
 1

TUMME 3.1

MANUAL

Rui Ming Zhang

Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory

for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University,

Beijing 100084, China

and Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute,

University of Minnesota, Minneapolis, Minnesota 55455-0431, USA

Xuefei Xu

Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory

for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University,

Beijing 100084, China

and

Donald G. Truhlar

Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute,

University of Minnesota, Minneapolis, Minnesota 55455-0431, USA

Date of final update to code: Mar. 05, 2023

Date of most recent revision to this manual: Dec. 31, 2022

ABSTRACT. TUMME (Tsinghua University Minnesota Master Equation solver) is a computer

program for setting up and solving master equations for chemical kinetics of unimolecular and

bimolecular reactions. The master equation is discretized in terms of reactant energy bins, and rate

constants are calculated from chemically significant eigenmodes. TUMME has interfaces to

Gaussian, Polyrate, and MSTor output files that allow the master equation code to provide the

microcanonical flux coefficients needed for the kernel of the master equation as calculated by

conventional transition state theory (TST), variational transition state theory (VTST) with various

tunneling methods, or multi-structural or multi-path VTST (MS-VTST/SCT or MP-VTST) with

various tunneling methods. The tunneling methods supported include small-curvature tunneling

(SCT), large-curvature tunneling (LCT), and microcanonical optimized multidimensional

tunneling (OMT). For mechanisms involving only unimolecular isomerization (no bimolecular

pairs), TUMME 3.1 solves a conservative master equation for both rate constants and time-

dependent energy-bin populations. For mechanisms involving bimolecular pairs, TUMME 3.1

can solve two kinds of master equation: (i) a nonconservative master equation for calculating rate

constants of bimolecular reactions and (ii) a conservative master equation that includes

bimolecular association in the transition matrix and that can be used for calculating the time

evolution of the concentration of a pseudo-first-order bimolecular reactant. TUMME is written in

double precision with Python 3; quadruple and octuple precision is also available for some subtasks in

C++. The Python code can run in serial or parallel (MP or MPI), and C++ code can run on a single

processor or on multiple processors with OpenMP. The program includes a manual and a tutorial.

License:

 TUMME 3.1 is licensed under the Apache License, Version 2.0.

 The manual of TUMME 3.1 is licensed under CC-BY-4.0.

 Publications of results obtained with the TUMME 3.1 software should cite the program and

at least one of the articles describing the program.

Reference to the program: R. M. Zhang, X. Xu, and D. G. Truhlar, TUMME 3.1, program

reference and DOI available at https://zenodo.org

 2

References to articles describing the program: See page 64.

 3

Table of Contents

1. Introduction .. 4

2. Theory .. 5

2.1 Master equation .. 5

2.1.1 Collisional relaxation energy transfer possibility .. 6

2.1.2 Microcanonical flux coefficients... 6

2.2 Phenomenological rate constant ... 8

2.3 Time evolution ... 9

2.4 Reversibility and conservation ... 9

3. Program Description .. 10

3.1 General workflow ... 10

3.2 The framework of source files .. 11

3.3 Input files ... 11

3.3.1 Options of input species properties ... 11

3.3.2 Options of microcanonical flux coefficients ... 12

4. Installation and Execution .. 15

4.1. Dependencies .. 15

4.2. Installation ... 15

4.3. Execution... 17

4.3.1 Details in the executable script tumme .. 17

4.3.2 The parallelism.. 17

5. Standard Input File ... 19

5.1 Two pre-definition subkeywords .. 23

5.2 Keywords in the PARAMETER block ... 24

5.3 Keywords in the REACTION block .. 36

5.4 Keywords in the SPECIES block ... 41

5.5 Polyrate, Gaussian and MSTor Output Files.. 47

5.5.1 Polyrate output file ... 47

5.5.2 Gaussian output file .. 48

5.5.3 MSTor output file .. 49

6. Detailed Implementation .. 50

6.1 Overview of all source files .. 50

6.2 Normalization of the energy transfer kernel ... 53

6.3 Bound isomers to CSE modes one-to-one. ... 54

6.4 Handling the merger condition ... 56

6.5 High-precision dynamic libraries ... 57

7. Test Runs ... 59

7.1 2-methylhexyl radical single-channel unimolecular dissociation ... 59

7.2 2-methylhexyl radical multi-channel unimolecular dissociation .. 59

7.3 Toluene + OH radical ipso- site addition reaction .. 60

7.4 Toluene + OH radical addition reactions: TST .. 60

7.5 Toluene + OH radical addition reactions: VTST.. 61

7.6 H2CO + OH radical abstraction reaction .. 61

8. Bibliography of TUMME research articles .. 63

9. Version History of TUMME .. 64

10. References .. 65

 4

1. Introduction

The time development of a chemical reaction mechanism involving several species and/or

several states can be approximately described as a stochastic process and in particular as a

Markov chain. It has long been recognized that the time evolution of species concentration

according to a give mechanism can be simulated by a multi-state master equation, and that

chemical reaction rate constants can be extracted by eigenanalysis of such a master equation.1

A master equation is a set of coupled ordinary differential equations with time as the

independent variable. If all chemical species are at internal equilibrium, the dependent

variables are the concentrations of the chemical species. Of more interest here is the case in

which internal-state nonequilibrium is allowed, then the independent variables are the

concentrations of chemical species in individual internal states or, more commonly, the

concentrations of chemical species summed over bins of internal states. An especially powerful

method, applicable to all unimolecular processes and under many conditions extendable to

second-order reactions, is to linearize the master equation in the various concentrations so the

eigenvalues have units (s-1) of unimolecular rate constants or pseudo first-order rate constants,

and the rate constants can be related to the slowest eigenvalues.2

Because the master equation is especially powerful for modeling nonequilibrium effects,

and because nonequilibrium effects are more important in unimolecular reactions than most

bimolecular reactions (with bimolecular association reactions being the exception because they

are the reverse of unimolecular reactions), master equations have found their main use in

unimolecular reactions. Most modern theoretical treatments of unimolecular reactions make

the Rice-Ramsperger-Kassel assumption3 ,4 that the rate of a unimolecular reaction depends

only on the total energy content (E) of the molecule. In this case the internal-state bins of each

species are specified by a single variable E, and the treatment is sometimes called a 1-D,

energy-dependent master equation. TUMME is a computer program for setting up and solving

1-D, energy-dependent master equations. In particular, the master equation is discretized in

terms of chemical species in finite-width internal energy bins. In the present context, internal

energy is the total vibrational–rotational energy. We note that some workers label the bins as

grains or intervals.

The extraction of chemical kinetics rate constants by eigenanalysis of 1-D, energy-

dependent master equations has come to be known as the method of chemically significant

eigenmodes (CSE theory), and its use for the treatment of complex mechanisms has been

greatly developed and clarified in recent years; we will build on this work, in particular using

the method of Georgievskii et al.5 This method is applicable to unimolecular isomerization and

dissociation reactions proceeding from one or multiple isomers. (In this manual, well and

isomer are synonyms.) For the case where the concentrations of the bimolecular reactants do

not change significantly on the relaxation time scale, association reactions from bimolecular

pairs can also be considered. The resulting rate constants depend on temperature T and pressure

p.

This program is written in Python 3 utilizing C++ high-precision dynamic libraries. For

running multiple combinations of T and p, the execution can be parallelized on a single node

using MP or across multiple nodes using MPI. The program can be run in double precision,

quadruple, or octuple precision.

A key feature of the TUMME program is that it is interfaced to the Polyrate program for

calculating rate constants and to the MSTor program for the treatment of torsional

anharmonicity. By reading the minimum energy path and the transmission possibilities from

Polyrate and reading the multi-structural torsional density of states from MSTor, this program

can use pressure-independent MS-VTST/SCT rate constants for elementary reactions as input

data for the pressure-dependent master equation solver for complex reaction systems.

 5

2. Theory

TUMME can treat both unimolecular reactions and bimolecular reactions, but

bimolecular reactions are treated only in the limit of pseudo-first-order kinetics. TUMME can

treat two kinds of master equation, with the difference being the way that one treats the

bimolecular pairs. One kind of master equation is conservative (also called reversible or

homogeneous); this kind of master equation leads to equilibrium. The other kind of master

equation is nonconservative (also called irreversible or inhomogeneous); for mechanisms

involving unimolecular dissociation, this kind of master equation leads to all isomers

vanishing because one includes the dissociation reactions but not the reverse association

reactions. If there are no bimolecular species in the mechanism, the master equation is always

conservative. For mechanisms involving bimolecular pairs, TUMME uses the

nonconservative master equation to extract phenomenological rate constants and uses the

conservative master equation to calculate the time evolution of concentrations and energy-

bin populations.

 Here we only give a brief review of the theory. For more details, the user should refer to

ref. 26 for the case of only unimolecular reactions and to ref. 28 for the case where

bimolecular reactions are included.

2.1 Master equation

 If we collect the microscopic concentrations of the isomers in their energy bins into a

single vector y (with dimension of 𝑁y), and if we treat the bimolecular pairs by means of an

inhomogeneous term, we can write the discrete master equation as an inhomogeneous

equation in the following way

d𝐲

d𝑡
= −𝐖𝐲 + 𝐁𝐬

(1)

where t is time, s is the macroscopic concentration vector of bimolecular pairs, B is the

association reaction flux coefficient matrix, and W is the transition matrix given by

 𝐖 = 𝐊̂ + 𝐏 (2)

where 𝐊̂ is the unimolecular chemical reaction flux coefficient matrix including isomerization

and dissociation (the caret is used to distinguish reactive flux coefficients, which will have

carets, from rate constants, which will not), and 𝐏 is the collisional energy-relaxation matrix.

We transform W to a symmetric matrix G with positive eigenvalues according to

 𝐆 = 𝐅−1𝐖𝐅 (3)

where F is a diagonal matrix with diagonal elements

 𝐹𝑖 = √𝜌𝛾(𝐸𝜂)exp(−𝛽𝐸𝜂)
(4)

where i is the state index; 𝛾 is the index of isomers; 𝜂 is the index of each energy bin; 𝜌 is the

electronic-rotational-vibrational density of state; 𝛽is 1/kB𝑇. This transformation leads to the

following symmetrized master equation

d𝐲̃

d𝑡
= −𝐆𝐲̃ + 𝐁̃𝐬

(5)

with 𝐲̃ = 𝐅−1𝐲 and 𝐁̃ = 𝐅−1𝐁 .

 6

2.1.1 Collisional relaxation energy transfer possibility

In TUMME, we use the “exponential-down” model to describe the relaxation of isomers by

collisions with a bath gas; this model assumes that the probability of a collision changing the

energy of isomer 𝛾 from initial energy 𝐸𝜂´ to final energy 𝐸𝜂 is

𝑃𝛾(𝜂|𝜂´) =

{

 𝐴(𝐸𝜂´)𝑒

−
𝐸𝜂´−𝐸𝜂

⟨Δ𝐸d⟩(𝐸𝜂′) for 𝐸𝜂′ ≥ 𝐸𝜂

[𝐴(𝐸𝜂) 𝑒
−
𝐸𝜂−𝐸𝜂´
⟨Δ𝐸d⟩(𝐸𝜂)]

𝜌𝛾(𝐸𝜂)𝑒
−𝛽𝐸𝜂

𝜌𝛾(𝐸𝜂′)𝑒−𝛽𝜂´
 for 𝐸𝜂′ < 𝐸𝜂

(6)

2.1.2 Microcanonical flux coefficients

In the following part, we use 𝜌 to denote the electronic-rotational-vibrational density of

states, of which the Laplace transform is the electronic-rotational-vibrational partition

function (𝑄𝜙), and we use 𝜓 to denote the electronic-rotational-vibrational density of states

including relative translation, of which the Laplace transform is the electronic-rotational-

vibrational partition function (𝑄𝜙) times the relative translational partition function per unit

volume (Φrel).

(1) Based on the framework of RRKM theory

Unimolecular reaction. For a unimolecular reaction, the microcanonical flux coefficient at

energy 𝐸𝜂 from configuration 𝛾 to configuration 𝜙 (an isomer or a bimolecular pair) is:

 𝑘̂
MS−VTST/SCT

(𝛾 → 𝜙 | 𝐸𝜂) = 𝜅
SCT(𝐸𝜂)Γ

VTST
(𝐸𝜂)𝐹

MS(𝐸𝜂)
𝑁𝛾→𝜙
‡,SSHO

(𝐸𝜂)

ℎ𝜌𝛾
SSHO(𝐸𝜂)

 (7)

where MS denotes that multi-structural effects and/or torsional anharmonicity are included;

VTST denotes variational transition state theory, which may be canonical variational theory

(CVT) or microcanonical variational theory (𝜇VT); SCT denotes small-curvature tunneling;

𝜅SCT, ΓVTST, and 𝐹MS are transmission coefficients; SSHO denotes single-structural harmonic

oscillator or single-structural quasiharmonic oscillator; and a diesis (‡) denotes a conventional

transition state, i.e., that the transition state properties are evaluated at a dividing surface

passing through a saddle point on the potential energy surface. 𝑁 denotes sum of states or

cumulative reaction possibility. 𝜌 denotes the electronic-rotational-vibrational density of state.

The transmission coefficients are approximated as follows. The microcanonical MS

anharmonicity coefficient is evaluated by

 𝐹MS(𝐸𝜂) =
𝑁𝛾→𝜙
‡,MS(𝐸𝜂)

𝑁𝛾→𝜙
‡,SSHO(𝐸𝜂)

𝜌𝛾
SSHO(𝐸𝜂)

𝜌𝛾
MS(𝐸𝜂)

 (8)

the microcanonical tunneling transmission coefficient is evaluated by

 𝜅SCT(𝐸𝜂) =
𝑁𝛾→𝜙
‡,MS/SCT

(𝐸𝜂)

𝑁𝛾→𝜙
‡,MS(𝐸𝜂)

 (9)

and the microcanonical recrossing transmission coefficient is approximated evaluated by

 ΓVTST(𝐸𝜂) ≈
𝑁𝛾→𝜙
VTS,SSHO/SCT

(𝐸𝜂)

𝑁𝛾→𝜙
‡,SSHO/SCT

(𝐸𝜂)
 (10)

Note that the numerator of Eq. (10) is evaluated at a variational transition state, and the

denominator is evaluated at a conventional transition state. When 𝑁𝛾→𝜙(𝐸𝜂) is marked with

 7

tunneling superscript in Eqs. (9) and (10), it is the cumulative reaction probability (CRP);

otherwise, it is the sum of states (SoS). When CVT specified, for each temperature, TUMME

will choose a variational transition state along the reaction coordinate according to the

maximum Gibbs free energy barrier. When 𝜇VT specified, for each energy bin, the program

will choose a variational transition state along the reaction coordinate according to the

minimum SoS.

The cumulative reaction probability is evaluated as the convolution of the transmission

probability with the density of states of the transition state:

 𝑁𝛾→𝜙
VTS,MS/SCT

(𝐸𝜂) = ∫ d𝐸𝑃𝛾→𝜙
SCT (𝐸)𝜌𝛾

VTS,MS(𝐸𝜂 − 𝐸)
𝐸𝜂−𝑉a

G∗

max{𝐸0,𝛾,𝐸0,𝜙}−𝑉a
G∗

 (11)

where 𝐸 is the energy (which can be negative) in the reaction coordinate at the VTS, 𝑃𝛾→𝜙
SCT is

the small-curvature tunneling (SCT) approximation to the transmission probability of the

reaction between 𝛾 and 𝜙, 𝜌𝛾→𝜙
VTS,MS is the multi-structural torsional electronical-vibrational-

rotational density of states of the variational transition state connecting 𝛾 and 𝜙, and 𝐸0
VTS

,

𝐸0,𝛾 and 𝐸0,𝜙 are the enthalpy respectively of the variational transition state, of isomer 𝛾, and

of isomer or bimolecular pair 𝜙 at 0 K. The transmission probability 𝑃𝛾→𝜙
SCT is evaluated by the

SCT method implemented in Polyrate. The multi-structural density of states 𝜌𝛾
VTS,MS is

evaluated as the inverse Laplace transform of the multi-structural torsional partition function

with the first-order steepest descent method implemented in MSTor6 7 8.

Bimolecular reaction. For a bimolecular reaction, we use the general microcanonical flux

coefficients Δ𝑘̂(𝐸) instead of 𝑘̂(𝐸); Δ𝑘̂(𝐸) is the following product of 𝑘̂(𝐸) and the

Boltzmann distribution:

 Δ𝑘̂
MS−VTST/SCT

(𝜈 → 𝛾| 𝐸𝜂) = ΓVTST(𝐸𝜂)𝜅
SCT(𝐸𝜂)𝐹

MS(𝐸𝜂)
𝑁𝜈,𝛾
‡,SSHO(𝐸𝜂)𝑒

−𝛽𝐸𝜂Δ𝐸

ℎΦrel𝑄𝜈
SSHO

(12)

where Δ𝐸 is the width of an energy bin, Φrel denotes relative translational partition function

per unit volume, ΓVTST(𝐸𝜂) and 𝜅SCT(𝐸𝜂) are the same as in Eqs (9) and (10), and 𝐹MS(𝐸𝜂)

is defined as

 𝐹MS(𝐸𝜂) =
𝑁𝜈,𝛾
‡,MS(𝐸𝜂)

𝑁𝜈,𝛾
‡,SSHO(𝐸𝜂)

𝑄𝜈
SSHO(𝐸𝜂)

𝑄𝜈
MS(𝐸𝜂)

 (13)

(2) Based on the inverse-Laplace transform

TUMME also provides an option for user to calculate the microcanonical flux

coefficients according to the inverse-Laplace transform to the canonical flux coefficients

(high-pressure-limit rate constants).

Unimolecular reaction. For a unimolecular reaction 𝛾 → 𝜙, the canonical flux coefficients

are

 𝑘̂(𝛾 → 𝜙|𝑇) =
1

𝑄𝛾
∫ 𝑘̂(𝛾 → 𝜙|𝐸)𝜌𝛾(𝐸)𝑒

−𝛽𝐸𝑑𝐸
∞

0

=
1

𝑄𝛾
ℒ[𝑘̂(𝛾 → 𝜙|𝐸)𝜌𝛾(𝐸)]

(14)

Thus,

 𝑘̂(𝛾 → 𝜙|𝐸) =
1

𝜌𝛾(𝐸)
ℒ−1[𝑘̂(𝛾 → 𝜙|𝑇)𝑄𝛾](𝐸) (15)

We fit the canonical flux coefficients by a biexponential form as

 8

 𝑘̂(𝛾 → 𝜙|𝑇) = 𝐴1 (
𝛽1
𝛽
)

𝑛1

𝑒−𝛽𝐸a1 +𝐴2 (
𝛽2
𝛽
)

𝑛2

𝑒−𝛽𝐸a2 (16)

One can get the microcanonical flux coefficients for 𝛾 → 𝜙 according to Eqs (15) and (16) as

𝑘̂(𝛾 → 𝜙|𝐸𝜂) =
𝐴1𝛽1

𝑛1

𝜌𝛾(𝐸𝜂)Γ(𝑛1)
∫ 𝜌𝛾(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a1)

𝑛1−1
θ(𝜀 − 𝐸a1)

𝐸𝜂

0

d𝜀

+
𝐴1𝛽1

𝑛2

𝜌𝛾(𝐸𝜂)Γ(𝑛2)
∫ 𝜌𝛾(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a2)

𝑛2−1θ(𝜀 − 𝐸a2)
𝐸𝜂

0

d𝜀

(17)

Bimolecular reaction. For the bimolecular reaction 𝜈 → 𝛾, the canonical flux coefficients are

 𝑘̂(𝜈 → 𝛾|𝑇) =
1

Φrel𝑄𝜈
∫ 𝑘̂(𝜈 → 𝛾|𝐸)𝜓𝜈(𝐸)𝑒

−𝛽𝐸d𝐸
∞

0

=
1

Φrel𝑄𝜈
ℒ[𝑘̂(𝜈 → 𝛾|𝐸)𝜓𝜈(𝐸)]

(18)

The relative translational partition function is

 Φrel = (
2𝜋𝑚𝜈

ℎ2𝛽
)
3/2

(19)

where 𝑚𝜈 is the reduced mass. Thus,

 𝑘̂(𝜈 → 𝛾|𝐸) =
1

𝜓𝜈(𝐸)
ℒ−1[𝑘̂(𝜈 → 𝛾|𝑇)Φrel𝑄𝜈](𝐸)

(20)

We fit the canonical flux coefficients by a biexponential form as

 𝑘̂(𝜈 → 𝛾|𝑇) = 𝐴1 (
𝛽1
𝛽
)

𝑛1

𝑒−𝛽𝐸a1 +𝐴2 (
𝛽2
𝛽
)

𝑛2

𝑒−𝛽𝐸a2 (21)

One can get the microcanonical flux coefficients for 𝜈 → 𝛾 according to Eqs (19), (20), and

(21) as

𝑘̂(𝜈 → 𝛾|𝐸𝜂) =

1
ℎ3
(2𝜋𝑚𝜈)

3
2𝐴1𝛽1

𝑛1

𝜓𝜈(𝐸𝜂)Γ (𝑛1 +
3
2
)
∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a1)

𝑛1+
1
2θ(𝜀 − 𝐸a1)

𝐸𝜂

0

d𝜀

+

1
ℎ3
(2𝜋𝑚𝜈)

3/2𝐴2𝛽2
𝑛2

𝜓𝜈(𝐸𝜂)Γ (𝑛2 +
3
2)

∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a2)
𝑛2+

1
2θ(𝜀 − 𝐸a2)

𝐸𝜂

0

d𝜀

(22)

and the general microcanonical flux coefficients

Δ𝑘̂(𝜈 → 𝛾|𝐸𝜂) =
𝑒−𝛽𝐸𝜂Δ𝐸

Φrel𝑄𝜈
SSHO

[

1
ℎ3
(2𝜋𝑚𝜈)

3
2𝐴1𝛽1

𝑛1

Γ (𝑛1 +
3
2
)

∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a1)
𝑛1+

1
2θ(𝜀 − 𝐸a1)

𝐸𝜂

0

d𝜀

+

1
ℎ3
(2𝜋𝑚𝜈)

3/2𝐴2𝛽2
𝑛2

Γ (𝑛2 +
3
2
)

∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a2)
𝑛2+

1
2θ(𝜀 − 𝐸a2)

𝐸𝜂

0

d𝜀]

(23)

2.2 Phenomenological rate constant

 The phenomenological rate constants are extracted from the inhomogeneous

(irreversible) master equation (5) based on CSE theory. The derivation is complicated and

lengthy, so we do not present here; users could refer to ref. 26 for the formula and derivation.

 9

2.3 Time evolution

 The irreversible master equation (5) cannot be solved directly since the bimolecular

concentrations are unknown. Here in order to introduce more equations to describe the source

term, we partition bimolecular pairs into two kinds, the reversible reactants and the

irreversible products. For the bimolecular reactant, we introduce the pseudo-first order

assumption; for the bimolecular product, we assume the bimolecular concentration constantly

as zero. Supposing there are r reactant bimolecular pairs, thus the Eq (1) becomes

d𝐲

d𝑡
= −𝐖𝐲 + 𝐁∗𝐬∗ (24)

where 𝐁∗ and 𝐬∗only contain r bimolecular pairs and each one bimolecular pair (A + B) has

one control equation as

d𝑛A

(𝜈)

d𝑡
= −(𝑛B

(𝜈)Σ𝑖𝐵𝑖𝜈
∗)𝑛A

(𝜈) + Σ𝑖𝑘̂(𝛾 → 𝜈 | 𝐸𝜂)𝑦𝑖
(25)

where the index 𝜈 ranges over 1 to r, and the macroscopic concentration 𝑛B
(𝜈)

 is assumed to

be in excess as compared to the macroscopic concentration 𝑛A
(𝜈)

 and taken as a constant.

Combined with Eq (25), the inhomogeneous master equation (24) can be transformed into the

following homogeneous master equation:

 (26)

where

 𝑦𝑖
∗ = {

𝑦𝑖 0 < 𝑖 ≤ 𝑁y

𝑛A
(𝜈) 𝑁y < 𝑖 ≤ 𝑁y + 𝑟

 (27)

Analogy to Eq (5), Eq (26) can be symmetrized as

d𝐲̃∗

d𝑡
= −𝐆∗𝐲̃∗

(28)

by a diagonal matrix 𝐅∗ with elements as

 𝐹𝑖𝑖
∗ =

{

 √𝜌𝛾(𝐸𝜂)exp(−𝛽𝐸𝜂); 0 < 𝑖 ≤ 𝑁y

√
𝑘̂(𝛾′ → 𝜈| 𝐸𝜂′)

𝐵𝑖′𝜈𝑛B
(𝜈)

𝜌𝛾′(𝐸𝜂′)𝑒
−𝛽𝐸𝜂′ ; 𝑁y < 𝑖 ≤ 𝑁y + 𝑟

 (29)

where the index 𝑖′ is an arbitrary value among 1 and 𝑁y. The result can be solved as

 𝐲∗(𝑡) = 𝐅∗𝐔∗𝐄∗(𝐔∗)T(𝐅∗)−1𝐲0
∗ (30)

where 𝐔∗ is the eigenvector matrix of symmetric transition matrix 𝐆∗, 𝐄∗ is a diagonal matrix

with elements 𝑒−𝐿𝜆
∗ 𝑡 where 𝐿𝜆

∗ is the eigenvalue of matrix 𝐆∗, and 𝐲0
∗ is the initial condition.

2.4 Reversibility and conservation
Here we clarify some concepts. The distinction between “reversible/conservative” and

“irreversible/nonconservative” is made according to whether the transition matrix 𝐖 contains

all of the microscopic processes, i.e., whether the transition matrix 𝐖 has a zero eigenvalue. If

a transition matrix 𝐖 has a zero eigenvalue, we call it reversible or conservative; otherwise we

call it irreversible or nonconservative.

In the calculation of phenomenological rate constants, all bimolecular pairs are treated

equally in the inhomogeneous term, i.e., we do not separate reactant bimolecular pairs from

product bimolecular pairs. In the calculation of the time evolution, in order to transform the

inhomogeneous equation into a homogeneous one, we partition bimolecular pairs as reactants

and products, we use pseudo-first order assumption for bimolecular reactants. And we treat

bimolecular products as a sink.

 10

3. Program Description

3.1 General workflow

TUMME is written in Python 3. It can run in three different modes: serial, multi-process (MP)

and message passing interface (MPI). Serial mode uses a single processor, whereas the latter

two modes involve parallel execution on multiple processors by running various temperature–

pressure pairs (T, p) simultaneously. The workflow is depicted in Fig. 1. The input file is

described in Section 3. The general workflow can be summarized as follows.

1) First, the program reads a standard input file containing information about the species

and the reactions in the mechanism and a variable determining the mode in which to

execute the program. If assigned in the standard input file, some output files of Polyrate

will be read. This part is done in tumme_readin.py.

2) After reading all the input information, the program will enter the initialization module

to initialize (pre-set) some variables and to calculate the density of states. Alternatively,

depending on settings in the input, the density of states of some species may be read

from the MSTor output file. This part is done in tumme_pre.py.
3) Then the program will jump into the solver module shown as the standard process in

Fig. 1. From this point on, the precision (double, quadruple or octuple) and mode (serial,

MP, or MPI) may vary according to users’ choice. This part is done in tumme_solver.py.

Figure 1. Workflow of the program

 11

3.2 The framework of source files

Figure 2. Framework of all source files

The main body of TUMME is written by Python 3 and is located in the src/ folder. Because

the accurate calculation of eigenpairs of the transition matrix often requires greater than

double precision, we also provide options for quadruple and octuple precision as

implemented by C++. The high-precision library, based on the simplified multi-precision

math library mpack and multi-precision float library qd, are compiled into dynamic libraries

to let the Python process call them. Fig. 2 give a general picture showing how the source files

work together. Section 6 of this manual (Detailed implementation) gives further information

about each of the files.

3.3 Input files

When the code is run, a standard input file which will be elaborated in section 5 will be read.

This standard input file is compulsory for any kind of job. Besides, TUMME provides some

features to let user use some advanced options. In those cases, some extra input files may be

needed. For clarity, we listed here what kinds of options user can access and the required

extra files for those options. The name of the standard input file is arbitrary; we recommend

that it should end with the suffix “.in”.

3.3.1 Options of input species properties

In a master equation calculation, all species properties involved should be input for the

program, including the coordinate geometries, frequencies, energies, symmetry number and

so on. In TUMME, we provided three ways for user to input the required species information:

 12

➢ Read from the SPECIES block in the standard input file of TUMME, in this

case, only the standard input file is needed.

➢ Read from the standard output file of Gaussian9, in this case, the standard output

file of Gaussian is needed.

➢ Read from the standard output file of Polyrate10, in this case, the standard output

file of Polyrate is needed.

The priority for the program to read species properties is

Polyrate standard output file > Gaussian standard output file > SPECIES block

Frequencies of species calculated from diagonalizing the mass-scaled Hessian matrix should

always be scaled a factor to correct the electronic potential energy surface error and the

harmonic approximation error. Frequencies in Polyrate standard output is already scaled

while in Gaussian standard output is unscaled. Thus, if frequencies for a species are read

from a Gaussian standard output file, user should always set the subkeyword FREQSCALE.

See section 5 for the detailed description.

3.3.2 Options of microcanonical flux coefficients

3.3.2.1 Based on the framework of RRKM theory

 The code can calculate the RRKM microcanonical flux coefficients under single-structural

harmonic oscillator (SSHO) approximation (i.e., microcanonical conventional transition state

theory flux coefficients in the harmonic approximation) without any other files (i.e., without

any files beyond the standard input file). However, a key feature of TUMME is that – for

reactions with an intrinsic barrier – the code can also calculate microcanonical flux

coefficients that include anharmonicity, recrossing effects (i.e., variational effects), and

tunneling. We list the available options for microcanonical flux coefficients in Table 1. This

table shows that the program is capable of using any combination of these three effects.

 We emphasize that TUMME does not read any microcanonical flux coefficients from

external files; all flux coefficients are calculated internally. However, to go beyond

microcanonical conventional transition state theory in the harmonic approximation, TUMME

reads the necessary data from output files created by Polyrate and/or MSTor. These files must

be available prior to the TUMME run; TUMME does not involve those packages, not does it

run or spawn jobs involving those codes.

 Note that whenever we refer to Polyrate output files, the meaning also includes files

produced by Polyrate interfaces, for example, it could be a file produced by Gaussrate11,

which is an interface of Polyrate with Gaussian, or it could be a file produced by

NWChemRate12, which is an interface of Polyrate with NWChem.

 It should be clearly pointed out that even though the keywords of these three effects are

listed and set independently, effects per se are coupled with each other. E.g., the tunneling

effect can have impact on the recrossing effect. Please refer to Ref.26 for details in theory.

 TUMME only reads the following information from Polyrate output files:

• geometries, frequencies, electronic degeneracy, and energies of reactants,

 13

conventional transition states, products, and all of generalized transition states along

the minimum energy reaction path (MEP).

• zero-curvature transmission possibilities [PZCT(E)] and small-curvature transmission

possibilities [PSCT(E)]

The code will try to read all the above information. The portion of this information that will

be used will depend on the specified keywords; other information is not used. The code will

try to search particular key-strings to read the information (see Section 5.5.1); for example, if

"transmission probability" is located in the file, the code will automatically find and

read PSCT(E) and PZCT(E) respectively.

Table 1. Features in microcanonical flux coefficients

Effect Method Compulsory keyword Compulsory extra files

Anharmonicity
SSHOa Do not set MSTFILE No extra file is needed.

MSb set MSTFILE The standard output file of MSTor

Recrossing

TSTc set VARIATION as tst No extra file is needed

CVTd set VARIATION as cvt The standard output file of Polyrate

𝜇VTe set VARIATION as muvt The standard output file of Polyrate

Tunneling

LCTf set TUNNELING as lct The standard output file of Polyrate

𝜇OMTg set TUNNELING as omt The standard output file of Polyrate

SCTh set TUNNELING as sct The standard output file of Polyrate

ZCTi set TUNNELING as zct The standard output file of Polyrate

Eckart j set TUNNELING as Eckart No extra file is needed.

 No tunneling Do not set TUNNELING No extra file is needed.

a single-structure harmonic oscillator.13 If frequencies are scaled before input, the approximation will

be the quasiharmonic oscillator (QHO), which means that one uses the harmonic oscillator formulas

with scaled or other effective frequencies. (Users should scale frequencies themselves prior to

inputting them; TUMME has no keyword to scale the frequencies.) Note that in the formulas of

Section 2.1.2, we use “HO” to denote either the harmonic oscillator approximation or the

quasiharmonic oscillator approximation.
b multi-structural torsional approximation:14 MS-TST15 or MS-CVT15 or MS-𝜇VT16
c TST denotes conventional TST13
d a VTST option for canonical variational theory17,18 or MS-CVT15. For each temperature, the program

places the variational transition state at the point along the reaction path that maximizes Gibbs free
energy of activation. This selected variational transition state will be used for the microcanonical flux

coefficient for all energy bins.

e a VTST option for microcanonical variational theory19 ,20 or MS-𝜇VT 8. For each energy bin, the

program places the variational transition state at the point along the reaction path that minimizes the

cumulative reaction probability or sum of states.

f large-curvature tunneling21

g microcanonical optimized multidimensional tunneling

 14

h small-curvature tunneling22,23,24
i zero-curvature tunneling25
j Eckart tunneling26

 Here we explain the difference between the CVT and 𝜇VT options in TUMME for the

variational effect. To begin we clarify two concepts, the generalized transition state and the

variational transition state. The dividing surfaces through points along the MEP are

generalized transition states. Only some of these are variational transition states. The actual

structures on the MEP are generalized transition structures. Only some of these are

variational transition structures. Generalized transition states and generalized transition

structures that correspond to local maxima of the generalized free energy of activation for a

given temperature are canonical variational transition states and canonical variational

transition structures. Generalized transition states and generalized transition structures that

correspond to a local minimum of the sum of states (or cumulative reaction probability) up to

energy E are microcanonical variational transition states and microcanonical variational

transition structures for that energy. Both canonical variational transition states and

microcanonical variational transition states are called variational transition states. The

difference between the CVT and 𝜇VT options is in the location of the variational transition

state. If the standard output from Polyrate contains the information about the generalized

transition states (geometries, frequencies, and energies are read; the electronic degeneracy

and symmetry number are set equal to that of the conventional transition state), the code will

read them and calculate the generalized Gibbs free energy of activation or the sum of

vibrational-rotational states (or cumulative reaction probability) along the reaction path

according to the CVT or 𝜇VT option. Under both options, TUMME computes microcanonical

flux coefficients as functions of total energy. However, with the CVT option, it places the

variational transition state at the location of the canonical variational transition state for the

temperature in question, whereas with the 𝜇VT option it places it at the minimum of the sum

over vibrational-rotational states (or cumulative reaction probability) for the total energy

under consideration. The free energies of activation, the densities of vibrational-rotational

states, and the sum of vibrational-rotational states (or cumulative reaction probability) of the

generalized transition states are calculated by quasiharmonic oscillator-rigid rotor

approximation.

3.3.2.2 Based on the inverse-Laplace-transform to the high-pressure limits

 For a specific elementary reaction, the high-pressure limit of rate constants (also called

the canonical flux coefficient) equals the Laplace transform of the microcanonical flux

coefficient, i.e., one can first get the canonical flux coefficients and then calculate the

microcanonical one according to the inverse Laplace transform. In order to make TUMME

more powerful and flexible, we also provide the inverse-Laplace-transform option for users.

The inverse-Laplace transform option can be used by assigning INVLAPLACE subsection in

the BARRIERRXN or BARRIERLESSRXN section.

 15

4. Installation and Execution

4.1. Dependencies

Table 2. Environmental requirements of TUMME 3.1

Compulsory

 >=Python 3.7.3

 >=Numpy 1.16.2

 >=Numba 0.43.1

 >=Scipy 1.2.1

Optional
GNU compiler

MPI Executor

mpi4py module

The program was developed and debugged under the environment of Anaconda3.2019.03 and

we recommend that users install the latest Anaconda package. It should be possible to run serial

and MP calculations in double-precision on a variety of platforms when the Python

environment is set properly. We note though MPI calculations with high-precision libraries

have only been developed and tested under Linux. Restated in terms of the above chart (Table

2), we note that the compulsory part can be well run on various platform systems when the

Python environment is well-set, and we note that the optional parts have only been developed

and tested under Linux.

4.2. Installation

Table 2 gives the compulsory environments of the code. Provided that all compulsory

environments set up properly, the program should run well in serial or MP mode in double

precision. If the user wants to run it with MPI and/or with a quadruple-precision or octuple-

precision library, one or both the following two steps should be carried out.

1) Install the python module mpi4py

To run it in MPI mode, make sure you have an MPI environment in your system; this

should contain a mpirun-like command. Furthermore, you should install the mpi4py

Python package. The installation of mpi4py is straightforward, and users can refer to the

official website https://mpi4py.readthedocs.io/en/stable/install.html . If something goes

wrong when you install the mpi4py, try to install the latest Anaconda beforehand.

2) Install the high-precision library

User can install the high-precision library by directly executing a script named configure

located in the root path of TUMME as

 ./configure

4.2.1 Details in the configure script

The high-precision libraries can be run in serial, or they can be run in parallel with MP or

MPI. To run with a quadruple-precision or octuple-precision library, you need to install some

libraries in the C++/ folder. We provide a script called configure which is located at the root

https://mpi4py.readthedocs.io/en/stable/install.html

 16

folder of TUMME to help users compile the libraries. Usually, it can be automatically

installed.

If the script fails, the user can compile the libraries manually as follows.

○1 Set the root path of TUMME

 path=`pwd`

○2 Install the qd library.

 cd C++/qd/qd-2.3.7.1
 ./configure –prefix $path/C++/qd CXX=g++ CC=gcc FC=gfortran
 make
 make install

○3 Install the mpack_dd libraries.

 cd $path/C++/mpack_dd/src

 make

○4 Install the mpack_qd libraries.

 cd $path/C++/mpack_qd/src
 make

○5 Install the high-precision library.

 cd $path/C++/
 make
 # Users should modify the variable $ROOTPATH in Makefile of the high-
 # precision library to be the absolute root path of the program. For
 # example, if the root path is /app/TUMME 3.1, then user should find
 # the makefile /app/TUMME_v3.1/C++/Makefile, and replace the sixth line
 # ROOTPATH =[replace this line]
 # by the following line
 # ROOTPATH =/app/TUMME 3.1

○6 Set environment variable for TUMME

 echo "# environment variable of TUMME" >> ~/.bashrc
 echo 'export PATH=$PATH:'$path'/bin' >> ~/.bashrc

The library now works properly with the GNU compiler, but not with the Intel compiler. So,

the user should make sure to use GNU compiler commands: gcc, g++, and gfortran. We

have tested the compatibility of the high-precision library code with the 4.8.5, 4.9.2, 5.1.0,

5.4.0, 6.1.0, 6.3.0, 7.2.0, 8.1.0, 8.2.0 and 9.2.0 versions of the GNU compiler. Other versions

have not been tested but should also work well.

 The folder example/2MH/highprecision/ contains benchmark outputs of the

eigenvector in quadruple and octuple precision. To validate the high-precision library, the

user can access this folder and run TUMME including print out of the CSE eigenvector (by

setting EVECNUM as 1) in quadruple and octuple precision (by setting PRECISION as

quadruple or octuple). Since this example is a single-well dissociation reaction, all values in

the CSE eigenvector should have the same sign, and the absolute value should decrease as the

energy bin increases. (In this manual, well and isomer are synonyms.) The value of the

eigenvector in high-energy bins can reflect the precision of the floating number you used.

When the value in high-energy bins oscillates between negative and positive signs, it is an

indication that one needs higher precision. In octuple precision, over the energy bins in the

 17

range 1–77 kcal/mol, the eigenvector values should have the same sign and the value should

be of the order of magnitude of 10−64 in the ~77 kcal/mol energy bin. In quadruple precision,

in energy bins over the approximate range 1~54 kcal/mol, the eigenvector values should have

the same sign and the value of energy bin at ~ 54 kcal/mol should be of the order of

magnitude of 10−32. If you used the high-precision option, but the values of high-energy bins

oscillate at a magnitude of about 10−16, your high-precision library is not properly installed,

and you should reinstall it.

4.3. Execution

 We provide an executable script called tumme to run the program located in the folder of

bin/, so user can easily run TUMME in any directory as

 tumme param.in

4.3.1 Details in the executable script tumme

1) Read parallelism mode and number of processors from the standard input file. Users

should specify the “#PARALLEL” and “#NPROC” values in the standard input file if a

parallel scheme is adopted (refer to Section 5.1). The parallel scheme is designed for

running multiple temperatures and multiple pressures. The set of (T, p) will be divided

evenly and each processor will run its own subset. So, if you only run one temperature and

one pressure, you should not use a parallel scheme.

2) Execute python according to the parallelism. The general form of command to execute

the program is:
 $mpi $python3 $path/tumme_main.py $input

where $python3 is the command for Python 3; $path is the absolute path for the

folder src/ of TUMME; and $input is the name of the standard input file.

For the serial and MP runs, $mpi is a null string or spaces, e.g.

 python3 /home/tumme/src/tumme_main.py param.in

For the MPI runs, $mpi is ‘mpirun -np 4’-like string, e.g.

 mpirun -np 4 python3 /home/tumme/src/tumme_main.py param.in

4.3.2 The parallelism

 The parallelism of the high-precision libraries in TUMME requires further clarification.

The high-precision libraries are implemented in C++. In order to decrease the execution time,
we utilized OpenMP to parallelize it. This use of OpenMP is independent of whether the

program is run with the serial, MP, or MPI scheme in Python. MP and MPI are used for

parallelizing the Python code, while OpenMP is used for parallelizing the C++ code. When the
code is run in serial, MP, or MPI mode, the system will create nproc threads or processes

running the Python code. Each thread or process will calculate its own subset of {(T, p)}. If the
high-precision option is selected, each thread or process will call the C++ dynamic library and

will further be parallelized into m threads by OpenMP. The user can control the value of m by
setting the subkeyword OMPNUMTHREAD. If not set, the program will by default set m to be

the total number of processors a node owns divided by NPROC. The total number of processors
of a node will be obtained by Python using the os.cpu_count() command. This dynamic default

 18

value will maximize the efficiency of a single-node calculation but may be inappropriate for
multi-node computations because NPROC will not be the number of Python threads/processes

running on a node. The user should change OMPNUMTHREAD according to the following rule:
the total number of OpenMP threads created by the Python threads or processes on a node
should not exceed the total number of processors on that node.

 19

5. Standard Input File

The input file is divided into blocks. Each block has sections, and some sections have

subsections. All blocks, sections, and subsections have a start-keyword and an end-keyword.

All blocks, sections, and subsections can have keywords that define values; we call this kind

of keyword a subkeyword. In this text, keywords and subkeywords are in bold Arial font.

 There are three kinds of subkeywords: string subkeywords, value subkeywords, and list
subkeywords. All the start-keywords and list subkeywords have an end-keyword. An end-

keyword is equal to the corresponding start-keyword or list subkeyword with an added prefix

END_, e.g., for a start-keyword PARAMETER, the end-keyword is END_PARAMETER. The
end-keywords and end-subkeywords are not shown in Table 3, but they are shown in Tables 4–
6.

 Only subkeywords can have a value, e.g., string, float, or list of floats. (Throughout the

manual we shorten “floating point number” to “float”.) String values should not contain spaces.
Floating point number subkeywords can accept formats like “1.234”, “.234”, “1.”, “.23E2”,

“1.23E1”; it is not acceptable to replace “E” with “D”. Values and subkeywords are separated
by a space. Subkeywords can have a suffix string to tell the program the unit of the values, e.g.,
PRESSURE[torr]. The available suffix strings for units are:

energies [kcal/mol]

[kJ/mol]

[a.u.]

[eV]

[cm-1]

 frequency [cm-1]

 [a.u.]

pressures [bar]

[atm]

[torr]

[a.u.]

distances [A]

[bohr]

temperature [K]

 [a.u.]

mass [amu]

 [a.u.]

time [s]

 [ms]

 [ps]

 [fs]

 [a.u.]

rate constant [cm3/molecule/s]

 [1/s]
The brackets are required. If the unit is not specified, the unit will default to atomic units.

 All start-keywords, end-keywords, and subkeywords are case insensitive. We use upper

case in the manual, but in the actual input file, they can be lower case or mixed case. But

letters in a unit string and a value are case sensitive, so the user should use precisely the cases

shown in this manual.

 20

The standard input file has two pre-definition subkeywords, #PARALLEL and

#NPROC, and three blocks: PARAMETER block, REACTION block, and SPECIES block.

#PARALLEL and #NPROC define the parallel mode and specify the number of

processors. If the two pre-definition subkeywords do not appear, then serial mode is adopted.

The PARAMETER block sets all parameters needed for solving the master equation

except for the elementary reactions and species properties.

The REACTION block specifies the properties of the elementary reactions.

The SPECIES block defines all species properties.

The PARAMETER block should appear before the REACTION block. The REACTION

block should appear before the SPECIES block. The PARAMETER block and REACTION

block are compulsory, but the SPECIES block is optional.

 The user has three ways to provide species properties to the program: from a Polyrate

output file, from a Gaussian output file, and/or from the SPECIES block. The priority for the

program to read species properties is

Polyrate output file > Gaussian output file > SPECIES block

In the REACTION block, if PYRFILE (a subkeyword to specify the name of the Polyrate

output file) is defined for a BARRIERRXN section (a subkeyword to specify an elementary

reaction that has a barrier), the species will be read from the Polyrate output file and be

named according to the INFO string. When a species is read from a Polyrate output file, the

species do not have to be defined in the SPECIES block. If it were redundantly defined

anyway in the SPECIES block, all properties will be ignored except ROTSIGMA,

OPTICALNUM, and MSTFILE, which are the three subkeywords for the rotational symmetry

number, the optical-isomer number, and the name of MSTor output file. In the SPECIES

block, if G09FILE is defined in a species section, then geometries, frequencies, symbols,

rotational symmetry numbers, the imaginary frequency and energies will be read from the

Gaussian output file; other properties e.g., name string, optical-isomer number, and MSTor

file name string, will be read from the SPECIES block. If some species are read from

Gaussian output files, the user should make sure that the zero of energy is consistent with

those read from the SPECIES block.

 Except #PARALLEL and #NPROC, any line started with # will be treated as a comment

and skipped. Blank lines are acceptable in any place.

 The general schematic of all keywords is presented in Table 3.

Table 3. Keywords in the standard input file

(excluding end-keywords)

Keyword Keyword type Default

#PARALLEL String subkeyword serial

#NPROC Value subkeyword 1

PARAMETER Start-keyword of block --

 21

 LJCOLLISION

 DIAMETERM

 DIAMETERA

 EPSILONM

 EPSILONA

 MASSM

 MASSA

 HSCOLLISION

 BMAX

 MASSM

 MASSA

 ENERGY

 DE

 EMAX

 ESOT

 EEOT

 PBIMOL

 BIMOLNAME

 EXCESSCONC

 PRINT

 EIGENVALUE

 EVALFILE

 EVALNUM

 EIGENVECTOR

 EVECFILE

 EVECNUM

 PARTITIONFUNCTION

 MICROFLUXCOEFFICIENT

 TIMEEVOLUTION

 TIMEFILE

 TIMESTEP

 TIMENUM

 INITSPECIES

 RELAXKERNEL

 RELAXFILE

 KERNELNAME

 MERGETHRESHOLD

 PRECISION

 OMPNUMTHREAD

 EDOWN

 SLOPE

 EDCONST

 TC

 EXPONENT

 TEMPERATURE

 PRESSURE

 GROUNDSPECIES

Start-keyword of section

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Start-keyword of section

Value subkeyword

Value subkeyword

Value subkeyword

Start-keyword of section

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Start-keyword of section

List subkeywords

List subkeywords

Start-keyword of section

Start-keyword of subsection

String subkeyword

Value subkeyword

Start-keyword of subsection

String subkeyword

Value subkeyword

String subkeyword

String subkeyword

Start-keyword of subsection

String subkeyword

Value subkeyword

Value subkeyword

List subkeyword

Start-keyword of subsection

Value subkeyword

List subkeyword

Value subkeyword

String subkeyword

Value subkeyword

Start-keyword of section

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

List subkeyword

List subkeyword

String subkeyword

 --

 None

 None

 None

 None

 None

 None

 --

 None

 None

 None

 --

 1.0 cm-1

 400 kcal/mol

 0.1

 30

 --

 --

 --

 --

 --

 None

 None

 --

 None

 None

 None

 None

 --

 None

 0.02/𝜆0

 50

 None

 --

 None

 None

 0.2

 double

 cpu_count /nproc

 --

 0

 None

 300 K

 0

 None

 None

 None

REACTION

 BARRIERRXN

 INFO

 PYRFILE

 VARITAION

 TUNNELING

 BARRIERLESSRXN

 INFO

Start-keyword of block

Start-keyword of section

String subkeyword

String subkeyword

String subkeyword

String subkeyword

Start-keyword of section

String subkeyword

 --

 --

 None

 None

 None

 None

 --

 None

 22

 RXNENERGY

 AVGDIAMETER

Value subkeyword

Value subkeyword

 None

 None

 SPECIES

 WELL

 EPSILON

 BMAX

 DIAMETER

 TRANSTATE

 IMAGFREQ

 BIM

 NAME

 E0

 EELE

 SP1MOL

 SP2MOL

 SP1ATOM

 SP2ATOM

 Subkeywords for molecular species
a

 NAME

 GEOMETRY

 FREQUENCY

 ELELEVEL

 E0K

 EELE

 ROTSIGMA

 OPTICALNUM

 FREQSCALE

 G09FILE

 MSTFILE

 Subkeywords for atomic species
b

 NAME

 SYMBOL

 ELELEVEL

 E0K

 EELE

Start-keyword of block

Start-keyword of section

Value subkeyword

Value subkeyword

Value subkeyword

Start-keyword of section

Value subkeyword

Start-keyword of section

String subkeyword

Value subkeyword

Value subkeyword

Start-keyword of subsection

Start-keyword of subsection

Start-keyword of subsection

Start-keyword of subsection

String subkeyword

List subkeyword

List subkeyword

List subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

String subkeyword

String subkeyword

String subkeyword

String subkeyword

List subkeyword

Value subkeyword

Value subkeyword

 --

 --

 None

 None

 None

 --

 None

 --

 None

 None

 None

 --

 --

 --

 --

 None

 None

 None

 1 0

 None

 None

 1

 1

 1.0

 None

 None

 None

 None

 1 0

 None

 None

Subkeywords for inverse Laplace transform c

 INVLAPLACE

 EXPRESSION

 PREFACTOR1

 T1

 N1

 EA1

 PREFACTOR2

 T2

 N2

 EA2

Start-keyword of subsection

String subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

Value subkeyword

 --

 --

 --

 --

 --

 --

 --

 --

 --

 --

a. These subkeywords are available for the molecular species sections/subsections: WELL,

TRANSTATE, SP1MOL, and SP2MOL.

b. These subkeywords are available for the atomic species subsections: SP1ATOM and SP2ATOM.

c. The inverse Laplace transform subsection INVLAPLACE could be used in both BARRERRXN and

BARRIERLESSRXN sections.

 23

5.1 Two pre-definition subkeywords

 To run the program in MP or MPI mode, the user should specify the value #PARALLEL

in the first line of the input file. #PARALLEL can be serial, mp, or mpi. When mp is specified,

#NPROC should be specified as the second line to determine how many processors to use; but
for mpi the number of processors is determined by the $mpirun command, and #NPROC is

not needed for the mpi mode.

Example:

 #PARALLEL mp

 #NPROC 4

 See Section 4.3 for more discussion of parallelism.

 24

5.2 Keywords in the PARAMETER block

Table 4. Glossary of the PARAMETER block

PARAMETER

 Description: Start-keyword for a block describing all global parameters. This

block is compulsory in the standard input file.

Available sections and

subkeywords:
LJCOLLISION, HSCOLLISION, ENERGY, PBIMOL,
PRINT, MERGETHRESHOLD, PRECISION,

OMPNUMTHREAD,

EDOWN, TEMPERATURE, PRESSURE,
GROUNDSPECIES

 Example: PARAMETER
 LJCOLLISION
 ……
 END_LJCOLLISION
 ……
END_PARAMETER

LJCOLLISION

Description: Start-keyword for the Lennard-Jones collision section. Here we
present two kinds of collision models, one for the Lennard-Jones
collision model and the other for the hard-sphere collision model.

The former is set by LJCOLLISION section, and the latter is set

by HSCOLLISION. Users should define only one of them. The
equation used to estimate the Lennard–Jones collision rate

constant is

𝑘LJ = Ω2,2
∗ 𝜋 (

𝑑𝛾 + 𝑑M

2
)
2

√
8𝑘B𝑇

𝜋𝑚𝛾𝑚M/(𝑚𝛾 + 𝑚M)

Ω2,2
∗ =

{

 [0.636 + 0.567 log10 (

𝑘B𝑇

√𝜀𝛾𝜀M
)]

−1

 ,
𝑘B𝑇

√𝜀𝛾𝜀M
∈ [0.3,3]

[0.697 + 0.5185 log10 (
𝑘B𝑇

√𝜀𝛾𝜀M
)]

−1

 ,
𝑘B𝑇

√𝜀𝛾𝜀M
∈ [3,300]

where 𝛾 denotes an isomer; M denotes the bath gas; d denotes the

diameter; 𝜀 is the Lennard-Jones energy parameter; and m denotes
the mass. If the argument is not in the range from 0.3 to 300, the

code will print a warning. The reference for these approximations

to Ω2,2
∗

 is a 1977 paper by Troe.27

Available

subkeywords:
DIAMETERM, DIAMETERA, EPSILONM, EPSILONA,
MASSM, MASSA

Example: LJCOLLISION
DIAMETERM[A] 3.0
DIAMETERA[A] 4.0
EPSILONM[cm-1] 3.0
EPSILONA[cm-1] 3.0
MASSM[amu] 40
MASSA[amu] 90

END_LJCOLLISION

 25

DIAMETERM

Description: Subkeyword for the diameter 𝑑M of a molecule of the bath gas.

This is compulsory in the LJCOLLISION section.

Available values: Positive float

Example: DIAMETERM[A] 3.0

DIAMETERA

Description: Subkeyword for the general diameter 𝑑𝛾 of the isomers. (In this

manual, well and isomer are synonyms.) If specified, all isomers

will have the same diameter, DIAMETERA. If not, the diameter

is isomer-specific, and in that case the DIAMETER subkeyword
should be assigned in all WELL sections.

Available values: Positive float

Example: DIAMETERA[A] 3.0

MASSM

Description: Subkeyword for the mass 𝑚M of the bath gas molecule. This is

compulsory in the LJCOLLISION section.

Available values: Positive Float

Example: MASSM[amu] 40.0

MASSA

Description: Subkeyword for the general mass 𝑚𝛾 of the isomers. (In this

manual, well and isomer are synonyms.) The masses of all WELL

species must be the same. The user can specify this mass as

MASSA; however, if MASSA is not specified the program will

calculate the mass from GEOMETRY data in the first WELL

section.

Available values: Positive float

Example: MASSA[amu] 50.0

EPSILONM

Description: Subkeyword for the energy parameter 𝜀M of the bath gas

molecule. This is compulsory in the LJCOLLISION section.

Available values: Positive float

Example: EPSILONM[cm-1] 3.0

 26

EPSILONA
Description: Subkeyword for the general energy parameter 𝜀𝛾 of the isomers.

If specified, all isomers will have the same Lennard-Jones energy

parameter, which will be equal to EPSILONA. If not, the energy
parameter is isomer-specific, and in that case the EPSILON
subkeyword should be assigned in all WELL sections. (In this
manual, well and isomer are synonyms.)

Available values: Positive float

Example: EPSILONA[cm-1] 3.0

HSCOLLISION

Description: Start-keyword for hard-sphere direct-dynamics collision section.
Note that this keyword relates to collisions between the bath gas
and isomers (it is not related to collisions between two members
of a bimolecular pair undergoing a barrierless reaction). This

keyword is to be used if the user has used direct dynamics to

calculate the relaxation parameter ⟨Δ𝐸down⟩. If this option is

chosen, user should input the maximum impact parameter 𝑏max
that was used in calculating ⟨Δ𝐸down⟩, and the collision rate

constant will be calculated by

𝑘HS = 𝜋(𝑏max)
2√

8𝑘B𝑇

𝜋𝑚𝛾𝑚M/(𝑚𝛾 + 𝑚M)

Available

subkeywords:
BMAX, MASSM, MASSA

Example: HSCOLLISION
BMAX[A] 9.0
MASSM[amu] 40

 MASSA[amu] 90
END_HSCOLLISION

BMAX

Description: Subkeyword to be used when the same maximum impact

parameter 𝑏max is to be assigned to all isomers. If this

subkeyword is not specified in HSCOLLISION section, BMAX
should be specified in each WELL section. (In this manual, well

and isomer are synonyms.)

Available values: Positive float

Example: BMAX[A] 3.0

ENERGY

Description: Start-keyword for ENERGY section. This section is compulsory

in the PARAMETER block.

Available

subkeywords:
DE, EMAX, ESOT, EEOT

 27

Example: ENERGY

 DE[cm-1] 1

 EMAX[kcal/mol] 40

 ESOT 0.1

 EEOT 30

END_ENERGY

Background: The internal energy of each well (i.e., each isomer) is discretized

into bins. The energy of bin 𝜂 is

 𝐸𝜂 = 𝐸max − (𝜂 − 1)Δ𝐸, 𝜂 = 1, 2, … ,𝑁𝛾

DE

Description: Subkeyword for the energy step d𝐸 used in calculating the
density of states by the Beyer–Swinehart algorithm. The default

value is 1 cm-1.

DE should be distinguished from the energy step set by ESOT.

DE sets the energy step for calculating the density of states in the
Beyer–Swinehart algorithm, whereas ESOT sets the energy step

for the transition matrix. Usually, DE should be much smaller
than the energy step set by ESOT.

Available values: Positive float

Example: DE[cm-1] 1.0

EMAX

Description: Subkeyword for the maximum energy relative to the enthalpy at 0
K of each isomer used in calculating the density of states by the

Beyer–Swinehart algorithm. The default value is 400 kcal/mol.
EMAX should be distinguished from the maximum energy set by
EEOT. EMAX sets the energy upper boundary for calculating the
density of states in the Beyer–Swinehart algorithm, whereas

EEOT sets the energy upper boundary for the transition matrix.
Usually, EMAX should be much greater than the maximum

energy set by EEOT.

Available values: Positive float

Example: EMAX[kcal/mol] 400

ESOT

Description: Subkeyword for the ratio of energy bin width Δ𝐸 divided by

𝑘B𝑇. Based on this subkeyword, the energy step between energy

bins in the master equation is set as follows,

Δ𝐸 = 𝐸𝑆𝑂𝑇 × 𝑘B𝑇

The default value is 0.1.

 When the temperature is low, molecules tend to populate at

low energy levels, so user should decrease ESOT to make the
result converged.

Available values: Positive float

Example: ESOT 0.1

 28

EEOT

Description: Subkeyword used to set the maximum energy relative to the

highest 𝐸0
sp

 used in the transition matrix for solving the master

equation. Note that 𝐸0
sp

 is the energy at 0 K of reactants, transition

states and products, where we use 0 K to specify the inclusion of
ZPE but no thermal effects (ZPE denotes vibrational zero-point

energy). The maximum energy in the master equation equals

Maximum energy = max{𝐸0
sp
} + 𝐸𝐸𝑂𝑇 × 𝑘B𝑇

When ESOT and EEOT are determined, the number of energy

bins for the 𝛾-th isomer is calculated as

𝑁𝛾 = int (
max{𝐸0

sp
} + 𝐸𝐸𝑂𝑇 × 𝑘B𝑇 − 𝐸0,𝛾

Δ𝐸
)

where int denotes rounding down to an integer; Δ𝐸 is the energy

step for each energy bin described in ESOT; and 𝐸0,𝛾 is the

ground-state energy (including vibrational zero-point energy) of

the 𝛾-th isomer. In this manual, well and isomer are synonyms.

 When the temperature is high, molecules tend to populate at

high energy levels, so user should increase EEOT to make the
result converged.

The default value is 30.

Available values: Positive float

Example: EEOT 30

PBIMOL

Description: Start-keyword of the subsection for the pseudo-first-order
bimolecular pairs. In order to deal with the inhomogeneous term
caused by a bimolecular (second-order) reaction, we treat
bimolecular products as sinks, and we calculate bimolecular rate
constants in the limit of pseudo-first-order kinetics in which one
member of the reactant bimolecular pair is present in great excess
so that its concentration is taken as a constant. The present
subsection defines the bimolecular reactants and specifies the
constant concentration of the excessive fragment. We stress here
that in TUMME we assume that the pressure is caused by the bath

gas, and the partial pressure of reagents is neglected in the
collisional relaxation process. For a bimolecular reaction of A with
B, with B present in great excess and M being the bath gas (present

in even greater excess, we require [M] ≫ [B] ≫ [A].

Available

subkeywords:
BIMOLNAME, EXCESSCONC

Example: PBIMOL

 BIMOLNAME

 Bim1 Bim2 Bim3

 END_ BIMOLNAME

 EXCESSCONC[mol/L]

 1E-5 1E-4 1E-3

 END_ EXCESSCONC

 29

END_ PBIMOL

BIMOLNAME

Description: Subkeyword for the name-list of pseudo-first-order bimolecular
reactants. User can assign more than one bimolecular pair. Name

strings should be split with spaces.

Example: BIMOLNAME

 Bim1 Bim2 Bim3

END_ BIMOLNAME

EXCESSCONC

Description: Subkeyword for the constant concentration of the excessive

reagent of pseudo-first-order bimolecular reactants. Since there

could be more than one pseudo-first-order bimolecular reaction,

there could be more than one value for this subkeyword. Values

should be entered as floating-point numbers separated by spaces.

The number of values should be the same as the number of

pseudo-first-order bimolecular reactants, also the name string in

BIMOLNAME.

Example: EXCESSCONC[mol/L]

 1E-5 1E-4 1E-3

END_ EXCESSCONC

PRINT

Description: Start-keyword for an output section.

Available subsections

and subkeywords:
EIGENVALUE, EIGENVECTOR, PARTITIONFUNCTION

MICROFLUXCOEFFICIENT, TIMEEVOLUTION,
RELAXKERNEL

Example: PRINT

 EIGENVECTOR

 EVECFILE evec.txt

 EVECNUM 3

 END_EIGENVECTOR

 PARTITIONFUNCTION Q.txt

END_PRINT

EIGENVALUE

Description: Start-keyword for the eigenvalues output subsection.

Available

subkeywords:
EVALFILE, EVALNUM

Example: EIGENVALUE

 EVALFILE eval.txt

 EVALNUM 3

END_EIGENVALUE

EVALFILE

Description: Subkeyword for the file name of eigenvalues output. This is

compulsory in the EIGENVALUE subsection. String value
should not contain any space.

Available value: String

 30

Example: EVALFILE eval.txt

EVALNUM

Description: Subkeyword for the number of eigenvalues to be printed. All
eigenvalues are sorted in ascending order, and the first evalnum

eigenvalues will be printed. If this value is not defined in the

EIGENVALUE subsection, the program will print out all CSE
eigenvalues and the minimum and the maximum IERE

eigenvalues.

Available value: Positive integer

Example: EVALNUM 3

EIGENVECTOR

Description: Start-keyword for the eigenvectors output subsection.

Available

subkeywords:
EVECFILE, EVECNUM

Example: EIGENVECTOR

 EVECFILE evec.txt

 EVECNUM 3

END_EIGENVECTOR

EVECFILE

Description: Subkeyword for the file name of eigenvectors output. String value

should not contain any space.

Available value: String

Example: EVECFILE evec.txt

EVECNUM

Description: Subkeyword for the number of eigenvectors to be printed. All
eigenvectors are sorted according to corresponding eigenvalues’
sequence, and the first evecnum eigenvectors will be print. If this

value is not defined in the EIGENVECTOR subsection, the

program will print out all CSE eigenvectors.

Available value: Positive integer

Example: EVECNUM 3

PARTITIONFUNCTION

Description: Subkeyword for the file name of partition function output. The partition

function of all species in TEMPERATURE will be printed. If MSTFILE
is not specified for a species, its partition function will be calculated by

the single-structural rigid rotor and harmonic oscillator (SSHO)

approximation. If MSTFILE is specified, the partition function of this

species will be calculated by doing the Laplace transform of the read

density of states (DoS). The electronic partition function, vibrational

partition function, rotational partition function, and translational partition

function of all isomers, transition states, members of bimolecular pairs

 31

will be printed. When the generalized transition states are read from

PYRFILE, only the partition function of GTS estimated by the SSHO

approximation is printed. The program makes the approximation that

𝑄MST(𝑠)≈
𝑄MST(𝑠=0)

𝑄SSHO(𝑠=0)
𝑄SSHO(𝑠)

and only prints 𝑄SSHO(𝑠).

Available value: String

Example: PARTITIONFUNCTION Q.txt

MICROFLUXCOEFFICIENT

Description: Start-keyword for the file name of microcanonical flux coefficient
output. All microcanonical flux coefficients used to construct a

transition matrix will be printed. For the reaction from an isomer 𝛾

to an isomer/bimolecular 𝜙 , the microcanonical flux coefficient

that is printed is

𝑘̂MS−VTST/SCT(𝛾 → 𝜙 | 𝐸𝜂) = 𝜅SCT(𝐸𝜂)Γ
VTST(𝐸𝜂)𝐹

MS(𝐸𝜂)
𝑁𝛾,𝜙
‡,SSHO(𝐸𝜂)

ℎ𝜌𝛾
SSHO(𝐸𝜂)

For the reaction from a bimolecular pair 𝜈 to an isomer 𝛾, the flux

coefficient that is

Δ𝑘̂MS−VTST/SCT(𝜈 → 𝛾 | 𝐸𝜂) = ΓVTST(𝐸𝜂)𝜅
SCT(𝐸𝜂)𝐹

MS(𝐸𝜂)
𝑁𝜈,𝛾
‡,SSHO(𝐸𝜂)𝑒

−𝛽𝐸𝜂Δ𝐸

ℎΦrel𝑄𝜈
SSHO

where Γ , 𝜅 and 𝐹 are respectively the microcanonical recrossing
transmission coefficient, the tunneling transmission coefficient,
and the multiple-structure torsional coefficient, and they are

dependent on the settings of VARIATION, TUNNELING, and

MSTFILE subkeywords in a coupled way; 𝑁 is the sum of states,

𝑄 is the electronic-vibrational-rotational partition function, and

Φrel is the relative translation partition function per unit volume. A

more detailed description is given in Ref. 26.

Available values: String

Example: MICROFLUXCOEFFICIENT kE.txt

TIMEEVOLUTION

Description: Start-keyword of the subsection for the time evolution of
populations. In TUMME, the initial conditions (populations at
time zero) are set as a kronecker-delta condition. This means that
the population of the ground-state energy bin of the reactant of
the first reaction is 1, and the populations of all of the other
energy bins of this reactant and all of the energy bins of other
species are set to zero. The equations for the time evolution are

presented in the Faraday Discussions paper.28

Available

subkeywords:

TIMEFILE, TIMESTEP, TIMENUM, INITSPECIES

Example: TIMEEVOLUTION

 TIMEFILE time.txt

 TIMENUM 100

 INITSPECIES Well_1

END_ TIMEEVOLUTION

TIMEFILE

Description: Subkeyword for the output file name for the time evolution of

 32

populations. This is compulsory in the TIMEEVOLUTION
subsection.

Available values: String

Example: TIMEFILE time.txt

TIMESTEP

Description: Subkeyword for the time step of time evolution of populations to

be printed. The default value is

Δ𝑡 =
1

 50𝜆0

where 𝜆0 is the smallest non-zero eigenvalue.

Available values: Positive float

Example: TIMESTEP[fs] 0.1

TIMENUM

Description: Subkeyword for the number of steps of time (Ntime) evolution

output. The first Ntime steps will be printed. The default value is

𝑁time = 50

Available values: Positive integer

Example: TIMENUM 100

INITSPECIES

Description: Subkeyword for names of the reactants of the first reaction.

It can be either a bimolecular pair or a well. The

bimolecular pair should be defined in the

PSEUBIMOLECULAR. This subkeyword is compulsory in

the TIMEEVOLUTION subsection.

Available values: String List

Example: INITSPECIES

 Well_1

 Bim_2

END_INITSPECIES

RELAXKERNEL
Description: Start-keyword of the subsection for relaxation kernels 𝑃(𝐸|𝐸′).

Available subsections

and subkeywords:
RELAXFILE, KERNELNAME

Example: RELAXKERNEL

 RELAXFILE kernel.out

 KERNELNAME

 Well_1 Well_2 Well_3

 END_KERNELNAME

 33

END_RELAXKERNEL

RELAXFILE

Description: Subkeyword for a file name of the output of relaxation kernels.

This subkeyword is compulsory in the RELAXKERNEL
subsection. There is no default; the user must provide it.

Available values: String

Example: RELAXFILE kernel.out

KERNELNAME

Description: Subkeyword for the list of isomer names of which the relaxation
kernel will be printed. Users can input multiple isomer names
which should be separated by spaces or by a line break. This

subkeyword is compulsory in the RELAXKERNEL subsection.

Available values: String list

Example: KERNELNAME

 Well_1

 Well_2 Well_3

END_KERNELNAME

MERGETHRESHOLD

Description: Subkeyword for the threshold to determine if a merger occurred.

The MERGETHRESHOLD is compared to the squared
projection of eigenvectors onto the IERE subspace (refer to

Section 5). The default value is 0.2.

Available values: Positive float

Example: MERGETHRESHOLD 0.2

PRECISION

Description: Subkeyword for the precision of the transition matrix and the
eigenpairs. The default value is double. Double precision based
on the float64 data type will provide ~16 decimal places;
quadruple precision based on the double-double data type will
provide ~32 decimal places; and octuple-precision based on the

quadruple-double data type will provide ~64 decimal places.

Available values: double, quadruple, octuple

Example: PRECISION double

OMPNUMTHREAD

Description: Subkeyword for the number of threads set in OpenMP. The high-
precision libraries are implemented by C++ where OpenMP is
utilized in order to decrease the high-precision time consumption.
We stress that the OpenMP parallelization is separate from the MP
and MPI parallelization. The OMPNUMTHREAD subkeyword
controls into how many threads each Python thread/process will be
further parallelized, and it is equivalent to the system environment

 34

variable OMP_NUM_THREADS. This subkeyword only works when

the PRECISION subkeyword is set to be quadruple or octuple. If
this subkeyword is not set, the program will by default set it to be
the total number of processors a node owns divided by the

NPROC value. The total number of processors will be obtained by
Python using os.cpu_count(). This dynamic default value will
maximize the efficiency of single-node calculations but may be

inappropriate for multi-nodes computation because NPROC will
not be the number of Python threads/processes run on a node, and

the user should change this value accordingly.

Available values: Positive integer.

Example: OMPNUMTHREAD 2

EDOWN

Description: Start-keyword for the average downwards energy transfer ⟨Δ𝐸d⟩.
This is used in the exponential down relaxation kernel. See Eq.

(41) (in Section 6.2) for the definition ⟨Δ𝐸d⟩. The ⟨Δ𝐸d⟩ moment
is treated as having the following dependence on the temperature

of the bath and on the initial internal energy of the isomer:

⟨Δ𝐸d⟩ = (
𝑇

𝑇c
)
𝑛

[𝛼(𝐸′ − 𝐸0,𝛾) + 𝛽]

where 𝑇c, n, 𝛼 and 𝛽 are parameters that are specified by TC,
EXPONENT, SLOPE, and EDCONST, respectively; 𝐸′ is the

initial internal energy; and 𝐸0,𝛾 is the 0 K energy (electronic

energy + zero-point energy) of the 𝛾-th isomer. We assume all

isomers share the same TC, EXPONENT, SLOPE and

EDCONST. This is compulsory in the PARAMETER block.

Available subsections

and subkeywords:
SLOPE, EDCONST, TC, EXPONENT

Example: EDOWN

 SLOPE 0.00123

 EDCONST[cm-1] 160

 TC[K] 700

 EXPONENT 1.0

END_EDOWN

SLOPE
Description: Subkeyword for the parameter 𝛼. If users want to assume that

⟨Δ𝐸d⟩ is independent of internal energy, they can set 𝛼 = 0. Note

that 𝛼 is unitless. The default value is 0.

Available values: Float

Example: SLOPE 0.00123

EDCONST

Description: Subkeyword for the parameter 𝛽. Note that 𝛽 has units of energy.

 35

This is compulsory in the EDOWN section.

Available values: Positive float

Example: EDCONST[cm-1] 130

TC

Description: Subkeyword for the parameter 𝑇c. The default value is 300 K

Available values: Positive float

Example: TC[K] 1600

EXPONENT

Description: Subkeyword for the parameter n. If a user wants to use a

temperature-independent ⟨Δ𝐸d⟩, this can be done by setting 𝑛 =
0 . The default value is 0.

Available values: Float

Example: EXPONENT 1.0

TEMPERATURE

Description: Subkeyword for temperatures. This is compulsory in

PARAMETER block.

Available values: Positive float list

Example: TEMPERATURE[K]
 100. 200. 300.
 400. 500.
 ……
END_TEMPERATURE

PRESSURE

Description: Subkeyword for pressures. This is compulsory in

PARAMETER block.

Available values: Positive float list

Example: PRESSURE[torr]

 1E-6. 1E-5. 1E-4.

 1E1. 1E3.

END_PRESSURE

GROUNDSPECIES

Description: Subkeyword for the name of an isomer or a bimolecular pair,

of which the ground-state energy (energy at 0 K, by which we

mean that vibrational zero-point energy is included) will be set

as the zero of energy of all species. This is compulsory in the

PARAMETER block.

Available values: String

Example: GROUNDSPECIES Well_1

 36

5.3 Keywords in the REACTION block

Table 5. Glossary for the REACTION block

REACTION

Description: Start-keyword for a block describing all elementary reactions.

This is compulsory in the standard input file.

Available sections BARRIERRXN, BARRIERLESSRXN

Example: REACTION
 BARRIERRXN
 INFO Well_1-TS_1-Bim_1
 ……
 END_BARRIERRXN
 ……
END_REACTION

BARRIERRXN

Description: Start-keyword of a section for the elementary reaction with a

barrier.

Available sections and

subkeywords:
INFO, PYRFILE, VARIATION, TUNNELING

Example: BARRIERRXN

 INFO Well_1-TS_1-Bim_1

END_ BARRIERRXN

BARRIERLESSRXN

Description: Start-keyword of a section for a barrierless elementary reaction.

Only works for bimolecular barrierless reactions.

Available

subkeywords:

INFO, AVGDIAMETER, RXNENERGY

Example: BARRIERLESSRXN

 INFO Well_1-Bim_1

 AVGDIAMETER[A] 4.0

 RXNENERGY[kcal/mol] -5.0
END_ BARRIERLESSRXN

INFO

Description: Subkeywords for the information of a reaction with a barrier or a
barrierless elementary reaction. For an elementary reaction with a
barrier, the value of this keyword should be the reactant name
plus “-” plus the transition state name plus “-” plus the product
name; for a barrierless elementary reaction, the value of this
keyword should be the reactant name plus “-” plus the product

name. If PYRFILE is also defined, the INFO will be used to
name the species read from the Polyrate file. For a bimolecular
pair, the first member is named with the name of bimolecular pair
followed by a string “_1”, and the second member is named with
the name of bimolecular pair followed by a string “_2”. Spaces

 37

are not allowed in string values. This is compulsory in

BARRIERRXN and BARRIERLESSRXN.

Available value: String

Example: INFO Well_1-TS_12-Well_2 (for barrier elementary reaction)

INFO Bim_1-Well_1 (for barrierless elementary reaction)

PYRFILE

Description: Subkeyword for the name of the Polyrate long output file for an
elementary reaction that has an intrinsic barrier. If specified, the
reactant, transition state, and product specified are read from the
Polyrate output file and their names will be specified according to

INFO. The user should make sure that the reactant, transition

state, and product in INFO are consistent with those in
PYRFILE. Section 5.5 gives a detailed description of the

Polyrate long output file.

Available value: String

Example: PYRFILE rxn_1.fu6

AVGDIAMETER

Description: Subkeyword for the average diameter of the bimolecular reactant
pair in a barrierless reaction. This is compulsory in the

BARRIERLESSRXN section. If diameters of two species of the

bimolecular are 𝑑1 and 𝑑2, then the average diameter is

𝑑Avg =
𝑑1 + 𝑑2
2

Available value: Positive float

Example: AVGDIAMETER[A] 4.0

RXNENERGY

Description: Subkeyword for the 0 K reaction energy of a barrierless reaction,
which equals the ground-state energy of the product (including
vibrational zero-point energy) minus the ground-state energy of
the reactant (including vibrational zero-point energy). This is

compulsory in the BARRIERLESSRXN section.

Available value: Float

Example: RXNENERGY [kcal/mol] -5.0

VARIATION

Description: Subkeyword for the method to consider the variational effect. We
need the density of states (DoS) of a variational transition state
along the reaction coordinate either to calculate the cumulative
reaction probability (CRP) or the sum of states (SoS) during the

calculation of the microcanonical flux coefficient. The

VARIATION subkeyword will determine which DoS will be
chosen.

If VARIATION is tst, the conventional transition state (which is a

dividing surface passing through the saddle point) will be used.

If VARIATION is cvt, then – for each temperature – the program
places the variational transition state at the point along the reaction

 38

path that maximizes Gibbs free energy of activation.

If VARIATION is muvt, then – for each energy bin – the program
places the variational transition state at the point along the reaction

path that minimizes the CRP or sum of states.

The values cvt and muvt will work only if PYRFILE is specified.

The default value is tst.

Available value: tst, cvt, muvt

Example: VARIATION cvt

TUNNELING

Description: Subkeyword for the method to consider the tunneling effect. The

available values are Eckart, zct, sct, lct and omt.

If zct is specified, the transmission probability will be loaded from

the zero-curvature tunneling probability in the Polyrate output file.

 If sct is specified, the transmission probability will be loaded from
the small-curvature tunneling probability in the Polyrate output

file.

If Eckart is specified, the enthalpy of activation profile at 0 K will
be fitted by an asymmetric Eckart potential; please refer to ref. 29
for details, but notice that ref. 29 did not include zero-point
energies. Note that for gas-phase species at 0 K, the enthalpy equals
the energy, and both equal the potential energy plus the zero-point

energy.

The values zct, sct, lct and omt will work only if PYRFILE is

specified. If the TUNNELING subkeyword is not specified, no
tunneling effect will be included.

Available value: Eckart, zct, sct, lct, omt

Example: TUNNELING sct

INVLAPLACE

Description: Start-keyword for the subsection of inverse-Laplace-transform. We
use a single-exponential or biexponential expression to fit the
canonical flux coefficients (or so-called high-pressure-limit rate
constant). Taking the biexponential expression as an example. We

can express the canonical flux coefficients as

𝑘̂ = 𝐴1 (
𝑇

𝑇1
)
𝑛1

𝑒
−
𝐸a1
𝑘B𝑇 + 𝐴2 (

𝑇

𝑇2
)
𝑛2

𝑒
−
𝐸a2
𝑘B𝑇

The microcanonical flux coefficients can be obtained from the

inverse-Laplace-transform to the canonical flux coefficient.

 For reaction from bimolecular pair 𝜈 to isomer 𝛾, there will be

Δ𝑘̂(𝜈 → 𝛾|𝐸) =

𝑒−𝛽𝐸Δ𝐸

Φrel𝑄𝜈
SSHO

[

1
ℎ3
(2𝜋𝑚𝜈)

3
2𝐴1𝛽1

𝑛1

Γ (𝑛1 +
3
2
)

∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a1)
𝑛1+

1
2θ(𝜀 − 𝐸a1)

𝐸

0

d𝜀

+

1
ℎ3
(2𝜋𝑚𝜈)

3
2𝐴2𝛽2

𝑛2

Γ (𝑛2 +
3
2
)

∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a2)
𝑛2+

1
2θ(𝜀 − 𝐸a2)

𝐸𝜂

0

d𝜀]

where 𝛽1 = 1/𝑇1 and 𝛽2 = 1/𝑇2. And the reverse reaction can be

 39

estimated from the detailed balance.

 For reaction from isomer 𝛾 to species 𝜙 (could be either

unimolecular or bimolecular), there will be

𝑘̂(𝛾 → 𝜙|𝐸) =
𝐴1𝛽1

𝑛1

𝜌
𝛾
(𝐸)Γ(𝑛1)

∫ 𝜌
𝛾
(𝐸 − 𝜀)(𝜀 − 𝐸a1)

𝑛1−1
θ(𝜀 − 𝐸a1)

𝐸

0

d𝜀

+
𝐴1𝛽1

𝑛2

𝜌𝛾(𝐸)Γ(𝑛2)
∫ 𝜌𝛾(𝐸 − 𝜀)(𝜀 − 𝐸a2)

𝑛2−1
θ(𝜀 − 𝐸a2)

𝐸

0

d𝜀

where 𝛽1 = 1/𝑇1 and 𝛽2 = 1/𝑇2. And the reverse reaction can be
estimated from the detailed balance. This is optional in the

BARRIERRXN and BARRIERLESSRXN section.

Available value: EXPRESSION, PREFACTOR1, T1, N1, EA1,
PREFACTOR2, T2, N2, EA2

Example: INVLAPLACE

EXPRESSION biexp

PREFACTOR1[1/s] 10

T1[K] 300

N1 1

EA1[kcal/mol] 2

PREFACTOR2[1/s] 100

T2[K] 600

N2 1.2

EA2[kcal/mol] 3.1

END_INVLAPLACE

EXPRESSION

Description: Subkeyword for type of expression (single-exponential or
biexponential) for fitting canonical flux coefficients. This is

compulsory in the INVLAPLACE subsection.

Available value: uniexp or biexp

Example: EXPRESSION biexp

PREFACTOR1

Description: Subkeyword for 𝐴1. The unit of it should be [1/s] for

unimolecular reaction and [cm3/molecule/s] for bimolecular
reaction. This is compulsory in the INVLAPLACE subsection.

Available value: Positive float

Example: PREFACTOR1[1/s] 10

T1

Description: Subkeyword for 𝑇1. It has the unit of temperature. This is

compulsory in the INVLAPLACE subsection both for

EXPRESSION being uniexp or biexp.

Available value: Positive float

Example: T1[K] 300

N1

Description: Subkeyword for 𝑛1. It is unitless. This is compulsory in the

INVLAPLACE subsection both for EXPRESSION being uniexp

 40

or biexp.

Available value: Positive float

Example: N1 1.0

EA1

Description: Subkeyword for 𝐸a1. It has the unit of energy. This is

compulsory in the INVLAPLACE subsection both for

EXPRESSION being uniexp or biexp.

Available value: Float

Example: EA1[kcal/mol] 2.3

PREFACTOR2

Description: Subkeyword for 𝐴2. The unit of it should be [1/s] for

unimolecular reaction and [cm3/molecule/s] for bimolecular

reaction. This is compulsory in the INVLAPLACE subsection

for EXPRESSION being biexp.

Available value: Positive float

Example: PREFACTOR2[1/s] 10

T2

Description: Subkeyword for 𝑇2. It has the unit of temperature. This is

compulsory in the INVLAPLACE subsection for EXPRESSION
being biexp.

Available value: Positive float

Example: T2[K] 300

N2

Description: Subkeyword for 𝑛2. It is unitless. This is compulsory in the

INVLAPLACE subsection for EXPRESSION being biexp.

Available value: Positive float

Example: N2 1.0

EA2

Description: Subkeyword for 𝐸a2. It has the unit of energy. This is

compulsory in the INVLAPLACE subsection for EXPRESSION
being biexp.

Available value: Float

Example: EA2[kcal/mol] 2.3

 41

5.4 Keywords in the SPECIES block

 Table 6. Glossary for in the SPECIES block

SPECIES

 Description: Start-keyword of species block. This is not compulsory in the

standard input file. If all species in the master equation are

read from Polyrate long output files, the SPECIES block is

not necessary. When the Polyrate long output file is defined,

the SPECIES block can still be defined to give some

supplementary information about species. The SPECIES

block has three sections: one for isomers, which are the wells

and are specified in WELL sections, one for transition states,

which are specified in TRANSTATE sections, and the third

kind for bimolecular pairs, which are specified in BIM

sections.

 Available sections:

WELL, TRANSTATE, BIM

 Example: SPECIES
 WELL
 ……
 END_WELL
 ……
END_SPECIES

WELL

Description: Start-keyword of well section. In the input for a reaction system,
there must be at least one well (in this manual, well and isomer
are synonyms); thus, if no well is defined in Polyrate output files,

WELL is compulsory in the SPECIES block and can appear

multiple times.

Available

Subkeywords:
NAME, GEOMETRY, FREQUENCY, ELELEVEL, E0K,
EELE, ROTSIGMA, OPTICALNUM, BMAX, DIAMETER,
EPSILON, G09FILE, MSTFILE, FREQSCALE

Example: WELL

 GEOMETRY[A]

 C 1.223 2.334 3.4456

 ……

 END_GEOMETRY

 ……

END_WELL

TRANSTATE

Description: Start-keyword of transition state section. TRANSTATE is not
compulsory in the SPECIES block.

Available

Subkeywords:
NAME, GEOMETRY, FREQUENCY, ELELEVEL, E0K,
EELE, ROTSIGMA, OPTICALNUM, IMAGFREQ,
G09FILE, MSTFILE, FREQSCALE

 42

Example: TRANSTATE

 GEOMETRY[A]

 C 1.223 2.334 3.4456

 ……

 END_GEOMETRY

 ……

END_ TRANSTATE

BIM

Description: Start-keyword of bimolecular pairs section. A bimolecular pair
contains two species, which can be either atoms or molecules.

The first species should be defined by SP1MOL or SP1ATOM;

the second species should be defined by SP2MOL or
SP2ATOM. It does not matter which one appears first.

Available subsections

and subkeywords:
SP1MOL, SP2MOL, SP1ATOM, SP2ATOM, EELE, E0K,
NAME

Example: BIM

 SP1MOL

 ……

 END_SP1MOL

 SP2ATOM

 ……

 END_SP2ATOM

END_ BIM

SP1MOL, SP2MOL

Description: Start-keyword of one of the molecules (the number of atoms should
greater than 1) in bimolecular pair section. “SP1” denotes species

1 and choosing which one as species 1 does not matter.

Available

subkeywords:
NAME, GEOMETRY, FREQUENCY, ELELEVEL, E0K,
EELE, ROTSIGMA, OPTICALNUM, G09FILE, MSTFILE,
FREQSCALE

Example: SP1MOL

 ……

END_SP1MOL

SP1ATOM, SP2ATOM

Description: Start-keyword of one of the atoms in a bimolecular pair section.
“SP1” denotes species 1, and it does not matter which one is chosen

as species 1.

Available

subkeywords:
NAME, SYMBOL, ELELEVEL, E0K, EELE

Example: SP1ATOM

 ……

END_SP1ATOM

 43

NAME

Description: Subkeyword for the name of species. This is compulsory in every

WELL, TRANSTATE, or BIM section and also in the SP1MOL,

SP2MOL, SP1ATOM, and SP2TAOM subsections. Spaces are

not allowed in name strings. The length of a name has no

limitation, but for output aesthetics we recommend it not contain

more than 15 characters.

Available value: String

Example 1:

Example 2:

NAME Well_1

NAME 1-propyl

GEOMETRY

Description: Subkeyword for the geometry of a species. This is not compulsory
when the Polyrate output file or Gaussian output file is defined.
There is no requirement on conditions that must be satisfied by the
geometry; for example, it is not necessary to put the center of mass
at the origin. Furthermore, there is no requirement on how the
geometries of different species are related, even for coordinates of

the two members of a bimolecular pair. The coordinates given here

are not manipulated in the program.

Available value: List. Each line should contain four entries. The first is the atom

symbol string; the other three are float numbers.

Example: GEOMETRY[A]

 C 1.234 2.345 3.456

 C 4.567 5.678 6.789

 H 7.890 8.987 1.670

END_GEOMETRY

FREQUENCY

Description: Subkeyword for the real frequencies of a species. For a linear

molecule, the user should input 3𝑁 − 5 frequencies; for a

nonlinear molecule, user should input 3𝑁 − 6 frequencies. For a

linear transition state, user should input 3𝑁 − 6 frequencies; for a

nonlinear transition state, user should input 3𝑁 − 7 frequencies.
The program will automatically determine whether a molecule or
a transition state is linear. This keyword is not compulsory when

the Polyrate output file or Gaussian output file is defined.

Available value: Positive float list

Example: FREQUENCY[cm-1]

 3585.12 3506.34 1885.23

 45.49 235.67 478.87

END_FREQUENCY

IMAGFREQ

Description: Subkeyword for the image frequency.

Available value: Negative float

Example: IMAGFREQ[cm-1] -298

 44

ELELEVEL

Description: Subkeyword for the electronic energy level of species. The input

can contain multiple lines, and each line should contain two
number. The first number denotes degeneracy, and the second
number denotes the energy relative to the electronical ground

energy. The default value is 1 0.

Available value: Positive float list

Example: ELELEVEL[a.u.]

 2 0

 2 0.023

END_ELELEVEL

E0K

Description: Subkeyword for the energy of species at 0 K, which equals the
electronic energy (including, as usual, the nuclear repulsion) plus

the zero-point vibrational energy. Note that for gas-phase species,

the 0 K energy is the same as the 0 K enthalpy.

This subkeyword is not compulsory when the Polyrate output file
or Gaussian output file is defined for this species. If some species

energies are defined by E0K subkeywords and some are read by

Gaussian, please make sure that their zeros of energy are

consistent.

Available value: Float

Example: E0K[kcal/mol] 10.0

EELE

Description: Subkeyword for the classical energy of the species at 0 K, which

equals the electronic energy (the electronic energy always includes

the nuclear repulsion). This is not compulsory when a Polyrate

output file or Gaussian output file is defined for this species. If

some species energies are defined by EELE subkeywords and

some are specified by Gaussian, the user should make sure that

their zeros of energy are consistent.

Available value: Float

Example: EELE[kcal/mol] 10.0

ROTSIGMA

Description: Subkeyword for the rotational symmetry number of a species.

The electronic-vibrational-rotational partition function, the sum

of states, and the density of states will be divided by this number.

The default value is 1. If the properties of a species are defined by

a Gaussian output file, the program will automatically read

ROTSIGMA from that file, and that will override the default.

However, if the properties of a species are read from a Polyrate

output file, the program will not be able to read ROTSIGMA
because Polyrate output files do not include ROTSIGMA.

Therefore, if one is reading the properties of a species from a

Polyrate output file, and if the user does not want the rotational

 45

symmetry number of the species to be unity, one must use the

ROTSIGMA keyword to set it to another value.
Available value: Positive integer

Example: ROTSIGMA 2

OPTICALNUM

Description: Subkeyword for the optical-isomer number 𝛼 of a species; this is 2
for a chiral species and 1 for a species that can be rotated to

coincide with its mirror image. The value of 𝛼 will only be used
when calculating the density of states, but it will be automatically
included in variables derived from the density of states, e.g., the

microcanonical flux coefficient and the sum of states. The default

value is 1.

 Polyrate and Gaussian outputs do not include the optical-
isomer number, so you must define it if you want to assign a non-

unit optical isomer number to a species.

 Note that the MS-T method properly accounts for optical

isomers,30 so if one uses MS-T, one should not use 𝛼.

Available value: Positive integer

Example: OPTICALNUM 2

DIAMETER

Description: Subkeyword for the diameter of an isomer. This is compulsory for

each WELL when LJCOLLISON is defined and the

DIAMETERA is undefined in LJCOLLISION. When
DIAMETER is defined in WELL and DIAMETERA is also

defined in LJCOLLISION, DIAMETER will cover
DIAMETERA.

Available value: Positive float

Example: DIAMETER[A] 4.0

EPSILON

Description: Subkeyword for the Lennard-Jones energy parameter of an

isomer. This is compulsory for each WELL when LJCOLLISON
is defined and EPSILONA is undefined. When both EPSILON

is defined in WELL, and EPSILONA is also defined in
LJCOLLISION, EPSILON will cover EPSILONA.

Available value: Positive float

Example: EPSILON [cm-1] 40.

FREQSCALE

Description: Subkeyword for the scaling factor of frequencies. The code has
three possible ways to get frequencies for a species: from the
Polyrate standard output, from the Gaussian standard output, or

from the FREQUENCY subkeyword. If scaled frequencies are
used in the Polyrate run, the frequencies extracted from the

 46

Polyrate output are already scaled, but if Gaussian was not asked
to scale the frequencies, then Gaussian will have outputted
unscaled frequencies. This keyword only works for frequencies

read from Gaussian standard output and from the FREQUENCY
subkeyword. Our recommendation to the user is that frequencies
should always be scaled to correct for anharmonicity and for
systematic errors in electronic structure calculations;31 thus one of
these options should be used (and the user should be sure that the
frequencies are scaled only once). The default value of this

keyword is 1.0.

Available value: Positive float

Example: FREQSCALE 0.972

G09FILE

Description: Subkeyword for the name of the Gaussian 09 output file for a

species. Section 5.5 gives a detailed description of the Gaussian

long output file. If specified, then geometries, frequencies,
symbols, rotational symmetry number, imaginary frequency and

energies will be read from the Gaussian output file.

Available value: String

Example: G09FILE Well_1.log

MSTFILE

Description: Subkeyword for the name of the MSTor output file for a species.
If specified, the MST density of state will be read from this file.
This is optional. Section 5.5 will give a detailed description of the

MSTor long output file.

Available value: String

Example: MSTFILE Well_1.out

 47

5.5 Polyrate, Gaussian and MSTor Output Files

5.5.1 Polyrate output file

The Polyrate output file specified in keyword PYRFILE is the standard output file xxx.fu6 of

Polyrate. The species information, the minimum energy path (MEP) information, and the

transmission possibilities are read from this file. The Polyrate version should be 2016 or

later. The keyword “PRINTSTEP” should be specified in Polyrate when it is used in

conjunction with TUMME. In case of compatibility issues, the user may want to check the

output file of Polyrate; below we list the key-strings in the Polyrate output file that TUMME

uses to look for the values. Note that the Polyrate program can be used with many interfaces

– see http://truhlar.chem.umn.edu/content/software – but the choice of interface does not

affect the essential elements of the Polyrate long output, so TUMME should work for every

available electronic structure interface of Polyrate, including the very popular Gaussrate.

When the code is reading the standard output file of Polyrate, the code will try to read all the

values listed in Table 7. TUMME does not let user choose which values to read. The code

will scan the file from the first line to the last line; if any of key-strings showed in Table 7 is

met, the corresponding value will be read. So, the user should make sure that the Polyrate

standard output file being used contains the generalized transition states if the user sets the

VARIATION keyword as cvt or muvt; and the user should make sure that the transmission

probability is in the Polyrate output file if the user sets TUNNELING as sct or zct.

 If Polyrate uses scaled frequencies, the frequencies at stationary points or generalized

transition states in the Polyrate standard output are always the scaled ones, so we do not scale

frequencies again in TUMME.

Table 7. Keywords in Polyrate output file

Values Key-strings Description

Atom symbols “Atomic information:” Atomic symbols will appear from the third line after

the key-string line. The first entry of each line is the

sequence number of each atom. The third entry of

each line is the atom symbol. They will both be

loaded. The reading will end with a blank line.

Temporary

species objects

 “Reactant #1”// “Reactant #2”//
“Product #1”// “Product #1”

When one of four keywords is recognized in the

output file, a temporary species object will be

created. Then the species information will

temporarily be stored in these objects and after all

information read, the reactant, transition state and

product objects will finally be created.

Geometries “********** Reactants:”//
“********** Products:”//
“********* Saddle point:”

Geometries will appear from the fifth line after the

key-string line and the last three entries of each line

are coordinates in angstrom.

Species

properties

“****** Reactant 1 **********”
// “****** Reactant 2
**********” //

“****** Product 1 **********” //

“****** Product 2 **********” //

“****** Saddle point **********”

Number of atoms will appear in the second line after

the key-string line, shown as “xx-atom” where “xx”

denotes an integer; then electronic degeneracies and

energies appear in the same line beginning with

string “electronic degeneracies and
energies (a.u.)” ; then frequencies will appear

beginning from the fourth line after the line

containing string “Harmonic Frequencies”

 48

Reaction

energy

“Reaction energetics” The reaction energy calibrated with ZPVE in atomic

unit is the seventh entry of the 16-th line after the

key-string line. This is the reaction enthalpy at 0 K.

Barrier energy “V+ZPE w/re reactant V+ZPE” The barrier energy including the change of ZPVE

will appear in the same line. This is the enthalpy of

activation at 0 K.

Geometries of

generalized

transition

states in MEP

“Space-fixed cartesian
coordinates vs reaction
coordinate”

The first geometry of the generalized transition state

will appear from the fifth line after the key-string

line and the last three entries of each line are

coordinates; after Natom lines, skipping three lines,

the geometries of the next generalized transition state

will begin. This will circulate again and again until

the string “Classical and adiabatic
energies” is met. The reaction coordinate s will

also be recorded.

Frequencies

and energies of

generalized

transition

states in MEP

“s(angstrom) VMEP Va^G
mu^CD-SC frequencies”

After a blank line, the frequencies and energies will

appear. The sum of the potential energy and the

ground-state local vibrational energy (ZPVE) in

modes normal to the reaction path is called 𝑉a
G

(which denotes vibrationally adiabatic ground-state

potential energy curve;18 there are 3𝑁 − 7 (for a

nonlinear species) or 3𝑁 − 6 (for a linear species)

frequencies and they will be read until a blank line is

encountered. The 𝑉a
G will also be read for each value

of the reaction coordinate s.

Transmission

probability

“Transmission probabilities” The transmission probability will appear beginning

at the fourth lines after the key-string line. If the

elementary reaction is barrierless, a string “The

Classical barrier is less than zero!” should

be found. The code will try to find the

SCT probability if the user has chosen sct and will

try to find the ZCT probability if the user has

chosen zct. If found, the corresponding transmission

probability will be read, otherwise this will default to

a None-type in Python.

5.5.2 Gaussian output file

The Gaussian output file specified in keyword G09FILE is the standard Gaussian output

file. When specified for a species, the geometries, frequencies, rotational symmetry number,

and energy at 0 K will be read from the file. Note that “energy at 0 K” refers to the energy

including zero-point energy; this can also be called the enthalpy at 0 K. The Gaussian version

should be Gaussian 09 or Gaussian 16. The keyword “freq” should be specified in the

Gaussian input file. Here we list the key-strings in the Gaussian output file used to look for

the values.

 If frequencies read from the Gaussian standard output file are unscaled, the user should

set the FREQSCALE subkeyword.

 49

Table 8. Keywords in Gaussian output file

Values Key-strings Description

Geometry The last string “Standard
orientation”

Geometries will appear in 4 lines afterwards.

The second entry of each line are atom

number and the last three are coordinate in

angstroms. Read will end with a line full of “--

--”.

Frequency “Frequencies --” Frequencies will appear on the same line that

starts with the key-string.

Rotational

symmetry number

“Rotational symmetry
number”

Rotational symmetry number will appear in

the same line afterwards

E0K “Sum of electronic and
zero-point Energies”

E0K will appear in the same line afterwards

5.5.3 MSTor output file

The MSTor output file specified in keyword MSTFILE is the standard MSTor output file.

When specified for a species, the density of states will be read from the file. The MSTor

version should be 2017 or later.

The keywords “estep” and “emax” should be specified in the MSTor input file. These two

keywords are not illustrated in the manual of MSTor2017: here we give an explanation of

these two keywords.

estep is the energy step used in calculating the density of states. The unit is kcal/mol. It

should be specified in the $GENERAL section of a MSTor input file. Notice that the

energy step estep in MSTor should be the same as the energy step DE in TUMME.

emax is the maximum energy of energy level used for calculating the density of states.

The unit is kcal/mol. Should be specified in $GENERAL section of a MSTor input file.

Notice that the maximum energy emax in MSTor should be the same as the energy step

EMAX in TUMME.

 50

6. Detailed Implementation

6.1 Overview of all source files

Table 9. Description of Python source files

File Name Description

parallel_lib.py This file contains a Mpv_class class which stores the

variables like process rank number and total processor

number for MP parallel mode. This file also contains a

method to gather the stack of ME_class of each processor

into rank 0 processor. We do not simply use the built-in

gather() function in mpi4py because in this function

there’s memory limitation (< 2GB) for the

communicated object.

data_lib.py This file contains some functions dealing with the “not a

number” issue of the density of states in MSTor output file

and the program will use a spline function to fit the

density of states.

dd_lib.py This file contains an interface function for Python to call

the quadruple-precision C++ dynamical library.

qd_lib.py This file contains an interface function for Python to call

the octuple-precision C++ dynamical library.

const_lib.py This file contains physical constants, unit conversion

constants, and the like.

global_lib.py This file contains global variables, keywords for standard

input file and default values for global variables.

molecule_lib.py This file contains Molecule_class class and Atom_class

class. They are father classes for species classes. The

density of states and partition function can be calculated

in the two classes. They contain some basic properties of

a molecule or transition state.

species_lib.py This file contains classes for wells, transition states and

fragments of a bimolecular pair. (In this manual, well and

isomer are synonyms.) The relaxation kernel and

Boltzmann population can be calculated in the class for

wells. They are children classes of the father classes in

molecule_lib.py.

reaction_lib.py This file contains BarrierRxn_class and

BarrierlessRxn_class two classes. They both have

method to estimate the microcanonical flux coefficient.

BarrierRxn_class contains an object of Mep_class which

will load the minimum energy path, stationary species,

transmission probability from a Polyrate output file.

mep_lib.py This file contains a Mep_class class to extract the

minimum energy path (MEP), stationary species,

transmission probability from a Polyrate file.

 51

collision_lib.py This file contains HS_collision_class and

LJ_collision_class. The HS_collision_class is to store

the collision information of the hard-sphere collision

model. The LJ_collision_class is to store the collision

information of the Lennard-Jones collision.

me_lib.py This file contains a ME_class class to store all the

information about a master equation for a given

temperature and pressure. It has a method to construct a

transition matrix, check whether a merger has occurred,

and derive the phenomenological rate constants. For

every working condition (T, p), a ME_class class will be

created. After solving for the phenomenological rate

constants, the memory of most of the variables will not

be released. The ME_class object will be pushed into a

stack. For running in parallel, after all calculations are

finished, the stack will be gathered into rank 0. Then rank

0 will deal with the printout of the rate constant/

eigenpair/microcanonical flux coefficient/partition

function/time evolution.

output_lib.py This file contains a Std_out_class, Serial_out_class,

Mp_out_class, and Mpi_out_class classes, corresponding

to the serial, MP, and MPI schemes. Due to the disparity

of the printout arrangements between serial and parallel

schemes, to make the printout compatible in serial and

parallel schemes, we set a string stack. All the output

information during a run is pushed into the string stack.

When all the calculations are finished, the string stack is

gathered into rank 0 and printed out to output files.

tumme_main.py This file contains serial_main, mp_main, and mpi_main,

which are three kinds of main routines for different run

modes.

tumme_readin.py This file contains two functions named readParallel (to

read two parallelism subkeywords) and std_readin (to

read other information including global parameters,

elementary reactions, and species properties).

tumme_pre.py This file contains std_pre, serial_pre, mp_pre, and

mpi_pre functions for initialization of different types of

runs. std_pre is the common code shared by serial, MP,

and MPI runs. In the std_pre function, the energies of all

species will be placed relative the 0 K energy set by

GROUNDSPECIES; the density of states of all species

will be set; and a reaction map will be created. A reaction

map is a matrix in which the (i, j) element is an object of

the reaction classes in reaction_lib.py if the i-th species

and j-th species are connected by an elementary reaction;

otherwise (i, j) element is a None type of Python.

 52

tumme_solver.py This file contains std_solver, serial_solver, mp_solver,

and mpi_solver functions for different solvers for

different runs. std_solver is the common code shared by

serial, MP and MPI runs. In the mp_solver and

mpi_solver function, the entire set of temperature and

pressure conditions {(T,p)} will be divided into nproc

subsets. Each rank of the processor will run its own

subset. Finally, all the information will be gathered into

the rank 0 processor and printed out there.

Table 10. Description of C++ sources files

File Name Description

Interface_dd.h

Interface_dd.cpp

ME_solver_dd.h

ME_solver_dd.cpp

These files contain quadruple precision code of the

standard process in Fig. 1. The relaxation kernel for all

isomers and the symmetric transition matrix will be

constructed and diagonalized in quadruple precision;

then the quadruple-precision eigenpairs will be

transformed into double precision and returned to

Python. OpenMP is utilized in the C++ code to reduce

the computation cost.

Interface_qd.h

Interface_qd.cpp

ME_solver_qd.h

ME_solver_qd.cpp

These files contain octuple-precision of code of the

standard process in Fig. 1. The relaxation kernel for all

isomers and the symmetric transition matrix will be

constructed and diagonalized in octuple precision; then

the octuple-precision eigenpairs will be transformed

into double precision and returned to Python. OpenMP

is utilized in the C++ code to reduce computation cost.

qd/ Original source code for qd library.

mpack/ Simplified source code for mpack library.

 53

6.2 Normalization of the energy transfer kernel

The energy transfers are assumed to be governed by the exponential down model, which

assumes that the probability that the isomer energy changes from E ́to E in a single collision

with the bath gas is

 𝑃𝛾(𝐸|𝐸
′) = 𝐴(𝐸′)𝑒−𝜃(𝐸

′)∙(𝐸′−𝐸) 𝐸′ ≥ 𝐸
(31)

where A is a normalization constant, and 𝜃 is a collision efficiency parameter. The probability

for 𝐸´ < 𝐸 can be determined by the detailed balance, yielding

 𝑃𝛾(𝐸|𝐸
′) = {

𝐴(𝐸′)𝑒−𝜃(𝐸
′)∙(𝐸′−𝐸) 𝐸′ ≥ 𝐸

𝐴(𝐸)
𝑓𝛾(𝐸)

𝑓𝛾(𝐸′)
𝑒−𝜃(𝐸)∙(𝐸−𝐸

′) 𝐸′ < 𝐸
 (32)

where 𝑓𝛾(𝐸) is the thermal population density 𝜌𝛾(𝐸)𝑒
−𝛽𝐸 of isomer 𝛾 with energy E.

After discretization, Eq. (2) becomes

 𝑃𝛾[𝜂, 𝜂′] = {

𝐴[𝜂′]𝑒−𝜃(𝐸𝜂′)∙(𝐸𝜂′−𝐸𝜂) 𝐸𝜂′ ≥ 𝐸𝜂

𝐴[𝜂]
𝑓𝛾[𝜂]

𝑓𝛾[𝜂′]
𝑒−𝜃(𝐸𝜂)∙(𝐸𝜂−𝐸𝜂′) 𝐸𝜂′ < 𝐸𝜂

 (33)

where 𝜂 and 𝜂′ are indices of energy bins, and the bins are arranged in order of decreasing

energy so 𝜂 = 1 labels the highest-energy bin, and 𝜂 = 𝑁𝛾 denotes the zero-point energy of

isomer species 𝛾, where 𝑁𝛾 is the number of energy bins used for the 𝛾-th isomer.

 The normalization condition is

 Σ𝜂𝑃𝛾[𝜂, 𝜂′] = 1 (34)

For 𝜂′ = 1, Σ𝜂𝑃[𝜂, 1] = 1, and Eq. (4) gives

 ∑ 𝐴[1]𝑒−𝜃(𝐸1)∙(𝐸1−𝐸𝜂)
𝑁𝛾

𝜂=1
= 1 (35)

and

 𝐴[1] =
1

∑ 𝑒−𝜃(𝐸1)∙(𝐸1−𝐸𝜂)
𝑁𝛾
𝜂=1

 (36)

For 𝜂′ = 2,

 𝐴[1]
𝑓𝛾[1]

𝑓𝛾[2]
𝑒−𝜃(𝐸1)∙(𝐸1−𝐸2) + ∑ 𝐴[2]𝑒−𝜃(𝐸2)∙(𝐸2−𝐸𝜂)

𝑁𝛾

𝜂=2
= 1 (37)

and therefore

 𝐴[2] =

1 − 𝐴[1]
𝑓𝛾[1]

𝑓𝛾[2]
𝑒−𝜃(𝐸1)∙(𝐸1−𝐸2)

∑ 𝑒−𝜃(𝐸2)∙(𝐸2−𝐸𝜂)
𝑁𝛾
𝜂=2

(38)

For general 𝜂′ = 𝑛 ,

 ∑ 𝐴[𝜂]
𝑓𝛾[𝜂]

𝑓𝛾[𝑛]
𝑒−𝜃(𝐸𝜂)∙(𝐸𝜂−𝐸𝑛)

𝑛−1

𝜂=1
+ ∑ 𝐴[𝑛]𝑒−𝜃(𝐸𝑛)∙(𝐸𝑛−𝐸𝜂)

𝜂=𝑁𝛾

𝜂=𝑛
= 1 (39)

and therefore

 𝐴[𝑛] =

1 − ∑ 𝐴[𝜂]
𝑓𝛾[𝜂]

𝑓𝛾[𝑛]
𝑒−𝜃(𝐸𝜂)∙(𝐸𝜂−𝐸𝑛)𝑛−1

𝜂=1

∑ 𝑒−𝜃(𝐸𝑛)∙(𝐸𝑛−𝐸𝜂)
𝑁𝛾
𝜂=𝑛

(40)

 54

In many cases, when n becomes large, the numerator of Eq. (10) becomes negative, for

example at n = 𝑁𝑡. Then the energy levels 𝑁𝑡 + 1, 𝑁𝑡 + 2,…, 𝑁𝛾 are removed, and 𝑁𝛾 is

decreased accordingly. After this removal, the normalization is re-calculated with the new,

smaller 𝑁𝛾. This process is repeated until the numerator of Eq. (10) is positive for all retained

bins. This calculation is carried out in the file species_lib.py.

 One finds that the average energy transferred per collision in the subset of collisions

in which the isomer loses energy to the bath gas is approximately 1/𝜃 because

∫ (𝐸´ − 𝐸)𝑒−𝜃(𝐸´−𝐸)𝑑𝐸
𝐸´

−∞

∫ 𝑒−𝜃(𝐸´−𝐸)𝑑𝐸
𝐸´

−∞

=
1

𝜃(𝐸′)
 (41)

Therefore, the program sets 𝜃(𝐸′) =
1

⟨Δ𝐸d⟩(𝐸
′)
 where ⟨Δ𝐸d⟩(𝐸

′) is set by the subsection

EDOWN in the PARAMETER block.

6.3 Bound isomers to CSE modes one-to-one.

After constructing the symmetric transition matrix 𝐆, the program diagonalizes it to get

eigenpairs. The eigenpairs are ordered in ascending order of eigenvalues. The 𝜆-th

eigenvector is denoted 𝒖(𝜆). If a reaction system has S isomers, then there should be S CSE

eigenvectors. We define the projection of 𝒖(𝜆) on the chemical basis vector of isomer 𝛾 as

EPCS:

 𝐸𝑃𝐶𝑆𝛾
(𝜆) =

1

√𝑄𝛾/Δ𝐸
∑ 𝛿𝛾𝛾′𝑢𝑖′

(𝜆)
𝐹𝑖′

𝑁y

𝑖′=1
 (42)

where 𝛿𝛾𝛾′ is a Kronecker delta; 𝐹𝑖′ is √𝜌𝛾′(𝐸𝜂′)𝑒
−𝛽𝐸𝜂′, which is the square root of the

Boltzmann population of unimolecular species 𝛾′ with internal energy 𝐸𝜂′; 𝑄𝛾 is the

electronic-vibrational-rotational partition function of isomer 𝛾; 𝑢
𝑖′
(𝜆)

 is the 𝑖-th element of the

𝜆-th eigenvector; 𝑁y is the size of the transition matrix; Δ𝐸 is the energy step between energy

bins. Then we define the eigenvector projection squared on the relaxation subspace as EPSRS

 𝐸𝑃𝑆𝑅𝑆(𝜆) = 𝑃(𝜆) = 1 − Σ𝛾[𝐸𝑃𝐶𝑆𝛾
(𝜆)]

2

 (43)

 The program will associate each of the CSE eigenmodes in a one-to-one relationship

with a specific isomer. The algorithm to determine the correspondence is as follows.

 For an eigenmode 𝜆′, the program looks for the maximum |𝐸𝑃𝐶𝑆𝛾
(𝜆′)

| among 𝛾 =

1, … , 𝑆. Let 𝛾′ label the eigenmode thus located. This means the basis vector of isomer 𝛾′ has

the greatest projection onto the eigenvector 𝜆′. A correspondence tuple (𝜆′, 𝛾′) that denotes

the correspondence between isomer 𝛾′ and eigenmode 𝜆′ is assigned on this basis. When each

isomer is associated with one eigenmode, one has achieved the desired one-to-one

correspondence. The situation is more complicated in a case where an isomer corresponds to

two or more eigenmodes. In order to make a one-to-one assignment for the eigenmode 𝜆′, the

program may need to assign isomers iteratively. If an isomer has multiple associated

eigenvectors, the program finds the eigenvector that has the maximum projection and creates

a corresponding tuple. This may then force the reassignment of other eigenvectors by

 55

selecting the second largest |𝐸𝑃𝐶𝑆𝛾
(𝜆′)

| (or third or fourth largest – this will continue until all

eigenvectors have been associated with an isomer).

Figure 3. The elements of the |𝐸𝑃𝐶𝑆𝛾
(𝜆)| matrix for an artificial reaction system with 3 isomers. The

eigenvectors are numbered in ascending order of the eigenvalues; therefore 𝜆1, 𝜆2, and 𝜆3 are CSE modes. In CSE

theory the sum of the squares of the elements of a column will be close to one, which means that EPSRS will be

small. In this case, it is easily calculated from the value in the figure that EPSRS is 0.11, 0.31 and 0.38 respectively

for the 𝜆1, 𝜆2 and 𝜆3 eigenmodes.

Let’s take an artificial reaction system having three isomers as an example to illustrate the

algorithm, and for this example we assume there is no merger. (The case of a merger is

discussed in the next paragraph.) The relevant elements of |𝐸𝑃𝐶𝑆𝛾
(𝜆)| for this example are in

Fig. 3. (Because this is a model system, the eigenvector components are assumed to be precisely

the values stated, even though they have only one significant figure.) The eigenvectors are

numbered in order of increasing eigenvalues, i.e., the slowest modes are assumed to be the CSE

modes. The program always recognizes the first S eigenvectors as the CSEs, where S is the

number of isomers. Thus, the three eigenmodes shown in Fig. 3 are the CSE modes. For

eigenmode with eigenvalue 𝜆1, we find that the maximum |𝐸𝑃𝐶𝑆𝛾
(𝜆)| over 𝛾1, 𝛾2, and 𝛾3 is for

𝛾1. Therefore, in this case the program would assign the first tuple as (𝜆1, 𝛾1). For eigenmode

2 (i.e., the one with eigenvalue 𝜆2), it is then straightforward to assign the tuple (𝜆2, 𝛾3), and

for eigenmode 𝜆3, the tuple (𝜆3, 𝛾3) is defined. At this stage, the isomer 𝛾3 corresponds two

eigenmodes, 𝜆2 and 𝜆3 . Since |𝐸𝑃𝐶𝑆𝛾3
(𝜆2)| > |𝐸𝑃𝐶𝑆𝛾3

(𝜆3)|, the isomer 𝛾3 is viewed as being

associated with eigenmode 𝜆2, and the tuple (𝜆3, 𝛾3) is accordingly deleted. Then the

eigenmode 𝜆3 is searched for the second-highest value over 𝛾1, 𝛾2 , and 𝛾3 , which is

|𝐸𝑃𝐶𝑆𝛾2
(𝜆3)|, and therefore the tuple (𝜆3, 𝛾2) is defined. The resultant set of tuples is (𝜆1, 𝛾1),

(𝜆2, 𝛾3), and (𝜆3, 𝛾2). Now every eigenmode has been assigned to an isomer, and the set of

correspondence tuples satisfies the one-to-one condition. The ranking of eigenvectors in an

ascending order of eigenvalues is carried out for each (T, p) combination, and the first S

eigenvalues are recognized as CSE modes for that (T, p); then the one-to-one assignment

algorithm shown above is executed for that (T, p) combination.

 56

For cases where a merger occurs (see Section 6.4 for a discussion of mergers), there is a

probability that eigenvalues whose eigenvectors correspond to chemical reaction processes are

faster than some internal relaxation processes. If this were to happen, the assumption that the

first S eigenmodes are CSE modes and others are IERE modes would be invalid. So far, though,

no systematic way has been presented to handle this case, and therefore TUMME will always

recognize the first S modes (in order of increasing eigenvalues) as the CSE ones. After ranking

the eigenmodes, recognizing CSE modes, and binding isomers to CSE modes one-to-one, the

program checks all CSE modes as to whether they are merged with IERE modes. If a CSE

eigenvector does merge with the IERE space, this eigenmode will be moved from the CSE

space into the IERE space, but the one-to-one assignment of other CSE modes will not be

changed.

This part is done in the me_lib.py file.

6.4 Handling the merger condition

When temperatures are very high or pressures are very low, some CSE eigenmodes may

merge with IERE eigenmodes. In this part of the manual, we give the details of how the

program detects the merger condition and how it deals with it.

The value of 𝐸𝑃𝑆𝑅𝑆(𝜆) provides the criterion to judge whether a CSE eigenmode is

merging with the IERE space. If this value is greater than MERGETHRESHOLD, the merge is

assumed to have occurred; otherwise not.

If a CSE eigenmode is determined to have merged with the IERE space, the corresponding

isomer is viewed as merging with some other species. There is no unambiguous prescription

for assigning which species it has merged with. In TUMME, we adopted the viewpoint of

Georgievskii et al. in their statement: “For an eigenvector describing equilibration with

bimolecular products, the macroscopic population for each unimolecular species has the same

sign. For an eigenvector that describes equilibration between two groups of unimolecular

species, the cumulative populations for those groups are generally approximately equal in

magnitude and opposite in sign, at least at not too high a temperature.”5 For a merged

eigenmode 𝜆′, let the one-to-one isomer determined by Section 6.3 be 𝛾′; then the algorithm to

determine the other merged species is as follows:

1) For all 𝛾 = 1,… , 𝑆, all positive 𝐸𝑃𝐶𝑆𝛾
(𝜆′)

 values are summed together, and all negative

values are summed together. The absolute values of the two sums are compared. The

larger one will be a normalization constant to scale the 𝐸𝑃𝐶𝑆𝛾
(𝜆′)

 for all 𝛾 = 1,… , 𝑆.

2) The program then finds the two largest absolute values of the normalized 𝐸𝑃𝐶𝑆𝛾
(𝜆′)

over 𝛾 = 1,… , 𝑆; let the isomer index for them be 𝛾1 and 𝛾2. If the absolute value of

the normalized 𝐸𝑃𝐶𝑆𝛾1
(𝜆′)

 and 𝐸𝑃𝐶𝑆𝛾2
(𝜆′)

 are both greater than 0.5 and 𝐸𝑃𝐶𝑆𝛾1
(𝜆′)

 and

𝐸𝑃𝐶𝑆𝛾2
(𝜆′)

 have different sign, this eigenmode will be recognized as the equilibration

between isomer 𝛾1 and isomer 𝛾2 . Further, if both 𝛾1 and 𝛾2 are not equal to 𝛾′ , the

program reports an error and exits.

 57

3) If one of the absolute values of the normalized 𝐸𝑃𝐶𝑆𝛾1
(𝜆′)

 or 𝐸𝑃𝐶𝑆𝛾2
(𝜆′)

 is less than 0.5,

this eigenmode will be recognized as the equilibrium between isomer 𝛾′ and a

bimolecular pair. The kappa matrix (defined next) will be analyzed to further determine

which bimolecular pair it is.

4) The (𝛾, 𝜈) element of the kappa matrix is defined as 5,26

 𝜅𝛾,𝜈 =∑
1

𝐿𝜆
[Σ𝑖′𝛿𝛾𝛾′𝐹𝑖′𝑢𝑖′

(𝜆)
] [Σ𝑖𝑢𝑖

(𝜆)𝐹𝑖
−1𝐵𝑖𝜐]

Φrel𝑄𝜈
𝑄𝛾

𝑁y

𝜆=𝑆+1
 (44)

where 𝐿𝜆 is the 𝜆-th eigenvalue; 𝐵𝑖𝜐 is a generalized microcanonical bimolecular flux

coefficient for the bimolecular pair 𝜈 to form unimolecular species 𝛾 with internal

energy 𝐸𝜂; 𝑄𝛾 is the electronic-vibrational-rotational partition function of the isomer 𝛾;

𝑄𝜈 is the product of the electronic-vibrational-rotational partition functions of the

members of the bimolecular pair 𝜈; Φrel is the relative translational partition function

per unit volume; and S is the number of isomers.

5) For the merged eigenmode corresponding to isomer 𝛾′ , the program will find the

maximum 𝜅𝛾′,𝜈 among bimolecular pairs 𝜈 =1, 2, .., m. Let it be 𝜈′. Then the isomer

𝛾′ and bimolecular pair 𝜈′ will be recognized as in equilibrium.

This part is done in the me_lib.py file.

Note that the value of 0.5 in step 2 has nothing to do with MERGETHRESHOLD;

MERGETHRESHOLD is EPSRS, whereas 0.5 is the normalized EPCS. We emphasize that

EPSRS is used to judge if an CSE eigenvector is merged, and the normalized EPCS is used to

determine which two species the merged eigenvector is describing. The threshold 0.5 of the

normalized EPCS in TUMME cannot be changed by users. MERGETHRESHOLD should

be specified by the user.

6.5 High-precision dynamic libraries

In some cases where the magnitudes of eigenvalues span a very wide range of values, it is

necessary to use quadruple or octuple precision to obtain full accuracy. TUMME includes the

quadruple and octuple precision code in C++. The quadruple precision version is in dd_lib.py

file, and the octuple precision version is in qd_lib.py file. TUMME compiles the higher-

precision code into dynamic libraries to let Python call them. We used numpy.ctypes as an

interface between Python and C++. In the C++ code, all relaxation kernels of the isomers are

re-calculated in high precision, and the construction of the symmetric transition matrix G and

its diagonalization are carried out in high precision. Finally, the C++ libraries will return

eigenpairs of the symmetric transition matrix to the Python process to continue the analysis.

Users who wish to use quadruple precision or octuple precision to diagonalize their own

transition matrix can use our simplified mpack library. First go into mpack_dd/src and

mpack_qd/src and modify the include path and library path of the qd/ folder in the Makefile

and compile them. If it succeeds, you will get two dynamic library files called

libmpack_dd.so and libmpack_qd under mpack_dd/lib and mpack_qd/lib, respectively. Then

you can call these dynamic libraries by C++ under the GNU compiler. And remember to add

the path of the dynamic library to your system library-path or compile your own code in

which you specify the -Wl,-rpath option. There are two examples, the

mpack_dd/example/eigenvector_dd.cpp and mpack_dd/example/eigenvector_qd.cpp, to show

 58

how to call the mpack to diagonalize a matrix. The C++/qd folder is necessary for both

libraries and should be pre-installed by using the GNU compiler. If you use the simplified

mpack, please cite the references of mpack32 and qd33 in your work.

 59

7. Test Runs

7.1 2-methylhexyl radical single-channel unimolecular dissociation

 Note that hydrogens are not shown, and parentheses are used to show branching.

Figure 4. Reaction for the first test case

Anharmonicity: SSHO

Variational effect: None (TST)

Tunneling: Eckart

Parallelism: MPI with 4 processors

Precision: Double

Standard input file: param.in

Extra input files: None

Output files: param.out, param.rate, kE.out, evec.out, eval.out

Location: example/2MH/Eckart/

Run command: tumme param.in

7.2 2-methylhexyl radical multi-channel unimolecular dissociation

 Note that hydrogens are not shown, and parentheses are used to show branching.

Figure 5. Reactions for the second test case.

Anharmonicity: SSHO

Variational effect: None (TST)

Tunneling: No tunneling

Parallelism: Serial

Precision: Quadruple

Standard input file: param.in

Extra input files: None

Output files: param.out, param.rate, kE.out, evec.out, eval.out, time.txt

Location: example/2MH/highprecision/

Run command: tumme param.in

 60

7.3 Toluene + OH radical ipso- site addition reaction

Figure 6. Reaction for the third test case

Anharmonicity: MS for C6H5CH3; SSHO for other species.

Variational effect: None (TST)

Tunneling: No tunneling

Parallelism: MPI with 13 processors

Precision: Double

Standard input file: param.in

Extra input files: R_m.out

Output files: param.out, param.rate, evec.out, eval.out

Location: example/T+OH/ipso/

Run command: tumme param.in

7.4 Toluene + OH radical addition reactions: TST

Figure 7. Reactions for the fourth test case

Anharmonicity: SSHO

Variational effect: None (TST)

Tunneling: No tunneling

Parallelism: MP with 6 processors

Precision: Double

Standard input file: param.in

Extra input files: None

Output files: param.out, param.rate

Location: example/T+OH/all_plain/

Run command: tumme param.in

 61

7.5 Toluene + OH radical addition reactions: VTST

Figure 8. Reactions for the fifth test case.

Anharmonicity: MS for all species except OH

Variational effect: CVT for four C6H5CH3⋯OH association reaction channels.

Tunneling: SCT for four C6H5CH3⋯OH association reaction channels.

Parallelism: MPI with 4 processors

Precision: Double

Standard input file: param.in

Extra input files: P_add_ortho.out, P_add_ipso.out, P_add_meta.out,

P_add_para.out, TS_add_ortho.out, TS_add_ipso.out,

TS_add_meta.out, TS_add_para.out, R_m.out

Rxn2_ipso.fu6, Rxn2_para.fu6, Rxn2_meta.fu6, Rxn2_ortho.fu6

Output files: param.out, param.rate, Q.txt, kE.txt

Location: example/T+OH/all_calibrated/

Run command: tumme param.in

7.6 H2CO + OH radical abstraction reaction

Figure 9. Reactions for the sixth test case.

Anharmonicity: MS for van der Waals complex and the transition state of

reaction 2

Variational effect: CVT for reaction 2

Tunneling: SCT for reaction 2

Parallelism: MPI with 11 processors

Precision: Quadruple

Standard input file: param.in

 62

Extra input files: mstor_complex.out, mstor_TS.out, Rxn2.fu6

Output files: param.out, param.rate, eval.out, time.txt

Location: example/H2CO+OH/

Run command: tumme param.in

 63

8. Bibliography of TUMME research articles

“Energy Dependence of Ensemble-Averaged Energy Transfer Moments and its Effect on

Competing Decomposition Reactions,” R. M. Zhang, X. Xu, and D. G. Truhlar,

Journal of Physical Chemistry A 125, 6303-6313 (2021).

doi.org/10.1021/acs.jpca.1c03845

(Special Virtual Issue entitled "125 Years of The Journal of Physical Chemistry")

“TUMME: Tsinghua University Minnesota Master Equation program,” R. M. Zhang, X. Xu,

and D. G. Truhlar, Computer Physics Communications 270, 108140/1-17 (2021).

doi.org/10.1016/j.cpc.2021.108140

“Master Equation Study of Hydrogen Abstraction from HCHO by OH Via a Chemically

Activated Intermediate,” R. M. Zhang, W. Chen, D. G. Truhlar and X. Xu, Faraday

Discussions 2022, online as Accepted Manuscript.

doi.org/10.1039/D2FD00024e

 64

9. Version History of TUMME

Date Log Version No.

12/17/2020 The first version of TUMME. 1.0

06/18/2021

• Added the dependence of ⟨Δ𝐸d⟩ on bath

temperature and on initial isomer internal energy

• Changed subkeywords from TIMEMAX to

TIMENUM

• Added a print option for the relaxation kernel

matrix

• Improved the output

• Fixed bugs

2.0

08/05/2021 • Fixed some bugs. 2.1

08/25/2021

• Changed EEOT from “relative to the max 0 K

energy of transition states” to “relative to the

max 0 K energy of all species including

reactants, transition states, and products”

• Made it available for a reaction system without

any transition state

• Fixed some bugs for reading standard files and

Polyrate output files

2.2

7/03/2022

• Added the pseudo-first order assumption for

bimolecular pairs in time evolution calculations,

making this also available in high precision

• Added inverse-Laplace-transform in

REACTION block

• Abandoned rounding the size of the energy bins

into integer numbers of wavenumbers (ESOT)

• Changed the way to run TUMME and provided

an executable bash script

• Slightly adjusted the strategy for merges to deal

with some unexpected cases

• Adjusted the output for partition functions

• Fixed some bugs

3.0

10/15/2022

• Add the LCT and μOMT options for the

tunneling

• Fixed some bugs

3.1

 65

10. References

10.1. References to articles describing the program

• “TUMME: Tsinghua University Minnesota Master Equation program,” R. M. Zhang,

X. Xu, and D. G. Truhlar, Computer Physics Communications 270, 108140/1-17

(2021). doi.org/10.1016/j.cpc.2021.108140

• “Master Equation Study of Hydrogen Abstraction from HCHO by OH Via a

Chemically Activated Intermediate,” R. M. Zhang, W. Chen, D. G. Truhlar and X.

Xu, Faraday Discussions 238, 431-460 (2022). doi.org/10.1039/D2FD00024e

• “TUMME 3.1: Tsinghua University Minnesota Master Equation program. New

Version Announcement,” R. M. Zhang, X. Xu, and D. G. Truhlar, Computer Physics

Communications, to be published (submitted Dec. 31, 2022).

10.2. Cited references

1 S. J. Klippenstein, V. Pande, and D. G. Truhlar, Chemical Kinetics and Mechanisms of

Complex Systems: A Perspective on Recent Theoretical Advances, J. Am. Chem. Soc.

2014, 136, 528-546. doi.org/10.1021/ja408723a

2 B. Widom, Molecular Transitions and Chemical Reaction Rates. Science 1965, 148,

1555−1560. doi.org/10.1126/science.148.3677.1555

3 O. K. Rice and H. C. Ramsperger, Theories of Unimolecular Gas Reactions at Low

Pressures. J. Am. Chem. Soc. 1927, 49, 1617-1629. doi.org/10.1021/ja01406a001

4 L. S. Kassel, Studies in Homogeneous Gas Reactions I. J. Phys. Chem. 1928, 32, 225-

242. doi.org/10.1021/j150284a007

5 Y. Georgievskii, J. A. Miller, M. P. Burke, and S. J. Klippenstein, Reformulation and

Solution of the Master Equation for Multiple-Well Chemical Reactions. J. Phys. Chem. A

2013, 117, 12146−12154. doi.org/10.1021/jp4060704

6 J. Zheng, S. L. Mielke, J. L. Bao, R. Meana-Pañeda, K. L. Clarkson, and D. G.

Truhlar, MSTor computer program – version 2017, University of Minnesota, Minneapolis,

MN, 2017. https://comp.chem.umn.edu/mstor/

7 J. Zheng, S. L Mielke, K. L Clarkson, and D. G. Truhlar, MSTor: A program for calculating

partition functions, free energies, enthalpies, entropies, and heat capacities of complex

molecules including torsional anharmonicity. Computer Physics Communications 183,

1803-1812 (2012). doi.org/10.1016/j.cpc.2012.03.007

8 J. Zheng, R. Meana-Pañeda, and D. G. Truhlar, MSTor version 2013: A new version of the

computer code for the multistructural torsional anharmonicity with a coupled torsional

potential. Computer Physics Communications 184, 2032-2033 (2013).

doi.org/10.1016/j.cpc.2013.03.011

9 (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.

Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V.

Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F.

Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J.

Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.

http://dx.doi.org/10.1021/ja408723a
https://doi.org/10.1021/ja01406a001
https://doi.org/10.1021/jp4060704

 66

Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.

Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.

Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam,

M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O.

Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT,

2009.

 (b) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.

V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V.

Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F.

Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J.

Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K.

Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E.

N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.

Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M.

Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma,

O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Gaussian, Inc., Wallingford CT,

2016.

10 J. Zheng, J. L. Bao, R. Meana-Pañeda, S. Zhang, B. J. Lynch, J. C. Corchado, Y.-Y.

Chuang, P. L. Fast, W.-P. Hu, Y.-P. Liu, G. C. Lynch, K. A. Nguyen, C. F. Jackels, A.

Fernandez Ramos, B. A. Ellingson, V. S. Melissas, J. Villà, I. Rossi, E. L. Coitiño, J. Pu,

T. V. Albu, A. Ratkiewicz, R. Steckler, B. C. Garrett, A. D. Isaacson, and D. G.

Truhlar, Polyrate – version 2017-C (University of Minnesota, Minneapolis, MN, 2017).

https://comp.chem.umn.edu/polyrate/

11 J. Zheng; J. L. Bao, S. Zhang, J. C. Corchado, R. Meana-Pañeda, Y.-Y. Chuang, E. L.

Coitiño, B. A. Ellingson, and D. G. Truhlar, Gaussrate 17; University of Minnesota:

Minneapolis, 2017. https://comp.chem.umn.edu/gaussrate/

12 L. G. Gao, J. Zheng; J. Zheng, M. A. Iron, B. A. Ellingson, J. C. Corchado, Y.-Y. Chuang,

and D. G. Truhlar, NWChemrate 2019; University of Minnesota: Minneapolis, 2019.

https://comp.chem.umn.edu/nwchemrate/

13 H. Eyring, The Activated Complex in Chemical Reactions, J. Chem. Phys. 1935, 3, 107-

115. doi.org/10.1063/1.1749604

14 J. Zheng, T. Yu, E. Papajak, I. M.Alecu, S. L. Mielke, and D. G. Truhlar, Practical Method

For Including Torsional Anharmonicity in Thermochemical Calculation on Complex

Molecules: The Internal-Coordinate Multi-structural Approximation. 2011, 13, 10885-

10907. doi.org/10.1039/C0CP02644A

15 T. Yu, J. Zheng, and D. G. Truhlar, Multi-Structural Variational Transition State Theory.

Kinetics of the 1,4-Hydrogen Shift Isomerization of the Pentyl Radical with Torsional

Anharmonicity, Chem. Sci. 2011, 2, 2199-2213. doi.org/10.1039/C1SC00225B

16 J. Zheng and D. G. Truhlar, Including Torsional Anharmonicity in Canonical and

Microcanonical Reaction Path Calculations, J. Chem. Theory Comput. 2013, 9, 2875-

2881. doi.org/10.1021/ct400231q

17 B. C. Garrett and D. G. Truhlar, Criterion of Minimum State Density in the Transition

State Theory of Bimolecular Reactions, J. Chem. Phys. 1979, 70, 1593-1598.

doi.org/10.1063/1.437698

18 A. D. Isaacson and D. G. Truhlar, Polyatomic Canonical Variational Theory for Chemical

https://comp.chem.umn.edu/polyrate/

 67

Reaction Rates. Separable-Mode Formalism with Application to OH + H2 → H2O + H,

J. Chem. Phys., 1982, 76, 1380-1391. doi.org/10.1063/1.443130

19 Generalized Transition State Theory. Quantum Effects for Collinear Reactions of

Hydrogen Molecules,” B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 1979, 83, 1079-

1112 (1979). doi.org/10.1021/j100471a032

20 A. D. Isaacson, M. T. Sund, S. N. Rai, and D. G. Truhlar, Improved Canonical and

Microcanonical Variational Transition State Theory Calculations for a Polyatomic

System: OH + H2 → H2O + H, J. Chem. Phys. , 1985, 82, 1338-1340.

doi.org/10.1063/1.448963

21 Liu, Y.-P.; Lu, D.-h.; González-Lafont, A.; Truhlar, D. G.; Garrett, B. C. J. Am. Chem. Soc.

1993, 115, 7806.

22 D. G. Truhlar and A. Kuppermann, Exact Tunneling Calculations, J. Am. Chem. Soc.,

1971, 93, 1840-1851. doi.org/10.1021/ja00737a002

23 D. G. Truhlar and A. Kuppermann, A Test of Transition State Theory Against Exact

Quantum Mechanical Calculations, Chem. Phys. Lett. 1971, 9, 269-272.

doi.org/10.1016/0009-2614(71)85049-2

24 B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, Improved Treatment of

Threshold Contributions in Variational Transition State Theory, J. Phys. Chem. 1980, 84,

1730-1748. doi.org/10.1021/j100450a013

25 Y.-P. Liu, G. C. Lynch, T. N. Truong, D.-h. Lu, D. G. Truhlar, and B. C. Garrett, Molecular

Modeling of the Kinetic Isotope Effect for the [1,5]-Sigmatropic Rearrangement of cis-

1,3-Pentadiene, J. Am. Chem. Soc. 1993, 115, 2408-2415. doi.org/10.1021/ja00059a041

26 R. M. Zhang, X. Xu, and D. G. Truhlar, “TUMME: Tsinghua University Minnesota

Master Equation program,” Computer Phys. Comm. 2022, 270, 108140.

doi.org/10.1016/j.cpc.2021.108140

27 J. Troe, Theory of Thermal Unimolecular Reactions at Low Pressures. II. Strong Collision

Rate Constants. Applications. J. Chem. Phys. 1977, 66, 4758-4775.

doi.org/10.1063/1.433838

28 R. M. Zhang, W. Chen, D. G. Truhlar, and X. Xu, Master Equation Study of Hydrogen

Abstraction from HCHO by OH Via a Chemically Activated Intermediate. Faraday

Discuss. 2022, in press. doi.org/10.1039/D2FD00024e

29 H. S. Johnston and J. Heicklen, Tunneling Corrections For Unsymmetrical Eckart

Potential Energy Barrier J. Phys. Chem. 1962, 66, 532-533. doi.org/10.1021/j100809a040

30 J. L. Bao, R. Meana-Pañeda, D. G. Truhlar, Multi-Path Variational Transition State Theory

for Chiral Molecules: The Site-Dependent Kinetics for Abstraction of Hydrogen from

Hydroperoxyl Radical, Analysis of Hydrogen Bonding in the Transition State, and

Dramatic Temperature Dependence of the Activation Energy. Chem. Sci. 2015, 6, 5866-

5881. doi.org/10.1039/C5SC01848J

31 I. M. Alecu, J. Zheng, Y. Zhao, and D. G. Truhlar, Computational Thermochemistry: Scale

Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic

Model Chemistries. J. Chem. Theory Comput. 2010, 6, 2872-2887.

doi.org/10.1021/ct100326h

32 M. Nakata, The MPACK (MBLAS/MLAPACK); A Multiple Precision Arithmetic Version of

BLAS and LAPACK, 2010, Version 0.6.7, http://mplapack.sourceforge.net/

33 Y. Hida, X. S. Li and D. H. Bailey, Library for Double-Double and Quad-Double

Arithmetic, NERSC Division Lawrence Berkeley National Laboratory, 2007.

https://doi.org/10.1063/1.443130
https://doi.org/10.1021/j100471a032
https://doi.org/10.1063/1.448963
https://doi.org/10.1016/0009-2614(71)85049-2
https://doi.org/10.1021/j100450a013
https://doi.org/10.1021/j100809a040

 68

	1. Introduction
	2. Theory
	2.1 Master equation
	2.1.1 Collisional relaxation energy transfer possibility
	2.1.2 Microcanonical flux coefficients
	2.2 Phenomenological rate constant
	2.3 Time evolution
	2.4 Reversibility and conservation

	3. Program Description
	3.1 General workflow
	3.2 The framework of source files
	3.3 Input files
	3.3.1 Options of input species properties
	3.3.2 Options of microcanonical flux coefficients

	4. Installation and Execution
	4.1. Dependencies
	4.2. Installation
	4.3. Execution
	4.3.1 Details in the executable script tumme
	4.3.2 The parallelism

	5. Standard Input File
	5.1 Two pre-definition subkeywords
	5.2 Keywords in the PARAMETER block
	5.3 Keywords in the REACTION block
	5.4 Keywords in the SPECIES block
	5.5 Polyrate, Gaussian and MSTor Output Files
	5.5.1 Polyrate output file
	5.5.2 Gaussian output file
	5.5.3 MSTor output file

	6. Detailed Implementation
	6.1 Overview of all source files
	6.2 Normalization of the energy transfer kernel
	6.3 Bound isomers to CSE modes one-to-one.
	6.4 Handling the merger condition
	6.5 High-precision dynamic libraries

	7. Test Runs
	7.1 2-methylhexyl radical single-channel unimolecular dissociation
	7.2 2-methylhexyl radical multi-channel unimolecular dissociation
	7.3 Toluene + OH radical ipso- site addition reaction
	7.4 Toluene + OH radical addition reactions: TST
	7.5 Toluene + OH radical addition reactions: VTST
	7.6 H2CO + OH radical abstraction reaction

	8. Bibliography of TUMME research articles
	9. Version History of TUMME
	10. References

