of vibrational nonadiabaticity in the accurate transition state wavefunction
for the H + H, reaction.”** it can be mimicked to some extent by tunneling calculations
such as the Marcus-Coltrin path and SC approximation models discussed in Section IV,
which predict more tunneling than the MEP vibrationally adiabatic separable tunneling
model. However, even though there have been important advances in our ability to model
multidimensional tunneling reactions in the last few years, the present models must still be
applied with caution when they are applied to systems very different than the ones for which
they have been tested.

VIII. CONCLUDING REMARKS

Since conventional TST is very widely discussed in the literature, and other reviews are
available that discuss various applications cf variational TST,*3:20-3.39.46.47.243 e have em-
phasized in this chapter the computational formalism of variational TST, especially for
polyatomic systems and with emphasis on the methods used in our group.

In 1966, Bunker™ reviewed the existing evidence for the correctness of TST. He warned
users of the theory not to oversimplify the potential energy surface, the vibrational analysis,
or the tunneling correction. He concluded that if these cautions are observed, “*we may rely
on the theory to provide a bimolecular rate prediction within a factor of 10 of the truth™
At that time he also concluded that there was little evidence to support the assumption of
TST that an equilibrium distribution of activated complexes was maintained kinematically
by bimolecular collsions.

Recent research has reemphasized Wigner's collisional approach'® to TST. and numerous
dynamical studies have led to a greater understanding of how the quasiequilibrium assumption
may be justified by the directness of reactive trajectories in the threshold region or by
vibrational adiabaticity. We have detailed tests of conventional and variational TST against
accurate quantal dynamics for many collinear and two three-dimensional quantal systems.
The importance of vartationally optimizing the transition state dividing surface has been
demonstrated, and reliable tunneling models have been developed and refined. We now have
much more confidence in our ability to make dynamical predictions of thermal reaction rates
than was possible at the time of Bunker’s statement. and we expect in most cases to be able
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to predict the thermal rate constant to within a factor of two or better of the accurate quantal
result for a given potential energy surface. In fact, there is probably no reaction for which
our inability to accurately calculate the rate constant for a given potential energy surface
leads to greater errors than the errors caused by the inexactness of the potential energy
surface.
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APPENDIX 1: COLLISIONAL DERIVATION OF TRANSITION STATE THEORY

In this appendix we consider the general bimolecular reaction Equation la. Let S(a,E,.,)
be the state-selected, fixed-energy cross section for initial internal state o and initial relative
translational energy E,,. The label o denotes the set of vibrational-rotational quantum num-
bers (n.k) for both reactants. The final states of the products are not specified, i.e., this
cross section is summed over the state-to-state cross sections for all final states. The state-
selected rate constant at relative translational temperature T is related to the state-selected
reaction cross section S(a.E,,;) by a Maxwell-Boltzmann average over initial relative trans-
lational energies at temperature T:''5-244.243

K@, T) = (%L) “apye f " S(0Eu)Euexp( ~ BEw) CE,y (223)

where . is the reduced mass for relative motion of the reactants. The thermal rate constant
is in turm related to k(a,T) by

K(T) = [QX(D)]"' 2 d, ki, T)exp[ — Bel ()] (224)

where €f(a) and QF(T) are the internal energy of the reactants in state « and the reactant

internal partition function at temperature T, respectively, so that
(D = 2 d, expl—Bel(@)] (225)

where d,, is the degeneracy of state . Note that €} (a) is the sum of the internal energies
of A and B, and d, and Q}(T) are products of quantities referring to A and B.

int

hz
S(@.E,) = c’:z > S Pueme B (226)
&€ me
where
E. = p¥2u @27

¢ and m, are quantum numbers for initial orbital angular momentum of relative motion and
its component with respect to a space-fixed axis, and P, (E,.) is a reaction probability.
Combining Equations 223, 224, 226, and 227 yields:
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k(T) 7 z dlx Z j’ Palme (Erel)

QR(TH (21'rp,kT)‘/"
X exp{_B[E!iu(a) + Ercl]} dErcl (228)

my

The total partition function per unit volume for reactants 1s

PXT) = P3(T) QR (229)
where

DR (T) = (2wpkT)¥¥/h? (230)
and where. as in Section II, we work in the center-of-mass system so that the translational

part of ®X(T) includes only relative motion. Using Equations 229 and 230. we can rewrite
Equation 228 as

K(T) = th)R(T) o 2 e 2 mE wime(T) expl — Bel ()] (231)
where
F&é‘m((T) = £ Patmt‘ (Ercl) exp(_ BEMI)BdErcI (232)

Equation 231 is equivalent to Equation 45 of Reference 220, and it is'exact. Earlier collision-
theory formulations for three-dimensional reactions were given by Eliason and Hirschfelder!
and Christov*** ' and formulations for collinear reactions were given by Mortensen™® and
in Reference 148. See also References 145, 252. and 253. A useful alternative form of
Equation 231 is

kT = o @R(T) > > d, 2 2 f Pyem, (E) exp(— BE)BIE (233)

where the reaction probability is considered as a function of the total energy given by
E = el (a) + E (234)
Now we make the TST assumption. Consider a reaction coordinate s such thats = -~=
corresponds to reactants and s = s. to the generalized transition state. Let €3 (ce.s) represent
the adiabatic vibrational-rotational eigenvaiues. Now in Equation 233 we make the transition
state assumption:

Potme (E) = O[E = Vye(s.) — €3f(a,s.)] (235)

where 6 denotes a Heaviside step function. Then Equation 233 becomes

K(T) = xpl = BVer(s.)] Z 2 > d, exp[—PeS(a.s.)] (236)

% .
Bh(bR(T) T omg




128 Theorvy of Chemical Reaction Dynamics

Since a.f, m, are a complete set of indexes. this is equivalent to Equation 8 without the
classical approximation. If, instead, we make the better approximation:

Pyime (E) = B{E — max[Vyep(s) + €Xl(a.9)]} (237)
then we obtain the more accurate Equation 185.

APPENDIX 2: CUTOFF CLASSICAL ROTATIONAL PARTITION FUNCTION
AND SUM OF STATES

In this appendix we derive the classical approximations to the cut-off rotational partition
function and the cut-off sum of rotational states function. These quantities are needed for
the ICVT and pVT formalisms of Section V and are defined by Equations 164 and 166.
respectively.

First consider the cut-off rotational partition function for a nonlinear generalized transition
state. Introducing an energy cut-off € into the usual classical expression**'™17 for the
partition function yields:

(T,s;€) = L I1 exp[ — BI21(s)] dJ; (238)

wh? i=AB.C /%

€rolS€

where the J; are the components of rotational angular momentum around the principal axes,
and

€ = 2, JH2L()) _(239)

i=AB.C
To evaluate this we convert to spherical polar coordinates with radius:

R, = €2 (240)
The angular integrals give 4 so that Equation 238 reduces to

_ 4[81,()I(s)(s)])'”

(T,s; €) 5

172
j R} exp(—BR}) dR, (241)
o

Evaluation of the remaining one-dimensional integral yields Equation 170a.
The cut-off sum of rotational states is then easily obtained by the relation:

NZi(e,s) = lim QII(T.s; €) (242)
B—0
This yields Equation 171a. The reader should note that the result of Equation 171a differs
from Equation 6-435 of Reference 94, which is apparently in error by a factor of .

The derivations for a linear generalized transition state are similar. The linear transition
state analog of Equation 238 is

(21e) 12
CH(T,s; €) = ﬁ% L J exp[ — BJ21(s)] d} (243)

Evaluation of the integral yields Equation 170b. Use of Equation 242 then yields Equation
171b.
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APPENDIX 3: GLOSSARY OF ABBREVIATIONS

AG: adiabatic ground-state (threshold energy)

C: (as a subscript. C denotes a purely classical quantity) ’
CUS: canonical unified statistical (model)

CVT: canonical variational theory

G: ground state

GT: generalized transition state

GTS: generalized transition state

ICVT:  improved canonical variational theory

INM: independent normal modes (approximation)

LAG: least-action ground state (transmission coefficient)

LCG: large-curvature (approximation) ground state (transmission coefficient)

MCP: Marcus-Coltrin path
MEP: minimum energy path

R: reactant

S: semiclassical

SA: semiclassical adiabatic

SAG: semiclassical adiabatic ground state (transmission coefficient)
SC: small-curvature approximation for tunneling and nonclassical reflection
SCT: small-curvature approximation for tunneling only

SG: semiclassical ground state (transmission coefficient)

TST: transition state theory

UD: unified dynamical (model)

VA: vibrationally rotationally adiabatic

VTST:  variational transition state theory; i.e., CVT, ICVT, or uVT
wVT: microcanonical variational theory

conventional TST
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Errata for "Generalized Transition State Theory"

This section contains all known errata to the GTST book chapter (Ref. 5 in Sect. 21) by
D. G. Truhlar, A. D, Isaacson, and B. C. Garrett.

1. p.71,line 1: ¥[x;)]) should be V([x;,}).
2. p. 71, third line after eq. (6): "coordinate(s)" should be "coordinate (s)".

3. p. 77, Fig. caption line 3: "1 molecule and per centimeter, anharmonicity” should be
"1 molecule per centimeter, and anharmonicity".

4. p. 78, second line after eq. (15): VI(R); should be VI(R).

5. p.8l,eq. (31): x;-) should be x;-4-

6. p.82,eq.(35),line 1: (my+ mp)-! should be M| where M is the total mass.
7.  same equation, line 2: insert " in numerator.

. 83, line 2: QGT.0(T s) should be OCST(T,s).

. 83, line 8: @yR(T) should be @R(T).

10. p. 83, second line from.the bottom: A should be AG.

12. p. 88, line 16: "accurage” should be "accurate”,

13.

P
P
P

11. p. 84, first line after eq. (42): AGCCT should be AGET0
p
p. 94, eq.(85¢): add "F" before "} in first exponential.
p

14. p. 95, line after eq. (91): "MED" should be "MEP".

15. p.97, ¢eq. (98) should read

ZZ {[szgn(s)]v,},(s)} 16T

zym()
=1y

g

or
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16.
17.
18.

19.

20.

21.

22.
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24,

25.

26.

27.

28.

29.

30.
31

32.

33.
34,

Y iy (5)
By ==L X = L)

i=l y

p. 97, second line after eq. (98): By,r(s) should be -By,p(5).
2 2
p. 97, third line after eq. (98): 1 - x(s) ® Q(s)] should be [1 - x15) » Q(s)] .

"n.n

p. 97, second and third lines after eq. (100): "z¢" should not be a subscript.

p. 97, third line after eq. (101): [#/ ua, (s)]V2 should be [4] uew,, ]

p. 101, in the last sentence, the gradient in the product channel (or reactant channel)
should by multiplied by -1.

p. 102, line 7: "is x(s)" should be "is x'(s)"'

p. 102, fourth and fifth lines after eq. (126): "x " should be " x " in three places.

p. 102, line after eq. (127b): "B" should be  in two places, and "B/2" should be
n/2. Thus below eq. (127), the inequality should be 0 <3 < n/2.

p. 102, line after eq. (128): "XB" should be "A + XB".

p. 102, second line after eq. (128): %" should be X
p. 103: eq. (130) should be the special case of eq. (157) with &, =1, i.e., insert
sin(;;(&o =15, ))before ds,.

p. 104, fifth line after eq. (131): "mass-weighted coordinates x the" should be
"mass-scaled coordinates x; the".

p. 104, second line after eq. (133): 5; should be 5;.

p. 104, second line after eq. (134): "zt" should be "at" and "normal" should be
"generalized normal coordinates”. '

p. 104, third line after eq. (134): "coordinate(s)" should be "coordinate (s)".

p. 104, eq. (135) and following: notice that g, ,, depends on §, as well as 5.

p. 106, eq. (144): insert a minus sign before the left-hand side because every term in
the sum is negative.

p. 106, eq. (146): the condition Q,, < #;; should be replaced by eq. (143).

p. 106: eq. (147) should be the special case of eq. (159) with a, = &, =1.




35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

. 110, line 6: 147 should be 148a.

. 117, line 3: "reactant”" should be "reactants".

. 117, second line from bottom: p; : p should be p2/p;.

. 118, second line from bottom: ":" should be "/" in two places.

. 121, line below eq. (209): "N, - 1/2" should be "(N,,, + 1/2)/h ™.
. 121, eq. (210): 1/4xnh should be m.

=0 9O "9 v 4T ‘v o

. 123, second line above eq. (217): "satte" should be "state".

Ref. 58, line 1: "B.D." should be "B.C.".

Ref. 71, line 2: "Vol. 2" should be "Vol. 4 of Modern Theoretical Chemistry".

Ref. 192, line 2: "Phyus" should be "Phys".
Ref. 231, line 2: "52" should be "62".






