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ABSTRACT: We reconsider recent methods by which direct dynamics calculations of electronically
nonadiabatic processes can be carried out while requiring only adiabatic potential energies and their
gradients. We show that these methods can be understood in terms of a new generalization of the well-
known semiclassical Ehrenfest method. This is convenient because it eliminates the need to evaluate
electronic wave functions and their matrix elements along the mixed quantum-classical trajectories. The
new approximations and procedures enabling this advance are the curvature-driven approximation to the
time-derivative coupling, the generalized semiclassical Ehrenfest method, and a new gradient correction
scheme called the time-derivative matrix (TDM) scheme. When spin−orbit coupling is present, one can
carry out dynamics calculations in the fully adiabatic basis using potential energies and gradients
calculated without spin−orbit coupling plus the spin−orbit coupling matrix elements. Even when spin−
orbit coupling is neglected, the method is useful because it allows calculations by electronic structure
methods for which nonadiabatic coupling vectors are unavailable. In order to place the new considerations
in context, the article starts out with a review of background material on trajectory surface hopping, the
semiclassical Ehrenfest scheme, and methods for incorporating decoherence. We consider both internal conversion and intersystem
crossing. We also review several examples from our group of successful applications of the curvature-driven approximation.

1. INTRODUCTION
Born and Oppenheimer1 showed that the eigenvalues of the
electronic Hamiltonian (defined as the total Hamiltonian
without the nuclear kinetic energy, i.e., the Hamiltonian for
stationary nuclei) play the role of potential energy functions
for nuclear motion. The associated eigenfunctions are now
usually called the Born−Oppenheimer states. In the present
article, we use this term to denote fixed-nuclei electronic states
calculated without spin−orbit coupling (SOC). Born and
Oppenheimer’s treatment used an expansion in powers of the
small parameter (m/M)1/4 (where m is electronic mass and M
is an average nuclear mass) and the differences R − R0 (where
R denote a set of nuclear coordinates, and R0 is the center of
the expansion); they showed that the electronic states are not
coupled by low-order terms. In fact, in their notation, the
leading coupling between electronic states2 is of order [(m/
M)1/4]6. Later work provided an improved treatment of the
expansion.3

The Born−Oppenheimer expansion is concerned with
molecular energies, not dynamics. A few years later, Mott4

attempted to calculate the probability of collision-induced
electronic nonadiabaticity by what is now often called the
classical path method, but which may also be considered an
early example of a mixed quantum-classical method. (A
nonadiabatic process is one where the quantum numbers are
not conserved, and an electronically nonadiabatic process is

one where the electronic state changes.) Mott simplified the
problem to nuclear motion along a single coordinate Z and
found (his eq (7)) that the coupling was caused by a term

i v
Z

, where v is velocity and ψ is the Born−Oppenheimer

electronic wave function. Generalizing this to multidimensional
nuclear motion gives −iℏv·∇ψ, where v is the velocity vector,
and ∇ is the gradient with respect to nuclear coordinates (i.e.,
∇ is

R
, where R is a 3Natoms-dimensional vector of Cartesian

nuclear coordinates for the Natoms atoms). The corresponding
matrix element coupling electronic states I and J is −iℏv·dIJ,
where dIJ is ⟨ψI|∇|ψJ⟩. In the current literature, dIJ is called the
nonadiabatic coupling (NAC), and it plays the key role in
treatments5−11 of electronically nonadiabatic processes in
terms of Born−Oppenheimer states.

An early example of the peak in the nonadiabatic coupling
between two electronically adiabatic surfaces potentials in
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terms of a derivative of basis functions with respect to a nuclear
coordinate is given in a 1932 paper of London.12,13

In a paper presented at the 1937 Faraday Discussion on
Reaction Kinetics,14 Wigner discussed the criterion of
electronic adiabaticity as being a question of whether “the
electronic motion will be able to follow the motion of the
nuclei.” He said this would occur “if that latter motion is not
too rapid and if the electronic wave function does not change
too radically for a small change in the nuclear positions.” This
statement is a direct invocation of small v and small dIJ, as
introduced in the paragraph about Mott’s paper. However,
Wigner continued, “In all cases in which a nonadiabatic
reaction is assumed, the rapid change of the wave function in
the neighborhood of an approximate crossing of energy levels
is made responsible for it. I think that for an energy surface
which does not show singularities in abnormal curvatures, etc.,
the adiabatic condition cannot cause serious discrepancies.”
This reformulates the condition of small dIJ as a condition of
smooth potential energy surfaces, and the quantification of this
connection is a main subject of the present perspective article.

Another notable aspect of Wigner’s reformulation is that he
said the rapid change of the wave function would occur in the
neighborhood of an approximate crossing of energy levels. Also
in 1937, Teller15 showed that in a system with F internal
coordinates (F is 3Natoms − 6 for a general molecule, where
Natoms is the number of atoms in the molecule), that
intersections generally occur along (F − 2)-dimensional
conical intersection seams. In a later paper16 he gave a clear
discussion of why electronically nonadiabatic transitions
usually occur near such conical intersection seams. More
recently, it has been shown that when gaps between potential
energy surfaces go through a local minimum along some path,
one is inevitably on the shoulder of a conical intersection.17

That is, a local minimum of adiabatic potential energy gap
along a path (along a trajectory) is not an actually avoided
crossing but rather an indication of a real crossing of adiabatic
surfaces to the side of the path. Therefore, we label local
minima in the adiabatic energy gap along a path as locally
avoided crossings to avoid the implication that the potential
energy surfaces avoid crossing when viewed globally. Since a
trajectory of a multidimensional system is unlikely to go
precisely through a conical intersection, we conclude that a
semiclassical picture of electronically nonadiabatic processes
should be dominated by paths through locally avoided
crossings.

In 1951, Born18 pointed out that the expansion of Born and
Oppenheimer is only valid if R is near a structure R0 where the
gradient vanishes. In order to make a treatment valid at any R,
he made an expansion

= Xr R r R R( , ) ( ; ) ( )
J

J J
elec nuc

(1)

where r denotes the set of electronic coordinates, ϕJ
elec (r; R) is

a member of a complete set of Born−Oppenheimer electronic
states, and XJ

nuc (R) is a time-independent nuclear wave
function. (We changed the notation to be more consistent with
the present paper. Note that the derivation based on eq 1 was
recapitulated in a monograph, and this book section in English
is often cited19 rather than the original report,18 which is in
German.) He then derived

+ + =
M

V E X C XP R R P
1
2

1
( ) ( , ) 0

a

N

a
a J J

I J
JI I

2 nuc nuc
atomsi

k
jjjjjj

y
{
zzzzzz

(2)

where Ma and Pa are the mass and momentum of nucleus α, VJ
is the adiabatic potential energy surface of state J, E is the total
energy, and P denotes the collection of the Pa. To keep the
presentation simple, we give CJI only for the cases where all Mα
= M. Then18

= · | |C
i M

d P
2JI JI J I

2
2

(3)

where =i 1 , ℏ is Planck’s constant divided by 2π, and we
corrected a missing factor of 1/2 in Born’s derivation. This is
the first paper where adiabatic electronic wave functions were
used to derive the coupled equations for nuclear motion in
electronically nonadiabatic processes, and eq 3 is the first
occurrence of the NAC in the time-independent Schrödinger
equation for coupled motion in multiple electronic states.
Equation 2 agrees with the modern time-independent quantum
mechanical equations for electronically nonadiabatic dynamics
in an electronically adiabatic basis (see, for example, eq (9) in
the review of Hirschfelder and Meath20 for a particularly clear
treatment or eq (5) in a later paper21), and it can be used for
converged quantum mechanical calculations of electronically
nonadiabatic atom−diatom reactions,22 but it becomes too
expensive for practical use on larger systems. The present
article focuses instead on the time-dependent mixed quantum-
classical methods that are more practical.

The connection between the NAC and the character of the
potential energy surfaces near a conical intersection seam can
be made quantitative by a power series in terms of
displacements from the conical intersection seam.21,23−25

Following a presentation of background theory in Section 2,
further work making useful approximations for the NAC
without using wave functions to calculate dJI is presented in
Sections 3 and 4, leading up to the curvature-driven
approximation that is the key feature of this article. Section
5 then reviews the incorporation of the curvature-driven
approximation in practical mixed quantum-classical methods
for electronically nonadiabatic simulations, and Section 6
reviews successful applications, which are very encouraging.
Section 7 has concluding remarks.

The present article is a perspective article containing both
new work and selected background; the discussion of previous
work focuses on the background of the new work that attempts
to understand recent wave function-free dynamics methods in
the context of a new generalization of the well-known
semiclassical Ehrenfest method. Readers seeking a discussion
of other current work on electronically nonadiabatic dynamics
are referred to reviews.26−33

For the convenience of the reader, Appendix A explains all
acronyms and abbreviations used in this article.

2. BACKGROUND: MIXED QUANTUM-CLASSICAL
NONADIABATIC DYNAMICS METHODS

We distinguish two categories of mixed quantum-classical
nonadiabatic dynamics methods, namely, trajectory surface
hopping (TSH), in which the trajectory is propagated on a
single potential energy surface for each segment of time,34−37

and self-consistent potential (SCP) methods, in which the
trajectory is propagated on a mean-field potential.38−42 The

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Perspective

https://doi.org/10.1021/acs.jctc.4c00424
J. Chem. Theory Comput. 2024, 20, 4396−4426

4397

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


classic form of TSH methods is Tully’s fewest switches
trajectory-surface-hopping method (FS-TSH),34 and the
classic SCP method is the semiclassical Ehrenfest (SE)
method.38,41

The nonadiabatic dynamics calculations−by either a TSH
method or an SCP method−can be performed in two ways: (i)
direct dynamics, in which all the required electronic structure
information is computed on-the-fly from electronic structure
software as needed during the propagation of trajectories; or
(ii) dynamics with analytic surfaces, in which all the required
electronic structure information is incorporated via prefitted
analytic potential energy surfaces and their couplings. Such a fit
is often caried out in a diabatic representation.43 A diabatic
basis is one where all electronic-state couplings arising from
the nuclear momentum operator are negligible, i.e. CJI in eq 3
is negligible. (This is sometimes called quasidiabatic, but we
call it diabatic because strictly diabatic bases, where CJI in eq 3
is identically zero, do not exist44 except for the trivial,
nonphysical basis where all basis functions are independent of
nuclear coordinates.) Most of the discussion presented in the
current perspective is applicable to both direct dynamics and
dynamics with analytic surfaces although we focus more on
direct dynamics because constructing global diabatic repre-
sentations can be arduous.43

Early developments of nonadiabatic dynamics methods were
primarily concerned with internal conversion processes
(processes in which the electronic spin state does not change),
without SOC. In recent years, practical methods45−51 have
been developed for performing nonadiabatic dynamics for
simulations including SOC, which allows intersystem crossing
(processes involving a change in electronic spin state) to be
treated. The reason that new methods are required for practical
calculations involving SOC is that analytic gradients for direct
dynamics calculations are usually available in the Born−
Oppenheimer basis (which diagonalizes the spin-free elec-
tronic Hamiltonian) but not in the fully adiabatic basis (which
diagonalizes the electronic Hamiltonian including SOC).

In Section 2.1, we review generalized SE (GSE). This was
first defined in ref 52 but has not previously been fully
discussed; here we show how we obtain the equations of
motion (EOMs) for GSE. As will be explained below, the GSE
differs from the conventional SE in that we use a more general
definition of the nonadiabatic force on the trajectory. As
should be clear from the names of the methods, SE can be
considered as a special case of GSE, and our treatment here is
in terms of the more comprehensive GSE. In Section 2.2, we
review FS-TSH.

Both Sections 2.1 and 2.2 will be presented in a general
electronic basis, which may be either adiabatic or diabatic, or
spin-adiabatic or spin-diabatic when SOC presents. In Section
2.3, we will discuss the popular choices of basis. Section 2.4
summarizes the EOMs for GSE, SE, and FS-TSH in specific
bases.

Section 2.5 provides a quick discussion of the inclusion of
decoherence53,54 in mixed quantum-classical nonadiabatic
dynamics.
2.1. Generalized Semiclassical Ehrenfest Method. In

the mean-field approximation, the wave function of the system
is written as a product,

=t t tr R r R( , , ) ( , ) ( , )elec nuc (4)

where Φelec and χnuc are the electronic wave function and
nuclear wave packet, r and R denote the electronic and nuclear

coordinates respectively, and t is time. This is often called
time-dependent self-consistent field approximation.39,55 The
wave function is propagated according to the time-dependent
Schrödinger equation,

=i
d
dt

t H tr R r R( , , ) ( , , )
(5)

where H is molecular Hamiltonian given by

= +H T Hnuc elec (6)

where Tnuc is the nuclear kinetic energy operator, and Helec is
the electronic Hamiltonian, which includes electronic kinetic
energy, all Coulomb interactions of electrons and nuclei, and
possibly SOCs. A time-dependent Hartree treatment of this
product wave function leads to an electronic mean-field
equation,

= | |i
t

H R
elec nuc nuc elec

(7)

and a nuclear mean-field equation,

= | |i
t

H r
nuc elec elec nuc

(8)

Using a phase−amplitude representation of the nuclear wave
function,11,56−62

= [ ]W t iS tR R( , ) exp ( , )/nuc (9)

where W and S are a real-valued amplitude and a real-valued
phase, respectively, and taking a classical limit (ℏ → 0), one
can obtain58

+ + | | =dS
dt

M S H
R

1
2

0
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N

a
a

r
1

2
elec elec elec
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k
jjjjj

y
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(11)

where Ma is the mass of nucleus a, Ra is the position vector of
nucleus a, Natoms is the number of atoms in the molecule. The
first of the above two equations is the Hamilton-Jacobi
equation, which is equivalent to Newton’s equation,11,58−60

= | |HP
R r

elec elec elec
(12)

where Ṗ is the total time-derivative of nuclear momentum. (In
general, we use an overdot to denote a time derivative.) See for
example, the footnote of ref 60. by Curchod et al. for a more
detailed derivation. In interpreting this result, note that the
classical limit of quantum mechanics is an ensemble of classical
trajectories−not a single trajectory.61 The simplifications and
subtleties in the classical limit and the difficulty of using this
argument for a consistent trajectory-based classical limit are
discussed elsewhere.61,62

Equaions 4−12 are presented here as a framework for mixed
quantum-classical trajectory approximations; other workers
have discussed the factorization of eq 4 and its consequences
and use more rigorously,55,63,64 but that is not needed for the
present work.

The electronic mean-field equation involves an electronic
wave function propagating on a potential determined by the
nuclear wave packet. We make the semiclassical approximation
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of replacing the wave packet by an ensemble of independent
trajectories, and then we make the independent-trajectory
approximation for the ensemble and denote a given trajectory
by R(t); this procedure yields

=i
d
dt

t H t tr R r R r R( ; ( )) ( ; ( )) ( ; ( ))elec elec elec

(13)

i.e., for each trajectory the instantaneous electronic Hamil-
tonian depends parametrically on a single nuclear config-
uration, the time-dependent nuclear configuration of the mixed
quantum-classical trajectory. The independent-trajectory ap-
proximation does not give a good approximation to an actual
quantal wave packet,65 but it is a commonly used
approximation in mixed quantum-classical trajectory meth-
ods.66

In either the original semiclassical Ehrenfest method or the
generalized semiclassical Ehrenfest method, the electronic
wave function can be expanded in a general basis (GB), and we
will use that expansion in the present Perspective:

=
=

t c t tr R r R( ; ( )) ( ) ( ; ( ))
J

N

J J
elec

1

GB GB
states

(14)

where cJGB (t) is the time-dependent coefficient of basis state J,
whose wave function is ϕJ

GB (r; R (t)). For practical direct
dynamics calculations, the basis states are usually the Born−
Oppenheimer states, and when SOC is neglected, this is called
the adiabatic representation. When SOC is included, one needs
more nuanced notation. In the literature, the Born−
Oppenheimer states (defined above as being calculated
without SOC) are called the molecular-Coulomb-Hamiltonian
(MCH) representation, the spin−orbit-free basis, the spin-
diabatic basis, or the spin-free adiabatic basis; and the
electronic states obtained by a diagonalization of a spin−
orbit-inclusive Hamiltonian are called the diagonal basis, the
fully adiabatic basis, or the spin-adiabatic basis. When SOC is
neglected, the spin-free adiabatic basis and the fully adiabatic
basis are the same. The MCH and diagonal bases are not the
same when SOC is included in the electronic Hamiltonian, but
they are identical when there is no SOC, i.e., both diagonalize
the electronic Hamiltonian that does not have SOC. In Section
2.3, we use the language used in the SHARC program,45,48

namely MCH and diagonal. Notice that we have used
representation and basis as synonyms.

Substituting eq 14 into eq 13 and projecting with ⟨ϕI
GB| gives

the EOM for the time-dependent coefficients

= +[ ]d
dt

c t i H T c t( ) ( )I
J

N

IJ IJ J
GB elec GB GB GB

states i
k
jjj y

{
zzz

(15)

where HIJ
elec[GB] is a matrix element of the electronic

Hamiltonian in the GB basis (notice that in the following
equations, the bra-ket integral involves integration over
electronic coordinate r, and the subscript r will be dropped
for simplicity),

= | |[ ]H HIJ I J
elec GB GB elec GB

(16)

and TIJ
GB is called time derivative coupling (TDC) in the GB

basis,

=T
d
dtIJ I J

GB GB GB

(17)

Eq 15 is called the GSE electronic EOM. By using the chain
rule, the TDC can be written as,

= ·T R dIJ IJ
GB GB

(18)

where an overdot signifies a time derivative, and dIJ
GB is the

NAC in the general basis:

= | |dIJ I J
GB GB GB

(19)

This is an Nstates × Nstates × 3Natoms tensor, but we treat it as an
Nstates × Nstates matrix in which each I,J matrix element is a
(3Natoms)-dimensional vector. Because eq 18 shows that TIJ

GB

can be obtained as a projection of dIJ
GB on the nuclear velocity

direction, we sometimes call d the full NAC to clearly
distinguish it from T. Both TDCs and NACs are complex
when SOC is included, but they may be taken as real when it is
omitted. The TDCs and NACs are anti-Hermitian:

= *T T( )IJ JI
GB GB

(20)

= *d d( )IJ JI
GB GB

(21)

It is often convenient to write eq 15 in matrix form:

| = +[ ]i
c H T cGB

GSE
elec GB GB GBi

k
jjj y

{
zzz (22)

where the matrix elements of Helec[GB] and TGB are shown in
eqs 16 and 17 respectively, and ■|GSE denotes that it is for
GSE. It also is useful to define the electronic density matrix,
whose matrix elements are

= *c c( )IJ I J
GB GB GB

(23)

Eqs 15 and 23 yield

=

+ * *

[ ]

[ ]

d

dt
i H T

i
H T( ) ( )

IJ

L

N

IL IL LJ

JL JL IL

GB
elec GB GB GB

elec GB GB GB

states i
k
jjjj

i
k
jjj y

{
zzz

i
k
jjj y

{
zzz

y
{
zzzz (24)

When I = J, this simplifies to

= [ ]d
dt

H T2
1

Im( ) Re( )II

L

N

IL LI IL LI

GB
elec GB GB GB GB

states i
k
jjj y

{
zzz

(25)

Conservation of total energy requires that the time
derivative of the molecular Hamiltonian function shown in
eq 6 should be zero. (Notice that the Hamiltonian function in
this context should be distinguished from the Hamiltonian
operator in a quantum context.) Therefore,

= · + =[ ]H
d
dt

P R Htr( ) 0GB GB elec GB
(26)

where tr(■) denotes the trace of a matrix. This requires that,

· = =[ ]

[ ]
[ ]

d
dt

dH

dt

d

dt
H

P R Htr( )

IJ

N

IJ
JI

IJ

N
IJ

JI

GB GB elec GB

GB
elec GB GB

elec GB
states states

(27)

We distinguish54,67 the two terms on the right-hand side of eq
27 as adiabatic force FA[GB] and nonadiabatic force FNA[GB]:
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· =[ ]
[ ]dH

dt
F R

IJ

N

IJ
JIA GB GB
elec GBstates

(28)

· =[ ] [ ]
d

dt
HF R

IJ

N
IJ

JI
NA GB

GB
elec GB

states

(29)

Therefore

= +[ ] [ ]P F FGB A GB NA GB (30)

We first consider the nonadiabatic force because this
equation can be further simplified. Using eqs 24 and 29, we
obtain

· =

[ * ]

+ [ + * ]

[ ]

[ ] [ ] [ ]

[ ]

i
H H H

T T H

F R

( )

( )

IJL

N

IL LJ JL IL JI

IJL

N

IL LJ JL IL JI

NA GB

elec GB GB elec GB GB elec GB

GB GB GB GB elec GB

states

states

(31)

The first term on the right-hand side of eq 31 is zero because

[ * ] =

=

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

H H H

H H H H

( )

tr( ) tr( ) 0

IJL

N

IL LJ JL IL JI
elec GB GB elec GB GB elec GB

elec GB GB elec GB elec GB GB elec GB

states

(32)

Therefore, the nonadiabatic force is reduced to

· = [ + * ][ ] [ ]T T HF R ( )
IJL

N

IL LJ JL IL JI
NA GB GB GB GB GB elec GB

states

(33)

Eq 33 can be written in a more compact matrix form,

· = [ ][ ] [ ]F R T Htr( , )NA GB GB GB elec GB (34)

where [X,Y] denotes a commutator of matrices X and Y,

[ ] =X Y XY YX, (35)

Note that both sides of eqs 28, 29, and 33 are scalars; this
means that the scalar conservation-of-energy condition in eq
26 allows some flexibility in making physical choices of the
directions of FA[GB] and FNA[GB]. To take advantage of this, we
introduce Nstates × Nstates × 3Natoms force direction tensors AGB,
BGB, and CGB. We treat these tensors as matrices whose
elements AJI

GB, BIL
GB, and CLJ

GB are (3Natoms)-dimensional vectors,
where I, J, L are indices of electronic states. Then the most
general expressions for FA[GB] and FNA[GB] that satisfy eqs 28
and 33 are

=
·

[ ]

[ ]

F
A

A RIJ

N
IJ

dH

dt JI

JI

A GB
GB GB

GB

JI
states

elec GB

(36)

and

=

· ·

[ ]

[ ] [ ]T H T H

F
B

B R

C

C RIJL

N
IL LJ JI IL

IL

LJ IL JI LJ

LJ

NA GB

GB GB elec GB GB

GB

GB GB elec GB GB

GB

states i

k
jjjjjjj

y

{
zzzzzzz

(37)

To prevent dividing by a zero in eqs 36 and 37, the AJI
GB, BIL

GB,
and CLJ

GB should not be normal to Ṙ. Because FA[GB] and
FNA[GB] should be real, it is convenient to take matrix AGB to be
Hermitian and matrices BGB and CGB to anti-Hermitian; then
the diagonal elements of matrices BGB and CGB are zero. We
often require that force direction tensors to be real, although
there are exceptions for which the complex parts are exactly
canceled, which will be discussed below. Combining eqs 36
and 37, we see that the most general form of the GSE nuclear
EOM that conserves the total energy is

=
·

+
· ·

[ ] [ ]
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T H T H

P
A

A R

B

B R

C
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IJ
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GB GB

GB

GB GB elec GB GB
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GB GB elec GB GB
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JI
states

elec GB

states i

k
jjjjjjj

y

{
zzzzzzz

(38)

Next, we discuss physical choices of AGB, BGB, and CGB

tensors. We set them such that the adiabatic force reduces to
that in the original SE method:

=[ ] [ ]HF
IJ

N

IJ JI
A GB GB elec GB

states

(39)

This is accomplished by setting AJI
GB equal to ∇HJI

elec[GB]; this is
convenient because ∇HJI

elec[GB] is readily available from
electronic structure packages during the propagation of
trajectories. Therefore, eq 28 is written as

· = ·[ ] [ ]HF R R
IJ

N

IJ JI
A GB GB elec GB

states

(40)

The choices of BGB and CGB are less straightforward. The
symmetry of the two terms in eq 37 suggests setting BGB equal
to CGB, and we shall only consider that case.

As shown in ref 69, assigning the direction of the
nonadiabatic force tensors to the direction of a space-frame
dGB of the kind produced by most electronic structure
programs that can produce NACs fails to conserve angular
momentum and center of mass momentum. The Ehrenfest
method and surface hopping do conserve angular momentum
and center-of-mass momentum if the NAC is in internal
coordinates,68 but, as discussed later in this section, SE EOMs
with a space-frame dGB conserve total energy but fail to
conserve angular momentum and center of mass momentum in
direct dynamics. Hence, we want to choose a practical
nonadiabatic force tensor that not only conserves total energy
(as already accomplished in in eq 38) but also conserves the
total nuclear angular momentum and center of mass
momentum. This imposes additional constraints on the
choices of AGB, BGB, and CGB tensors:69

× = × + =[ ] [ ]R P R F F( ) 0
a

N

a a
a

N

a a a
GB A GB NA GB

atoms atoms

(41)

= + =[ ] [ ]P F F( ) 0
a

N

a
a

N

a a
GB A GB NA GB

atoms atoms

(42)

where Ra, Ṗa
GB, Fa

A[GB], and Fa
NA[GB] are 3-dimensional vectors

denoting R, ṖGB, FA[GB], and FNA[GB] for nucleus a.
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Our choice of the AGB tensor as ∇HJI
elec[GB] readily conserves

total nuclear angular momentum and center of mass
momentum for the adiabatic force part,

× = × =[ ] [ ]HR F R 0
a

N

a a
a

N

a
IJ

N

IJ a JI
A GB GB elec GB

atoms atoms statesi

k
jjjjjjj

y

{
zzzzzzz

(43)

= =[ ] [ ]HF 0
a

N

a
a

N

IJ

N

IJ a JI
A GB GB elec GB

atoms atoms statesi

k
jjjjjjj

y

{
zzzzzzz (44)

where =a Ra
. The electronic structure of an isolated

molecule is translationally and rotationally invariant, and
therefore ∇HJI

elec[GB] does not have nonzero components for
overall translation and rotation.

However, the conservation of the total nuclear angular
momentum and the center of mass momentum by the
nonadiabatic force does lead to an additional restriction on
the BGB tensor (and CGB because CGB = BGB) that it should not
have nonzero overall translational and rotational components.
To achieve this, we use a projection operator to remove the
translational and rotational components of a preprojected BGB

tensor,69

=B Q B(1 )IJ IJ
GB GB,preprojected

(45)

where BIJ
GB,preprojected denotes a selected preprojected BIJ

GB

vector, and 1 and Q are the identity operator and the
projection operator, respectively. Because BIJ

GB is a 3Natoms-
dimensional vector, both 1 and Q are 3Natoms × 3Natoms
matrices. The projection operator is

= +

[ ]

Q
N

R R

1
a a

x y z x y z x y z x y z

a a

,
atoms

, , , , , , , ,
1

(46)

where a and a’ are indicies of nuclei, which vary from 1 to
Natoms; α,β,γ,α’,β’,γ’ are indicies of Cartesian directions, which
take values of x, y, or z; I−̃1 is the inverse of matrix I;̃ matrix I ̃ is
the same size as the moment of inertia matrix with all masses
set to 1, and ε is a third-order unit pseudotensor whose
elements are the Levi-Civita symbol. The first term of the
projection operator corresponds to overall translation, and the
second term corresponds to overall rotation. Therefore, eq 45
is our final suggested choice of a BGB tensor that conserves
total nuclear angular momentum and center of mass
momentum.

We make the above choice of AGB, BGB, and CGB tensors,
and this gives the following nuclear EOM for GSE that we use:

| = +

· ·

[ ]

[ ] [ ]
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T H T H
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GB GB elec GB GB

GB

states

states i

k
jjjjjjj

y

{
zzzzzzz

(47)

We have arrived at eqs 22 and 47 as the final electronic and
nuclear EOMs for GSE. By using eq 45, GSE EOMs conserves

total energy, angular momentum, and center of mass
momentum.

In SE, the electronic EOM is identical to that of GSE,

| = +[ ]i
c H T cGB

SE
elec GB GB GBi

k
jjj y

{
zzz (48)

The nuclear EOM of SE can be considered as a special case of
GSE. In SE, the force direction tensors BGB and CGB are
chosen as

| = | =B C dGB
SE

GB
SE

GB (49)

where the elements of dGB is defined in eq 19. This gives the
nuclear EOM of SE,

| = +[ ]

[ ] [ ]

H

H H

P

d d( )

IJ

N

IJ JI

IJL

N

LJ JI IL IL JI LJ

GB
SE

GB elec GB

GB elec GB GB GB elec GB GB

states

states

(50)

Because dGB could be complex, this can provide an exception
already mentioned to the choice of the force direction tensors
being real. Using dGB as the nonadiabatic force direction is
physical choice because TDC TGB can be written as product of
the NAC and the velocity vector, as shown in eq 18, and eq 34
can be written as

· | = · [ ][ ] [ ]F R d R Htr( , )NA GB
SE

GB GB elec GB (51)

A NAC computed from a prefitted analytic representation of
coupled diabatic surfaces does not suffer the angular-
momentum-nonconservation problem if it is calculated in
internal coordinates70−74 or in transformed Cartesian coor-
dinates from which translation and rotation have been
removed.75−78

An important positive aspect of the GSE method is that it is
directly derivable from the time-dependent Schrödinger
equation, and SE is a special case of GSE. An advantage of
GSE over SE is that one is not required to compute full NACs.
By knowing TDCs and an appropriate choice of force tensor
BGB, one can perform an SCP nonadiabatic dynamics
calculation without full NACs. One has many choices of the
force tensor BGB, for example in ref 52., we have used an
effective NAC, which is defined as a combination of the
difference gradient vector and the nuclear velocity vector:

= =

+[ ] [ ]H H

B B

R

IJ IJ

II JJ IJ

GB,preprojected GB,effNAC

elec GB elec GB GB
(52)

where αIJ
GB is a parameter that is determined by requiring

· = TB RIJ IJ
GB,effNAC GB

(53)

and this gives,

=
·

·

[ ] [ ]T H H R

R R

( )
IJ

IJ II JJGB
GB elec GB elec GB

(54)

Eqs 52−54 are an example of how BGB,preprojected can be chosen.
In summary, eqs 22, 45, and 47 with user-supplied

BIJ
GB,preprojected define the electronic and nuclear EOMs for

GSE, and eqs 48 and 50 define the special case of electronic
and nuclear EOMs of GSE, which is SE.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Perspective

https://doi.org/10.1021/acs.jctc.4c00424
J. Chem. Theory Comput. 2024, 20, 4396−4426

4401

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2.2. Fewest-Switches Trajectory Surface Hopping. A
computational advantage of SE and GSE is that they are robust
on the choice of representation, i.e., the simulated results are
insensitive on the choice between adiabatic and diabatic
representations; one obtains similar results if one propagates
trajectories on MCH, diagonal, diabatic, or other representa-
tions. This is not true for TSH methods.79,80 Because TSH
methods are often (not always) more accurate in fully adiabatic
basis, one usually prefers to use the diagonal representa-
tion.11,53,81−87 This makes TSH methods more complicated
when SOC is included.

The original FS-TSH method was developed for internal
conversion processes.34 Here, following the lead of Richter et
al.,45 we adopt a formalism that can be generalized to treat
SOC in a practical way.

In FS-TSH and other TSH methods, the trajectories are
propagated on one potential energy surface at a time,
punctuated by surface hops to other surfaces. The active
surface at any given time is labeled K. Therefore, between
hops, the nuclear EOM for TSH is

| = [ ]HP KK
GB

TSH
elec GB (55)

The electronic EOM for TSH is identical to that of GSE or SE:

| = +[ ]i
c H T cGB

TSH
elec GB GB GBi

k
jjj y

{
zzz (56)

In the fewest-switches method, the surface K is switched
stochastically according to the following hopping probability:

+ =P t t t
b t t

t
( , ) max

( )
( )

, 0K I
KI

KK

GB
GB

GB

i
k
jjjjjj

y
{
zzzzzz (57)

where bKIGB is the rate of population change from state K to state
I in the GB basis during time interval t to t + Δt, where
population is defined by eq 23 as |cGB|2. The FS hopping
probability minimizes the number of state switches required
and to maintain the correct statistical distribution of electronic
state populations in the case where the surfaces are degenerate;
then eq 25 gives bKIGB as

= [ ]b t H T( ) 2
1

Im( ) Re( )KI KI IK KI IK
GB elec GB GB GB GBi

k
jjj y

{
zzz (58)

The hop from one surface to another corresponds to a
discontinuity in the active potential energy surface. To
conserve energy, one adjusts the momentum discontinuously
when a hop occurs. This adjustment is not random; it is
adjusted along a certain direction called the momentum
adjustment vector or the hopping direction. The velocity Ṙa of
atom a is adjusted after a K → I hop according to,

| = |t t f
M

R R
h

( ) ( )a K I a K I KI
KI a

a
post pre

,

(59)

where hKI,a is the momentum adjustment vector of atom a, and
f KI is a factor determined by requiring energy conservation,
which requires

| +

= | +
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(60)

Inserting eq 59 into 60 gives,

=
± +
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E t E t E t H t
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2 ( )KI

KI KI KI
KI

KI
h h

2
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GB
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where

= [ ] [ ]H t H H( )KI KK II
GB elec GB elec GB (62)
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K I KI ah A pre ,
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(64)

To have a real solution for f KI, the following condition must be
fulfilled:

+E t
E t
E t

H t( )
( )

4 ( )
( ) 0KI

KI

KI KI
h

2

kin,h

GB

(65)

When eq 65 is not fulfilled, the called-for a hop is called
frustrated, and no hop is made. Although there are arguments
that frustrated hops are necessary to achieve detailed
balance,88−92 frustrated hops are an intrinsic deficiency of
TSH methods; they cause errors such as population
leaking.93,94

Downward hops are never frustrated. An upward hop may
be frustrated because there is not enough energy to hop, but
sometimes hops are frustrated even when there is enough
energy to hop. The latter occurs if there is not enough
momentum in the direction of the momentum adjustment
vector. The literature has many choices of momentum
adjustment vector, for examples, the nuclear velocity vector,
the NAC, the difference gradient vector, or an effective NAC.52

The most convincing work shows that the NAC is probably the
best choice,95−100 although in practice, as discussed next, one
should use a projected NAC69 if the NAC has been computed
in the space frame.

The choice of momentum adjustment vector affects not only
the possible success of a called-for hop but also the
conservation of angular momentum and center of mass
momentum.69 As shown in ref 69, using a space-frame NAC
(which is the kind of NAC produced by most electronic
structure programs that can produce NACs) fails to conserve
angular momentum and center of mass momentum. In that
spirit, just as eq 60 requires the hopping process to conserve
total energy, we require that the hopping process conserves
total nuclear angular momentum and center of mass
momentum:69

× | = × |t M t t M tR R R R( ) ( ) ( ) ( )
a

N

a a a K I
a

N

a a a K Ipost pre

atoms atoms

(66)

| = |M t M tR R( ) ( )
a

N

a a K I
a

N

a a K Ipost pre

atoms atoms

(67)

Using eq 59 reduces eqs 66 and 67 to,

× =t fR h( ) ( ) 0
a

N

a KI KI a,

atoms

(68)
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=f h( ) 0
a

N

KI KI a,

atoms

(69)

Among popular choices of the momentum adjustment vector
(which include the nuclear velocity vector, the difference
gradient vector, and the space-frame NAC) only the difference
gradient vector satisfies eqs 68 and 69. We do not want to
restrict ourselves to this choice; therefore, for an arbitrary
choice, hKI

preprojected, of momentum adjustment vector (which
can be, for example, a NAC or nuclear velocity vector), we
project

=h 1 Q h( )KI KI
preprojected (70)

where 1 and Q are the identity operator and projection
operator69 respectively (these are 3Natoms × 3Natoms matrices).
The projection operator is shown in eq 46. When hKI

preprojected is
the nuclear velocity vector, hKI becomes a vibrational velocity
vector; when hKI

preprojected is NAC, hKI corresponds to projected
NAC.

With a computed factor f KI from eq 61 and a choice of
momentum adjustment vector or hopping direction according
to eq 70, one obtains a hopping procedure that conserves total
energy, angular momentum, and center of mass momentum.

Our recommended choice of momentum adjustment vector
when using a space-frame NAC from an electronic structure
program is a projected NAC where the projection removes the
translational and rotational components of the NAC. If one is
using a transformed NAC computed from transformation of a
fitted diabatic representation, then (analogously to the
discussion in Section 2.1), there is no angular-momentum-
nonconservation or center-of-mass-motion nonconservation
problem because the transformed NAC is a functional of
internal coordinates only.

When a hop is frustrated, one can either ignore the
frustrated hop and continue forward, or one can ignore it and
reflect backward. The latter is motivated by thinking of the
increase in potential energy at a called-for upward hop as a
repulsive wall that bounces the trajectory backward. Reflecting
the velocity leads to

| = |t t gR R( ) ( )a a KL KL apostreflect prereflect , (71)

where KL a, is the velocity reflection vector of atom a, and gKL
is a factor determined by satisfying energy conservation, which
requires
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(72)

This gives

=
| ·

·
g

tR
2

( )
KL

a KL a

KL a KL a

prereflect ,

, , (73)

where K and L are respectively the active and frustrated states.
There are many possible choices for the velocity reflection
vector. For any of these choices, eq 73 conserves total energy
because the kinetic energy is not changed by the reflection.

Another possible action at a frustrated hop is a conditional
reflection.101 The first conditional reflection method is called
the ∇V scheme,101 in which one reflects the velocity along the
direction KL a, if

· · <[ ]H tP( )( ( ) ) 0LL KL KL
elec MCH (74)

where P (t) is the nuclear momentum at the time t at which a
frustrated hop occurs. Otherwise, i.e., if eq 74 if not satisfied,
one ignores the frustrated hop. Later, an additional condition
was suggested,102,103

· · <[ ] [ ]H H( )( ) 0KK KL LL KL
elec MCH elec MCH (75)

In this scheme, the trajectory is reflected only when both
conditions eqs 74 and (75) are satisfied.

The following conditions need to be satisfied to conserve
total nuclear angular momentum and center of mass motion
after a velocity reflection
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These conditions lead to
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(79)

One can use the same remedy as we have used above, namely,
projecting out the translational and rotational components of a
preprojected velocity reflection vector,

= Q(1 )KL KL
preprojected (80)

Our recommended procedure is conditional reflection with
the ∇V scheme and the projected NAC as the velocity
reflection vector.
2.3. More Discussion of Conservation of Angular

Momentum and Center-of-Mass Momentum. From both
Sections 2.1 and 2.2, to conserve total nuclear angular
momentum and center-of-mass momentum, we have stressed
the importance of using a force direction (nonadiabatic force
direction in GSE, momentum adjustment vector or velocity
reflection vector in FS-TSH) that does not have nonzero
translational and rotational components. In contrast, the early
literature considered only conservation of total energy.
However, for a closed system, when electronic angular
momentum is neglected (as is the case in mixed quantum-
classical methods), the system’s total nuclear angular
momentum and center-of-mass linear momentum are required
to be conserved because of the isotropy and translational
symmetry of space.

Nuclear angular momentum nonconservation can be more
severe in SCP methods based on GSE than in TSH methods.
This is because one uses the nonadiabatic force direction at
every time step in GSE, and therefore, the nonconservation is
accumulated along a trajectory, while for TSH, nonconserva-
tion only happens at places where there is a hop. For example,
our previous studies of ethylene nonadiabatic dynamics in 200
fs simulations with unprojected space-frame nonadiabatic
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Table 1. Summary of Working Equations for GSE, SE, and TSH Methods in a General Basis, in the MCH Basis, and in the
Diagonal Basis

Method Basis Formula Equation
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coupling vectors showed that the SCP and TSH methods had
nuclear angular momentum nonconservation by more than
10ℏ and 1ℏ respectively. (In both cases, though, angular
momentum would be conserved if one used a NAC calculated
in internal coordinates or a projected NAC that eliminates the
overall translation and rotation.)

The original decay-of-mixing methods (decay-of-mixing
methods will be motivated in Section 2.6 and discussed in
detail in Section 5) did consider conservation of energy,
angular momentum, and center of mass motion in the nuclear
EOM.104,105 However, those methods were only applied to
analytic coupled potential energy surfaces. Using a space-frame
NAC in direct dynamics destroys conservation of angular
momentum and center of mass momentum, as first discussed
in ref 69. in 2020. Recently, this problem has been further
discussed and elaborated.106,107

Our suggested remedy to angular momentum and center of
mass momentum nonconservation problems may be summar-
ized as follows: All terms in the nuclear EOM should have a
force direction for which the translational and rotational
components are zero.
2.4. Choice of Basis for the Electronic Wave Function.

When SOC is included, the electronic Hamiltonian is usually
split into two contributions,

= +H H Helec SOF SOC (81)

where HSOF is the spin−orbit-free Hamiltonian that includes
electronic kinetic energy and all Coulomb interactions between
electrons and nuclei, and HSOC is the SOC. As discussed in
Section 2.1, one may then distinguish the MCH and the
diagonal representations. To distinguish various matrix
representations of the various Hamiltonians, we use the
following notation,

= | |[ ]H HIJ I J
A GB GB A GB

(82)

where A can be “elec”, “SOF”, or “SOC” as defined in eq 81.
The MCH basis diagonalizes HSOF,

= | | =[ ]H H VIJ I J I IJ
SOF MCH MCH SOF MCH SOF

(83)

where VI
SOF is the spin-free potential energy surface of MCH

state I. And the diag basis diagonalizes Helec (the diag basis
functions are eigenvectors of Helec):

= | | =[ ]H H VIJ I J I IJ
elec diag diag elec diag diag

(84)

where VI
diag is the fully adiabatic potential energy surface of

diagonal state I.
When SOC is included, Helec[MCH] has nonzero off-diagonal

elements of the SOC operator in the MCH basis. However,
one should not confuse the MCH basis with a diabatic basis,
which also has a nondiagonal Hamiltonian. As mentioned
above, a diabatic representation is one for which the
nonadiabatic coupling vectors dIJ can be neglected anywhere
on the potential energy surface,43 but dIJ is not negligible in the
MCH basis when SOC is included. Obtaining a diabatic

representation is useful when constructing analytic representa-
tions of potential energy surfaces because the diabatic potential
energies and couplings are smooth functions of nuclear
coordinates, but global diabatic representations are not useful
in direct dynamics, because they are not straightforwardly
available from electronic structure codes.

The difficulty of including SOC is that the trajectories may
require gradients of VI

diag, but electronic structure packages
only produce gradients of VI

SOF. One can diagonalize the total
Hamiltonian in the MCH representation to obtain the
Hamiltonian in the diagonal representation:

=[ ] † [ ]H U H Uelec diag elec MCH (85)

And therefore, one can transform from the MCH basis to the
diagonal basis by

= †c U cdiag MCH (86)

When the electronic structure software only provides potential
energy surfaces and gradients in the MCH basis, all the
required terms in the diagonal basis can nevertheless be
obtained by the above transformations.67,108

2.5. Summary of EOMs for GSE, SE, and FS-TSH in
Various Bases. The GSE (or its special case the SE) provides
the starting point for all SCP methods; in a later section we will
recommend coherent switching with decay-of-mixing method
(CSDM) and its extensions as the preferred SCP methods.
The FS-TSH method provides the starting point for all TSH
methods that are considered here; in a later section we will
recommend fewest switches time-uncertainty trajectory-sur-
face-hopping method (FSTU) and its extensions as the
preferred TSH methods.

The EOMs for the GSE, SE, and TSH methods in the GB,
diagonal, and MCH representations are summarized in Table
1. Notice that in Table 1, we do not summarize the BMCH force
tensor in GSE or the momentum adjustment and velocity
reflection vectors in FS-TSH because there is additional
flexibility in choosing these ingredients.
2.6. Addition of Decoherence to the Electronic

Density Matrix. A deficiency of the original FS-TSH method
and of the pure SE and GSE methods is that they do not
include decoherence. Decoherence is the tendency of the
density matrix of a subsystem to assume a diagonal form
corresponding to a classical mixture of populations, where the
populations are the diagonal elements of the subsystem density
matrix. The basis in which the density matrix becomes diagonal
is called the pointer basis; it is selected by the environment,
i.e., by the “measurement” being made.109 In much of the
literature on decoherence, the subsystem is considered to be a
molecule in an environment such as a solvent or a solid surface.
However, we now realize that the decoherence of the
electronic subsystem of a molecule is often dominated by
interaction of the electronic subsystem with the nuclei of the
molecule rather than by interaction with an extramolecular
environment.104

Table 1. continued

Method Basis Formula Equation

bKIMCH = [ ]b t H T( ) 2
1

Im( ) Re( )KI IL LI IL LI
MCH elec MCH MCH MCH MCHi

k
jjj y

{
zzz

Nuc EOM [ ] = [ ]HP KK
MCH

TSH
elec MCH
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The wave function for an entire system does not usually
factor into a product of wave functions of its subsystems. Then
a subsystem is not described by a wave function that evolves by
a time-dependent Schrödinger equation.110 The most com-
plete possible description of such a subsystem is by a reduced
density matrix that evolves by a generalized master equation.
The reduced density matrix of a subsystem does not usually
correspond to a pure state described by a Schrödinger
equation; rather it corresponds to a mixed state. A generalized
master equation may also be called a nonunitary Liouville-von
Neumann equation. The original Liouville-von Neumann
equation (sometimes called the quantum Liouville equation)
corresponds to unitary time evolution of a pure state and is
equivalent to the time-dependent Schrödinger equation.111,112

To describe the time evolution of a mixed state, one must add
additional terms to the unitary Liouville-von Neumann
equation;113−117 this yields a generalized master equation for
the evolution of the mixed-state density matrix.

The electronic density matrix is a reduced density matrix of
the molecular density matrix, given by54

= Tr ( )elec
nuc

mol (87)

where ρelec is defined in eq 23, and ρmol is the molecular density
matrix. The reduced density matrix of the electronic
subsystem, starting in a pure state, evolves to a mixed-state
density matrix over time; this involves the off-diagonal
elements of ρelec relaxing to zero. Since the off-diagonal
elements of a density matrix are called coherences, this process
is called decoherence. The reciprocal of the first-order decay
rate constant of the coherence is called the decoherence time.

We consider the reduced density matrix ρelec of an isolated
molecular system (either the temporary complex formed by a
bimolecular collision or the whole molecule involved in a
unimolecular process). The unitary propagation of ρelec is given
by eq 24, which is equivalent to

= [ + + ]
t

T V Hi ( ),elec elec elec nuc elec elec
(88)

where Telec, Velec, Hnuc‑elec are respectively the electronic kinetic
energy, the electron−electron Coulomb interactions, and the
nuclear-electron interaction operators. The nonunitary prop-
agation is given by

= [ + ] + [ ]
t

T V Hi ( ), Tr ( , )elec elec elec elec
B

nuc elec

(89)

The direct solution of eq 89 is not easy, and many
approximations have been put forward.84,118−133 Phenomeno-
logically, decoherence causes the off-diagonal matrix elements
of ρelec to decay to zero exponentially (or like a Gaussian) with
a time scale called the decoherence time. Therefore, one way
to approach the problem is to treat the decoherence
phenomenologically by replacing the physical decoherence
with algorithmic decoherence, which we also call decay of
mixing.80,83,104,105,134−138 Our preferred methods, called decay-
of-mixing methods, start with the decoherence-free SE or GSE
equations and add algorithmic decoherence by adding non-
Markovian decay of the electronic coefficients of nonpointer
states. The method can equivalently be recast as decay of the
off-diagonal elements of the electronic density matrix.139 This
decay is due to the nuclear wave packets associated with
different electronic states getting out of overlap.135,140

Therefore, between strong-interaction regions, the electronic

density matrix tends to become diagonal (in a basis called the
pointer basis) on the decoherence time scale. Note that it is
called pointer basis because it denotes the pointer on a
measuring apparatus. On the same time scale, the decay of
mixing drives the population of one state, called the pointer
state K, to unity (and the others to zero). The identity of the
pointer state is switched stochastically so that the final
populations of an ensemble of trajectories provide a semi-
classical approximation to the quantum mechanical distribu-
tion of final states. More details of the decay of mixing are
given in the next paragraph.

In decay-of-mixing methods, one exponentially decays the
coherence to zero:

+ =t dt t( ) ( ) eIK IK
dt tRelec elec / ( ( ))IK (90)

where I is a general state that is not the current pointer state K,
and τIK is the position-dependent decay-of-mixing time. This
means that coherence has a half-life of τIK ln 2, and it is
equivalent to decaying the coefficients of all states except the
pointer state to zero in eq 14. After the decay is complete, the
electronic density matrix of a given trajectory is again pure, but
only a single diagonal element survives and becomes unity; the
rest of the elements are all zero. Note though that another
strong interaction region may be encountered before the decay
is complete, or the pointer state may change before the decay
is complete. If one averages the final density matrices over an
ensemble of mixed quantum-classical trajectories (with differ-
ent initial conditions), the ensemble-averaged density matrix
represents a mixed-state density matrix, diagonal but with more
than one nonzero diagonal element. Only the ensemble-
averaged electronic density matrix is physically meaningful.

There are many approaches to include decoher-
ence,83,102,104,105,134,135,138,141−143 and it is beyond the present
scope to provide a complete review; we refer interested readers
to a recent review.54

3. INTRODUCTION TO NONADIABATIC DYNAMICS
WITHOUT WAVE FUNCTIONS

Section 3.1 summarizes the required electronic structure
information for GSE, SE, and FS-TSH and shows where one
requires electronic wave functions. Wave function-free mixed
quantum-classical nonadiabatic dynamics involves two levels,
namely, NAC-free mixed quantum-classical nonadiabatic
dynamics, and overlap-free (TDC-free) mixed quantum-
classical nonadiabatic dynamics. In the following text, we will
simply call the mixed quantum-classical nonadiabatic dynamics
as nonadiabatic dynamics for simplicity. Sections 3.2 and 3.3
consider the NAC-free level, which results in overlap-based
algorithms, and Section 3.4 motivates the overlap-free
approach, which results in curvature-driven algorithms. At
the NAC-free level, one still needs wave functions because one
needs the TDC; but the NAC-free level, in addition to its
interest for practical calculations, is also of interest in providing
a step-by-step route to the overlap-free level, which is wave
function-free.

The NAC-free nonadiabatic dynamics methods are also
called overlap-based nonadiabatic dynamics because one needs
overlaps to compute TDCs. And the wave function-free
nonadiabatic dynamics methods are also called overlap-free
nonadiabatic dynamics or TDC-free nonadiabatic dynamics.
We show below how we approximate TDCs with curvatures of
potential energies. Then the wave function-free nonadiabatic
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dynamics methods are ultimately called curvature-driven
nonadiabatic dynamics.

We sometimes use the prefix “t” to denote that a dynamics
method is an overlap-based algorithm; and the prefix “κ” to
denote that such a method is a curvature-driven method. For
example, tGSE denotes an overlap-based algorithm that starts
from GSE, and κGSE denotes a curvature-driven algorithm
that starts from GSE. Similarly, one can have tFS-TSH and
κFS-TSH.
3.1. Electronic Structure Information Needed for

GSE, SE, and FS-TSH. One can perform dynamics in any
electronic basis (any electronic representation), for example,
the diagonal basis or the MCH basis. However, calculations are
more convenient in some bases than in others. For example, an
FS-TSH simulation in the diagonal basis requires Helec[diag],
∇HKK

elec[diag] and Tdiag; but the required data is not directly
available, with the most significant lack being that electronic
structure programs only provide analytic gradients in the MCH
representation. We will address this kind of issue below.

We distinguish three types of information that can be
obtained from electronic structure calculations, namely, energy
information (Helec[MCH]), gradient information (∇Helec[MCH]),
and coupling information (dMCH or TMCH).

TMCH is not directly available in any representation in most
electronic structure packages; however, it can either be
analytically computed from dMCH by using eq 18, or it can
be approximated from overlap integrals of MCH electronic
wave functions at successive time steps,52,144−146

+ = | +S t t t t t t( , ) ( ) ( )IJ I J
MCH MCH MCH

(91)

where Δt is the time step to propagate the nuclear EOM.
Employing overlap integrals to approximate TDCs is preferable
to using eq 18 because it alleviates the trivial crossing
problem.147−150 The simplest approximation to the TDC from
an overlap integral is the Hammes-Schiffer−Tully scheme:37

+ =
+ +

T t t
S t t t S t t t

t
1
2

( , ) ( , )

2IJ
IJ JIMCH
MCH MCHi

k
jjj y

{
zzz

(92)

More accurate schemes are also available, for example, the
norm-preserving interpolation scheme of Meek and Levine.146

We refer the interested reader to ref 151 for a summary of
available schemes.

Computing coupling information (dMCH or TMCH) requires
using the electronic wave functions. The curvature-driven
approximations discussed below are motivated by the goal of
approximating dMCH or TMCH from MCH energy and gradient
information without needing electronic wave functions.

Table 2 summarizes the information needed for GSE, SE,
and FS-TSH in the MCH basis for Hamiltonians without SOC.
Notice that when there is no SOC in the Hamiltonian, the
MCH and diagonal bases are identical. The case of
Hamiltonians without SOC is important because internal
conversion among singlet electronic states can often be treated
with useful accuracy without including SOC. We denote the
basis used to propagate the dynamics as the dynamics basis.
For Hamiltonians without SOC, the dynamics basis is MCH
basis. Because the MCH and diagonal bases are identical in
this case, the basis is often just called the adiabatic basis. When

Table 2. Electronic Structure Information Required by Direct Dynamics Calculations for a Hamiltonian Without SOCa

Required Information in Dynamics Basis Required Information in MCH Basis

Method Dynamics basisa,b Energy Gradient Coupling Energy Gradient Coupling

GSE diag/MCHa Helec[MCH] ∇Helec[MCH] TMCH Helec[MCH] ∇Helec[MCH] TMCH

SE diag/MCH Helec[MCH] ∇Helec[MCH] dMCH Helec[MCH] ∇Helec[MCH] dMCH

FS-TSH diag/MCH Helec[MCH] ∇HKK
elec[diag] TMCH Helec[MCH] ∇HKK

elec[diag] TMCH

aWhen there is no spin−orbit coupling in the Hamiltonian, the diagonal and MCH representations are identical. bWe denote the basis used to
propagate the dynamics as the dynamics basis.

Table 3. Electronic Structure Information Required by Direct Dynamics Calculations for a Hamiltonian that Includes SOC

Required Information in Dynamics Basis Required Information in MCH Basis

Method Dynamics basis Energy Gradient Coupling Energy Gradient Coupling

Use nuclear gradient tensor scheme (NGT) for transformation
GSE diag Helec[diag] ∇Helec[diag] Tdiag = Ṙ·ddiag Helec[MCH] ∇Helec[MCH] ∇Helec[MCH] and dMCH

GSE MCH Helec[MCH] ∇Helec[MCH] TMCH Helec[MCH] ∇Helec[MCH] TMCH

SE diag Helec[diag] ∇Helec[diag] ddiag Helec[MCH] ∇Helec[MCH] dMCH

SE MCH Helec[MCH] ∇Helec[MCH] dMCH Helec[MCH] ∇Helec[MCH] dMCH

FS-TSH diag Helec[diag] ∇HKK
elec[diag] Tdiag = Ṙ·ddiag Helec[MCH] ∇Helec[MCH] and dMCH ∇Helec[MCH] and dMCH

FS-TSH MCH Helec[MCH] ∇HKK
elec[MCH] TMCH Helec[MCH] ∇HKK

elec[MCH] TMCH

Use time-derivative matrix (TDM) scheme for transformation
GSE diag Helec[diag] ∇Helec[diag] Tdiag Helec[MCH] ∇Helec[MCH] TMCH

GSE MCH Helec[MCH] ∇Helec[MCH] TMCH Helec[MCH] ∇Helec[MCH] TMCH

SE diag Helec[diag] ∇Helec[diag] ddiag Helec[MCH] ∇Helec[MCH] dMCH

SE MCH Helec[MCH] ∇Helec[MCH] dMCH Helec[MCH] ∇Helec[MCH] dMCH

FS-TSH diag Helec[diag] ∇HKK
elec[diag] Tdiag Helec[MCH] ∇tHelec[MCH] and TMCH TMCH

FS-TSH MCH Helec[MCH] ∇HKK
elec[MCH] TMCH Helec[MCH] ∇HKK

elec[MCH] TMCH

GSE diag/MCH Helec[MCH] ∇Helec[MCH] TMCH Helec[MCH] ∇Helec[MCH] TMCH

SE diag/MCH Helec[MCH] ∇Helec[MCH] dMCH Helec[MCH] ∇Helec[MCH] dMCH

FS-TSH diag/MCH Helec[MCH] ∇HKK
elec[MCH] TMCH Helec[MCH] ∇HKK

elec[MCH] TMCH
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SOC is not included, the dynamics basis is the same as the
basis used in the electronic structure software; and dynamics
algorithms can directly use the energy, gradient, and coupling
information (if and when available) from electronic structure
software.

Table 3 summarizes the information needed for GSE, SE,
and FS-TSH in the diagonal or MCH basis for Hamiltonians
with SOC. When SOC is present, the diagonal basis and the
MCH basis differ from one another. Important considerations
in choosing between them for use as the dynamics basis are
that TSH methods are usually more accurate when dynamics is
carried out in a fully adiabatic basis (which is the diagonal basis
when SOC is present), but electronic structure software usually
provides information most conveniently in the MCH basis.
When the dynamics basis is different from the basis used in the
electronic structure software, one needs to perform a
transformation from the MCH basis to the basis used in the
dynamics calculation.

To achieve wave function-free nonadiabatic dynamic, we
first need to have a NAC-free nonadiabatic dynamics method
so that we can propagate nonadiabatic dynamics with only
potential energies, gradients, and TDCs. Second, we need to
have a way to approximate TDCs from potential energies and
gradients. In Sections 3.2 and 3.3 we will achieve NAC-free
nonadiabatic dynamics; and in Section 3.4 we will motivate our
ultimate goal, namely, wave function-free nonadiabatic
dynamics with only potential energies and gradients.
3.2. NAC-Free Mixed Quantum-Classical Nonadia-

batic Dynamics for Hamiltonians without SOC. For
Hamiltonian without SOC, as summarized in Table 2, one can
achieve NAC-free nonadiabatic dynamics by using either GSE
or FS-TSH; however, the original SE requires computation of
full NACs. For Hamiltonians without SOC, our starting point
for NAC-free nonadiabatic dynamics is GSE for SCP methods
and FS-TSH for TSH methods. When dMCH is not used in
computing TMCH in the EOMs and nonadiabatic force tensors
for GSE, the resulting algorithm is NAC-free, and is called
tGSE; When dMCH is not used in computing TMCH in the
EOMs and momentum adjustment vector and velocity
reflection vector for FS-TSH, the resulting algorithm is called
tFS-TSH. The same notation is adapted for Hamiltonians with
SOC, which will be discussed in next section.
3.3. NAC-Free Mixed Quantum-Classical Nonadia-

batic Dynamics for Hamiltonians with SOC. For
Hamiltonian with SOC, one may use either the diagonal
basis or the MCH basis as the dynamics basis.

When the dynamics basis is the MCH basis, the dynamics
algorithm can directly use the energy, gradient, and coupling
information from electronic structure software, and Table 3
shows that one can readily perform NAC-free nonadiabatic
dynamics with GSE and FS-TSH. However, the preferred
dynamics basis is the diagonal basis, especially for TSH
methods. In that situation, the dynamics basis is different from
the basis used by the electronic structure software, and one
needs to perform a transformation from the MCH basis to
diagonal basis for energy, gradient, and coupling information.
Energy information in the diagonal basis can be obtained from
information available in the MCH basis by the transformation
of eq 85, but gradient and coupling information is more
complicated as discussed below.

We distinguish two approaches to achieve a transformation
or approximation to compute gradient and coupling
information in the diagonal basis from information in the

MCH basis, namely, the nuclear gradient tensor (NGT)
scheme developed by Mai, Marquetand, and Gonzaĺez,108 and
the time-derivative matrix (TDM) scheme developed by us.67

We will first discuss the NGT and TDM transformation
approaches, and then−to illustrate the advantage of the TDM
scheme−we will show how NAC-free nonadiabatic dynamics
can be achieved by the TDM scheme.
3.3.1. Nuclear Gradient Tensor (NGT) Scheme. The NGT

scheme works by defining a nuclear gradient tensor GB,

| | = + | |gH HIJ I J IJ I J
GB GB elec GB MCH GB SOC GB

(93)

where

| |g HIJ I J
GB GB SOF GB

(94)

Recall that HSOF and HSOC are defined in eq 81. Notice that
both GB and gGB are Nstates × Nstates × 3Natoms tensors.
Similarly to the way we treat NACs, we treat GB and gGB as
Nstates × Nstates matrices in which the matrix elements are
(3Natoms)-dimensional vectors. One can show that,67,108

= [ ] [ ] [ ]H H H d( )IJ II IJ II JJ IJ
diag elec diag elec diag elec diag diag

(95)

= [ ] [ ] [ ]g H H H d( )IJ II IJ II JJ IJ
MCH SOF MCH SOF MCH SOF MCH MCH

(96)

The key approximation of the NGT scheme is to assume that

I
H

JR
GB GBSOC

= 0, and therefore,
†gU U,diag ,diag,NGT ,MCH (97)

where the superscript NGT denotes that this is an NGT
approximation, and where the transformation matrix U is
defined in eq 85, and ,diag ,diag,NGT and gη,MCH are
Nstates × Nstates matrices with elements IJ

,diag,NGT and gIJη,MCH

respectively, and η = 1, 2, ..., 3Natoms. With this notation, the
matrix elements ,diag,NGT and gη,MCH are components of the
vectors that are the matrix elements of GB and gGB. Therefore,

[ ]H
R

II
II

elec diag
diag,NGT

(98)

[ ] [ ]H Hd ( )IJ JJ II IJ
diag elec diag elec diag 1 diag,NGT

(99)

In summary, the NGT scheme first forms a gMCH tensor by
using gradients and NACs in the MCH representation, and
then it forms to diag according to eq 97. The gradients and
NACs in the diagonal representations are obtained according
to eqs 98 and 99 respectively. That is why we show in Table 3
that one needs NACs in MCH basis to propagate the nuclear
EOM for FS-TSH calculations in the diagonal basis if one uses
the NGT scheme.
3.3.2. Time-Derivative Matrix (TDM) Scheme. The TDM

scheme starts by defining a time-derivative matrix GB,

= +d
dt

H k
dH

dtIJ I J IJ I J
GB GB elec GB GB GB

SOC
GB

(100)

where
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k
dH

dtIJ I J
GB GB

SOF
GB

(101)

and where that HSOF and HSOC are defined in eq 81. Notice
that GB is an Nstates × Nstates matrix. One can show that67

=
[ ]

[ ] [ ]dH
dt

H H T( )IJ
II

IJ II JJ IJ
diag

elec diag
elec diag elec diag diag

(102)

=
[ ]

[ ] [ ]k
dH

dt
H H T( )IJ

II
IJ II JJ IJ

MCH
SOF MCH

SOF MCH SOF MCH MCH

(103)

The key approximation of the TDM scheme is to assume

I
dH

dt J
GB GBSOC

= 0; and this leads to
†U k Udiag,TDM MCH (104)

where the TDM superscript denotes that this is from the TDM
approximation. The “approximately equal” sign in eqs 97 and
104 comes from the observation that SOC is more system-
dependent than nuclear-geometry-dependent.152,153 Therefore,

[ ]dH
dt

II
II

elec diag
diag,TDM

(105)

[ ] [ ]T H H( )IJ JJ II IJ
diag elec diag elec diag 1 diag,TDM

(106)

Eq 105 is useful because one can use the chain rule to rewrite it
as

·[ ]H RII II
elec diag diag,TDM (107)

In a similar way to the derivation that we used above to derive
the GSE nuclear EOMs, one can obtain a general solution for
the gradient as

=
·

[ ]H
R F

FII
II

II
II

elec diag
diag,TDM

(108)

where we require that FII is real and not normal to Ṙ. One
physically motivated choice for FII is

= [ ]HF FII LL
SOF MCH MCH (109)

where the state L is the state in the MCH representation that
corresponds to state I in the diagonal representation (L and I
can be different because the state index in the MCH and
diagonal representations may be different). Combining eqs 108
and 109 yields

=
·

[ ]
[ ]

[ ]H
H

H
RII

II

LL
LL

elec diag
diag,TDM

SOF MCH
SOF MCH

(110)

In summary, the TDM scheme first forms a kMCH matrix by
using time derivatives of potential energies (which can be
computed either by the chain rule or by finite differences67)
and TDCs in the MCH representation, and then it transforms
to kMCH according to eq 104. The gradients and TDCs in the
diagonal representation are obtained according to eqs 110 and
106 respectively.
3.3.3. Further Discussion of the SOC-Inclusive Case. As

discussed above, when SOC is present in the Hamiltonian, the
dynamics basis can be different from MCH basis. We are
especially interested in the case where the dynamics basis is the
fully adiabatic basis, i.e., the diagonal basis. In that case, a
transformation from the MCH basis to the dynamics basis is

required. The NGT scheme108 needs NACs in MCH basis to
transform the gradient and NAC of the MCH basis to the
diagonal basis, whereas the TDM scheme67 achieves the
transformation without the NACs of the MCH basis.

When using the NGT scheme, one can see from Table 3 that
FS-TSH dynamics in the diagonal basis requires the NACs of
the MCH basis. They are needed both for computing a single-
state gradient ∇HKK

elec[diag] and for computing Tdiag. In contrast,
using GSE dynamics in the diagonal basis requires NACs in
MCH basis only for computing Tdiag. This is because GSE uses
a mean-field potential (VSCP) instead of a single-state potential
energy surface, and one can show that it is equivalent for MCH
and diagonal representations.

| = =

=

[ ]

[ ]

VP H

H

tr( )

tr( )

diag
GSE

SCP diag elec diag

MCH elec MCH (111)

When SOC is not present, FS-TSH is more efficient than
GSE or SE because only a single state gradient ∇HKK

elec[MCH]

needs to be computed in FS-TSH, while GSE or SE requires
computing gradients of all states. However, when SOC is
included, to compute ∇HKK

elec[diag] requires derivative of all states
i.e., ∇Helec[MCH], if one is using the NGT scheme. Therefore,
the computational advantage of FS-TSH over GSE (or SE) is
lost when SOC is present in the Hamiltonian and when one
uses the NGT scheme.

The TDM scheme gives a NAC-free nonadiabatic dynamics
method for both SCP and TSH methods, even when SOC is
present in the Hamiltonian. It enables tGSE and tFS-TSH
methods for Hamiltonians with SOC.

We have seen that development of GSE and the TDM
scheme provide a computational framework that can propagate
nonadiabatic trajectories without computing full NACs, not
only when SOC is not present in the Hamiltonian, but also
when it is. In general, one prefers algorithms based on overlap
integrals to algorithms based on full NACs because overlap
integrals are computationally more efficient. But an even
stronger reason to prefer overlap-based algorithms is that they
can be a starting point for the development of wave function-
free methods, and that is discussed next.
3.4. From Overlap-Free (TDC-Free) Methods to Wave-

Function-Free Methods. Our final goal in this work is to
achieve methods that do not use electronic wave functions at
all, in particular, methods that use only energies and gradients
in MCH basis. This requires eliminating the calculation not
only of full NACs but also of overlap integrals. Furthermore,
we want the method to be wave function-free not only when
SOC is neglected but also when it is included.

Computing overlap integrals not only involves computa-
tional cost, but also it prohibits the use of direct dynamics with
electronic structure methods for which the electronic wave
function is not available, or not defined, or defined but requires
extra computational cost. For examples, multistate pair density
functional theory154,155 has no definition of electronic wave
functions, perturbation theory requires extra step to compute
electronic wave functions,156−158 and machine learning
potentials may even be devoid of electronic wave
functions.159,160 Another reason to avoid overlap integrals
(or NACs) is that the number of NACs or overlap integrals
scales quadratically with the number of electronic states
considered.

Our route to performing nonadiabatic dynamics with only
energies and gradients is to approximate TDCs by energies and
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gradients. The physical picture was anticipated in Section 1,
namely that the coupling of electronic states is strong only near
locally avoided crossings, where the potential energy surfaces
evaluated along a path have second derivatives (curvatures)
with opposite signs. We illustrate this in Figure 1 for a

trajectory passing near to a conical intersection. Along the path
of the trajectory, one observes a locally avoided crossing. The
coupling strength (for example the magnitude of the NAC or
the TDC) should have a peak close to the location where the
difference in the signed curvatures of the two surfaces peaks.
And the coupling strength should increase if one passes closer
to the locally avoided crossing. (It eventually becomes infinite
on the conical intersection seam.21,23−25) This motivates
evaluating the coupling strength in terms of the difference of
the two curvatures.

Early attempts to approximate couplings with energies were
based on model Hamiltonians. Our goal, however, is to
develop methods based on the actual potential surfaces
computed by direct dynamics. The first TSH paper by Tully
and Preston34 used the parametrized Landau−Zener (LZ)
formula161,162 for the hopping probability. In that work, they
first fit a LZ model Hamiltonian, and the parameters are used
in the LZ formula for the hopping probability. Similar
approaches are used in later work,163−166 including the more
sophisticated Zhu-Nakamura theory.167 All these methods
require nonlocal knowledge of potential energy surfaces, and
therefore are not useful or practical in direct dynamics. In the
next section we present the curvature-driven methods that
require only local information.

4. THEORY: CURVATURE-DRIVEN METHODS
Baeck and An proposed a wave function-free approximation to
the NACs for 1-dimensional systems168 by considering the
relationship between the Lorentzian dependence of NACs
along a diabatization coordinate and the linear vibronic
coupling scheme; they obtained

=
[ ]

[ ]

d d
dq

d H

dq H
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1

IJ I J

IJ

IJ

Baeck An MCH MCH
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where q is the one-dimensional nuclear coordinate, and

=[ ] [ ] [ ]H H HIJ II JJ
elec MCH elec MCH elec MCH

(113)

where HII
elec[MCH] and HJJ

elec[MCH] are MCH (spin-free adiabatic)
potential energies for states I and J respectively. Notice that we
have adopted our notation in eq 112.

Later, two groups of researchers independently recognized
that the one-dimensional result may be applied to multidimen-
sional trajectories by replacing the one-dimensional coordinate
by time.169,170 This yields

=
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Therefore, one can approximate the TDC in terms of the
curvature of the spin-free adiabatic potential energy surfaces as
functions of propagation time. For this reason, we have called
this approximation the curvature-driven approximation. We
denote quantities obtained using this approximation by a
superscript κ. The approximation yields

=

>
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We label the TDC computed using the curvature-driven
approximation shown in eq 115 as κTDC, and in general we
will use a prefix κ for methods that use κTDC.

The key quantity to be computed is d2ΔHIJ
elec[MCH]/dt2, and

there are two approaches to compute it. The energy
formula169,170 computes the second derivative of energy with
respect to time using a backward finite-difference formula,
which can start at the third step of trajectory integration with

[

+ ]

[ ]

[ ] [ ]

[ ]

d H

dt

t
H t H t t

H t t

1
( ) 2 ( )

( 2 )

IJ

IJ IJ

IJ

2 elec MCH

2

e

2
elec MCH elec MCH

elec MCH
(116)

where ■|e denotes that the quantity is computed using the
energy formula, and Δt is the step size used to integrate
nuclear EOM. Start from fourth step, one can use a higher-
order backward finite-difference formula,

Figure 1. Top panel: schematic of the potential energy surface near a
conical intersection and path of a trajectory passing near a conical
intersection. Bottom left panel: the potential energy surfaces of the
two electronic states showing a locally avoided crossing along the
path. Lower right panel: magnitude of the TDC or NAC along the
same path.
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Alternatively, we prefer to use a formula based on analytic
gradients:

[ ] [ ] [ ]d H

dt

H t H t t

t

( ) ( )IJ IJ IJ
2 elec MCH

2

g

elec MCH elec MCH

(118)

where ■|g denotes that the quantity is computed using the
gradient formula, and where (as introduced in section 2.1) an
overdot indicates a time derivative. The gradient formula uses
the information on gradients,

= ·[ ] [ ]H t H t R( ) ( )( )IJ IJ
elec MCH elec MCH

(119)

For small enough Δt, the energy formula and the gradient
formula should give identical results, but for practical finite Δt,
the gradient formula should be more numerically stable.

Although the SE method requires more than the TDC (it
requires the full NAC), Section 3 shows that when using the
TDM scheme, the tGSE and tFS-TSH are overlap-based
algorithms that can be propagated by computing only potential
energies, gradients, and TDCs in the MCH basis even when
the dynamics basis is the diagonal basis. Therefore, our starting
point for using κTDC in nonadiabatic dynamics is tGSE or
tFS-TSH. One can simply replace TMCH by TMCH,κ in the
working equations of Table 1 (electronic and nuclear EOMs in
GSE and electronic and nuclear EOMs and hopping
probability in FS-TSH). Furthermore, TMCH,κ can be
computed using eqs 115−119. The resulting methods are
called κGSE and κFS-TSH.

In summary, the TDM scheme and curvature-driven
approximation provide a path to compute Helec[diag],
∇Helec[diag], and Tdiag,κ from Helec[MCH], ∇Helec[MCH] and
TMCH,κ. This satisfies our goal of performing direct non-
adiabatic dynamics with only MCH potential energies and

MCH gradients, i.e., without quantities (full NACs or overlap
integrals) that require electronic wave functions. The use of
curvature-driven methods not only improves the computa-
tional efficiency (recall that the number of NACs or overlap
integrals scales quadratically with the number of electronic
states considered), but also provides the possibility of using
electronic structure theories for which the electronic wave
functions are not made available to the user or are too
expensive to compute.

Tables 2 and 3 show that if one does not use the GSE
method and TDM scheme, use of the curvature-approximated
TDC is possible only for TSH methods, and even for TSH
methods it is possible only when SOC is not present in the
Hamiltonian. The development the GSE method and the
TDM scheme has enabled broader use the curvature-driven
methods, in particular they can be used with both SCP and
TSH methods even when SOC is included. Table 4
summarizes the working equations for κGSE and κTSH in a
general basis. The next section gives more details of the specific
κGSE and κTSH methods that we recommend.

5. THEORY: ACCURATE CURVATURE-DRIVEN MIXED
QUANTUM-CLASSICAL NONADIABATIC
DYNAMICS METHODS

In Section 2, we introduced the foundational mixed quantum-
classical nonadiabatic dynamics methods, namely, GSE, SE,
and FS-TSH; in Section 3, we moved a step forward to show
how to achieve NAC-free mixed quantum-classical non-
adiabatic dynamics methods, resulting in tGSE and tFS-TSH
methods; and in Section 4, we introduced the curvature-driven
approximation in the context of GSE and FS-TSH, resulting in
the κGSE and κFS-TSH methods. With the curvature-driven
approximation, one is able to perform mixed quantum-classical
nonadiabatic dynamics with only potential energies and
gradients.

Next we introduce practical mixed quantum-classical
nonadiabatic dynamics methods that build on the foundational
methods of the previous sections. Section 5.1 introduces
coherent switching with decay-of-mixing (CSDM)50,83 which
is an SCP method whose starting point is SE Section 5.2
introduces generalized coherent switching with decay-of-
mixing (GCSDM)52,83 which is an SCP method whose starting
point is GSE. Section 5.3 introduces fewest-switches with time

Table 4. Working Equations for κGSE and κFS-TSH for a General Basis

Method Basis Formula Equation Form
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uncertainty and energy-based decoherence time uncertainty
(FSTU-EDC),54,94 which adds energy-based decoherence138

to FSTU,171 which adds time uncertainty171 to FS-TSH.
Section 5.4 shows how the curvature-driven scheme is added
to GCSDM, yielding κGCSDM, and to FSTU-EDC, yielding
and κFSTU-EDC. The κGCSDM and κFSTU-EDC methods
are our recommended practical curvature-driven mixed
quantum-classical nonadiabatic dynamics methods.

We summarize the relations between foundational methods
and advanced methods in Figure 2.
5.1. Coherent Switching with Decay of Mixing

(CSDM). Complete details of the CSDM method are
presented elsewhere;139 hence the present section is just a
brief summary.

The CSDM method adds non-Markovian decoherence to SE
by using the decay-of-mixing formalism.50,105 The electronic
and nuclear EOMs of CSDM involve adding decay-of-mixing
terms to the EOMs of SE:

| = | + |c t c t c t( ) ( ) ( )I I I
GB

CSDM
GB

SE
GB

D/CSDM (120)

| = | + |P P PGB
CSDM

GB
SE

GB
D/CSDM (121)

where ■|CSDM denotes a CSDM variable, and ■|D/CSDM
denotes a decay-of-mixing term added to the nuclear EOM
of CSDM.

In a similar way to the above derivation of the GSE nuclear
EOM from conservation of total energy, one is able to derive
the CSDM decay-of-mixing force [ṖGB]D/CSDM. The electronic
and nuclear decay-of-mixing terms in CSDM become
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elec GB elec GB
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(123)

where K is the pointer state in the general basis, τIKGB is the
decay-of-mixing time between GB states I and K, and sIKGB is the
3Natoms-dimensional decay-of-mixing vector in the general
basis. The physical meaning of [cİGB (t)]D/CSDM is that the
density of pointer state K is increased from contributions of all
the nonpointer states. Correspondingly, the density of
nonpointer state I is exponentially decreased to zero during
the decay-of-mixing time τIKGB. The decay-of-mixing vector in
the general basis is,

Figure 2. Relations between discussed mixed quantum-classical nonadiabatic dynamics methods.
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where a0 ≡ 1 bohr, dIK
GB is the NAC in the general basis, and

Pvib is the vibrational momentum, which is computed by
removing the translational and rotational components of the
nuclear momentum P,

=P 1 Q P( )vib (125)

where 1 is the identity operator, and Q is a projection operator
that projects onto translational and rotational motions;69 both
1 and Q are 3Natoms × 3Natoms matrices. The CSDM decay-of-
mixing time uses the following energy-based decoherence time:

=
| |

+[ ] [ ] ·H H
E

1
2

IK
II KK

M

P s
GB

elec GB elec GB
0

( )

2
IK ,
GB 2

i

k

jjjjjjjjjjjj

y

{

zzzzzzzzzzzz (126)

where E0 is a parameter set to 0.1 hartree, Pη, sÎK,ηGB , and Mη are
the nuclear momentum, decay-of-mixing direction (a normal-
ized decay-of-mixing vector), and the atomic mass respectively
of the atom associated with coordinate η, and η = 1, 2, ...,
3Natoms. The pointer state K is stochastically switched
according to the FS-TSH hopping probability, which we
label as the switching probability:
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where

= [ ]b t H T( ) 2
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k
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{
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and where ρ̃GB is the coherent density matrix in the general
basis, which is computed from the coherent coefficient,

= *c c( )IJ I J
GB GB GB

(129)

The coherent electronic EOM of CSDM is same as the
electronic EOM of SE,

| = |c t c t( ) ( )I I
GB

CSDM
GB

SE (130)

and the coherent coefficient cĨGB is reinitialized to the true
CSDM coefficient cIGB at each local minimum of the NAC
strength,

= | |D t d( )K
I K

IK
GB GB

(131)

Therefore, ρ̃GB does not maintain coherence completely along
the trajectory, it is “decay of mixed” at every local minimum of
DK

GB(t).
In summary, CSDM is an advanced SCP mixed quantum-

classical nonadiabatic dynamics method that is based on SE.
The CSDM method includes algorithmic decoherence by
decay of mixing and pointer-state switching by the fewest-
switches criterion using the coherent density. One propagates
two sets of coefficients in the CSDM method, namely, the true
CSDM coefficients (which involve the decay-of-mixing term),
and the coherent CSDM coefficients (which do not). The true
CSDM coefficients govern the propagation of the electronic
and nuclear EOMs of the system, whereas the coherent CSDM
coefficients control the pointer-state switching. Probably most

importantly, CSDM involves a self-consistent description of
electronic and nuclear EOM that results in a continuous
trajectory (as compared to FS-TSH, which is an ad hoc theory
that involves discontinuities when hops occur).

It is shown elsewhere that CSDM agrees well with accurate
quantum dynamics for realistic full-dimensional electronically
inelastic collisions when the CSDM and accurate dynamics
calculations are carried out with the same coupled potential
surfaces.53,83,84,172−174

5.2. Generalized Coherent Switching with Decay of
Mixing (GCSDM). Just as CSDM EOMs are based on SE,
GCSDM EOMs are based on GSE:
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The decay-of-mixing terms are the same as for CSDM,
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The GCSDM decay-of-mixing vector differs from that of
CSDM; instead of using dGB, it uses the force tensor BGB:
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The decay-of-mixing time and pointer-state switching proba-
bility are the same as for CSDM as shown in eqs 126 and 127.
The coherent electronic EOM of GCSDM is same as the
electronic EOM of GSE (which is the same as that of SE),

| = |c t c t( ) ( )I I
GB

GCSDM
GB

GSE (137)

The coherent coefficient c̃IGB(t)|GCSDM is reinitialized to the true
GCSDM coefficient cİGB(t)|GCSDM at each local minimum of the
TDC strength,

= | |D t T( )K
I K

IK
GB GB

(138)

Eq 138 has been called the CSDM-C criterion.83

In summary, the EOMs of CSDM start from those of SE,
and the EOMs of GCSDM start from those of GSE. Just as
GSE differs from SE in not using full NACs, GCSDM differs
from CSDM in not using full NACs.

One can develop overlap-based GCSDM algorithm by
computing TDCs with overlap integrals, and the resulting
algorithm is called tGCSDM. Furthermore, one can develop a
curvature-driven GCSDM algorithm that is based on
tGCSDM, and the resulting algorithm is called κGCSDM.
The two most widely studied versions of GCSDM are tCSDM
and κCSDM; tCSDM sets the force vector BGB to the effective
NAC defined in eqs 52−54, and κCSDM is explained in detail
below in Section 5.4.
5.3. Trajectory Surface Hopping by Fewest Switches

with Time Uncertainty with Energy-Based Decoherence
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(FSTU-EDC). The new ingredients in FSTU-EDC93 are the
addition to FS-TSH of energy-based decoherence83,84,138 by
means of the decay-of-mixing formalism and of time
uncertainty,171 which reduces the number of frustrated hops.

The decay-of-mixing term added to the electronic EOM is in
principle the same as that of CSDM; and the nuclear EOM of
FSTU-EDC is identical to that of FS-TSH:

| = | + |c t c t c t( ) ( ) ( )I I I
GB

FSTU TSH EDC
GB

TSH
GB

D/EDC (139)

| = |P PGB
FSTU TSH EDC

GB
TSH (140)

where in principle c ̇IGB(t)|D/EDC = c ̇IGB(t)|D/CSDM. The
decoherence time is similar to that of CSDM83,84 but slightly
different,138
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where K is the FSTU active state in the general basis, E0 is a
parameter set to 0.1 hartree, and Ekin is the nuclear kinetic
energy.

The physical picture of the time-uncertainty formalism to
allow the possibility of nonlocal hops by using the energy-time
uncertainty relation,

=
| |

t
E t2 ( )

KL
KL

0 (142)

where ΔEKL(t0) is defined in eq 65, and time t0 is when a
frustrated hop from state K to state L happens. The trajectory
is searched backward and forward for a time of ΔtKL to check if
a K → L hop is possible (not frustrated). If it is possible, one
performs a K → L hop; otherwise, one treats the frustrated hop
at time t0 in the same way that one treats a frustrated hop in
FS-TSH. The actual algorithm is described into detail in refs
93, 94. Therefore, the time-uncertainty formalism reduces the
number of frustrated hops.
5.4. Curvature-Driven SCP Method: κCSDM. The

κCSDM method is based on tCSDM. For simplicity and for
consistency with previous papers, we have used the
terminology of κCSDM and tCSDM, but a more systematic
way of naming these two methods should be κGCSDM and
tGCSDM. In the following discussion, we will use κCSDM and
κGCSDM as synonyms, and tCSDM and tGCSDM as
synonyms. The difference between κCSDM and tCSDM is
similar as the difference between κGSE and tGSE:
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The electronic decay-of-mixing term cİGB(t)|D/κGCSDM and the
nuclear decay-of-mixing term ṖGB (t)|D/κGCSDM are similar to
those of CSDM,
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The curvature-driven decay-of-mixing vector is
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where BGB is defined in eq 37. The curvature-driven decay-of-
mixing time is
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where sÎKGB,κ is curvature-driven decay-of-mixing direction,
which is the normalized sIKGB,κ vector. The pointer-state
switching probability is
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and where ρ̃GB is the coherent density matrix of κCSDM. The
coherent electronic EOM of κCSDM is same as the electronic
EOM of κGSE:

| = |c t c t( ) ( )I I
GB

GCSDM
GB

GSE (151)

The coherent density reinitialized at local minima of the TDC
strength,

= | |D t T( )K
I K

IK
GB GB,

(152)

In summary, κCSDM is similar to GCSDM except that it is
based on κGSE; it uses the BGB tensor for the decay-of-mixing
vector, and it uses the TDC strength for reinitialization.
5.5. Curvature-Driven TSH Method: κFSTU-EDC. The

κFSTU-EDC method adds electronic decoherence and time
uncertainty to κFS-TSH. The working equations are the same
as those of FSTU-EDC except that one is using κTDC instead
of an overlap integral and that the NAC or projected NAC is
not used as the momentum adjustment vector or velocity
reflection vector. Avoidance of using the NAC for these steps
raises the question of what the best choice is. A recent
investigation by Barbatti,100 studying ethylene, found that
among choices available when the NAC is not available, using
the direction of the momentum vector worked best, although it
was only slightly better than the difference gradient vector.
However, a later study on pyrene found poor results when the
momentum vector was used.175 To resolve this, Toldo et al.176

made a detailed study of fulvene and a protonated Schiff base
and concluded that the difference gradient vector is a better
choice than the momentum vector when the NAC is not
available and that the effective NAC of eqs 52−54 should be as
good as using the difference gradient vector. We recommend
using the effective NAC when using the κFS-TSH method, and
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this is the choice that was made in the applications of κFS-TSH
discussed in Section 6.

6. EXAMPLES OF SUCCESSFUL APPLICATIONS
6.1. Ethylene. We start by considering ethylene isomer-

ization177−182 Ethylene has two S0/S1 minimum-energy conical
intersections (MECIs), namely, a twisted-pyramidalized MECI
and an ethylidene-like MECI. The major feature of the
nonadiabatic dynamical behavior of ethylene is the twisting of
the C�C double bond followed by pyramidalizing a CH2
group or a 1,2 shift of H. Time-resolved measurements showed
that the excited-state lifetime of ethylene is approximately 50
fs.183−186

Several direct dynamics calculations of the excited-state
lifetimes have been performed, and they are summarized with
references170,50,178,180 in Table 5. The κCSMD and κFS-TSH-
EDC simulations involve ensembles of 300 and 200
trajectories, respectively, with initial conditions sampled by
vertical excited to the first electronically excited state from the
ground-vibrational-state Wigner distribution of the ground
electronic state. The CSDM, tCSDM, FS-TSH-ED, and tFS-
TSH-EDC simulations are for the same kind of initial
conditions, although with different sizes of the ensemble.
The table shows that the curvature-driven nonadiabatic
dynamics methods170 κCSMD and κFS-TSH-EDC predict
the excited-state lifetime of ethylene to be 78 and 84 fs
respectively, which are not very different from the respective
CSDM and FS-TSH-EDC predictions. This demonstrates the
accuracy of curvature-driven approximation.

It was demonstrated in ab initial multiple spawning
(AIMS)190 simulations that the Rydberg states do not have a
big effect on the excited-state lifetime,182 and this validates the
simulations in Table 5 that did not consider Rydberg states.

The first excited state population of ethylene as a function of
time for CSDM, tCSDM, κCSDM, FS-TSH-EDC, tFS-TSH-
EDC, and κFS-TSH-EDC is shown Figure 3. This shows good
agreement of all the methods.
6.2. Ammonia. We next consider ammonia photo-

dissociation.191−196 Electronically excited ammonia dissociates
H atom(s) from NH3. The S0/S1 MECI is planar with
stretched NH bonds and distorted HNH angles.192,197 We
sampled trajectories starting with the ground-state Wigner
distribution and vertically excited them to S1. The resulting
photodissociation is ultrafast; about 60% of the excited-state
population decays within 30 fs.93 And the dissociation of the H

atom from NH3 is almost finished for all trajectories within the
first 30 fs; the averaged N−H distance is about 5 Å at 30 fs. If
one propagates the FS-TSH trajectories beyond 30 fs, the
ensuing dynamics is dominated by NH2 vibration and relative
translation of the fragments. After 30 fs, there are two
contributions to population decay, namely, physical decay−
which exists in all dynamics methods; and population leaking−
which only exists in TSH methods. The physical decay is
caused by the trajectory passing through locally avoided
crossings, and the population leaking is caused by the
frustrated hops in TSH methods. Although there is a relatively
large energy gap between the states, the transition probability
of excited-state trajectories to the ground electronic state is not
zero. Therefore, if one carries out the FS-TSH simulation to
long enough times, there will be some hopping to the ground
state. The trajectories arriving in the ground state will undergo
intramolecular vibrational energy redistribution, and attempted
hops back to the excited state will be frustrated. This causes
unphysical excited-state population leaking in TSH calcula-
tions.93 FSTU alleviates population leaking, although it does
not eliminate it, but CSDM and κCSDM do not suffer
population leaking. The first excited state population of
ammonia as a function of time for CSDM, tCSDM, κCSDM,
tFS-TSH-EDC, and tFSTU-EDC is shown in Figure 4 for the
same ensemble as discussed above. This figure also zooms in
on the range from 20 to 500 fs is shown to illustrate the
population leaking. The agreement between CSDM, tCSDM,
and κCSDM is very good over the whole time interval. The

Table 5. Excited-State Lifetimes of Ethylene from Nonadiabatic Dynamics Simulations and Experiment

Dynamics Method Potential Energy Surface Reference (s) Excited-State Lifetime (fs)

FS-TSH FOMO-AM1-CASCI(2,2)a 178 105, 139b

AIMSc SA3-CASSCF(2,2)/6-31G* c 180 110
AIMSc SA3-CASSCF(2,2)/MS-CASPT2/6-31G* d,e 180 89
FS-TSH-EDCf SA3-CASSCF(2,2)/6-31G** d 50 100
tFS-TSH-EDCg SA3-CASSCF(2,2)/6-31G** d 170 50
κFS-TSH-EDCh SA3-CASSCF(2,2)/6-31G** d 70 84
CSDM SA3-CASSCF(2,2)/6-31G** d 50 57
tCSDM SA3-CASSCF(2,2)/6-31G** d 170 48
κCSDM SA3-CASSCF(2,2)/6-31G** d 170 78
Experiment 183−186 50

aAustin Model 1187 floating occupation semiempirical molecular orbital188 method followed by complete active space configuration interaction of 2
electrons in 2 orbitals; bdepending on initial conditions; cab initio multiple spawning;190 dstate-averaged complete active state self-consistent field
theory;189 emultistate second order perturbation theory;156 fFS-TSH with energy-based decoherence;138 goverlap-based FS-TSH algorithm with
energy-based decoherence, specifically, use local diabatization algorithm to propagate electronic coefficients; hcurvature-driven FS-TSH-EDC.170

Figure 3. First excited-state population as a function of time for
ethylene.
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average number of frustrated hops per trajectory is 1.49 and
0.99 for tFS-TSH-EDC and tFSTU-EDC respectively. As can
be seen in Figure 4, the first excited state population of tFS-
TSH-EDC has almost decayed to zero in 500 fs, resulting a
close to 0 branching ratio between Ã state/X̃ state. Table 6

shows the Ã state/X̃ state branching ratio for various methods.
Clearly, the κCSDM results are very close to those of CSDM,
which again demonstrates the accuracy of curvature-driven
approximation. In addition, the final branching ratios (0.30 and
0.39) from the CSDM and κCSDM methods are much closer
than the final FS-TSH-EDC and FSTU-EDC results (0.08 and
0.15) to the results (0.35)193 from a quantum simulation.
6.3. 1,3-Cyclohexadiene. We have also demonstrated the

accuracy of curvature-driven nonadiabatic dynamics methods
for more complex photochemical reactions. For example, we
have used 42-dimensional, 3-state κCSDM dynamics interfaced
with extended multistate complete active space second-order
perturbation theory158 (XMS-CASPT2) to study the ring-
opening nonadiabatic dynamics of 1,3-cyclohexadiene.198

There are two products, namely hexatriene and 1,3-cyclo-
hexadiene. The predicted hexatriene quantum yield is 40%, and
the calculated lifetime of the excited state is 117 fs (including
the induction period). These are comparable to experimental
observations which gave quantum yield of 0.3−0.5 and an
excited-state lifetime 130−142 fs.199−203 Table 7 shows the
hexatriene quantum yield and excited-state lifetime from

selected nonadiabatic dynamics simulations (this is not a
complete review of this classic problem).

6.4. Isomerizaion and Ring-Opening Reactions with
4−24 Atoms. A recent survey of six photochemical reactions
compared results between κFS-TSH-EDC and FS-TSH-
EDC.151,217 (Notice that the apparently inaccurate curvature-
driven dynamics results in ref 217 were due to a programming
error−not to deficiencies in the method; this was corrected in
ref 151.) Table 8 summarizes the final ground-state and
excited-state populations at the end of the simulation for κFS-
TSH-EDC and FS-TSH-EDC. The mean unsigned deviation
(MUD) of κFS-TSH-EDC state populations as compared to
FS-TSH-EDC state populations−averaged over 6 molecules
and 18 states−is only 0.06.

The 0.06 mean unsigned deviation is almost within the
statistical error for different methods to propagate the
electronic EOM using NACs and overlap integrals. For
example, in ref 151, the MUD of state population between
tFS-TSH-EDC (specifically, uses the local diabatization
algorithm145 to propagate the electronic EOM) and FS-TSH-
EDC averaged over the 6 molecules and the 18 states−is 0.03.
The tFS-TSH-EDC final state population is included in Table
8 as well.

If we omit the only especially bad case, namely, trans-AZB,
the resulting MUDs over 14 states between κFS-TSH-EDC
and FS-TSH-EDC, and tFS-TSH-EDC and FS-TSH-EDC are
both 0.04, which is shown in the parathesis in the last row of
Table 8 − so that one cannot distinguish between the NAC-
based algorithm, the overlap-based algorithm, and the
curvature-driven algorithm. If one also omits from consid-
eration the small final-state populations of the S2 and S3 states
of cis-AZB, the resulting mean unsigned percentage deviation
between κFS-TSH-EDC and FS-TSH-EDC is 13%, and the
mean unsigned percentage deviation between tFS-TSH-EDC
and FS-TSH-EDC is 14%.

Figure 5 shows the population difference between κFS-TSH-
EDC and tFS-TSH-EDC for the first excited state as a function

Figure 4. First excited state population as a function of time for
ammonia.

Table 6. Branching Ratiosa between Ã and X̃ States of NH2

Branching ratio

Dynamics algorithm at 30 fsb at 500 fs

tFS-TSH-EDCc 0.41 0.08
tFSTU-EDCc 0.54 0.15
CSDM 0.64 0.29
tCSDM 0.61 0.27
κCSDM 0.67 0.39

Quantum 0.35
aThe branching ratio is the ratio of population in the excited state (Ã)
to population in the ground state (X̃). bThe results at 30 fs are not
final results but are shown to illustrate the time dependence of the
results at short times. cElectronic EOM is propagated with local
diabatization algorithm.

Table 7. Hexatriene Product Ratios and Excited-State
Lifetimes

Dynamics
algorithm

Potential energy
surfaces

Hexatriene
quantum yield

Excited state
lifetimea (fs)

ZN-TSHb,204 MS-CASPT2 0.40 68
FS-TSH205 XMS-CASPT2 N/A 68
ZN-TSHb,206 SA-CASSCF 0.47 120
FS-TSH-EDC207 XMS-CASPT2 0.47 89
EF-TSHc,208 REKSd 0.36 277
FS-TSH209 XMS-CASPT2 <0.5 <125
FS-TSH210 TDA-TDDFTe 0.65 81
AIMS211 α-SA-CASSCF212 ∼0.5 139
κCSDM198 XMS-CASPT2 0.40 117
Quantum (2D)213 MRCIf 0.5 130
Experiment 0.3−0.5 130−142
aThe excited-state lifetime here includes the induction period.
bTrajectory surface hopping with the Zhu-Nakamura theory to
predict the hopping probability.167 cTrajectory surface hopping with
based on the exact factorization formalism.214 dRestricted ensemble-
referenced Kohn−Sham theory.215 eTamm-Dancoff-approximation
time-dependent density functional theory with the PBE0 density
functional.216 fMultireference configuration interaction. The dynamics
simulation employs a reduced dimensional surface (2-dimensional).
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of time. Except for trans-AZB, the excited-state populations by
the two methods are very close over the whole simulation time.

In practice, one sometimes approximates the overlap
integral. Reference151 also provides a direct comparison
between κTDCs, analytic TDCs computed from eq 18, and
overlap-based TDCs computed in three different ways
approximated from eq 91. The comparison shows that
dynamics calculations based on the curvature-driven approx-
imation can actually agree better with dynamics calculations
based on the full NAC than do dynamics calculations based on
a TDC computed from an overlap integral.
6.5. O + O2 Collisions. The curvature-driven methods

have also been applied to bimolecular collisions to calculate
cross sections for O(3P) + O2(3Σg

−) → O(3P) + O2(3Δu)
including six coupled 5A′ adiabatic potential energy potential
energy surfaces obtained from diabatic fits to XMS-CASPT2
energies. We compared CSDM using a NAC in the electronic
EOM to κCSDM for 35 combinations of initial collision energy
and initial diatomic vibrational state. The results are shown in
Figure 6, which shows that the electronically nonadiabatic
collision cross sections are very close.218 The mean unsigned
deviation of electronically nonadiabatic collision cross sections
over 35 initial conditions is 0.09 Å2. This is only 5% of the
average cross section of 1.89 Å2.

7. OUTLOOK
Simulations including electronic nonadiabaticity are important
in many areas of chemistry including photochemistry,

photocatalysis, collisions of electronically excited species,
chemiluminescent reactions, and two-state reactivity. It is
particularly convenient if this kind of calculation is carried out
using methods where the nuclei follow mixed quantum-
classical trajectories and using direct dynamics where one
avoids prior fitting of potential energy surfaces and couplings
by carrying out electronic structure calculations along the
trajectory wherever the dynamics algorithm needs energies,
gradients, or couplings. With most electronic structure
packages, energies and gradients are more straightforward
than couplings (NACs or TDCs). In this perspective, we have
reviewed recent success in the development of wave function-
free electronically nonadiabatic dynamics methods. In the
process we also explained a generalized version of the
semiclassical Ehrenfest method and used it as a way to see
the relation between various approximations that have been
proposed.

There are two steps to achieve wave function-free methods,
namely, the NAC-free methods in which the trajectory needs
energies, gradients, and TDCs; and the wave function-free
methods in which the trajectory needs only energies and
gradients.

Achieving the NAC-free methods itself is already a useful
step forward. This is so for two reasons. First, the NACs are
computationally inconvenient. For example, one needs to
ensure NACs have consistent phases along a trajectory, the

Table 8. Final Electronic Populations

FS-TSH-EDC tFS-TSH-EDCc κFS-TSH-EDC

Systema Δtb(fs) S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3

cis-AZM 150 0.72 0.28 0.81 0.19 0.81 0.19
trans- AZM 350 0.95 0.05 0.95 0.05 0.94 0.06
cis-AZB 100 0.86 0.12 0.01 0.01 0.91 0.09 0.00 0.00 0.78 0.12 0.05 0.05
trans-AZB 100 0.02 0.96 0.02 0.00 0.02 0.97 0.00 0.01 0.19 0.73 0.07 0.01
butyrolactone 100 0.52 0.27 0.21 0.42 0.31 0.27 0.46 0.34 0.20
furanone 150 0.43 0.31 0.26 0.46 0.27 0.27 0.38 0.37 0.25

MUD 0.03 (0.04) 0.06 (0.04)
aAZM = azomethane; AZB = azobenzene. bSimulation time. cElectronic EOM is propagated with local diabatization algorithm.

Figure 5. First excited state population difference between κFS-TSH-
EDC and tFS-TSH-EDC as a function of time for the six systems
considered.

Figure 6. Electronically nonadiabatic collision cross sections for 35
initial conditions.
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number of NACs scales quadratically with the number of
electronic states considered, and the NACs are singular at
conical intersections. Second, using NACs from electronic
structure software causes theoretical difficulties. For example,
these NACs depend on the origin of the coordinate system,
they do not account for the momentum of electrons moving
with nuclei, they often have spurious long-range coupling, and
they do not conserve total nuclear angular momentum and
center of mass momentum.

The first attempt remove NACs was to recognize that only
one component of the NAC appears in the TDC in the
electronic EOM, and this component (the scalar product of the
nuclear velocity vector and the NAC) can be computed as an
overlap integral of the electronic wave functions at successive
time steps. However, this only enables NAC-free trajectory
surface hopping methods for systems whose Hamiltonian does
not include SOC, and even in the absence of SOC, it does not
enable NAC-free computations employing SCP methods like
SE or CSDM.

Further work was required to achieve wider applicability of
NAC-free methods, and for this purpose we developed
generalized semiclassical Ehrenfest (GSE) dynamics method
and a new gradient correction scheme called the time-
derivative matrix (TDM) scheme. Although we have used
GSE in previous papers,52,94,151,170,198,218 the full details are
presented here for the first time. These two developments
(GSE and TDM) have enabled a complete computational
framework for simulating nonadiabatic processes−both when
SOC is present and when it is not−without NACs by both
surface hopping methods and SCP methods.

We often label methods that are NAC-free as overlap-based
algorithms, with a prefix “t,” for example, tGSE and tFS-TSH.
The only information required from electronic structure
packages for propagating mixed quantum-classical nonadia-
batic trajectories using time-derivative methods consists of
energies, gradients, and TDCs (approximated, for example,
from overlap integrals of adiabatic electronic wave functions at
successive time steps).

The overlap-based algorithms are the starting point for our
ultimate goal, namely, wave function-free mixed quantum-
classical nonadiabatic dynamics. One key development in
achieving this is the curvature-driven approximation to the
TDC, in which we approximate the TDC by local information
about the curvatures of the potential energy surfaces along a
path; the curvature information can be obtained from energy
gradients without using electronic wave functions. The
curvature-driven approximation to the TDC is called κTDC.
Using the κTDC in the equations of motion results in
dynamics algorithms, for example, κGSE and κFS-TSH, that
require energies and gradients only. Therefore, these
algorithms are not only NAC-free, but they are also wave
function-free.

Therefore, with the development of the GSE, the TDM
scheme, and the curvature-driven approximation to the TDC,
we have provided a complete computational framework for
simulations of nonadiabatic processes with only potential
energies and gradients.

The κGSE and κFS-TSH methods form the basic two classes
of curvature-driven mixed quantum-classical nonadiabatic
dynamics methods, and each class contains variations within
the general framework. In the SCP class (whose starting point
is κGSE), we especially recommend curvature-driven coherent
switching with decay of mixing (κCSDM), and in the TSH

class (whose starting point is κFS-TSH), we especially
recommend curvature-driven fewest switches with time
uncertainty trajectory surface hopping with energy-based
decoherence (κFSTU-EDC). The present article also reviews
both of these methods.

There have already been several successful applications to
realistic multidimensional nonadiabatic dynamics simulations
for both unimolecular processes and collision dynamics,
showing encouragingly high accuracy, and we review these in
the Section 6 of the paper. We expect that the new methods
are applicable to most or even all nonradiative transitions in
large organic molecules. The applicability may be even wider
though, for example the methods may be applicable to defect-
induced nonradiative recombination on semiconductor nano-
crystals.219 Such broader applicability would be interesting for
further study.

The curvature-driven methods are available for both SCP
and TSH calculations in SHARC220 (since version 3.0) and
SHARC-MN221 (since version 1.1) and for TSH calculations
in Newton-X222 (since version 2.4). In SHARC and SHARC-
MN, the curvature-driven methods are denoted by a prefix κ,
for examples, κCSDM, κTSH; in Newton-X, the curvature-
driven approximation is called Baeck-An coupling.

The methods discussed here, like all mixed-quantum
classical nonadiabatic dynamics algorithms that employ
classical trajectories, have the drawback that quantum effects
on nuclear motion are not included even when propagation
proceeds on a single surface. For example, nuclear-motion
tunneling is neglected in the standard versions of the method,
although some quantum mechanical tunneling effects can be
and have been added to CSDM calculations as an
extension.223−225 Constructive and destructive nuclear-motion
interference effects are lost because of the independent
trajectory approximation and the neglect of WKB-like phases.
Maintenance of zero-point vibrational energy is not enforced.
Intramolecular vibrational relaxation is different in classical and
quantal systems. Nevertheless, tests of CSDM against accurate
quantum dynamics for realistic multisurface systems show
errors that are of the same order as the errors in single-surface
classical trajectories.53,83,84,172−174

8. SUMMARY
This paper is a perspective on semiclassical methods for
nonadiabatic dynamics and how their requirement for
electronic-structure quantities can be altered to make them
‘wave function-free.’ It contains a combination of selective
background review and new material, with the objective that it
provides an outlook on the encouraging future prospects for
wave function-free electronically nonadiabatic dynamics, i. e.,
dynamics calculations that require only potential energy
surfaces and their gradients, not needing time derivatives of
wave functions or coupling matrix elements that need to be
computed from electronic wave functions.

We provide background on Ehrenfest and surface-hopping
dynamics, using a general notation for the electronic basis
(adiabatic/diabatic or spin-adiabatic/spin-diabatic). We also
treat decoherence. After introducing the required electronic-
structure quantities for nonadiabatic dynamics, we discuss
different strategies for wave function-free semiclassical
dynamics. We summarize the working equations for each
specific method in tables and provide a scheme (Figure 2)
organizing the connections between the different methods
presented.
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Table A1. Acronyms and Abbreviations

Abbreviataion Complete terminology Explanation

Dynamics
A adiabatic not involving a change in adiabatic electronic state
AIMS ab initio multiple spawning an approximate method based on Gaussian wave packets centered on classical trajectories
CSDM coherent switching with decay-of-

mixing
an SCP method for molecular dynamics with electronic transitions and decoherence

diag diagonal the fully adiabatic electronic basis, i.e., the basis that diagonalizes the electronic Hamiltonian, including
(when present) SOC

EDC energy-based decoherence decoherence scheme based on potential and kinetic energies
elec electronic referring to the electronic degrees of freedom
EOM equation of motion The nuclear EOM governs time evolution of atomic coordinates; the electronic EOM governs time

evolution of the electronic state.
FS-TSH fewest switches trajectory-surface-

hopping
the basic surface-hopping method for molecular dynamics with electronic transitions

FSTU fewest switches time-uncertainty an improvement of FS-TSH incorporating quantum uncertainty into the hopping times of classically
forbidden hops

GB general basis an electronic basis that may be adiabatic, diabatic, partially adiabatic, or any other
GCSDM generalized coherent switching with

decay of mixing
a variant of CSDM that is based on GSE

GSE generalized semiclassical Ehrenfest a variant of SE that does not require electronic wave functions, TDCs, or NACs
κ curvature-driven calculating electronic-state couplings from the curvatures of adiabatic potential energy surfaces without

requiring electronic wave functions, TDCs, or NACs
κCSDM curvature-driven coherent switching

with decay of mixing
curvature-driven CSDM

κFS-TSH curvature-driven fewest switches
trajectory-surface-hopping

curvature-driven FS-TSH

κFSTU curvature-driven fewest switches with
time uncertainty

curvature-driven FSTU

κGSE curvature-driven generalized
semiclassical Ehrenfest

curvature-driven GSE

κTDC curvature-driven time derivative
coupling

an approximated TDC that is computed from potential energies and time derivatives of potential energies

κTSH curvature-driven trajectory surface
hopping

curvature-driven TSH

MCH molecular-Coulomb-Hamiltonian an electronic basis that diagonalizes the SOC-free electronic Hamiltonian
NA nonadiabatic involving a transition among adiabatic electronic states
NAC nonadiabatic coupling vector electronic-state coupling matrix element in the electronically adiabatic basis
NGT nuclear gradient tensor a tensor used for a gradient correction scheme in the diagonal basis
nuc nuclear referring to the coordinates of the nuclei
SCP self-consistent potential the mean-field potential energy (based on the expectation value of the electronic energy even when the

electronic state is a not a Born−Oppenheimer eigenstate) that governs nuclear motion in an Ehrenfest-
type algorithm for electronically nonadiabatic dynamics.

SE semiclassical Ehrenfest “Semiclassical” in this context denotes mixed quantum-classical where the electronic structure is treated
quantum mechanically and the nuclear motion is treated by trajectories. “Ehrenfest” denotes that the
potential energy governing nuclear motion is based on an SCP.

SOC spin−orbit coupling a relativistic effect coupling electronic states with different spin multiplicities. We use the usual shorthand
by which SOC refers to the sum of all magnetic terms in the electronic Hamiltonian.

SOF spin−orbit-free neglecting SOC
tCSDM time derivative coherent switching with

decay of mixing
a variant of CSDM that is NAC-free but requires the TDC

TDC time-derivative coupling scalar electronic-state coupling matrix element equal to the scalar product of the NAC and the nuclear
velocity

TDM time-derivative matrix matrix representation of the TDC
tFS-TSH time derivative fewest-switches

trajectory-surface-hopping
a variant of FS-TSH that is NAC-free but requires the TDC

tGSE time-derivative generalized
semiclassical Ehrenfest

a variant of GSE that is NAC-free but requires the TDC

TSH trajectory surface hopping any version of trajectory surface hopping
ZN-TSH Zhu−Nakamura trajectory surface

hopping
trajectory surface hopping method based on the Zhu-Nakamura theory of a nonadiabatic transition

2D two-dimensional referring to a model with two nuclear degrees of freedom

Electronic Structure
α-SA-CASSCF α state-averaged complete active space

self-consistent field
a semiempirical configuration interaction method

FOMO-AM1-CASSCI floating occupation molecular orbital
Austin model 1 complete active space
configuration interaction

a semiempirical configuration interaction method

SAn-CASSCF state-averaged n-states complete active
space self-consistent field

a first-principles configuration interaction method
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At the end, we briefly review several successful applications
from our own work providing examples highlighting
comparisons between mixed quantum−classical trajectory
methods for nonadiabatic dynamics when carried out with
and without wave function input. We present evidence that the
wave function-free methods produce results quite comparable
to methods based on calculated nonadiabatic couplings for
systems with conical intersections.

■ APPENDIX A. EXPLANATION OF ACRONYMS AND
ABBREVIATIONS

Table A1 explains acronyms and abbreviations used in this
Perspective.
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(174) Lu, D.; Galvaõ, B. R.; Varandas, A. J.; Guo, H. Quantum and
semiclassical studies of nonadiabatic electronic transitions between
N(4S) and N(2D) by collisions with N2. Phys. Chem. Chem. Phys.
2023, 25, 15656.

(175) Braun, G.; Borges, I., Jr; Aquino, A.; Lischka, H.; Plasser, F.;
do Monte, S. A.; Ventura, E.; Mukherjee, S.; Barbatti, M. Non-Kasha
Fluorescence of Pyrene Emerges from a Dynamic Equilibrium
Between Excited States. J. Chem. Phys. 2022, 157, 154305.

(176) Toldo, J. M.; Mattos, R. S.; Pinheiro, M., Jr; Mukherjee, S.;
Barbatti, M. Recommendations for Velocity Adjustment in Surface
Hopping. J. Chem. Theory Comput. 2024, 20, 614−624.

(177) Ben-Nun, M.; Martínez, T. J. Ab Initio Molecular Dynamics
Study of cis-trans Photoisomerization in Ethylene. Chem. Phys. Lett.
1998, 298, 57−65.

(178) Barbatti, M.; Ruckenbauer, M.; Lischka, H. The Photo-
dynamics of Ethylene: A Surface-Hopping Study on Structural
Aspects. J. Chem. Phys. 2005, 122, 174307.

(179) Levine, B. G.; Martínez, T. J. Isomerization Through Conical
Intersections. Annu. Rev. Phys. Chem. 2007, 58, 613−634.

(180) Tao, H.; Levine, B. G.; Martinez, T. J. Ab Initio Multiple
Spawning Dynamics Using Multi-State Second-Order Perturbation
Theory. J. Phys. Chem. A 2009, 113, 13656−13662.

(181) Tao, H.; Allison, T. K.; Wright, T. W.; Stooke, A. M.; Khurmi,
C.; van Tilborg, J.; Liu, Y.; Falcone, R. W.; Belkacem, A.; Martinez, T.
J. Ultrafast Internal Conversion in Ethylene. I. The Excited State
Lifetime. J. Chem. Phys. 2011, 134, 244306.

(182) Mori, T.; Glover, W. J.; Schuurman, M. S.; Martínez, T. J.
Role of Rydberg States in the Photochemical Dynamics of Ethylene. J.
Phys. Chem. A 2012, 116, 2808−2818.

(183) Farmanara, P.; Stert, V.; Radloff, W. Ultrafast Internal
Conversion and Fragmentation in Electronically Excited C2H4 and
C2H3Cl Molecules. Chem. Phys. Lett. 1998, 288, 518−522.

(184) Mestdagh, J. M.; Visticot, J. P.; Elhanine, M.; Soep, B.
Prereactive Evolution of Monoalkenes Excited in the 6 eV Region. J.
Chem. Phys. 2000, 113, 237−248.

(185) Stert, V.; Lippert, H.; Ritze, H.-H.; Radloff, W. Femtosecond
Time-Resolved Dynamics of the Electronically Excited Ethylene
Molecule. Chem. Phys. Lett. 2004, 388, 144−149.

(186) Kosma, K.; Trushin, S. A.; Fuss, W.; Schmid, W. E. Ultrafast
Dynamics and Coherent Oscillations in Ethylene and Ethylene-d4
Excited at 162 nm. J. Phys. Chem. A 2008, 112, 7514−7529.

(187) Dewar, M. J. S.; Zoebisch, E.; Healy, E. F.; Stewart, J. J. P.
AM1: A New General Purpose Quantum Mechanical Molecular
Model. J. Am. Chem. Soc. 1985, 107, 3902−3909.

(188) Granucci, G.; Toniolo, A. Molecular Gradients for Semi-
empirical CI Wave Functions. Chem. Phys. Lett. 2000, 325, 79−85.

(189) Roos, B. O.; Taylor, P. R.; Sigbahn, P. E.M. A Complete
Active Space SCF Method (CASSCF) using a Density-Matrix
Formulated Super-CI Approach. Chem. Phys. 1980, 48, 157−173.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Perspective

https://doi.org/10.1021/acs.jctc.4c00424
J. Chem. Theory Comput. 2024, 20, 4396−4426

4424

https://doi.org/10.1016/j.chemphys.2015.06.007
https://doi.org/10.1016/j.chemphys.2015.06.007
https://doi.org/10.1016/j.chemphys.2015.06.007
https://doi.org/10.1021/acs.jctc.3c00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.3c00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.3c00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1682481
https://doi.org/10.1063/1.1682481
https://doi.org/10.1063/1.434025
https://doi.org/10.1039/D0FD00037J
https://doi.org/10.1039/D0FD00037J
https://doi.org/10.1021/acs.jctc.0c00908?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00908?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0009-2614(98)00252-8
https://doi.org/10.1063/1.3596699
https://doi.org/10.1063/1.3596699
https://doi.org/10.1063/1.3596699
https://doi.org/10.1063/1.3633329
https://doi.org/10.1063/1.3633329
https://doi.org/10.1063/1.3633329
https://doi.org/10.1088/1367-2630/15/9/095003
https://doi.org/10.1088/1367-2630/15/9/095003
https://doi.org/10.1088/2516-1075/ac572f
https://doi.org/10.1088/2516-1075/ac572f
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1021/jp9805860?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp9805860?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4882073
https://doi.org/10.1063/1.4882073
https://doi.org/10.1063/1.4913962
https://doi.org/10.1063/1.4913962
https://doi.org/10.1103/PhysRevA.84.014701
https://doi.org/10.1103/PhysRevA.84.014701
https://doi.org/10.1103/PhysRevA.84.014701
https://doi.org/10.1063/1.1386811
https://doi.org/10.1063/1.1386811
https://doi.org/10.1063/1.1386811
https://doi.org/10.1063/1.4975323
https://doi.org/10.1063/1.4975323
https://doi.org/10.1063/1.4975323
https://doi.org/10.12688/openreseurope.13624.2
https://doi.org/10.1021/acs.jctc.1c01080?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01080?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01080?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1453404
https://doi.org/10.1063/1.1453404
https://doi.org/10.1063/1.1453404
https://doi.org/10.1063/1.1453404
https://doi.org/10.1021/ar040206v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ar040206v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.3c00893?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.3c00893?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.3c00893?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D3CP01429K
https://doi.org/10.1039/D3CP01429K
https://doi.org/10.1039/D3CP01429K
https://doi.org/10.1063/5.0113908
https://doi.org/10.1063/5.0113908
https://doi.org/10.1063/5.0113908
https://doi.org/10.1021/acs.jctc.3c01159?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.3c01159?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0009-2614(98)01115-4
https://doi.org/10.1016/S0009-2614(98)01115-4
https://doi.org/10.1063/1.1888573
https://doi.org/10.1063/1.1888573
https://doi.org/10.1063/1.1888573
https://doi.org/10.1146/annurev.physchem.57.032905.104612
https://doi.org/10.1146/annurev.physchem.57.032905.104612
https://doi.org/10.1021/jp9063565?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp9063565?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp9063565?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.3604007
https://doi.org/10.1063/1.3604007
https://doi.org/10.1021/jp2097185?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0009-2614(98)00312-1
https://doi.org/10.1016/S0009-2614(98)00312-1
https://doi.org/10.1016/S0009-2614(98)00312-1
https://doi.org/10.1063/1.481790
https://doi.org/10.1016/j.cplett.2004.02.077
https://doi.org/10.1016/j.cplett.2004.02.077
https://doi.org/10.1016/j.cplett.2004.02.077
https://doi.org/10.1021/jp803548c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp803548c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp803548c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00299a024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00299a024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0009-2614(00)00691-6
https://doi.org/10.1016/S0009-2614(00)00691-6
https://doi.org/10.1016/0301-0104(80)80045-0
https://doi.org/10.1016/0301-0104(80)80045-0
https://doi.org/10.1016/0301-0104(80)80045-0
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(190) Ben-Nun, M.; Quenneville, J.; Martínez, T. J. Ab Initio
Multiple Spawning: Photochemistry from First Principles Quantum
Molecular Dynamics. J. Phys. Chem. A 2000, 104, 5161−5175.

(191) Biesner, J.; Schnieder, L.; Schmeer, J.; Ahlers, G.; Xie, X.;
Welge, K. H.; Ashfold, M. N. R.; Dixon, R. N. State Selective
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Ã-State Photodissociation of Ammonia: A Four-Dimensional Wave
Packet Study. J. Phys. Chem. A 2010, 114, 3121−3126.

(194) Ma, J.; Zhu, X.; Guo, H.; Yarkony, D. R. First Principles
Determination of the NH2/ND2 (,) Branching Ratios for Photo-
dissociation of NH3/ND3 via Full-Dimensional Quantum Dynamics
Based on a New Quasi-Diabatic Representation of Coupled Ab Initio
Potential Energy Surfaces. J. Chem. Phys. 2012, 137, 22A541.

(195) Xie, C.; Ma, J.; Zhu, X.; Zhang, D. H.; Yarkony, D. R.; Xie, D.;
Guo, H. Full-Dimensional Quantum State-to-State Nonadiabatic
Dynamics for Photodissociation of Ammonia in its A-Band. J. Phys.
Chem. Lett. 2014, 5, 1055−1060.

(196) Xie, C.; Zhu, X.; Ma, J.; Yarkony, D. R.; Xie, D.; Guo, H.
Communication: On the Competition Between Adiabatic and
Nonadiabatic Dynamics in Vibrationally Mediated Ammonia Photo-
dissociation in It’s A Band. J. Chem. Phys. 2015, 142, 091101.

(197) Shu, Y.; Parker, K. A.; Truhlar, D. G. Dual-Functional Tamm-
Dancoff Approximation with Self-Interaction-Free Orbitals: Vertical
Excitation Energies and Potential Energy Surfaces Near an
Intersection Seam. J. Phys. Chem. A 2017, 121, 9728−9735.

(198) Zhang, L.; Shu, Y.; Bhaumik, S.; Chen, X.; Sun, S.; Huang, Y.;
Truhlar, D. G. Nonadiabatic Dynamics of 1,3-Cyclohexadiene by
Curvature-Driven Coherent Switching with Decay of Mixing. J. Chem.
Theory Comput. 2022, 18, 7073−7081.

(199) Garavelli, M.; Page, C. S.; Celani, P.; Olivucci, M.; Schmid, W.
E.; Trushin, S. A.; Fuss, W. Reaction Path of a Sub-200 fs
Photochemical Electrocyclic Reaction. J. Phys. Chem. A 2001, 105,
4458−4469.

(200) Adachi, S.; Sato, M.; Suzuki, T. Direct Observation of
Ground-State Product Formation in a 1,3-Cyclohexadiene Ring-
Opening Reaction. J. Phys. Chem. Lett. 2015, 6, 343−346.

(201) Pemberton, C. C.; Zhang, Y.; Saita, K.; Kirrander, A.; Weber,
P. M. From the (1B) Spectroscopic State to the Photochemical
Product of the Ultrafast Ring-Opening of 1,3-Cyclohexadiene: A
Spectral Observation of the Complete Reaction Path. J. Phys. Chem. A
2015, 119, 8832−8845.

(202) Kosma, K.; Trushin, S. A.; Fuss, W.; Schmid, W. E.
Cyclohexadiene Ring Opening Observed with 13 fs Resolution:
Coherent Oscillations Confirm the Reaction Path. Phys. Chem. Chem.
Phys. 2009, 11, 172−181.

(203) Kuthirummal, N.; Rudakov, F. M.; Evans, C. L.; Weber, P. M.
Spectroscopy and Femtosecond Dynamics of the Ring Opening
Reaction of 1,3-Cyclohexadiene. J. Chem. Phys. 2006, 125, 133307.

(204) Ohta, A.; Kobayashi, O.; Danielache, S. O.; Nanbu, S.
Nonadiabatic Ab Initio Molecular Dynamics of Photoisomerization
Reaction Between 1,3-Cyclohexadiene and 1,3,5-cis-Hexatriene. Chem.
Phys. 2015, 459, 45−53.

(205) Karashima, S.; Humeniuk, A.; Uenishi, R.; Horio, T.; Kanno,
M.; Ohta, T.; Nishitani, J.; Mitric, R.; Suzuki, T. Ultrafast Ring-
Opening Reaction of 1,3-Cyclohexadiene: Identification of Non-
adiabatic Pathway via Doubly Excited State. J. Am. Chem. Soc. 2021,
143, 8034−8045.

(206) Lei, Y.; Wu, H.; Zheng, X.; Zhai, G.; Zhu, C. Photo-Induced
1,3-Cyclohexadiene Ring Opening Reaction: Ab Initio On-the-Fly
Nonadiabatic Molecular Dynamics Simulation. J. Photochem. Photo-
biol., A 2016, 317, 39−49.

(207) Polyak, I.; Hutton, L.; Crespo-Otero, R.; Barbatti, M.;
Knowles, P. J. Ultrafast Photoinduced Dynamics of 1,3-Cyclo-

hexadiene Using XMS-CASPT2 Surface Hopping. J. Chem. Theory
Comput. 2019, 15, 3929−3940.

(208) Filatov, M.; Min, S. K.; Kim, K. S. Non-adiabatic Dynamics of
Ring Opening in Cyclohexa-1,3,-Diene Described by Ensemble
Density-Functional Theory Method. Mol. Phys. 2019, 117, 1128−
1141.

(209) Travnikova, O.; Pitesa, T.; Ponzi, A.; Sapunar, M.; Squibb, R.
J.; Richter, R.; Finetti, P.; Di Fraia, M.; De Fanis, A.; Mahne, N.;
Manfredda, M.; Zhaunerchyk, V.; Marchenko, T.; Guillemin, R.;
Journel, L.; Prince, K. C.; Callegari, C.; Simon, M.; Feifel, R.; Decleva,
P.; Doslic, N.; Piancastelli, M. N. Photochemical Ring-Opening
Reaction of 1,3,-Cyclohexadiene: Identifying the True Reactive State.
J. Am. Chem. Soc. 2022, 144, 21878−21886.

(210) Schalk, O.; Geng, T.; Thompson, T.; Baluyot, N.; Thomas, R.
D.; Tapavicza, E.; Hansson, T. Cyclohexadiene Revisited: A Time-
Resolved Photoelectron Spectroscopy and Ab Initio Study. J. Phys.
Chem. A 2016, 120, 2320−2329.

(211) Wolf, T. J. A.; Sanchez, D. M.; Yang, J.; Parrish, R. M.; Nunes,
J. P. F.; Centurion, M.; Coffee, R.; Cryan, J. P.; Guhr, M.; Hegazy, K.;
Kirrander, A.; Li, R. K.; Ruddock, J.; Shen, X.; Vecchione, T.;
Weathersby, S. P.; Weber, P. M.; Wilkin, K.; Yong, H.; Zheng, Q.;
Wang, X. J.; Minitti, M. P.; Martinez, T. J. The Photochemical Ring-
Opening of 1,3-Cyclohexadiene Imaged by Ultrafast Electron
Diffraction. Nat. Chem. 2019, 11, 504−509.

(212) Snyder, J. W.; Parrish, R. M.; Martínez, T. J. α-CASSCF: An
Efficient, Empirical Correction for SA-CASSCF to Closely Approx-
imation MS-CASPT2 Potential Energy Surface. J. Phys. Chem. Lett.
2017, 8, 2432−2437.

(213) Tamura, H.; Nanbu, S.; Ishida, T.; Nakamura, H. Ab Initio
Nonadiabatic Quantum Dynamics of Cyclohexadiene/Hexatriene
Ultrafast Photisomerization. J. Chem. Phys. 2006, 124, 084313.

(214) Ha, J.-W.; Lee, I. S.; Min, S. K. Surface Hopping Dynamics
beyond Nonadiabatic Couplings for Quantum Coherence. J. Phys.
Chem. Lett. 2018, 9, 1097−1104.

(215) Kazaryan, A.; Heuver, J.; Filatov, M. Excitation Energies from
Spin-Restricted Ensemble-Referenced Kohn-Sham Method: A State-
Averaged Approach. J. Phys. Chem. A 2008, 112, 12980−12988.

(216) Adamo, C.; Barone, V. Toward Reliable Density Functional
Methods without Adjustable Parameters: The PBE0Model. J. Chem.
Phys. 1999, 110, 6158−5170.

(217) Merritt, I. C. D.; Jacquemin, D.; Vacher, M. Nonadiabatic
Coupling in Trajectory Surface Hopping: How Approximations
Impact Excited-State Reaction Dynamics. J. Chem. Theory Comput.
2023, 19, 1827−1842.

(218) Akher, F. B.; Shu, Y.; Varga, Z.; Truhlar, D. G. Semiclassical
Multistate Dynamics for Six Coupled 5A’ States of O + O2. J. Chem.
Theory Comput. 2023, 19, 4389−4401.

(219) Shu, T.; Fales, S.; Levine, B. G. Defect-Induced Conical
Intersections Promote Nonradiative Recombination. Nano Lett. 2015,
15, 6247−6253.

(220) Mai, S.; Avagliano, D.; Heindl, M.; Marquetand, P.; Menger,
F. S. J.; Oppel, M.; Plasser, F.; Polonius, S.; Ruckenbauer, M.; Shu, Y.;
Truhlar, D. G.; Zhang, L.; Zobel, P.; González, L. SHARC release
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