Background

Ni NU-1000

Ni NU-1000 is a MOF composed of \(\text{Zr}_6(μ_3-O)_2(μ_3-OH)_2(μ-OH)_4 \) nodes and tetramethyl 1,3,5,7-tetrazacyclooctane (TTAP4) ligands. It is a particularly interesting mesoporous material.

Potential Catalyst Support:

- Large-pore size (21 Å) facilitates gas diffusion
- Reacts with \(\text{H}_2 \) or \(\text{H}_2 \text{O} \) to form an excellent platform for metal deposition

Goals

- Identify the structure of Ni-NU-1000
- Determine the reaction mechanism for ethylene dimerization
- Search for potential catalysts with higher selectivity for 1-butene production by computational screening

Atomic Layer Deposition

Ni-NU-1000

High-purity 1-butene is preferred for linear low-density polyethylene production.

Ni-NU-1000 (ALD) catalyst shows good activity for ethylene dimerization (TOF = 252 h^{-1}), but the selectivity for 1-butene production is about 50%.

Ni-NU-1000

Through atomic layer deposition (ALD), a variety of metals have been successfully deposited on the \(\text{Zr}_6 \) node of Ni-NU-1000, resulting in a uniformly dispersed single-site metal catalyst.

Ni4-NU-1000

Ni4-NU-1000 is a MOF composed of \(\text{Zr}_6(μ_3-O)_2(μ_3-OH)_2(μ-OH)_4 \) nodes and tetramethyl 1,3,5,7-tetrazacyclooctane (TTAP4) ligands. It is a particularly interesting mesoporous material.

Periodic Ni4-NU-1000 Models

The lattice constant of Ni4-NU-1000 is 1.5% smaller than that of Ni-NU-1000, which agrees with previous experimental results.

The lattice constant of Na4-NU-1000 is 1.5% smaller than that of Ni4-NU-1000, which agrees with previous experimental results.

Conclusions

- We employ periodic density functional calculations to characterize the structure and reactivity of Ni4-NU-1000 catalyst. Our results suggest Na4-hydride clusters in the c pore of Ni4-NU-1000 are the dominant species in Ni4-NU-1000 catalyst.
- We find that both the atomic Ni catalyst and the Ni4-hydride cluster have higher catalytic activity in the single state than in the triple state. We also find that the atomic Ni catalyst and the Ni4-hydride cluster have very similar activity when the Ni is in the single state.
- The catalytic activity of Ni4-NU-1000 for ethylene dimerization depends more strongly on the spin state of the Ni atoms than on the Ni cluster size.
- We have used a single Ni4-hydride cluster model for screening a variety of transition metals for their catalytic activity toward ethylene dimerization. The computational screening indicates Cr4+, Mn4+ and Fe4+ could be potential catalysts for ethylene dimerization.

Ni-Facac-NU-1000

Ni-Facac-NU-1000 exhibited reduced ethylene oligomerization activity, while the C4 product selectivity was significantly improved.

4 elementary steps:

1. C-C Coupling
2. H-Dissociation
3. 1-butenel decomposition
4. Ethylene hydrodimerization

We applied density functional theory (DFT) to screen a variety of transition metal supported on Ni4-NU-1000 catalysts (including Fe4+, Cr4+, Mn4+, Ni4+, Mo4+, Rh4+, Pd4+ and Cu4+, Cu3+, PD4, Mo4 and W4) for their activity toward ethylene dimerization.

Acknowledgement

This work was supported as part of the Nanoscience Catalysis Energy Center, an EFRC funded by the DOE, Office of Basic Energy Sciences (DE-AC02-05CH11231). I would like to thank my advisor Chris Truhlar, Laura Gagliardi and Chris Cramer for their discussion and thank Aaron League and Umar Barmak for their contribution to this project. I would also like to thank our experimental collaborators Joseph Hopp, Omar Farha, Karen Chapman, Don Camarico, Johannes Lercher, Ivan Liu, Zhengzhi Li, Ana Platero-Prats, et al. for the discussion.