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ABSTRACT. TUMME (Tsinghua University Minnesota Master Equation solver) is a computer 

program for setting up and solving master equations for chemical kinetics of unimolecular and 

bimolecular reactions. The master equation is discretized in terms of reactant energy bins, and rate 

constants are calculated from chemically significant eigenmodes. TUMME has interfaces to 

Gaussian, Polyrate, and MSTor output files that allow the master equation code to provide the 

microcanonical flux coefficients needed for the kernel of the master equation as calculated by 

conventional transition state theory (TST), variational transition state theory (VTST) with various 

tunneling methods, or multi-structural or multi-path VTST (MS-VTST/SCT or MP-VTST) with 

various tunneling methods. The tunneling methods supported include small-curvature tunneling 

(SCT), large-curvature tunneling (LCT), and microcanonical optimized multidimensional 

tunneling (OMT). For mechanisms involving only unimolecular isomerization (no bimolecular 

pairs), TUMME 3.1 solves a conservative master equation for both rate constants and time-

dependent energy-bin populations. For mechanisms involving bimolecular pairs, TUMME 3.1 

can solve two kinds of master equation: (i) a nonconservative master equation for calculating rate 

constants of bimolecular reactions and (ii) a conservative master equation that includes 

bimolecular association in the transition matrix and that can be used for calculating the time 

evolution of the concentration of a pseudo-first-order bimolecular reactant. TUMME is written in 

double precision with Python 3; quadruple and octuple precision is also available for some subtasks in 

C++. The Python code can run in serial or parallel (MP or MPI), and C++ code can run on a single 

processor or on multiple processors with OpenMP. The program includes a manual and a tutorial. 

 

License:  

   TUMME 3.1 is licensed under the Apache License, Version 2.0. 

   The manual of TUMME 3.1 is licensed under CC-BY-4.0. 

   Publications of results obtained with the TUMME 3.1 software should cite the program and 

at least one of the articles describing the program.  

 

Reference to the program: R. M. Zhang, X. Xu, and D. G. Truhlar, TUMME 3.1, program 

reference and DOI available at https://zenodo.org 
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References to articles describing the program: See page 64.  
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1. Introduction 

The time development of a chemical reaction mechanism involving several species and/or 

several states can be approximately described as a stochastic process and in particular as a 

Markov chain. It has long been recognized that the time evolution of species concentration 

according to a give mechanism can be simulated by a multi-state master equation, and that 

chemical reaction rate constants can be extracted by eigenanalysis of such a master equation.1 

A master equation is a set of coupled ordinary differential equations with time as the 

independent variable. If all chemical species are at internal equilibrium, the dependent 

variables are the concentrations of the chemical species. Of more interest here is the case in 

which internal-state nonequilibrium is allowed, then the independent variables are the 

concentrations of chemical species in individual internal states or, more commonly, the 

concentrations of chemical species summed over bins of internal states. An especially powerful 

method, applicable to all unimolecular processes and under many conditions extendable to 

second-order reactions, is to linearize the master equation in the various concentrations so the 

eigenvalues have units (s-1) of unimolecular rate constants or pseudo first-order rate constants, 

and the rate constants can be related to the slowest eigenvalues.2  

Because the master equation is especially powerful for modeling nonequilibrium effects, 

and because nonequilibrium effects are more important in unimolecular reactions than most 

bimolecular reactions (with bimolecular association reactions being the exception because they 

are the reverse of unimolecular reactions), master equations have found their main use in 

unimolecular reactions. Most modern theoretical treatments of unimolecular reactions make 

the Rice-Ramsperger-Kassel assumption3 ,4  that the rate of a unimolecular reaction depends 

only on the total energy content (E) of the molecule. In this case the internal-state bins of each 

species are specified by a single variable E, and the treatment is sometimes called a 1-D, 

energy-dependent master equation. TUMME is a computer program for setting up and solving 

1-D, energy-dependent master equations. In particular, the master equation is discretized in 

terms of chemical species in finite-width internal energy bins. In the present context, internal 

energy is the total vibrational–rotational energy. We note that some workers label the bins as 

grains or intervals.  

The extraction of chemical kinetics rate constants by eigenanalysis of 1-D, energy-

dependent master equations has come to be known as the method of chemically significant 

eigenmodes (CSE theory), and its use for the treatment of complex mechanisms has been 

greatly developed and clarified in recent years; we will build on this work, in particular using 

the method of Georgievskii et al.5 This method is applicable to unimolecular isomerization and 

dissociation reactions proceeding from one or multiple isomers. (In this manual, well and 

isomer are synonyms.) For the case where the concentrations of the bimolecular reactants do 

not change significantly on the relaxation time scale, association reactions from bimolecular 

pairs can also be considered. The resulting rate constants depend on temperature T and pressure 

p. 

This program is written in Python 3 utilizing C++ high-precision dynamic libraries. For 

running multiple combinations of T and p, the execution can be parallelized on a single node 

using MP or across multiple nodes using MPI. The program can be run in double precision, 

quadruple, or octuple precision.  

A key feature of the TUMME program is that it is interfaced to the Polyrate program for 

calculating rate constants and to the MSTor program for the treatment of torsional 

anharmonicity. By reading the minimum energy path and the transmission possibilities from 

Polyrate and reading the multi-structural torsional density of states from MSTor, this program 

can use pressure-independent MS-VTST/SCT rate constants for elementary reactions as input 

data for the pressure-dependent master equation solver for complex reaction systems.  
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2. Theory 

TUMME can treat both unimolecular reactions and bimolecular reactions, but 

bimolecular reactions are treated only in the limit of pseudo-first-order kinetics. TUMME can 

treat two kinds of master equation, with the difference being the way that one treats the 

bimolecular pairs. One kind of master equation is conservative (also called reversible or 

homogeneous); this kind of master equation leads to equilibrium. The other kind of master 

equation is nonconservative (also called irreversible or inhomogeneous); for mechanisms 

involving unimolecular dissociation, this kind of master equation leads to all isomers 

vanishing because one includes the dissociation reactions but not the reverse association 

reactions. If there are no bimolecular species in the mechanism, the master equation is always 

conservative. For mechanisms involving bimolecular pairs, TUMME uses the 

nonconservative master equation to extract phenomenological rate constants and uses the 

conservative master equation to calculate the time evolution of concentrations and energy-

bin populations. 

        Here we only give a brief review of the theory. For more details, the user should refer to 

ref. 26 for the case of only unimolecular reactions and to ref. 28 for the case where 

bimolecular reactions are included. 

2.1 Master equation 

       If we collect the microscopic concentrations of the isomers in their energy bins into a 

single vector y (with dimension of 𝑁y), and if we treat the bimolecular pairs by means of an 

inhomogeneous term, we can write the discrete master equation as an inhomogeneous 

equation in the following way 

 
d𝐲

d𝑡
= −𝐖𝐲 + 𝐁𝐬 

(1) 

where t is time, s is the macroscopic concentration vector of bimolecular pairs, B is the 

association reaction flux coefficient matrix, and W is the transition matrix given by 

 𝐖 = 𝐊̂ + 𝐏 (2) 

where 𝐊̂ is the unimolecular chemical reaction flux coefficient matrix including isomerization 

and dissociation (the caret is used to distinguish reactive flux coefficients, which will have 

carets, from rate constants, which will not), and 𝐏 is the collisional energy-relaxation matrix. 

We transform W to a symmetric matrix G with positive eigenvalues according to  

 𝐆 = 𝐅−1𝐖𝐅 (3) 

where F is a diagonal matrix with diagonal elements  

 𝐹𝑖 = √𝜌𝛾(𝐸𝜂)exp(−𝛽𝐸𝜂) 
(4) 

where i is the state index; 𝛾 is the index of isomers; 𝜂 is the index of each energy bin; 𝜌 is the 

electronic-rotational-vibrational density of state; 𝛽is 1/kB𝑇. This transformation leads to the 

following symmetrized master equation 

 
d𝐲̃

d𝑡
= −𝐆𝐲̃ + 𝐁̃𝐬  

(5) 

with 𝐲̃ = 𝐅−1𝐲 and 𝐁̃ = 𝐅−1𝐁 . 
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2.1.1 Collisional relaxation energy transfer possibility 

In TUMME, we use the “exponential-down” model to describe the relaxation of isomers by 

collisions with a bath gas; this model assumes that the probability of a collision changing the 

energy of isomer 𝛾 from initial energy 𝐸𝜂´ to final energy 𝐸𝜂 is   

 
𝑃𝛾(𝜂|𝜂´) =

{
 
 

 
   𝐴(𝐸𝜂´)𝑒

−
𝐸𝜂´−𝐸𝜂

⟨Δ𝐸d⟩(𝐸𝜂′)                                          for 𝐸𝜂′ ≥ 𝐸𝜂

[𝐴(𝐸𝜂) 𝑒
−
𝐸𝜂−𝐸𝜂´
⟨Δ𝐸d⟩(𝐸𝜂)] 

𝜌𝛾(𝐸𝜂)𝑒
−𝛽𝐸𝜂

𝜌𝛾(𝐸𝜂′)𝑒−𝛽𝜂´
            for 𝐸𝜂′ < 𝐸𝜂

 

 

(6) 

2.1.2 Microcanonical flux coefficients 

In the following part, we use 𝜌 to denote the electronic-rotational-vibrational density of 

states, of which the Laplace transform is the electronic-rotational-vibrational partition 

function (𝑄𝜙), and we use 𝜓 to denote the electronic-rotational-vibrational density of states 

including relative translation, of which the Laplace transform is the electronic-rotational-

vibrational partition function (𝑄𝜙) times the relative translational partition function per unit 

volume (Φrel).  

(1) Based on the framework of RRKM theory  

Unimolecular reaction. For a unimolecular reaction, the microcanonical flux coefficient at 

energy 𝐸𝜂 from configuration 𝛾 to configuration 𝜙 (an isomer or a bimolecular pair) is:  

 𝑘̂
MS−VTST/SCT

(𝛾 → 𝜙 | 𝐸𝜂) = 𝜅
SCT(𝐸𝜂)Γ

VTST
(𝐸𝜂)𝐹

MS(𝐸𝜂)
𝑁𝛾→𝜙
‡,SSHO

(𝐸𝜂)

ℎ𝜌𝛾
SSHO(𝐸𝜂)

 (7) 

where MS denotes that multi-structural effects and/or torsional anharmonicity are included; 

VTST denotes variational transition state theory, which may be canonical variational theory 

(CVT) or microcanonical variational theory (𝜇VT); SCT denotes small-curvature tunneling; 

𝜅SCT, ΓVTST, and 𝐹MS are transmission coefficients; SSHO denotes single-structural harmonic 

oscillator or single-structural quasiharmonic oscillator; and a diesis (‡) denotes a conventional 

transition state, i.e., that the transition state properties are evaluated at a dividing surface 

passing through a saddle point on the potential energy surface. 𝑁 denotes sum of states or 

cumulative reaction possibility. 𝜌 denotes the electronic-rotational-vibrational density of state.  

The transmission coefficients are approximated as follows. The microcanonical MS 

anharmonicity coefficient is evaluated by  

 𝐹MS(𝐸𝜂) =
𝑁𝛾→𝜙
‡,MS(𝐸𝜂)

𝑁𝛾→𝜙
‡,SSHO(𝐸𝜂)

𝜌𝛾
SSHO(𝐸𝜂)

𝜌𝛾
MS(𝐸𝜂)

    (8) 

the microcanonical tunneling transmission coefficient is evaluated by 

 𝜅SCT(𝐸𝜂) =
𝑁𝛾→𝜙
‡,MS/SCT

(𝐸𝜂)

𝑁𝛾→𝜙
‡,MS(𝐸𝜂)

  (9) 

and the microcanonical recrossing transmission coefficient is approximated evaluated by  

 ΓVTST(𝐸𝜂) ≈
𝑁𝛾→𝜙
VTS,SSHO/SCT

(𝐸𝜂)

𝑁𝛾→𝜙
‡,SSHO/SCT

(𝐸𝜂)
 (10) 

Note that the numerator of Eq. (10) is evaluated at a variational transition state, and the 

denominator is evaluated at a conventional transition state. When 𝑁𝛾→𝜙(𝐸𝜂) is marked with 
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tunneling superscript in Eqs. (9) and (10), it is the cumulative reaction probability (CRP); 

otherwise, it is the sum of states (SoS). When CVT specified, for each temperature, TUMME 

will choose a variational transition state along the reaction coordinate according to the 

maximum Gibbs free energy barrier. When 𝜇VT specified, for each energy bin, the program 

will choose a variational transition state along the reaction coordinate according to the 

minimum SoS. 

The cumulative reaction probability is evaluated as the convolution of the transmission 

probability with the density of states of the transition state: 

 𝑁𝛾→𝜙
VTS,MS/SCT

(𝐸𝜂) = ∫ d𝐸𝑃𝛾→𝜙
SCT (𝐸)𝜌𝛾

VTS,MS(𝐸𝜂 − 𝐸)
𝐸𝜂−𝑉a

G∗

max{𝐸0,𝛾,𝐸0,𝜙}−𝑉a
G∗

 (11) 

where 𝐸 is the energy (which can be negative) in the reaction coordinate at the VTS, 𝑃𝛾→𝜙
SCT  is 

the small-curvature tunneling (SCT) approximation to the transmission probability of the 

reaction between 𝛾 and 𝜙, 𝜌𝛾→𝜙
VTS,MS is the multi-structural torsional electronical-vibrational-

rotational density of states of the variational transition state connecting 𝛾 and 𝜙, and 𝐸0
VTS

, 

𝐸0,𝛾 and 𝐸0,𝜙 are the enthalpy respectively of the variational transition state, of isomer 𝛾, and 

of isomer or bimolecular pair 𝜙 at 0 K. The transmission probability 𝑃𝛾→𝜙
SCT  is evaluated by the 

SCT method implemented in Polyrate. The multi-structural density of states 𝜌𝛾
VTS,MS is 

evaluated as the inverse Laplace transform of the multi-structural torsional partition function 

with the first-order steepest descent method implemented in MSTor6 7 8.  

Bimolecular reaction. For a bimolecular reaction, we use the general microcanonical flux 

coefficients Δ𝑘̂(𝐸) instead of 𝑘̂(𝐸); Δ𝑘̂(𝐸) is the following product of 𝑘̂(𝐸) and the 

Boltzmann distribution: 

 Δ𝑘̂
MS−VTST/SCT

(𝜈 → 𝛾| 𝐸𝜂) = ΓVTST(𝐸𝜂)𝜅
SCT(𝐸𝜂)𝐹

MS(𝐸𝜂)
𝑁𝜈,𝛾
‡,SSHO(𝐸𝜂)𝑒

−𝛽𝐸𝜂Δ𝐸

ℎΦrel𝑄𝜈
SSHO

 
(12) 

where Δ𝐸 is the width of an energy bin, Φrel denotes relative translational partition function 

per unit volume, ΓVTST(𝐸𝜂) and 𝜅SCT(𝐸𝜂) are the same as in Eqs (9) and (10), and 𝐹MS(𝐸𝜂) 

is defined as  

 𝐹MS(𝐸𝜂) =
𝑁𝜈,𝛾
‡,MS(𝐸𝜂)

𝑁𝜈,𝛾
‡,SSHO(𝐸𝜂)

 
𝑄𝜈
SSHO(𝐸𝜂)

𝑄𝜈
MS(𝐸𝜂)

    (13) 

(2) Based on the inverse-Laplace transform 

TUMME also provides an option for user to calculate the microcanonical flux 

coefficients according to the inverse-Laplace transform to the canonical flux coefficients 

(high-pressure-limit rate constants).  

Unimolecular reaction. For a unimolecular reaction 𝛾 → 𝜙, the canonical flux coefficients 

are  

 𝑘̂(𝛾 → 𝜙|𝑇) =
1

𝑄𝛾
∫ 𝑘̂(𝛾 → 𝜙|𝐸)𝜌𝛾(𝐸)𝑒

−𝛽𝐸𝑑𝐸
∞

0

=
1

𝑄𝛾
ℒ[𝑘̂(𝛾 → 𝜙|𝐸)𝜌𝛾(𝐸)] 

(14) 

Thus, 

 𝑘̂(𝛾 → 𝜙|𝐸) =
1

𝜌𝛾(𝐸)
ℒ−1[𝑘̂(𝛾 → 𝜙|𝑇)𝑄𝛾](𝐸) (15) 

We fit the canonical flux coefficients by a biexponential form as 
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 𝑘̂(𝛾 → 𝜙|𝑇) = 𝐴1 (
𝛽1
𝛽
)

𝑛1

𝑒−𝛽𝐸a1 +𝐴2 (
𝛽2
𝛽
)

𝑛2

𝑒−𝛽𝐸a2  (16) 

One can get the microcanonical flux coefficients for 𝛾 → 𝜙 according to Eqs (15) and (16) as 

 

𝑘̂(𝛾 → 𝜙|𝐸𝜂) =
𝐴1𝛽1

𝑛1

𝜌𝛾(𝐸𝜂)Γ(𝑛1)
∫ 𝜌𝛾(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a1)

𝑛1−1
θ(𝜀 − 𝐸a1)

𝐸𝜂

0

d𝜀

+
𝐴1𝛽1

𝑛2

𝜌𝛾(𝐸𝜂)Γ(𝑛2)
∫ 𝜌𝛾(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a2)

𝑛2−1θ(𝜀 − 𝐸a2)
𝐸𝜂

0

d𝜀 

(17) 

Bimolecular reaction. For the bimolecular reaction 𝜈 → 𝛾, the canonical flux coefficients are  

 𝑘̂(𝜈 → 𝛾|𝑇) =
1

Φrel𝑄𝜈
∫ 𝑘̂(𝜈 → 𝛾|𝐸)𝜓𝜈(𝐸)𝑒

−𝛽𝐸d𝐸
∞

0

=
1

Φrel𝑄𝜈
ℒ[𝑘̂(𝜈 → 𝛾|𝐸)𝜓𝜈(𝐸)] 

(18) 

The relative translational partition function is  

 Φrel = (
2𝜋𝑚𝜈

ℎ2𝛽
)
3/2

 
(19) 

where 𝑚𝜈 is the reduced mass. Thus, 

 𝑘̂(𝜈 → 𝛾|𝐸) =
1

𝜓𝜈(𝐸)
ℒ−1[𝑘̂(𝜈 → 𝛾|𝑇)Φrel𝑄𝜈](𝐸) 

(20) 

We fit the canonical flux coefficients by a biexponential form as 

 𝑘̂(𝜈 → 𝛾|𝑇) = 𝐴1 (
𝛽1
𝛽
)

𝑛1

𝑒−𝛽𝐸a1 +𝐴2 (
𝛽2
𝛽
)

𝑛2

𝑒−𝛽𝐸a2  (21) 

One can get the microcanonical flux coefficients for 𝜈 → 𝛾 according to Eqs (19), (20), and 

(21) as  

 

𝑘̂(𝜈 → 𝛾|𝐸𝜂) =

1
ℎ3
(2𝜋𝑚𝜈)

3
2𝐴1𝛽1

𝑛1

𝜓𝜈(𝐸𝜂)Γ (𝑛1 +
3
2
)
∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a1)

𝑛1+
1
2θ(𝜀 − 𝐸a1)

𝐸𝜂

0

d𝜀 

+

1
ℎ3
(2𝜋𝑚𝜈)

3/2𝐴2𝛽2
𝑛2

𝜓𝜈(𝐸𝜂)Γ (𝑛2 +
3
2)

∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a2)
𝑛2+

1
2θ(𝜀 − 𝐸a2)

𝐸𝜂

0

d𝜀 

(22) 

and the general microcanonical flux coefficients  

Δ𝑘̂(𝜈 → 𝛾|𝐸𝜂) =
𝑒−𝛽𝐸𝜂Δ𝐸

Φrel𝑄𝜈
SSHO

[

1
ℎ3
(2𝜋𝑚𝜈)

3
2𝐴1𝛽1

𝑛1

Γ (𝑛1 +
3
2
)

∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a1)
𝑛1+

1
2θ(𝜀 − 𝐸a1)

𝐸𝜂

0

d𝜀 

+

1
ℎ3
(2𝜋𝑚𝜈)

3/2𝐴2𝛽2
𝑛2

Γ (𝑛2 +
3
2
)

∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a2)
𝑛2+

1
2θ(𝜀 − 𝐸a2)

𝐸𝜂

0

d𝜀] 

(23) 

 

2.2 Phenomenological rate constant 

       The phenomenological rate constants are extracted from the inhomogeneous 

(irreversible) master equation (5) based on CSE theory. The derivation is complicated and 

lengthy, so we do not present here; users could refer to ref. 26 for the formula and derivation. 
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2.3 Time evolution   

      The irreversible master equation (5) cannot be solved directly since the bimolecular 

concentrations are unknown. Here in order to introduce more equations to describe the source 

term, we partition bimolecular pairs into two kinds, the reversible reactants and the 

irreversible products. For the bimolecular reactant, we introduce the pseudo-first order 

assumption; for the bimolecular product, we assume the bimolecular concentration constantly 

as zero. Supposing there are r reactant bimolecular pairs, thus the Eq (1) becomes 

 
d𝐲

d𝑡
= −𝐖𝐲 + 𝐁∗𝐬∗ (24) 

where 𝐁∗ and 𝐬∗only contain r bimolecular pairs and each one bimolecular pair (A + B)  has 

one control equation as  

 
d𝑛A

(𝜈)

d𝑡
= −(𝑛B

(𝜈)Σ𝑖𝐵𝑖𝜈
∗ )𝑛A

(𝜈) + Σ𝑖𝑘̂(𝛾 → 𝜈 | 𝐸𝜂)𝑦𝑖 
(25) 

where the index 𝜈 ranges over 1 to r, and the macroscopic concentration 𝑛B
(𝜈)

 is assumed to 

be in excess as compared to the macroscopic concentration 𝑛A
(𝜈)

 and taken as a constant. 

Combined with Eq (25), the inhomogeneous master equation (24) can be transformed into the 

following homogeneous master equation: 

  (26) 

where 

 𝑦𝑖
∗ = {

𝑦𝑖                             0 < 𝑖 ≤ 𝑁y

𝑛A
(𝜈)                    𝑁y < 𝑖 ≤ 𝑁y + 𝑟

 (27) 

Analogy to Eq (5), Eq (26) can be symmetrized as  

 
d𝐲̃∗

d𝑡
= −𝐆∗𝐲̃∗ 

(28) 

by a diagonal matrix 𝐅∗ with elements as  

 𝐹𝑖𝑖
∗ =

{
 
 

 
 √𝜌𝛾(𝐸𝜂)exp(−𝛽𝐸𝜂);                            0 < 𝑖 ≤ 𝑁y

√
𝑘̂(𝛾′ → 𝜈| 𝐸𝜂′)

𝐵𝑖′𝜈𝑛B
(𝜈)

𝜌𝛾′(𝐸𝜂′)𝑒
−𝛽𝐸𝜂′  ;   𝑁y < 𝑖 ≤ 𝑁y + 𝑟

 (29) 

where the index 𝑖′ is an arbitrary value among 1 and 𝑁y. The result can be solved as  

 𝐲∗(𝑡) = 𝐅∗𝐔∗𝐄∗(𝐔∗)T(𝐅∗)−1𝐲0
∗ (30) 

where 𝐔∗ is the eigenvector matrix of symmetric transition matrix 𝐆∗, 𝐄∗ is a diagonal matrix 

with elements 𝑒−𝐿𝜆
∗ 𝑡  where 𝐿𝜆

∗  is the eigenvalue of matrix 𝐆∗, and 𝐲0
∗ is the initial condition. 

2.4 Reversibility and conservation 
Here we clarify some concepts. The distinction between “reversible/conservative” and 

“irreversible/nonconservative” is made according to whether the transition matrix 𝐖 contains 

all of the microscopic processes, i.e., whether the transition matrix 𝐖 has a zero eigenvalue. If 

a transition matrix 𝐖 has a zero eigenvalue, we call it reversible or conservative; otherwise we 

call it irreversible or nonconservative.  

In the calculation of phenomenological rate constants, all bimolecular pairs are treated 

equally in the inhomogeneous term, i.e., we do not separate reactant bimolecular pairs from 

product bimolecular pairs. In the calculation of the time evolution, in order to transform the 

inhomogeneous equation into a homogeneous one, we partition bimolecular pairs as reactants 

and products, we use pseudo-first order assumption for bimolecular reactants. And we treat 

bimolecular products as a sink. 
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3. Program Description 

3.1 General workflow 

TUMME is written in Python 3. It can run in three different modes: serial, multi-process (MP) 

and message passing interface (MPI). Serial mode uses a single processor, whereas the latter 

two modes involve parallel execution on multiple processors by running various temperature–

pressure pairs (T, p) simultaneously. The workflow is depicted in Fig. 1. The input file is 

described in Section 3. The general workflow can be summarized as follows. 

1) First, the program reads a standard input file containing information about the species 

and the reactions in the mechanism and a variable determining the mode in which to 

execute the program. If assigned in the standard input file, some output files of Polyrate 

will be read. This part is done in tumme_readin.py.  

2) After reading all the input information, the program will enter the initialization module 

to initialize (pre-set) some variables and to calculate the density of states. Alternatively, 

depending on settings in the input, the density of states of some species may be read 

from the MSTor output file. This part is done in tumme_pre.py. 
3) Then the program will jump into the solver module shown as the standard process in 

Fig. 1. From this point on, the precision (double, quadruple or octuple) and mode (serial, 

MP, or MPI) may vary according to users’ choice. This part is done in tumme_solver.py. 

 

 
Figure 1. Workflow of the program 
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3.2 The framework of source files 

 

Figure 2. Framework of all source files 

The main body of TUMME is written by Python 3 and is located in the src/ folder. Because 

the accurate calculation of eigenpairs of the transition matrix often requires greater than 

double precision, we also provide options for quadruple and octuple precision as 

implemented by C++. The high-precision library, based on the simplified multi-precision 

math library mpack and multi-precision float library qd, are compiled into dynamic libraries 

to let the Python process call them. Fig. 2 give a general picture showing how the source files 

work together. Section 6 of this manual (Detailed implementation) gives further information 

about each of the files. 

 

3.3 Input files 

When the code is run, a standard input file which will be elaborated in section 5 will be read. 

This standard input file is compulsory for any kind of job. Besides, TUMME provides some 

features to let user use some advanced options. In those cases, some extra input files may be 

needed. For clarity, we listed here what kinds of options user can access and the required 

extra files for those options. The name of the standard input file is arbitrary; we recommend 

that it should end with the suffix “.in”.  

3.3.1 Options of input species properties 

In a master equation calculation, all species properties involved should be input for the 

program, including the coordinate geometries, frequencies, energies, symmetry number and 

so on. In TUMME, we provided three ways for user to input the required species information:  
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➢ Read from the SPECIES block in the standard input file of TUMME, in this 

case, only the standard input file is needed. 

➢ Read from the standard output file of Gaussian9, in this case, the standard output 

file of Gaussian is needed.  

➢ Read from the standard output file of Polyrate10, in this case, the standard output 

file of Polyrate is needed.  

The priority for the program to read species properties is  

Polyrate standard output file > Gaussian standard output file > SPECIES block 

Frequencies of species calculated from diagonalizing the mass-scaled Hessian matrix should 

always be scaled a factor to correct the electronic potential energy surface error and the 

harmonic approximation error. Frequencies in Polyrate standard output is already scaled 

while in Gaussian standard output is unscaled. Thus, if frequencies for a species are read 

from a Gaussian standard output file, user should always set the subkeyword FREQSCALE.  

See section 5 for the detailed description. 

 

3.3.2 Options of microcanonical flux coefficients 

3.3.2.1 Based on the framework of RRKM theory 

     The code can calculate the RRKM microcanonical flux coefficients under single-structural 

harmonic oscillator (SSHO) approximation (i.e., microcanonical conventional transition state 

theory flux coefficients in the harmonic approximation) without any other files (i.e., without 

any files beyond the standard input file). However, a key feature of TUMME is that – for 

reactions with an intrinsic barrier – the code can also calculate microcanonical flux 

coefficients that include anharmonicity, recrossing effects (i.e., variational effects), and 

tunneling. We list the available options for microcanonical flux coefficients in Table 1. This 

table shows that the program is capable of using any combination of these three effects. 

     We emphasize that TUMME does not read any microcanonical flux coefficients from 

external files; all flux coefficients are calculated internally. However, to go beyond 

microcanonical conventional transition state theory in the harmonic approximation, TUMME 

reads the necessary data from output files created by Polyrate and/or MSTor. These files must 

be available prior to the TUMME run; TUMME does not involve those packages, not does it 

run or spawn jobs involving those codes.  

     Note that whenever we refer to Polyrate output files, the meaning also includes files 

produced by Polyrate interfaces, for example, it could be a file produced by Gaussrate11, 

which is an interface of Polyrate with Gaussian, or it could be a file produced by 

NWChemRate12, which is an interface of Polyrate with NWChem.  

     It should be clearly pointed out that even though the keywords of these three effects are 

listed and set independently, effects per se are coupled with each other. E.g., the tunneling 

effect can have impact on the recrossing effect. Please refer to Ref.26 for details in theory.    

     TUMME only reads the following information from Polyrate output files: 

• geometries, frequencies, electronic degeneracy, and energies of reactants, 
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conventional transition states, products, and all of generalized transition states along 

the minimum energy reaction path (MEP). 

• zero-curvature transmission possibilities [PZCT(E)] and small-curvature transmission 

possibilities [PSCT(E)]    

The code will try to read all the above information. The portion of this information that will 

be used will depend on the specified keywords; other information is not used. The code will 

try to search particular key-strings to read the information (see Section 5.5.1); for example, if 

"transmission probability" is located in the file, the code will automatically find and 

read PSCT(E) and PZCT(E) respectively.  

Table 1. Features in microcanonical flux coefficients 

Effect Method Compulsory keyword Compulsory extra files 

Anharmonicity 
SSHOa  Do not set MSTFILE No extra file is needed. 

MSb set MSTFILE The standard output file of MSTor  

Recrossing 

TSTc set VARIATION as tst No extra file is needed  

CVTd set VARIATION as cvt The standard output file of Polyrate  

𝜇VTe set VARIATION as muvt The standard output file of Polyrate  

Tunneling 

LCTf set TUNNELING as lct The standard output file of Polyrate  

𝜇OMTg set TUNNELING as omt The standard output file of Polyrate  

SCTh set TUNNELING as sct The standard output file of Polyrate  

ZCTi set TUNNELING as zct The standard output file of Polyrate  

Eckart j set TUNNELING as Eckart No extra file is needed. 

 No tunneling Do not set TUNNELING No extra file is needed. 

a single-structure harmonic oscillator.13 If frequencies are scaled before input, the approximation will 

be the quasiharmonic oscillator (QHO), which means that one uses the harmonic oscillator formulas 

with scaled or other effective frequencies. (Users should scale frequencies themselves prior to 

inputting them; TUMME has no keyword to scale the frequencies.) Note that in the formulas of 

Section 2.1.2, we use “HO” to denote either the harmonic oscillator approximation or the 

quasiharmonic oscillator approximation. 
b multi-structural torsional approximation:14 MS-TST15 or MS-CVT15 or MS-𝜇VT16 
c TST denotes conventional TST13 
d a VTST option for canonical variational theory17,18 or MS-CVT15. For each temperature, the program 

places the variational transition state at the point along the reaction path that maximizes Gibbs free 
energy of activation. This selected variational transition state will be used for the microcanonical flux 

coefficient for all energy bins.  

e a VTST option for microcanonical variational theory19 ,20  or MS-𝜇VT 8. For each energy bin, the 

program places the variational transition state at the point along the reaction path that minimizes the 

cumulative reaction probability or sum of states.  

f large-curvature tunneling21 

g  microcanonical optimized multidimensional tunneling 
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h small-curvature tunneling22,23,24 
i zero-curvature tunneling25 
j Eckart tunneling26 

 

      Here we explain the difference between the CVT and 𝜇VT options in TUMME for the 

variational effect. To begin we clarify two concepts, the generalized transition state and the 

variational transition state. The dividing surfaces through points along the MEP are 

generalized transition states. Only some of these are variational transition states. The actual 

structures on the MEP are generalized transition structures. Only some of these are 

variational transition structures. Generalized transition states and generalized transition 

structures that correspond to local maxima of the generalized free energy of activation for a 

given temperature are canonical variational transition states and canonical variational 

transition structures. Generalized transition states and generalized transition structures that 

correspond to a local minimum of the sum of states (or cumulative reaction probability) up to 

energy E are microcanonical variational transition states and microcanonical variational 

transition structures for that energy. Both canonical variational transition states and 

microcanonical variational transition states are called variational transition states. The 

difference between the CVT and 𝜇VT options is in the location of the variational transition 

state. If the standard output from Polyrate contains the information about the generalized 

transition states (geometries, frequencies, and energies are read; the electronic degeneracy 

and symmetry number are set equal to that of the conventional transition state), the code will 

read them and calculate the generalized Gibbs free energy of activation or the sum of 

vibrational-rotational states (or cumulative reaction probability) along the reaction path 

according to the CVT or 𝜇VT option. Under both options, TUMME computes microcanonical 

flux coefficients as functions of total energy. However, with the CVT option, it places the 

variational transition state at the location of the canonical variational transition state for the 

temperature in question, whereas with the 𝜇VT option it places it at the minimum of the sum 

over vibrational-rotational states (or cumulative reaction probability) for the total energy 

under consideration. The free energies of activation, the densities of vibrational-rotational 

states, and the sum of vibrational-rotational states (or cumulative reaction probability) of the 

generalized transition states are calculated by quasiharmonic oscillator-rigid rotor 

approximation. 

 

 

3.3.2.2 Based on the inverse-Laplace-transform to the high-pressure limits 

       For a specific elementary reaction, the high-pressure limit of rate constants (also called 

the canonical flux coefficient) equals the Laplace transform of the microcanonical flux 

coefficient, i.e., one can first get the canonical flux coefficients and then calculate the 

microcanonical one according to the inverse Laplace transform. In order to make TUMME 

more powerful and flexible, we also provide the inverse-Laplace-transform option for users. 

The inverse-Laplace transform option can be used by assigning INVLAPLACE subsection in 

the BARRIERRXN or BARRIERLESSRXN section. 
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4. Installation and Execution 

4.1. Dependencies 

Table 2. Environmental requirements of TUMME 3.1 

 

Compulsory 

          >=Python 3.7.3 

  >=Numpy 1.16.2 

                               >=Numba 0.43.1 

                               >=Scipy 1.2.1 

Optional 
GNU compiler 

MPI Executor 

mpi4py module 

 

The program was developed and debugged under the environment of Anaconda3.2019.03 and 

we recommend that users install the latest Anaconda package. It should be possible to run serial 

and MP calculations in double-precision on a variety of platforms when the Python 

environment is set properly. We note though MPI calculations with high-precision libraries 

have only been developed and tested under Linux. Restated in terms of the above chart (Table 

2), we note that the compulsory part can be well run on various platform systems when the 

Python environment is well-set, and we note that the optional parts have only been developed 

and tested under Linux. 

4.2. Installation 

Table 2 gives the compulsory environments of the code. Provided that all compulsory 

environments set up properly, the program should run well in serial or MP mode in double 

precision. If the user wants to run it with MPI and/or with a quadruple-precision or octuple-

precision library, one or both the following two steps should be carried out.  

1) Install the python module mpi4py 

To run it in MPI mode, make sure you have an MPI environment in your system; this 

should contain a mpirun-like command. Furthermore, you should install the mpi4py 

Python package. The installation of mpi4py is straightforward, and users can refer to the 

official website https://mpi4py.readthedocs.io/en/stable/install.html . If something goes 

wrong when you install the mpi4py, try to install the latest Anaconda beforehand. 

2) Install the high-precision library  

User can install the high-precision library by directly executing a script named configure 

located in the root path of TUMME as 

                      ./configure       

4.2.1 Details in the configure script 

The high-precision libraries can be run in serial, or they can be run in parallel with MP or 

MPI. To run with a quadruple-precision or octuple-precision library, you need to install some 

libraries in the C++/ folder. We provide a script called configure which is located at the root 

https://mpi4py.readthedocs.io/en/stable/install.html
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folder of TUMME to help users compile the libraries. Usually, it can be automatically 

installed.  

If the script fails, the user can compile the libraries manually as follows. 

○1  Set the root path of TUMME  

            path=`pwd`           

○2  Install the qd library. 

      cd C++/qd/qd-2.3.7.1         
      ./configure –prefix  $path/C++/qd CXX=g++ CC=gcc FC=gfortran  
      make            
      make install          

○3  Install the mpack_dd libraries. 

      cd $path/C++/mpack_dd/src        

      make            

○4  Install the mpack_qd libraries. 

      cd $path/C++/mpack_qd/src        
      make            

○5  Install the high-precision library. 

      cd $path/C++/          
       make            
      # Users should modify the variable $ROOTPATH in Makefile of the high-   
      # precision library to be the absolute root path of the program. For   
      # example, if the root path is /app/TUMME 3.1, then user should find   
      # the makefile /app/TUMME_v3.1/C++/Makefile, and replace the sixth line   
      #                ROOTPATH =[replace this line]      
      # by the following line         
      #         ROOTPATH =/app/TUMME 3.1      

○6  Set environment variable for TUMME 

            echo "# environment variable of TUMME" >> ~/.bashrc   
      echo 'export PATH=$PATH:'$path'/bin' >> ~/.bashrc    

 

The library now works properly with the GNU compiler, but not with the Intel compiler. So, 

the user should make sure to use GNU compiler commands: gcc, g++, and gfortran. We 

have tested the compatibility of the high-precision library code with the 4.8.5, 4.9.2, 5.1.0, 

5.4.0, 6.1.0, 6.3.0, 7.2.0, 8.1.0, 8.2.0 and 9.2.0 versions of the GNU compiler. Other versions 

have not been tested but should also work well.   

      The folder example/2MH/highprecision/ contains benchmark outputs of the 

eigenvector in quadruple and octuple precision. To validate the high-precision library, the 

user can access this folder and run TUMME including print out of the CSE eigenvector (by 

setting EVECNUM as 1) in quadruple and octuple precision (by setting PRECISION as 

quadruple or octuple). Since this example is a single-well dissociation reaction, all values in 

the CSE eigenvector should have the same sign, and the absolute value should decrease as the 

energy bin increases. (In this manual, well and isomer are synonyms.) The value of the 

eigenvector in high-energy bins can reflect the precision of the floating number you used. 

When the value in high-energy bins oscillates between negative and positive signs, it is an 

indication that one needs higher precision. In octuple precision, over the energy bins in the 
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range 1–77 kcal/mol, the eigenvector values should have the same sign and the value should 

be of the order of magnitude of 10−64 in the ~77 kcal/mol energy bin. In quadruple precision, 

in energy bins over the approximate range 1~54 kcal/mol, the eigenvector values should have 

the same sign and the value of energy bin at ~ 54 kcal/mol should be of the order of 

magnitude of 10−32. If you used the high-precision option, but the values of high-energy bins 

oscillate at a magnitude of about 10−16, your high-precision library is not properly installed, 

and you should reinstall it.   
                                               

4.3. Execution 

       We provide an executable script called tumme to run the program located in the folder of 

bin/, so user can easily run TUMME in any directory as 

                             tumme param.in      

4.3.1 Details in the executable script tumme 

1) Read parallelism mode and number of processors from the standard input file. Users 

should specify the “#PARALLEL” and “#NPROC” values in the standard input file if a 

parallel scheme is adopted (refer to Section 5.1). The parallel scheme is designed for 

running multiple temperatures and multiple pressures. The set of (T, p) will be divided 

evenly and each processor will run its own subset. So, if you only run one temperature and 

one pressure, you should not use a parallel scheme.  
 

2) Execute python according to the parallelism. The general form of command to execute 

the program is:  
                 $mpi $python3 $path/tumme_main.py $input    

where $python3 is the command for Python 3; $path is the absolute path for the 

folder src/ of TUMME; and $input is the name of the standard input file.  

For the serial and MP runs, $mpi is a null string or spaces, e.g.  

             python3 /home/tumme/src/tumme_main.py param.in    

For the MPI runs, $mpi is ‘mpirun -np 4’-like string, e.g. 

      mpirun -np 4 python3 /home/tumme/src/tumme_main.py param.in   

4.3.2 The parallelism 

        The parallelism of the high-precision libraries in TUMME requires further clarification. 

The high-precision libraries are implemented in C++. In order to decrease the execution time, 
we utilized OpenMP to parallelize it. This use of OpenMP is independent of whether the 

program is run with the serial, MP, or MPI scheme in Python. MP and MPI are used for 

parallelizing the Python code, while OpenMP is used for parallelizing the C++ code. When the 
code is run in serial, MP, or MPI mode, the system will create nproc threads or processes 

running the Python code. Each thread or process will calculate its own subset of {(T, p)}. If the 
high-precision option is selected, each thread or process will call the C++ dynamic library and 

will further be parallelized into m threads by OpenMP. The user can control the value of m by 
setting the subkeyword OMPNUMTHREAD. If not set, the program will by default set m to be 

the total number of processors a node owns divided by NPROC. The total number of processors 
of a node will be obtained by Python using the os.cpu_count() command. This dynamic default 
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value will maximize the efficiency of a single-node calculation but may be inappropriate for 
multi-node computations because NPROC will not be the number of Python threads/processes 

running on a node. The user should change OMPNUMTHREAD according to the following rule: 
the total number of OpenMP threads created by the Python threads or processes on a node 
should not exceed the total number of processors on that node. 
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5. Standard Input File  

The input file is divided into blocks. Each block has sections, and some sections have 

subsections. All blocks, sections, and subsections have a start-keyword and an end-keyword. 

All blocks, sections, and subsections can have keywords that define values; we call this kind 

of keyword a subkeyword. In this text, keywords and subkeywords are in bold Arial font. 

        There are three kinds of subkeywords: string subkeywords, value subkeywords, and list 
subkeywords. All the start-keywords and list subkeywords have an end-keyword. An end-

keyword is equal to the corresponding start-keyword or list subkeyword with an added prefix 

END_, e.g., for a start-keyword PARAMETER, the end-keyword is END_PARAMETER. The 
end-keywords and end-subkeywords are not shown in Table 3, but they are shown in Tables 4–
6. 

       Only subkeywords can have a value, e.g., string, float, or list of floats. (Throughout the 

manual we shorten “floating point number” to “float”.) String values should not contain spaces. 
Floating point number subkeywords can accept formats like “1.234”, “.234”, “1.”, “.23E2”, 

“1.23E1”; it is not acceptable to replace “E” with “D”. Values and subkeywords are separated 
by a space. Subkeywords can have a suffix string to tell the program the unit of the values, e.g.,  
PRESSURE[torr]. The available suffix strings for units are:  

energies [kcal/mol] 

[kJ/mol] 

[a.u.] 

[eV] 

[cm-1] 

                        frequency        [cm-1] 

                                                [a.u.] 

pressures [bar] 

[atm] 

[torr] 

[a.u.] 

distances [A] 

[bohr] 

temperature [K] 

                        [a.u.] 

mass  [amu] 

                        [a.u.] 

time  [s] 

                        [ms] 

                        [ps] 

                        [fs] 

                        [a.u.] 

rate constant    [cm3/molecule/s] 

                        [1/s] 
The brackets are required. If the unit is not specified, the unit will default to atomic units.  

        All start-keywords, end-keywords, and subkeywords are case insensitive. We use upper 

case in the manual, but in the actual input file, they can be lower case or mixed case. But 

letters in a unit string and a value are case sensitive, so the user should use precisely the cases 

shown in this manual.  
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The standard input file has two pre-definition subkeywords, #PARALLEL and 

#NPROC, and three blocks: PARAMETER block, REACTION block, and SPECIES block.   

#PARALLEL and #NPROC define the parallel mode and specify the number of 

processors. If the two pre-definition subkeywords do not appear, then serial mode is adopted.  

The PARAMETER block sets all parameters needed for solving the master equation 

except for the elementary reactions and species properties.  

The REACTION block specifies the properties of the elementary reactions.  

The SPECIES block defines all species properties. 

The PARAMETER block should appear before the REACTION block. The REACTION 

block should appear before the SPECIES block. The PARAMETER block and REACTION 

block are compulsory, but the SPECIES block is optional.  

       The user has three ways to provide species properties to the program: from a Polyrate  

output file, from a Gaussian output file, and/or from the SPECIES block. The priority for the 

program to read species properties is  

Polyrate output file > Gaussian output file > SPECIES block 

In the REACTION block, if PYRFILE (a subkeyword to specify the name of the Polyrate 

output file) is defined for a BARRIERRXN section (a subkeyword to specify an elementary 

reaction that has a barrier), the species will be read from the Polyrate output file and be 

named according to the INFO string. When a species is read from a Polyrate output file, the 

species do not have to be defined in the SPECIES block. If it were redundantly defined 

anyway in the SPECIES block, all properties will be ignored except ROTSIGMA, 

OPTICALNUM, and MSTFILE, which are the three subkeywords for the rotational symmetry 

number, the optical-isomer number, and the name of MSTor output file. In the SPECIES 

block, if G09FILE is defined in a species section, then geometries, frequencies, symbols, 

rotational symmetry numbers, the imaginary frequency and energies will be read from the 

Gaussian output file; other properties e.g., name string, optical-isomer number, and MSTor 

file name string, will be read from the SPECIES block. If some species are read from 

Gaussian output files, the user should make sure that the zero of energy is consistent with 

those read from the SPECIES block.    

       Except #PARALLEL and #NPROC, any line started with # will be treated as a comment 

and skipped. Blank lines are acceptable in any place. 

       The general schematic of all keywords is presented in Table 3.  

 

Table 3. Keywords in the standard input file  

(excluding end-keywords) 

Keyword Keyword type   Default 

#PARALLEL String subkeyword    serial 

#NPROC Value subkeyword    1 

PARAMETER                   Start-keyword of block     --           
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      LJCOLLISION               

           DIAMETERM           

           DIAMETERA           

           EPSILONM            

           EPSILONA            

           MASSM               

           MASSA               

  HSCOLLISION 

       BMAX 

       MASSM 

       MASSA 

      ENERGY                  

           DE                  

           EMAX                

           ESOT                

           EEOT                

      PBIMOL 

           BIMOLNAME 

           EXCESSCONC 

      PRINT                  

           EIGENVALUE                         

                  EVALFILE 

                  EVALNUM         

           EIGENVECTOR 

                  EVECFILE 

                  EVECNUM         

           PARTITIONFUNCTION   

           MICROFLUXCOEFFICIENT   

           TIMEEVOLUTION       

                 TIMEFILE        

                 TIMESTEP        

                 TIMENUM 

                 INITSPECIES 

            RELAXKERNEL 

                  RELAXFILE 

                  KERNELNAME         

       MERGETHRESHOLD          

   PRECISION 

   OMPNUMTHREAD               

       EDOWN 

            SLOPE 

            EDCONST 

            TC   

             EXPONENT                 

       TEMPERATURE             

       PRESSURE                

       GROUNDSPECIES   

Start-keyword of section 

Value subkeyword  

Value subkeyword  

Value subkeyword  

Value subkeyword  

Value subkeyword  

Value subkeyword  

Start-keyword of section 

Value subkeyword  

Value subkeyword  

Value subkeyword  

Start-keyword of section 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Start-keyword of section 

List subkeywords 

List subkeywords 

Start-keyword of section 

Start-keyword of subsection 

String subkeyword 

Value subkeyword 

Start-keyword of subsection 

String subkeyword 

Value subkeyword 

String subkeyword 

String subkeyword 

Start-keyword of subsection 

String subkeyword 

Value subkeyword 

Value subkeyword 

List subkeyword 

Start-keyword of subsection 

Value subkeyword 

List subkeyword 

Value subkeyword 

String subkeyword 

Value subkeyword 

Start-keyword of section 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

List subkeyword 

List subkeyword 

String subkeyword 

    --           

    None         

    None         

    None         

    None         

    None         

    None         

    -- 

    None 

    None 

    None 

    --           

   1.0 cm-1     

   400 kcal/mol 

   0.1           

   30          

   -- 

   -- 

   -- 

    --           

   -- 

   None         

   None         

   -- 

   None         

   None         

   None         

   None         

   -- 

   None 

   0.02/𝜆0 

   50         

   None  

   -- 

   None 

   None 

   0.2          

   double 

   cpu_count /nproc      

   -- 

   0 

   None 

   300 K         

   0 

   None         

   None         

   None         

REACTION                    

       BARRIERRXN              

            INFO                

            PYRFILE            

            VARITAION           

            TUNNELING           

       BARRIERLESSRXN          

            INFO                

Start-keyword of block 

Start-keyword of section 

String subkeyword 

String subkeyword 

String subkeyword 

String subkeyword 

Start-keyword of section 

String subkeyword 

   --    

   --    

   None  

   None  

   None  

   None  

   --    

   None  
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            RXNENERGY          

            AVGDIAMETER        

Value subkeyword 

Value subkeyword 

   None  

   None 

 SPECIES                     

         WELL                    

             EPSILON 

             BMAX                 

             DIAMETER            

        TRANSTATE               

             IMAGFREQ          

    BIM      

        NAME 

        E0                

             EELE 

             SP1MOL              

             SP2MOL              

             SP1ATOM             

             SP2ATOM             

        

  Subkeywords for molecular species 
a      

            NAME            

            GEOMETRY            

            FREQUENCY            

            ELELEVEL       

            E0K             

            EELE            

            ROTSIGMA 

            OPTICALNUM 

            FREQSCALE 

            G09FILE        

            MSTFILE     

 Subkeywords for atomic species 
b      

            NAME            

            SYMBOL            

            ELELEVEL       

            E0K             

            EELE              

Start-keyword of block 

Start-keyword of section 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Start-keyword of section 

Value subkeyword 

Start-keyword of section 

String subkeyword 

Value subkeyword 

Value subkeyword 

Start-keyword of subsection 

Start-keyword of subsection 

Start-keyword of subsection 

Start-keyword of subsection 

 

 

String subkeyword 

List subkeyword 

List subkeyword 

List subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

String subkeyword 

String subkeyword 

 

String subkeyword 

String subkeyword 

List subkeyword 

Value subkeyword 

Value subkeyword 

   --    

   --    

   None  

   None 

   None  

   --    

   None  

   --    

   None 

   None 

   None 

   --    

   --    

   --    

   --    

                              

    

   None  

   None  

   None  

   1  0 

   None  

   None  

   1  

   1 

   1.0 

   None  

   None 

 

   None 

   None 

   1  0 

   None 

   None 

Subkeywords for inverse Laplace transform c 

       INVLAPLACE 

            EXPRESSION 

            PREFACTOR1 

            T1 

            N1 

            EA1 

            PREFACTOR2 

            T2 

            N2 

            EA2 

Start-keyword of subsection 

String subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

Value subkeyword 

   -- 

   -- 

   -- 

   -- 

   -- 

   -- 

   -- 

   -- 

   -- 

   -- 

a. These subkeywords are available for the molecular species sections/subsections: WELL, 

TRANSTATE, SP1MOL, and SP2MOL. 

b. These subkeywords are available for the atomic species subsections: SP1ATOM and SP2ATOM. 

c. The inverse Laplace transform subsection INVLAPLACE could be used in both BARRERRXN and 

BARRIERLESSRXN sections. 
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5.1 Two pre-definition subkeywords 

        To run the program in MP or MPI mode, the user should specify the value #PARALLEL 

in the first line of the input file. #PARALLEL can be serial, mp, or mpi. When mp is specified, 

#NPROC should be specified as the second line to determine how many processors to use; but 
for mpi the number of processors is determined by the $mpirun command, and #NPROC is 

not needed for the mpi mode. 

Example: 

        #PARALLEL   mp 

        #NPROC      4  

       See Section 4.3 for more discussion of parallelism. 
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5.2 Keywords in the PARAMETER block  

Table 4. Glossary of the PARAMETER block 

PARAMETER    

 Description: Start-keyword for a block describing all global parameters. This 

block is compulsory in the standard input file. 

Available sections and  

subkeywords: 
LJCOLLISION, HSCOLLISION, ENERGY, PBIMOL, 
PRINT, MERGETHRESHOLD, PRECISION, 

OMPNUMTHREAD,   

EDOWN, TEMPERATURE, PRESSURE, 
GROUNDSPECIES   

 

 Example: PARAMETER 
       LJCOLLISION 
               …… 
       END_LJCOLLISION 
       …… 
END_PARAMETER 

LJCOLLISION 

Description: Start-keyword for the Lennard-Jones collision section. Here we 
present two kinds of collision models, one for the Lennard-Jones 
collision model and the other for the hard-sphere collision model. 

The former is set by LJCOLLISION section, and the latter is set 

by HSCOLLISION. Users should define only one of them. The 
equation used to estimate the Lennard–Jones collision rate 

constant is 

𝑘LJ = Ω2,2
∗  𝜋 (

𝑑𝛾 + 𝑑M

2
)
2

√
8𝑘B𝑇

𝜋𝑚𝛾𝑚M/(𝑚𝛾 + 𝑚M)
 

Ω2,2
∗ =

{
 
 

 
 [0.636 + 0.567 log10 (

𝑘B𝑇

√𝜀𝛾𝜀M
)]

−1

 ,   
𝑘B𝑇

√𝜀𝛾𝜀M
∈ [0.3,3]

[0.697 + 0.5185 log10 (
𝑘B𝑇

√𝜀𝛾𝜀M
)]

−1

 ,   
𝑘B𝑇

√𝜀𝛾𝜀M
∈ [3,300]

 

where 𝛾 denotes an isomer; M denotes the bath gas; d denotes the 

diameter; 𝜀 is the Lennard-Jones energy parameter; and m denotes 
the mass. If the argument is not in the range from 0.3 to 300, the 

code will print a warning. The reference for these approximations 

to Ω2,2
∗

 is a 1977 paper by Troe.27 

Available 

subkeywords: 
DIAMETERM, DIAMETERA, EPSILONM, EPSILONA, 
MASSM, MASSA       

         

Example: LJCOLLISION 
DIAMETERM[A]     3.0 
DIAMETERA[A]     4.0 
EPSILONM[cm-1]   3.0 
EPSILONA[cm-1]    3.0 
MASSM[amu]           40 
MASSA[amu]          90 

END_LJCOLLISION 
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DIAMETERM 

Description: Subkeyword for the diameter  𝑑M of a molecule of the bath gas. 

This is compulsory in the LJCOLLISION section. 

Available values: Positive float 

 

Example: DIAMETERM[A]   3.0 

DIAMETERA 

Description: Subkeyword for the general diameter 𝑑𝛾 of the isomers. (In this 

manual, well and isomer are synonyms.) If specified, all isomers 

will have the same diameter, DIAMETERA. If not, the diameter 

is isomer-specific, and in that case the DIAMETER subkeyword 
should be assigned in all WELL sections. 

Available values: Positive float 

 

Example: DIAMETERA[A]   3.0 

MASSM 

Description: Subkeyword for the mass 𝑚M of the bath gas molecule. This is 

compulsory in the LJCOLLISION section.  

Available values: Positive Float 

 

Example: MASSM[amu]   40.0 

MASSA 

Description: Subkeyword for the general mass 𝑚𝛾  of the isomers. (In this 

manual, well and isomer are synonyms.) The masses of all WELL 

species must be the same. The user can specify this mass as 

MASSA; however, if MASSA is not specified the program will 

calculate the mass from GEOMETRY data in the first WELL 

section. 

 

Available values: Positive float 

 

Example: MASSA[amu]   50.0 

EPSILONM 

Description: Subkeyword for the energy parameter 𝜀M of the bath gas 

molecule. This is compulsory in the LJCOLLISION section. 

Available values: Positive float 

 

Example: EPSILONM[cm-1]   3.0 
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EPSILONA 
Description: Subkeyword for the general energy parameter 𝜀𝛾  of the isomers. 

If specified, all isomers will have the same Lennard-Jones energy 

parameter, which will be equal to EPSILONA. If not, the energy 
parameter is isomer-specific, and in that case the EPSILON 
subkeyword should be assigned in all WELL sections. (In this 
manual, well and isomer are synonyms.) 

Available values: Positive float 

 

Example: EPSILONA[cm-1]             3.0 

HSCOLLISION 

Description: Start-keyword for hard-sphere direct-dynamics collision section. 
Note that this keyword relates to collisions between the bath gas 
and isomers (it is not related to collisions between two members 
of a bimolecular pair undergoing a barrierless reaction). This 

keyword is to be used if the user has used direct dynamics to 

calculate the relaxation parameter ⟨Δ𝐸down⟩. If this option is 

chosen, user should input the maximum impact parameter 𝑏max 
that was used in calculating ⟨Δ𝐸down⟩, and the collision rate 

constant will be calculated by 

𝑘HS = 𝜋(𝑏max)
2√

8𝑘B𝑇

𝜋𝑚𝛾𝑚M/(𝑚𝛾 + 𝑚M)
 

Available 

subkeywords: 
BMAX, MASSM, MASSA       

         

Example: HSCOLLISION 
BMAX[A]     9.0 
MASSM[amu]     40  

    MASSA[amu]     90 
END_HSCOLLISION 

BMAX 

Description: Subkeyword to be used when the same maximum impact 

parameter 𝑏max is to be assigned to all isomers. If this 

subkeyword is not specified in HSCOLLISION section, BMAX 
should be specified in each WELL section. (In this manual, well 

and isomer are synonyms.) 

Available values: Positive float 

 

Example: BMAX[A]             3.0 

ENERGY 

Description: Start-keyword for ENERGY section. This section is compulsory 

in the PARAMETER block. 

Available 

subkeywords: 
DE, EMAX, ESOT, EEOT                
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Example: ENERGY 

    DE[cm-1]                1             

    EMAX[kcal/mol]    40                

    ESOT                    0.1 

    EEOT                    30 

END_ENERGY 

Background: The internal energy of each well (i.e., each isomer) is discretized 

into bins. The energy of bin 𝜂 is  

                𝐸𝜂 = 𝐸max − ( 𝜂 − 1)Δ𝐸,           𝜂 = 1, 2, … ,𝑁𝛾 

DE 

Description: Subkeyword for the energy step d𝐸 used in calculating the 
density of states by the Beyer–Swinehart algorithm. The default 

value is 1 cm-1. 

DE should be distinguished from the energy step set by ESOT. 

DE sets the energy step for calculating the density of states in the 
Beyer–Swinehart algorithm, whereas ESOT sets the energy step 

for the transition matrix. Usually, DE should be much smaller 
than the energy step set by ESOT. 

Available values: Positive float 

 

Example: DE[cm-1]                 1.0      

EMAX 

Description: Subkeyword for the maximum energy relative to the enthalpy at 0 
K of each isomer used in calculating the density of states by the 

Beyer–Swinehart algorithm. The default value is 400 kcal/mol. 
EMAX should be distinguished from the maximum energy set by 
EEOT. EMAX sets the energy upper boundary for calculating the 
density of states in the Beyer–Swinehart algorithm, whereas 

EEOT sets the energy upper boundary for the transition matrix. 
Usually, EMAX should be much greater than the maximum 

energy set by EEOT.  

Available values: Positive float 

 

Example: EMAX[kcal/mol]      400         

ESOT 

Description: Subkeyword for the ratio of energy bin width Δ𝐸 divided by 

𝑘B𝑇. Based on this subkeyword, the energy step between energy 

bins in the master equation is set as follows, 

Δ𝐸 = 𝐸𝑆𝑂𝑇 × 𝑘B𝑇 

The default value is 0.1. 

       When the temperature is low, molecules tend to populate at 

low energy levels, so user should decrease ESOT to make the 
result converged. 

Available values: Positive float 

Example: ESOT      0.1         
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EEOT 

Description: Subkeyword used to set the maximum energy relative to the 

highest 𝐸0
sp

  used in the transition matrix for solving the master 

equation. Note that 𝐸0
sp

 is the energy at 0 K of reactants, transition 

states and products, where we use 0 K to specify the inclusion of 
ZPE but no thermal effects (ZPE denotes vibrational zero-point 

energy). The maximum energy in the master equation equals 

Maximum energy = max{𝐸0
sp
} +  𝐸𝐸𝑂𝑇 × 𝑘B𝑇 

When ESOT and EEOT are determined, the number of energy 

bins for the 𝛾-th isomer is calculated as 

𝑁𝛾 = int (
max{𝐸0

sp
} +  𝐸𝐸𝑂𝑇 × 𝑘B𝑇 − 𝐸0,𝛾

Δ𝐸
) 

where int denotes rounding down to an integer; Δ𝐸 is the energy 

step for each energy bin described in ESOT; and 𝐸0,𝛾  is the 

ground-state energy (including vibrational zero-point energy) of 

the 𝛾-th isomer. In this manual, well and isomer are synonyms.  

      When the temperature is high, molecules tend to populate at 

high energy levels, so user should increase EEOT to make the 
result converged. 

The default value is 30. 

Available values: Positive float 

Example: EEOT    30       

PBIMOL 

Description: Start-keyword of the subsection for the pseudo-first-order 
bimolecular pairs. In order to deal with the inhomogeneous term 
caused by a bimolecular (second-order) reaction, we treat 
bimolecular products as sinks, and we calculate bimolecular rate 
constants in the limit of pseudo-first-order kinetics in which one 
member of the reactant bimolecular pair is present in great excess 
so that its concentration is taken as a constant. The present 
subsection defines the bimolecular reactants and specifies the 
constant concentration of the excessive fragment. We stress here 
that in TUMME we assume that the pressure is caused by the bath 

gas, and the partial pressure of reagents is neglected in the 
collisional relaxation process. For a bimolecular reaction of A with 
B, with B present in great excess and M being the bath gas (present 

in even greater excess, we require  [M] ≫ [B] ≫ [A]. 

Available 

subkeywords: 
BIMOLNAME, EXCESSCONC 

Example: PBIMOL 

      BIMOLNAME 

          Bim1  Bim2  Bim3  

      END_ BIMOLNAME 

      EXCESSCONC[mol/L] 

          1E-5  1E-4 1E-3 

      END_ EXCESSCONC 
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END_ PBIMOL 

BIMOLNAME 

Description: Subkeyword for the name-list of pseudo-first-order bimolecular 
reactants. User can assign more than one bimolecular pair. Name 

strings should be split with spaces.  

Example: BIMOLNAME 

          Bim1  Bim2  Bim3  

END_ BIMOLNAME 

EXCESSCONC 

Description: Subkeyword for the constant concentration of the excessive 

reagent of pseudo-first-order bimolecular reactants. Since there 

could be more than one pseudo-first-order bimolecular reaction, 

there could be more than one value for this subkeyword. Values 

should be entered as floating-point numbers separated by spaces. 

The number of values should be the same as the number of 

pseudo-first-order bimolecular reactants, also the name string in 

BIMOLNAME. 

 
Example: EXCESSCONC[mol/L] 

    1E-5  1E-4 1E-3 

END_ EXCESSCONC 

PRINT 

Description: Start-keyword for an output section.  

Available subsections 

and subkeywords: 
EIGENVALUE, EIGENVECTOR, PARTITIONFUNCTION   

MICROFLUXCOEFFICIENT, TIMEEVOLUTION, 
RELAXKERNEL       

Example: PRINT 

     EIGENVECTOR  

          EVECFILE   evec.txt 

          EVECNUM   3 

     END_EIGENVECTOR          

     PARTITIONFUNCTION    Q.txt 

END_PRINT 

EIGENVALUE          

Description: Start-keyword for the eigenvalues output subsection.  

Available 

subkeywords: 
EVALFILE, EVALNUM 

Example: EIGENVALUE   

     EVALFILE   eval.txt 

     EVALNUM   3 

END_EIGENVALUE    

EVALFILE    

Description: Subkeyword for the file name of eigenvalues output. This is 

compulsory in the EIGENVALUE subsection. String value 
should not contain any space.  

Available value: String 
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Example: EVALFILE   eval.txt         

EVALNUM    

Description: Subkeyword for the number of eigenvalues to be printed. All 
eigenvalues are sorted in ascending order, and the first evalnum 

eigenvalues will be printed. If this value is not defined in the 

EIGENVALUE subsection, the program will print out all CSE 
eigenvalues and the minimum and the maximum IERE 

eigenvalues. 

Available value: Positive integer 

 

Example: EVALNUM   3         

EIGENVECTOR          

Description: Start-keyword for the eigenvectors output subsection.  

Available 

subkeywords: 
EVECFILE, EVECNUM 

 

Example: EIGENVECTOR 

     EVECFILE   evec.txt 

     EVECNUM   3 

END_EIGENVECTOR    

EVECFILE    

Description: Subkeyword for the file name of eigenvectors output. String value 

should not contain any space. 

Available value: String 

 

Example: EVECFILE   evec.txt         

EVECNUM    

Description: Subkeyword for the number of eigenvectors to be printed. All 
eigenvectors are sorted according to corresponding eigenvalues’ 
sequence, and the first evecnum eigenvectors will be print.  If this 

value is not defined in the EIGENVECTOR subsection, the 

program will print out all CSE eigenvectors. 

Available value: Positive integer 

 

Example: EVECNUM   3         

PARTITIONFUNCTION           

Description: Subkeyword for the file name of partition function output. The partition 

function of all species in TEMPERATURE will be printed. If MSTFILE 
is not specified for a species, its partition function will be calculated by 

the single-structural rigid rotor and harmonic oscillator (SSHO) 

approximation. If MSTFILE is specified, the partition function of this 

species will be calculated by doing the Laplace transform of the read 

density of states (DoS). The electronic partition function, vibrational 

partition function, rotational partition function, and translational partition 

function of all isomers, transition states, members of bimolecular pairs 
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will be printed. When the generalized transition states are read from 

PYRFILE, only the partition function of GTS estimated by the SSHO 

approximation is printed. The program makes the approximation that 

𝑄MST(𝑠)≈
𝑄MST(𝑠=0)

𝑄SSHO(𝑠=0)
𝑄SSHO(𝑠) 

and only prints 𝑄SSHO(𝑠). 

Available value: String 

Example: PARTITIONFUNCTION  Q.txt         

MICROFLUXCOEFFICIENT   

Description: Start-keyword for the file name of microcanonical flux coefficient 
output. All microcanonical flux coefficients used to construct a 

transition matrix will be printed. For the reaction from an isomer 𝛾 

to an isomer/bimolecular 𝜙 , the microcanonical flux coefficient 

that is printed is  

𝑘̂MS−VTST/SCT(𝛾 → 𝜙 | 𝐸𝜂) = 𝜅SCT(𝐸𝜂)Γ
VTST(𝐸𝜂)𝐹

MS(𝐸𝜂)
𝑁𝛾,𝜙
‡,SSHO(𝐸𝜂)

ℎ𝜌𝛾
SSHO(𝐸𝜂)

 

For the reaction from a bimolecular pair 𝜈 to an isomer 𝛾, the flux 

coefficient that is   

Δ𝑘̂MS−VTST/SCT(𝜈 → 𝛾 | 𝐸𝜂) = ΓVTST(𝐸𝜂)𝜅
SCT(𝐸𝜂)𝐹

MS(𝐸𝜂)
𝑁𝜈,𝛾
‡,SSHO(𝐸𝜂)𝑒

−𝛽𝐸𝜂Δ𝐸

ℎΦrel𝑄𝜈
SSHO

 

where Γ , 𝜅  and 𝐹  are respectively the microcanonical recrossing 
transmission coefficient, the tunneling transmission coefficient, 
and the multiple-structure torsional coefficient, and they are 

dependent on the settings of VARIATION, TUNNELING, and 

MSTFILE subkeywords in a coupled way; 𝑁 is the sum of states, 

𝑄  is the electronic-vibrational-rotational partition function, and 

Φrel is the relative translation partition function per unit volume. A 

more detailed description is given in Ref. 26. 

Available values: String 

Example: MICROFLUXCOEFFICIENT  kE.txt         

TIMEEVOLUTION         

Description: Start-keyword of the subsection for the time evolution of 
populations. In TUMME, the initial conditions (populations at 
time zero) are set as a kronecker-delta condition. This means that 
the population of the ground-state energy bin of the reactant of 
the first reaction is 1, and the populations of all of the other 
energy bins of this reactant and all of the energy bins of other 
species are set to zero. The equations for the time evolution are 

presented in the Faraday Discussions paper.28 

Available 

subkeywords: 

TIMEFILE, TIMESTEP, TIMENUM, INITSPECIES 

Example: TIMEEVOLUTION 

    TIMEFILE      time.txt 

     TIMENUM       100 

     INITSPECIES Well_1 

END_ TIMEEVOLUTION        

TIMEFILE         

Description: Subkeyword for the output file name for the time evolution of 
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populations. This is compulsory in the TIMEEVOLUTION 
subsection.  

Available values: String 

Example: TIMEFILE        time.txt         

TIMESTEP         

Description: Subkeyword for the time step of time evolution of populations to 

be printed. The default value is 

Δ𝑡 =
1

 50𝜆0
 

where 𝜆0 is the smallest non-zero eigenvalue.   

Available values: Positive float 

 

Example: TIMESTEP[fs]             0.1 

TIMENUM         

Description: Subkeyword for the number of steps of time (Ntime) evolution 

output. The first Ntime steps will be printed. The default value is 

𝑁time = 50 

Available values: Positive integer 

 

Example: TIMENUM                100 

INITSPECIES              

Description: Subkeyword for names of the reactants of the first reaction. 

It can be either a bimolecular pair or a well. The 

bimolecular pair should be defined in the 

PSEUBIMOLECULAR. This subkeyword is compulsory in 

the TIMEEVOLUTION subsection.   

Available values: String List 

Example: INITSPECIES 

        Well_1 

        Bim_2 

END_INITSPECIES 

RELAXKERNEL 
Description: Start-keyword of the subsection for relaxation kernels 𝑃(𝐸|𝐸′).  

Available subsections 

and subkeywords: 
RELAXFILE, KERNELNAME    

Example: RELAXKERNEL 

          RELAXFILE     kernel.out 

          KERNELNAME    

                   Well_1   Well_2   Well_3 

          END_KERNELNAME 
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END_RELAXKERNEL        

RELAXFILE 

Description: Subkeyword for a file name of the output of relaxation kernels. 

This subkeyword is compulsory in the RELAXKERNEL 
subsection.  There is no default; the user must provide it. 

Available values: String 

 

Example: RELAXFILE              kernel.out 

KERNELNAME              

Description: Subkeyword for the list of isomer names of which the relaxation 
kernel will be printed. Users can input multiple isomer names 
which should be separated by spaces or by a line break. This 

subkeyword is compulsory in the RELAXKERNEL subsection.   

Available values: String list 

 

Example: KERNELNAME               

          Well_1    

          Well_2   Well_3 

END_KERNELNAME 

MERGETHRESHOLD              

Description: Subkeyword for the threshold to determine if a merger occurred. 

The MERGETHRESHOLD is compared to the squared 
projection of eigenvectors onto the IERE subspace (refer to 

Section 5). The default value is 0.2. 

Available values: Positive float 

 

Example: MERGETHRESHOLD             0.2 

PRECISION              

Description: Subkeyword for the precision of the transition matrix and the 
eigenpairs. The default value is double. Double precision based 
on the float64 data type will provide ~16 decimal places; 
quadruple precision based on the double-double data type will 
provide ~32 decimal places; and octuple-precision based on the 

quadruple-double data type will provide ~64 decimal places. 

Available values: double, quadruple, octuple  

 

Example: PRECISION                         double 

OMPNUMTHREAD               

Description: Subkeyword for the number of threads set in OpenMP. The high-
precision libraries are implemented by C++ where OpenMP is 
utilized in order to decrease the high-precision time consumption. 
We stress that the OpenMP parallelization is separate from the MP 
and MPI parallelization. The OMPNUMTHREAD subkeyword 
controls into how many threads each Python thread/process will be 
further parallelized, and it is equivalent to the system environment 
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variable OMP_NUM_THREADS. This subkeyword only works when 

the PRECISION subkeyword is set to be quadruple or octuple. If 
this subkeyword is not set, the program will by default set it to be 
the total number of processors a node owns divided by the 

NPROC value. The total number of processors will be obtained by 
Python using os.cpu_count(). This dynamic default value will 
maximize the efficiency of single-node calculations but may be 

inappropriate for multi-nodes computation because NPROC will 
not be the number of Python threads/processes run on a node, and 

the user should change this value accordingly.  

 

Available values: Positive integer.  

Example: OMPNUMTHREAD                        2 

EDOWN              

Description: Start-keyword for the average downwards energy transfer ⟨Δ𝐸d⟩. 
This is used in the exponential down relaxation kernel. See Eq. 

(41) (in Section 6.2) for the definition ⟨Δ𝐸d⟩. The ⟨Δ𝐸d⟩ moment 
is treated as having the following dependence on the temperature 

of the bath and on the initial internal energy of the isomer: 

⟨Δ𝐸d⟩ = (
𝑇

𝑇c
)
𝑛

[𝛼(𝐸′ − 𝐸0,𝛾) + 𝛽] 

where 𝑇c, n, 𝛼 and 𝛽 are parameters that are specified by TC, 
EXPONENT, SLOPE, and EDCONST, respectively; 𝐸′ is the 

initial internal energy;  and 𝐸0,𝛾 is the 0 K energy (electronic 

energy + zero-point energy) of the 𝛾-th isomer. We assume all 

isomers share the same TC, EXPONENT, SLOPE and 

EDCONST. This is compulsory in the PARAMETER block. 

Available subsections 

and subkeywords: 
SLOPE, EDCONST, TC, EXPONENT 

Example: EDOWN 

     SLOPE                     0.00123 

     EDCONST[cm-1]       160 

     TC[K]                           700 

     EXPONENT             1.0 

END_EDOWN 

SLOPE              
Description: Subkeyword for the parameter 𝛼. If users want to assume that  

⟨Δ𝐸d⟩ is independent of internal energy, they can set 𝛼 = 0. Note 

that 𝛼 is unitless. The default value is 0. 

Available values: Float 

 

Example: SLOPE   0.00123 
  

EDCONST 

Description: Subkeyword for the parameter 𝛽. Note that 𝛽 has units of energy. 
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This is compulsory in the EDOWN section. 

Available values: Positive float 

 

Example: EDCONST[cm-1]     130 

TC              

Description: Subkeyword for the parameter 𝑇c. The default value is 300 K 

Available values: Positive float 

 

Example: TC[K]   1600   

EXPONENT              

Description: Subkeyword for the parameter n. If a user wants to use a 

temperature-independent ⟨Δ𝐸d⟩, this can be done by setting 𝑛 =
0 . The default value is 0. 

Available values: Float 

 

Example: EXPONENT   1.0  

TEMPERATURE              

Description: Subkeyword for temperatures. This is compulsory in 

PARAMETER block. 

Available values: Positive float list 

 

Example: TEMPERATURE[K] 
       100. 200. 300. 
       400. 500. 
        …… 
END_TEMPERATURE 

PRESSURE                

Description: Subkeyword for pressures. This is compulsory in 

PARAMETER block.  

Available values: Positive float list 

 

Example: PRESSURE[torr] 

       1E-6. 1E-5. 1E-4. 

       1E1. 1E3. 

END_PRESSURE 

GROUNDSPECIES                  

Description: Subkeyword for the name of an isomer or a bimolecular pair, 

of which the ground-state energy (energy at 0 K, by which we 

mean that vibrational zero-point energy is included) will be set 

as the zero of energy of all species.  This is compulsory in the 

PARAMETER block. 

Available values: String 

 
Example: GROUNDSPECIES            Well_1 
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5.3 Keywords in the REACTION block         

Table 5. Glossary for the REACTION block       

REACTION  

Description: Start-keyword for a block describing all elementary reactions. 

This is compulsory in the standard input file.  

Available sections  BARRIERRXN, BARRIERLESSRXN  

 

Example: REACTION 
     BARRIERRXN 
         INFO               Well_1-TS_1-Bim_1 
         …… 
     END_BARRIERRXN 
     …… 
END_REACTION 

BARRIERRXN                

Description: Start-keyword of a section for the elementary reaction with a 

barrier.  

Available sections and 

subkeywords: 
INFO, PYRFILE, VARIATION, TUNNELING           

 

 

Example: BARRIERRXN 

        INFO               Well_1-TS_1-Bim_1 

END_ BARRIERRXN 

BARRIERLESSRXN                

Description: Start-keyword of a section for a barrierless elementary reaction. 

Only works for bimolecular barrierless reactions.  

Available 

subkeywords: 

 

INFO, AVGDIAMETER, RXNENERGY                       

        

 

Example: BARRIERLESSRXN 

        INFO               Well_1-Bim_1 

        AVGDIAMETER[A]    4.0     

       RXNENERGY[kcal/mol]      -5.0                        
END_ BARRIERLESSRXN 

INFO                

Description: Subkeywords for the information of a reaction with a barrier or a 
barrierless elementary reaction. For an elementary reaction with a 
barrier, the value of this keyword should be the reactant name 
plus “-” plus the transition state name plus “-” plus the product 
name; for a barrierless elementary reaction, the value of this 
keyword should be the reactant name plus “-” plus the product 

name. If PYRFILE is also defined, the INFO will be used to 
name the species read from the Polyrate file. For a bimolecular 
pair, the first member is named with the name of bimolecular pair 
followed by a string “_1”, and the second member is named with 
the name of bimolecular pair followed by a string “_2”.  Spaces 



 37 

are not allowed in string values. This is compulsory in 

BARRIERRXN and BARRIERLESSRXN. 

Available value: String        

Example: INFO     Well_1-TS_12-Well_2  (for barrier elementary reaction) 

INFO     Bim_1-Well_1           (for barrierless elementary reaction) 

PYRFILE                

Description: Subkeyword for the name of the Polyrate long output file for an  
elementary reaction that has an intrinsic barrier. If specified, the 
reactant, transition state, and product specified are read from the 
Polyrate output file and their names will be specified according to 

INFO. The user should make sure that the reactant, transition 

state, and product in INFO are consistent with those in 
PYRFILE. Section 5.5 gives a detailed description of the 

Polyrate long output file.  

Available value: String        

Example: PYRFILE    rxn_1.fu6    

AVGDIAMETER                       

Description: Subkeyword for the average diameter of the bimolecular reactant 
pair in a barrierless reaction. This is compulsory in the 

BARRIERLESSRXN section. If diameters of two species of the 

bimolecular are 𝑑1 and 𝑑2, then the average diameter is 

𝑑Avg =
𝑑1 + 𝑑2
2

 

Available value: Positive float    

 

Example: AVGDIAMETER[A]      4.0     

RXNENERGY                       

Description: Subkeyword for the 0 K reaction energy of a barrierless reaction, 
which equals the ground-state energy of the product (including 
vibrational zero-point energy) minus the ground-state energy of 
the reactant (including vibrational zero-point energy). This is 

compulsory in the BARRIERLESSRXN section. 

Available value: Float    

 

Example: RXNENERGY [kcal/mol]      -5.0     

VARIATION                

Description: Subkeyword for the method to consider the variational effect. We 
need the density of states (DoS) of a variational transition state 
along the reaction coordinate either to calculate the cumulative 
reaction probability (CRP) or the sum of states (SoS) during the 

calculation of the microcanonical flux coefficient. The 

VARIATION subkeyword will determine which DoS will be 
chosen.  

If VARIATION is tst, the conventional transition state (which is a 

dividing surface passing through the saddle point) will be used.  

If VARIATION is cvt, then – for each temperature – the program 
places the variational transition state at the point along the reaction 
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path that maximizes Gibbs free energy of activation.  

If VARIATION is muvt, then – for each energy bin – the program 
places the variational transition state at the point along the reaction 

path that minimizes the CRP or sum of states.  

The values cvt and muvt will work only if PYRFILE is specified. 

The default value is tst. 

Available value: tst, cvt, muvt    

   

Example: VARIATION   cvt     

TUNNELING                

Description: Subkeyword for the method to consider the tunneling effect. The 

available values are Eckart, zct, sct, lct and omt.  

If zct is specified, the transmission probability will be loaded from 

the zero-curvature tunneling probability in the Polyrate output file. 

 If sct is specified, the transmission probability will be loaded from 
the small-curvature tunneling probability in the Polyrate output 

file.  

If Eckart is specified, the enthalpy of activation profile at 0 K will 
be fitted by an asymmetric Eckart potential; please refer to ref. 29 
for details, but notice that ref. 29 did not include zero-point 
energies. Note that for gas-phase species at 0 K, the enthalpy equals 
the energy, and both equal the potential energy plus the zero-point 

energy.   

The values zct, sct, lct and omt will work only if PYRFILE is 

specified. If the TUNNELING subkeyword is not specified, no 
tunneling effect will be included.  

Available value: Eckart, zct, sct, lct, omt   

Example: TUNNELING   sct     

INVLAPLACE                

Description: Start-keyword for the subsection of inverse-Laplace-transform. We 
use a single-exponential or biexponential expression to fit the 
canonical flux coefficients (or so-called high-pressure-limit rate 
constant). Taking the biexponential expression as an example. We 

can express the canonical flux coefficients as 

𝑘̂ = 𝐴1 (
𝑇

𝑇1
)
𝑛1

𝑒
−
𝐸a1
𝑘B𝑇 + 𝐴2 (

𝑇

𝑇2
)
𝑛2

𝑒
−
𝐸a2
𝑘B𝑇  

The microcanonical flux coefficients can be obtained from the 

inverse-Laplace-transform to the canonical flux coefficient.  

      For reaction from bimolecular pair 𝜈 to isomer 𝛾, there will be 

Δ𝑘̂(𝜈 → 𝛾|𝐸) = 

𝑒−𝛽𝐸Δ𝐸

Φrel𝑄𝜈
SSHO

[

1
ℎ3
(2𝜋𝑚𝜈)

3
2𝐴1𝛽1

𝑛1

Γ (𝑛1 +
3
2
)

∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a1)
𝑛1+

1
2θ(𝜀 − 𝐸a1)

𝐸

0

d𝜀 

+

1
ℎ3
(2𝜋𝑚𝜈)

3
2𝐴2𝛽2

𝑛2

Γ (𝑛2 +
3
2
)

∫ 𝜌𝜈(𝐸𝜂 − 𝜀)(𝜀 − 𝐸a2)
𝑛2+

1
2θ(𝜀 − 𝐸a2)

𝐸𝜂

0

d𝜀] 

where 𝛽1 = 1/𝑇1 and 𝛽2 = 1/𝑇2. And the reverse reaction can be 
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estimated from the detailed balance. 

      For reaction from isomer 𝛾  to species 𝜙  (could be either 

unimolecular or bimolecular), there will be 

𝑘̂(𝛾 → 𝜙|𝐸) =
𝐴1𝛽1

𝑛1

𝜌
𝛾
(𝐸)Γ(𝑛1)

∫ 𝜌
𝛾
(𝐸 − 𝜀)(𝜀 − 𝐸a1)

𝑛1−1
θ(𝜀 − 𝐸a1)

𝐸

0

d𝜀 

+
𝐴1𝛽1

𝑛2

𝜌𝛾(𝐸)Γ(𝑛2)
∫ 𝜌𝛾(𝐸 − 𝜀)(𝜀 − 𝐸a2)

𝑛2−1
θ(𝜀 − 𝐸a2)

𝐸

0

d𝜀 

where 𝛽1 = 1/𝑇1 and 𝛽2 = 1/𝑇2. And the reverse reaction can be 
estimated from the detailed balance. This is optional in the 

BARRIERRXN and BARRIERLESSRXN section. 

Available value: EXPRESSION, PREFACTOR1, T1, N1, EA1, 
PREFACTOR2, T2, N2, EA2 

Example: INVLAPLACE 

EXPRESSION   biexp 

PREFACTOR1[1/s]   10 

T1[K]    300 

N1      1 

EA1[kcal/mol]   2 

PREFACTOR2[1/s]   100 

T2[K]    600 

N2      1.2 

EA2[kcal/mol]   3.1 

END_INVLAPLACE 

EXPRESSION 

Description: Subkeyword for type of expression (single-exponential or 
biexponential) for fitting canonical flux coefficients. This is 

compulsory in the INVLAPLACE subsection. 

Available value: uniexp or biexp 

Example: EXPRESSION   biexp 

PREFACTOR1 

Description: Subkeyword for 𝐴1. The unit of it should be [1/s] for 

unimolecular reaction and [cm3/molecule/s] for bimolecular 
reaction. This is compulsory in the INVLAPLACE subsection. 

Available value: Positive float 

Example: PREFACTOR1[1/s] 10 

T1 

Description: Subkeyword for 𝑇1. It has the unit of temperature. This is 

compulsory in the INVLAPLACE subsection both for 

EXPRESSION being uniexp or biexp. 

Available value: Positive float 

Example: T1[K]  300 

N1 

Description: Subkeyword for 𝑛1. It is unitless. This is compulsory in the 

INVLAPLACE subsection both for EXPRESSION being uniexp 
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or biexp. 

Available value: Positive float 

Example: N1  1.0 

EA1 

Description: Subkeyword for 𝐸a1. It has the unit of energy. This is 

compulsory in the INVLAPLACE subsection both for 

EXPRESSION being uniexp or biexp. 

Available value: Float 

Example: EA1[kcal/mol]  2.3 

PREFACTOR2 

Description: Subkeyword for 𝐴2. The unit of it should be [1/s] for 

unimolecular reaction and [cm3/molecule/s] for bimolecular 

reaction. This is compulsory in the INVLAPLACE subsection 

for EXPRESSION being biexp. 

Available value: Positive float 

Example: PREFACTOR2[1/s]  10 

T2 

Description: Subkeyword for 𝑇2. It has the unit of temperature. This is 

compulsory in the INVLAPLACE subsection for EXPRESSION 
being biexp. 

Available value: Positive float 

Example: T2[K]  300 

N2 

Description: Subkeyword for 𝑛2. It is unitless. This is compulsory in the 

INVLAPLACE subsection for EXPRESSION being biexp. 

Available value: Positive float 

Example: N2  1.0 

EA2 

Description: Subkeyword for 𝐸a2. It has the unit of energy. This is 

compulsory in the INVLAPLACE subsection for EXPRESSION 
being biexp. 

Available value: Float 

Example: EA2[kcal/mol]  2.3 
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5.4 Keywords in the SPECIES block         

 Table 6. Glossary for in the SPECIES block 

SPECIES  

 Description: Start-keyword of species block. This is not compulsory in the 

standard input file. If all species in the master equation are 

read from Polyrate long output files, the SPECIES block is 

not necessary. When the Polyrate long output file is defined, 

the SPECIES block can still be defined to give some 

supplementary information about species. The SPECIES 

block has three sections: one for isomers, which are the wells 

and are specified in WELL sections, one for transition states, 

which are specified in TRANSTATE sections, and the third 

kind for bimolecular pairs, which are specified in BIM 

sections.  
 

 Available sections: 

 

WELL, TRANSTATE, BIM 

 Example: SPECIES 
     WELL 
         …… 
     END_WELL 
     …… 
END_SPECIES 

WELL                

Description: Start-keyword of well section. In the input for a reaction system, 
there must be at least one well (in this manual, well and isomer 
are synonyms); thus, if no well is defined in Polyrate output files, 

WELL is compulsory in the SPECIES block and can appear 

multiple times.  

Available 

Subkeywords: 
NAME, GEOMETRY, FREQUENCY, ELELEVEL, E0K, 
EELE, ROTSIGMA, OPTICALNUM, BMAX, DIAMETER, 
EPSILON, G09FILE, MSTFILE, FREQSCALE        

 

Example: WELL 

        GEOMETRY[A] 

               C 1.223 2.334 3.4456 

                …… 

        END_GEOMETRY                

        …… 

END_WELL 

TRANSTATE                

Description: Start-keyword of transition state section. TRANSTATE is not 
compulsory in the SPECIES block.  

Available 

Subkeywords: 
NAME, GEOMETRY, FREQUENCY, ELELEVEL, E0K, 
EELE, ROTSIGMA, OPTICALNUM, IMAGFREQ, 
G09FILE, MSTFILE, FREQSCALE        
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Example: TRANSTATE 

       GEOMETRY[A] 

               C 1.223 2.334 3.4456 

                …… 

        END_GEOMETRY                

        …… 

END_ TRANSTATE 

BIM                

Description: Start-keyword of bimolecular pairs section. A bimolecular pair 
contains two species, which can be either atoms or molecules. 

The first species should be defined by SP1MOL or SP1ATOM; 

the second species should be defined by SP2MOL or 
SP2ATOM. It does not matter which one appears first.  

Available subsections 

and subkeywords: 
SP1MOL, SP2MOL, SP1ATOM, SP2ATOM, EELE, E0K, 
NAME        

 

Example: BIM 

        SP1MOL              

           …… 

        END_SP1MOL 

        SP2ATOM             

          …… 

        END_SP2ATOM 

END_ BIM 

SP1MOL, SP2MOL                

Description: Start-keyword of one of the molecules (the number of atoms should 
greater than 1) in bimolecular pair section. “SP1” denotes species 

1 and choosing which one as species 1 does not matter.  

Available 

subkeywords: 
NAME, GEOMETRY, FREQUENCY, ELELEVEL, E0K, 
EELE, ROTSIGMA, OPTICALNUM, G09FILE, MSTFILE, 
FREQSCALE 

 

Example: SP1MOL              

    …… 

END_SP1MOL 

SP1ATOM, SP2ATOM                

Description: Start-keyword of one of the atoms in a bimolecular pair section. 
“SP1” denotes species 1, and it does not matter which one is chosen 

as species 1. 

Available 

subkeywords: 
NAME, SYMBOL, ELELEVEL, E0K, EELE 

 

Example: SP1ATOM              

    …… 

END_SP1ATOM 
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NAME                

Description: Subkeyword for the name of species. This is compulsory in every 

WELL, TRANSTATE, or BIM section and also in the SP1MOL, 

SP2MOL, SP1ATOM, and SP2TAOM subsections. Spaces are 

not allowed in name strings. The length of a name has no 

limitation, but for output aesthetics we recommend it not contain 

more than 15 characters.   

Available value: String  

 

Example 1: 

 

Example 2: 

NAME   Well_1 

 

NAME   1-propyl 

 

GEOMETRY                

Description: Subkeyword for the geometry of a species. This is not compulsory 
when the Polyrate output file or Gaussian output file is defined. 
There is no requirement on conditions that must be satisfied by the 
geometry; for example, it is not necessary to put the center of mass 
at the origin. Furthermore, there is no requirement on how the 
geometries of different species are related, even for coordinates of 

the two members of a bimolecular pair. The coordinates given here 

are not manipulated in the program. 

Available value: List. Each line should contain four entries. The first is the atom 

symbol string; the other three are float numbers.  

Example: GEOMETRY[A]   

       C    1.234   2.345   3.456 

       C    4.567   5.678   6.789 

       H    7.890   8.987   1.670 

END_GEOMETRY 

FREQUENCY                

Description: Subkeyword for the real frequencies of a species. For a linear 

molecule, the user should input 3𝑁 − 5 frequencies; for a 

nonlinear molecule, user should input 3𝑁 − 6 frequencies. For a 

linear transition state, user should input 3𝑁 − 6 frequencies; for a 

nonlinear transition state, user should input 3𝑁 − 7 frequencies. 
The program will automatically determine whether a molecule or 
a transition state is linear. This keyword is not compulsory when 

the Polyrate output file or Gaussian output file is defined.  

Available value: Positive float list  

Example: FREQUENCY[cm-1]   

      3585.12  3506.34  1885.23 

     45.49     235.67      478.87 

END_FREQUENCY 

IMAGFREQ 

Description: Subkeyword for the image frequency. 

Available value: Negative float  

Example: IMAGFREQ[cm-1]     -298 
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ELELEVEL                

Description: Subkeyword for the electronic energy level of species. The input 

can contain multiple lines, and each line should contain two 
number. The first number denotes degeneracy, and the second 
number denotes the energy relative to the electronical ground 

energy. The default value is 1  0. 

Available value: Positive float list  

 

Example: ELELEVEL[a.u.]   

      2     0 

      2     0.023        

END_ELELEVEL 

E0K                

Description: Subkeyword for the energy of species at 0 K, which equals the 
electronic energy (including, as usual, the nuclear repulsion) plus 

the zero-point vibrational energy. Note that for gas-phase species, 

the 0 K energy is the same as the 0 K enthalpy. 

This subkeyword is not compulsory when the Polyrate output file 
or Gaussian output file is defined for this species. If some species 

energies are defined by E0K subkeywords and some are read by 

Gaussian, please make sure that their zeros of energy are 

consistent.  

Available value: Float 

 

Example: E0K[kcal/mol]            10.0     

EELE                

Description: Subkeyword for the classical energy of the species at 0 K, which 

equals the electronic energy (the electronic energy always includes 

the nuclear repulsion). This is not compulsory when a Polyrate 

output file or Gaussian output file is defined for this species. If 

some species energies are defined by EELE subkeywords and 

some are specified by Gaussian, the user should make sure that 

their zeros of energy are consistent. 

Available value: Float 

 

Example: EELE[kcal/mol]            10.0     

ROTSIGMA                

Description: Subkeyword for the rotational symmetry number of a species. 

The electronic-vibrational-rotational partition function, the sum 

of states, and the density of states will be divided by this number. 

The default value is 1. If the properties of a species are defined by 

a Gaussian output file, the program will automatically read 

ROTSIGMA from that file, and that will override the default. 

However, if the properties of a species are read from a Polyrate 

output file, the program will not be able to read ROTSIGMA 
because Polyrate output files do not include ROTSIGMA. 

Therefore, if one is reading the properties of a species from a 

Polyrate output file, and if the user does not want the rotational 
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symmetry number of the species to be unity, one must use the 

ROTSIGMA keyword to set it to another value. 
Available value: Positive integer 

 

Example: ROTSIGMA            2    

OPTICALNUM 

Description: Subkeyword for the optical-isomer number 𝛼 of a species; this is 2 
for a chiral species and 1 for a species that can be rotated to 

coincide with its mirror image. The value of 𝛼 will only be used 
when calculating the density of states, but it will be automatically 
included in variables derived from the density of states, e.g., the 

microcanonical flux coefficient and the sum of states. The default 

value is 1. 

     Polyrate and Gaussian outputs do not include the optical-
isomer number, so you must define it if you want to assign a non-

unit optical isomer number to a species.  

     Note that the MS-T method properly accounts for optical 

isomers,30 so if one uses MS-T, one should not use 𝛼. 

 

Available value: Positive integer 

 

Example: OPTICALNUM    2    

DIAMETER                

Description: Subkeyword for the diameter of an isomer. This is compulsory for 

each WELL when LJCOLLISON is defined and the 

DIAMETERA is undefined in LJCOLLISION. When 
DIAMETER is defined in WELL and DIAMETERA is also 

defined in LJCOLLISION, DIAMETER will cover 
DIAMETERA. 

Available value: Positive float 

 

Example: DIAMETER[A]            4.0    

EPSILON               

Description: Subkeyword for the Lennard-Jones energy parameter of an 

isomer. This is compulsory for each WELL when LJCOLLISON 
is defined and EPSILONA is undefined. When both EPSILON 

is defined in WELL, and EPSILONA is also defined in 
LJCOLLISION, EPSILON will cover EPSILONA. 

Available value: Positive float 

 

Example: EPSILON [cm-1]            40.    

FREQSCALE              

Description: Subkeyword for the scaling factor of frequencies. The code has 
three possible ways to get frequencies for a species: from the 
Polyrate standard output, from the Gaussian standard output, or 

from the FREQUENCY subkeyword. If scaled frequencies are 
used in the Polyrate run, the frequencies extracted from the 
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Polyrate output are already scaled, but if Gaussian was not asked 
to scale the frequencies, then Gaussian will have outputted 
unscaled frequencies. This keyword only works for frequencies 

read from Gaussian standard output and from the FREQUENCY 
subkeyword. Our recommendation to the user is that frequencies 
should always be scaled to correct for anharmonicity and for 
systematic errors in electronic structure calculations;31 thus one of 
these options should be used (and the user should be sure that the 
frequencies are scaled only once).  The default value of this 

keyword is 1.0. 

Available value: Positive float 

 

Example: FREQSCALE            0.972    

G09FILE               

Description: Subkeyword for the name of the Gaussian 09 output file for a 

species. Section 5.5 gives a detailed description of the Gaussian 

long output file. If specified, then geometries, frequencies, 
symbols, rotational symmetry number, imaginary frequency and 

energies will be read from the Gaussian output file. 

Available value: String 

 

Example: G09FILE           Well_1.log   

MSTFILE               

Description: Subkeyword for the name of the MSTor output file for a species. 
If specified, the MST density of state will be read from this file. 
This is optional. Section 5.5 will give a detailed description of the 

MSTor long output file. 

Available value: String 

 

Example: MSTFILE      Well_1.out    

 

  



 47 

5.5 Polyrate, Gaussian and MSTor Output Files 

 

5.5.1 Polyrate output file  

The Polyrate output file specified in keyword PYRFILE is the standard output file xxx.fu6 of 

Polyrate. The species information, the minimum energy path (MEP) information, and the 

transmission possibilities are read from this file. The Polyrate version should be 2016 or 

later. The keyword “PRINTSTEP” should be specified in Polyrate when it is used in 

conjunction with TUMME.  In case of compatibility issues, the user may want to check the 

output file of Polyrate; below we list the key-strings in the Polyrate output file that TUMME 

uses to look for the values. Note that the Polyrate program can be used with many interfaces 

– see http://truhlar.chem.umn.edu/content/software – but the choice of interface does not 

affect the essential elements of the Polyrate long output, so TUMME should work for every 

available electronic structure interface of Polyrate, including the very popular Gaussrate. 

When the code is reading the standard output file of Polyrate, the code will try to read all the 

values listed in Table 7. TUMME does not let user choose which values to read. The code 

will scan the file from the first line to the last line; if any of key-strings showed in Table 7 is 

met, the corresponding value will be read. So, the user should make sure that the Polyrate 

standard output file being used contains the generalized transition states if the user sets the 

VARIATION keyword as cvt or muvt; and the user should make sure that the transmission 

probability is in the Polyrate output file if the user sets TUNNELING as sct or zct.    

      If Polyrate uses scaled frequencies, the frequencies at stationary points or generalized 

transition states in the Polyrate standard output are always the scaled ones, so we do not scale 

frequencies again in TUMME.      

 

Table 7. Keywords in Polyrate output file 

Values Key-strings Description 

Atom symbols  “Atomic information:” Atomic symbols will appear from the third line after 

the key-string line. The first entry of each line is the 

sequence number of each atom. The third entry of 

each line is the atom symbol. They will both be 

loaded. The reading will end with a blank line. 

 

Temporary 

species objects  

 “Reactant #1”// “Reactant #2”// 
“Product #1”// “Product #1” 

When one of four keywords is recognized in the 

output file, a temporary species object will be 

created. Then the species information will 

temporarily be stored in these objects and after all 

information read, the reactant, transition state and 

product objects will finally be created.    

 

Geometries “********** Reactants:”// 
“********** Products:”// 
“********* Saddle point:” 

Geometries will appear from the fifth line after the 

key-string line and the last three entries of each line 

are coordinates in angstrom.  

 

Species 

properties 

“****** Reactant 1 **********” 
// “****** Reactant 2 
**********” //  

“****** Product 1 **********” // 

“****** Product 2 **********” // 

“****** Saddle point **********” 

Number of atoms will appear in the second line after 

the key-string line, shown as “xx-atom” where “xx” 

denotes an integer; then electronic degeneracies and 

energies appear in the same line beginning with 

string “electronic degeneracies and 
energies (a.u.)” ; then frequencies will appear 

beginning from the fourth line after the line 

containing string “Harmonic Frequencies” 
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Reaction 

energy 

“Reaction energetics” The reaction energy calibrated with ZPVE in atomic 

unit is the seventh entry of the 16-th line after the 

key-string line. This is the reaction enthalpy at 0 K. 

 

Barrier energy “V+ZPE w/re reactant V+ZPE” The barrier energy including the change of ZPVE 

will appear in the same line. This is the enthalpy of 

activation at 0 K. 

 

Geometries of 

generalized 

transition 

states in MEP  

“Space-fixed cartesian 
coordinates vs reaction 
coordinate” 

The first geometry of the generalized transition state 

will appear from the fifth line after the key-string 

line and the last three entries of each line are 

coordinates; after Natom lines, skipping three lines, 

the geometries of the next generalized transition state 

will begin. This will circulate again and again until 

the string “Classical and adiabatic 
energies” is met. The reaction coordinate s will 

also be recorded. 

 

Frequencies 

and energies of 

generalized 

transition 

states in MEP 

“s(angstrom) VMEP Va^G     
mu^CD-SC frequencies” 

After a blank line, the frequencies and energies will 

appear. The sum of the potential energy and the 

ground-state local vibrational energy (ZPVE) in 

modes normal to the reaction path is called 𝑉a
G 

(which denotes vibrationally adiabatic ground-state 

potential energy curve;18 there are 3𝑁 − 7 (for a 

nonlinear species) or 3𝑁 − 6 (for a linear species) 

frequencies and they will be read until a blank line is 

encountered. The 𝑉a
G will also be read for each value 

of the reaction coordinate s.  

 

Transmission 

probability  

“Transmission probabilities” The transmission probability will appear beginning 

at the fourth lines after the key-string line. If the 

elementary reaction is barrierless, a string “The 

Classical barrier is less than zero!” should 

be found. The code will try to find the 

SCT probability if the user has chosen sct and will 

try to find the ZCT probability if the user has 

chosen zct. If found, the corresponding transmission 

probability will be read, otherwise this will default to 

a None-type in Python.  

 

 

5.5.2 Gaussian output file 

The Gaussian output file specified in keyword G09FILE is the standard Gaussian output 

file. When specified for a species, the geometries, frequencies, rotational symmetry number, 

and energy at 0 K will be read from the file. Note that “energy at 0 K” refers to the energy 

including zero-point energy; this can also be called the enthalpy at 0 K. The Gaussian version 

should be Gaussian 09 or Gaussian 16. The keyword “freq” should be specified in the 

Gaussian input file. Here we list the key-strings in the Gaussian output file used to look for 

the values. 

      If frequencies read from the Gaussian standard output file are unscaled, the user should 

set the FREQSCALE subkeyword. 
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Table 8. Keywords in Gaussian output file 

Values Key-strings Description 

Geometry The last string “Standard 
orientation” 

Geometries will appear in 4 lines afterwards. 

The second entry of each line are atom 

number and the last three are coordinate in 

angstroms. Read will end with a line full of “--

--”. 

 

Frequency  “Frequencies --” Frequencies will appear on the same line that 

starts with the key-string. 

 

Rotational 

symmetry number 

“Rotational symmetry 
number” 

Rotational symmetry number will appear in 

the same line afterwards 

 

E0K “Sum of electronic and 
zero-point Energies” 

E0K will appear in the same line afterwards 

  

 

5.5.3 MSTor output file   

The MSTor output file specified in keyword MSTFILE is the standard MSTor output file.  

When specified for a species, the density of states will be read from the file. The MSTor 

version should be 2017 or later.  

The keywords “estep” and “emax” should be specified in the MSTor input file. These two 

keywords are not illustrated in the manual of MSTor2017: here we give an explanation of 

these two keywords.  

estep is the energy step used in calculating the density of states. The unit is kcal/mol. It 

should be specified in the $GENERAL section of a MSTor input file. Notice that the 

energy step estep in MSTor should be the same as the energy step DE in TUMME.     

emax is the maximum energy of energy level used for calculating the density of states. 

The unit is kcal/mol. Should be specified in $GENERAL section of a MSTor input file. 

Notice that the maximum energy emax in MSTor should be the same as the energy step 

EMAX in TUMME.     
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6. Detailed Implementation 

6.1 Overview of all source files 

Table 9. Description of Python source files 

File Name Description 

parallel_lib.py This file contains a Mpv_class class which stores the 

variables like process rank number and total processor 

number for MP parallel mode. This file also contains a 

method to gather the stack of ME_class of each processor 

into rank 0 processor. We do not simply use the built-in 

gather() function in mpi4py because in this function 

there’s memory limitation ( < 2GB) for the 

communicated object. 

data_lib.py This file contains some functions dealing with the “not a 

number” issue of the density of states in MSTor output file 

and the program will use a spline function to fit the 

density of states. 

dd_lib.py This file contains an interface function for Python to call 

the quadruple-precision C++ dynamical library.  

qd_lib.py This file contains an interface function for Python to call 

the octuple-precision C++ dynamical library. 

const_lib.py This file contains physical constants, unit conversion 

constants, and the like. 

global_lib.py This file contains global variables, keywords for standard 

input file and default values for global variables. 

molecule_lib.py This file contains Molecule_class class and Atom_class 

class. They are father classes for species classes. The 

density of states and partition function can be calculated 

in the two classes. They contain some basic properties of 

a molecule or transition state.  

species_lib.py This file contains classes for wells, transition states and 

fragments of a bimolecular pair.  (In this manual, well and 

isomer are synonyms.) The relaxation kernel and 

Boltzmann population can be calculated in the class for 

wells. They are children classes of the father classes in 

molecule_lib.py.  

reaction_lib.py This file contains BarrierRxn_class and 

BarrierlessRxn_class two classes. They both have 

method to estimate the microcanonical flux coefficient. 

BarrierRxn_class contains an object of Mep_class which 

will load the minimum energy path, stationary species, 

transmission probability from a Polyrate output file. 

mep_lib.py This file contains a Mep_class class to extract the 

minimum energy path (MEP), stationary species, 

transmission probability from a Polyrate file. 
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collision_lib.py This file contains HS_collision_class and 

LJ_collision_class. The HS_collision_class is to store  

the collision information of the hard-sphere collision 

model. The LJ_collision_class is to store the collision 

information of the Lennard-Jones collision.  

me_lib.py This file contains a ME_class class to store all the 

information about a master equation for a given 

temperature and pressure. It has a method to construct a 

transition matrix, check whether a merger has occurred, 

and derive the phenomenological rate constants. For 

every working condition (T, p), a ME_class class will be 

created. After solving for the phenomenological rate 

constants, the memory of most of the variables will not 

be released. The ME_class object will be pushed into a 

stack. For running in parallel, after all calculations are 

finished, the stack will be gathered into rank 0. Then rank 

0 will deal with the printout of the rate constant/ 

eigenpair/microcanonical flux coefficient/partition 

function/time evolution.  

output_lib.py This file contains a Std_out_class, Serial_out_class, 

Mp_out_class, and Mpi_out_class classes, corresponding 

to the serial, MP, and MPI schemes. Due to the disparity 

of the printout arrangements between serial and parallel 

schemes, to make the printout compatible in serial and 

parallel schemes, we set a string stack. All the output 

information during a run is pushed into the string stack. 

When all the calculations are finished, the string stack is 

gathered into rank 0 and printed out to output files.   

tumme_main.py This file contains serial_main, mp_main, and mpi_main, 

which are three kinds of main routines for different run 

modes. 

tumme_readin.py This file contains two functions named readParallel (to 

read two parallelism subkeywords) and std_readin (to 

read other information including global parameters, 

elementary reactions, and species properties). 

tumme_pre.py This file contains std_pre, serial_pre, mp_pre, and 

mpi_pre functions for initialization of different types of 

runs. std_pre is the common code shared by serial, MP, 

and MPI runs. In the std_pre function, the energies of all 

species will be placed relative the 0 K energy set by 

GROUNDSPECIES; the density of states of all species 

will be set; and a reaction map will be created. A reaction 

map is a matrix in which the (i, j) element is an object of 

the reaction classes in reaction_lib.py if the i-th species 

and j-th species are connected by an elementary reaction; 

otherwise (i, j) element is a None type of Python.  
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tumme_solver.py This file contains std_solver, serial_solver, mp_solver, 

and mpi_solver functions for different solvers for 

different runs. std_solver is the common code shared by 

serial, MP and MPI runs. In the mp_solver and 

mpi_solver function, the entire set of temperature and 

pressure conditions {(T,p)} will be divided into nproc 

subsets. Each rank of the processor will run its own 

subset. Finally, all the information will be gathered into 

the rank 0 processor and printed out there.  

 

 

 

Table 10. Description of C++ sources files 

File Name Description 

Interface_dd.h 

Interface_dd.cpp 

ME_solver_dd.h 

ME_solver_dd.cpp 

These files contain quadruple precision code of the 

standard process in Fig. 1. The relaxation kernel for all 

isomers and the symmetric transition matrix will be 

constructed and diagonalized in quadruple precision; 

then the quadruple-precision eigenpairs will be 

transformed into double precision and returned to 

Python. OpenMP is utilized in the C++ code to reduce 

the computation cost.   

Interface_qd.h 

Interface_qd.cpp 

ME_solver_qd.h 

ME_solver_qd.cpp 

These files contain octuple-precision of code of the 

standard process in Fig. 1. The relaxation kernel for all 

isomers and the symmetric transition matrix will be 

constructed and diagonalized in octuple precision; then 

the octuple-precision eigenpairs will be transformed 

into double precision and returned to Python. OpenMP 

is utilized in the C++ code to reduce computation cost.   

qd/ Original source code for qd library. 

mpack/ Simplified source code for mpack library. 
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6.2 Normalization of the energy transfer kernel 

The energy transfers are assumed to be governed by the exponential down model, which 

assumes that the probability that the isomer energy changes from E  ́to E in a single collision 

with the bath gas is 

 𝑃𝛾(𝐸|𝐸
′) = 𝐴(𝐸′)𝑒−𝜃(𝐸

′)∙(𝐸′−𝐸)                   𝐸′ ≥ 𝐸 
(31) 

where A is a normalization constant, and 𝜃 is a collision efficiency parameter. The probability 

for 𝐸´ < 𝐸 can be determined by the detailed balance, yielding  

 𝑃𝛾(𝐸|𝐸
′) = {

𝐴(𝐸′)𝑒−𝜃(𝐸
′)∙(𝐸′−𝐸)               𝐸′ ≥ 𝐸

𝐴(𝐸)
𝑓𝛾(𝐸)

𝑓𝛾(𝐸′)
𝑒−𝜃(𝐸)∙(𝐸−𝐸

′)  𝐸′ < 𝐸 
 (32) 

where 𝑓𝛾(𝐸) is the thermal population density  𝜌𝛾(𝐸)𝑒
−𝛽𝐸 of isomer 𝛾 with energy E. 

After discretization, Eq. (2) becomes 

 𝑃𝛾[𝜂, 𝜂′] = {

𝐴[𝜂′]𝑒−𝜃(𝐸𝜂′)∙(𝐸𝜂′−𝐸𝜂)                 𝐸𝜂′ ≥ 𝐸𝜂

𝐴[𝜂]
𝑓𝛾[𝜂]

𝑓𝛾[𝜂′]
𝑒−𝜃(𝐸𝜂)∙(𝐸𝜂−𝐸𝜂′)      𝐸𝜂′ < 𝐸𝜂 

 (33) 

where 𝜂 and 𝜂′ are indices of energy bins, and the bins are arranged in order of decreasing 

energy so 𝜂 = 1 labels the highest-energy bin, and 𝜂 = 𝑁𝛾 denotes the zero-point energy of 

isomer species 𝛾, where 𝑁𝛾 is the number of energy bins used for the 𝛾-th isomer. 

       The normalization condition is 

 Σ𝜂𝑃𝛾[𝜂, 𝜂′] = 1 (34) 

For 𝜂′ = 1, Σ𝜂𝑃[𝜂, 1] = 1, and Eq. (4) gives 

 ∑ 𝐴[1]𝑒−𝜃(𝐸1)∙(𝐸1−𝐸𝜂)
𝑁𝛾

𝜂=1
= 1 (35) 

and 

 𝐴[1] =
1

∑ 𝑒−𝜃(𝐸1)∙(𝐸1−𝐸𝜂)
𝑁𝛾
𝜂=1

 (36) 

For 𝜂′ = 2, 

 𝐴[1]
𝑓𝛾[1]

𝑓𝛾[2]
𝑒−𝜃(𝐸1)∙(𝐸1−𝐸2) + ∑ 𝐴[2]𝑒−𝜃(𝐸2)∙(𝐸2−𝐸𝜂)

𝑁𝛾

𝜂=2
= 1 (37) 

and therefore  

 𝐴[2] =

1 − 𝐴[1]
𝑓𝛾[1]

𝑓𝛾[2]
𝑒−𝜃(𝐸1)∙(𝐸1−𝐸2)

∑ 𝑒−𝜃(𝐸2)∙(𝐸2−𝐸𝜂)
𝑁𝛾
𝜂=2

 
(38) 

For general 𝜂′ = 𝑛 , 

 ∑ 𝐴[𝜂]
𝑓𝛾[𝜂]

𝑓𝛾[𝑛]
𝑒−𝜃(𝐸𝜂)∙(𝐸𝜂−𝐸𝑛)

𝑛−1

𝜂=1
+ ∑ 𝐴[𝑛]𝑒−𝜃(𝐸𝑛)∙(𝐸𝑛−𝐸𝜂)

𝜂=𝑁𝛾

𝜂=𝑛
= 1 (39) 

and therefore 

 𝐴[𝑛] =

1 − ∑ 𝐴[𝜂]
𝑓𝛾[𝜂]

𝑓𝛾[𝑛]
𝑒−𝜃(𝐸𝜂)∙(𝐸𝜂−𝐸𝑛)𝑛−1

𝜂=1

∑ 𝑒−𝜃(𝐸𝑛)∙(𝐸𝑛−𝐸𝜂)
𝑁𝛾
𝜂=𝑛

 
(40) 
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In many cases, when n becomes large, the numerator of Eq. (10) becomes negative, for 

example at n = 𝑁𝑡. Then the energy levels 𝑁𝑡 + 1, 𝑁𝑡 + 2,…, 𝑁𝛾 are removed, and 𝑁𝛾 is 

decreased accordingly. After this removal, the normalization is re-calculated with the new, 

smaller 𝑁𝛾. This process is repeated until the numerator of Eq. (10) is positive for all retained 

bins. This calculation is carried out in the file species_lib.py.  

 One finds that the average energy transferred per collision in the subset of collisions 

in which the isomer loses energy to the bath gas is approximately 1/𝜃 because  

 
∫ (𝐸´ − 𝐸)𝑒−𝜃(𝐸´−𝐸)𝑑𝐸
𝐸´

−∞

∫ 𝑒−𝜃(𝐸´−𝐸)𝑑𝐸
𝐸´

−∞

=
1

𝜃(𝐸′)
 (41) 

Therefore, the program sets 𝜃(𝐸′) =  
1

⟨Δ𝐸d⟩(𝐸
′)
 where ⟨Δ𝐸d⟩(𝐸

′)  is set by the subsection 

EDOWN in the PARAMETER block. 

 

6.3 Bound isomers to CSE modes one-to-one.  

After constructing the symmetric transition matrix 𝐆,  the program diagonalizes it to get 

eigenpairs. The eigenpairs are ordered in ascending order of eigenvalues. The 𝜆-th 

eigenvector is denoted 𝒖(𝜆). If a reaction system has S isomers, then there should be S CSE 

eigenvectors. We define the projection of  𝒖(𝜆) on the chemical basis vector of isomer 𝛾 as 

EPCS: 

 𝐸𝑃𝐶𝑆𝛾
(𝜆) =

1

√𝑄𝛾/Δ𝐸
∑ 𝛿𝛾𝛾′𝑢𝑖′

(𝜆)
𝐹𝑖′

𝑁y

𝑖′=1
 (42) 

where  𝛿𝛾𝛾′ is a Kronecker delta; 𝐹𝑖′  is √𝜌𝛾′(𝐸𝜂′)𝑒
−𝛽𝐸𝜂′, which is the square root of the 

Boltzmann population of unimolecular species 𝛾′ with internal energy 𝐸𝜂′; 𝑄𝛾 is the 

electronic-vibrational-rotational partition function of isomer 𝛾; 𝑢
𝑖′
(𝜆)

 is the 𝑖-th element of the  

𝜆-th eigenvector; 𝑁y is the size of the transition matrix; Δ𝐸 is the energy step between energy 

bins. Then we define the eigenvector projection squared on the relaxation subspace as EPSRS 

 𝐸𝑃𝑆𝑅𝑆(𝜆) = 𝑃(𝜆) = 1 − Σ𝛾[𝐸𝑃𝐶𝑆𝛾
(𝜆)]

2

 (43) 

        The program will associate each of the CSE eigenmodes in a one-to-one relationship 

with a specific isomer. The algorithm to determine the correspondence is as follows.  

  For an eigenmode 𝜆′, the program looks for the maximum  |𝐸𝑃𝐶𝑆𝛾
(𝜆′)

| among 𝛾 =

1, … , 𝑆. Let 𝛾′ label the eigenmode thus located. This means the basis vector of isomer 𝛾′ has 

the greatest projection onto the eigenvector 𝜆′. A correspondence tuple (𝜆′, 𝛾′) that denotes 

the correspondence between isomer 𝛾′ and eigenmode 𝜆′ is assigned on this basis. When each 

isomer is associated with one eigenmode, one has achieved the desired one-to-one 

correspondence. The situation is more complicated in a case where an isomer corresponds to 

two or more eigenmodes. In order to make a one-to-one assignment for the eigenmode 𝜆′, the 

program may need to assign isomers iteratively. If an isomer has multiple associated 

eigenvectors, the program finds the eigenvector that has the maximum projection and creates 

a corresponding tuple. This may then force the reassignment of other eigenvectors by 
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selecting the second largest |𝐸𝑃𝐶𝑆𝛾
(𝜆′)

| (or third or fourth largest – this will continue until all 

eigenvectors have been associated with an isomer).  

 

Figure 3. The elements of the |𝐸𝑃𝐶𝑆𝛾
(𝜆)|  matrix for an artificial reaction system with 3 isomers. The 

eigenvectors are numbered in ascending order of the eigenvalues; therefore 𝜆1, 𝜆2, and 𝜆3 are CSE modes. In CSE 

theory the sum of the squares of the elements of a column will be close to one, which means that EPSRS will be 

small. In this case, it is easily calculated from the value in the figure that EPSRS is 0.11, 0.31 and 0.38 respectively 

for the 𝜆1, 𝜆2 and 𝜆3 eigenmodes.       

  

Let’s take an artificial reaction system having three isomers as an example to illustrate the 

algorithm, and for this example we assume there is no merger. (The case of a merger is 

discussed in the next paragraph.) The relevant elements of |𝐸𝑃𝐶𝑆𝛾
(𝜆)| for this example are in 

Fig. 3. (Because this is a model system, the eigenvector components are assumed to be precisely 

the values stated, even though they have only one significant figure.) The eigenvectors are 

numbered in order of increasing eigenvalues, i.e., the slowest modes are assumed to be the CSE 

modes. The program always recognizes the first S eigenvectors as the CSEs, where S is the 

number of isomers. Thus, the three eigenmodes shown in Fig. 3 are the CSE modes. For 

eigenmode with eigenvalue 𝜆1, we find that the maximum |𝐸𝑃𝐶𝑆𝛾
(𝜆)| over 𝛾1, 𝛾2, and 𝛾3 is for 

𝛾1. Therefore, in this case the program would assign the first tuple as  (𝜆1, 𝛾1). For eigenmode 

2 (i.e., the one with eigenvalue 𝜆2), it is then straightforward to assign the tuple (𝜆2, 𝛾3), and 

for eigenmode 𝜆3, the tuple (𝜆3, 𝛾3) is defined. At this stage, the isomer 𝛾3 corresponds two 

eigenmodes, 𝜆2  and 𝜆3 . Since |𝐸𝑃𝐶𝑆𝛾3
(𝜆2)| > |𝐸𝑃𝐶𝑆𝛾3

(𝜆3)|, the isomer 𝛾3  is viewed as being 

associated with eigenmode 𝜆2,  and the tuple (𝜆3, 𝛾3)  is accordingly deleted. Then the 

eigenmode 𝜆3  is searched for the second-highest value over 𝛾1, 𝛾2 , and 𝛾3 , which is 

|𝐸𝑃𝐶𝑆𝛾2
(𝜆3)|, and therefore the tuple  (𝜆3, 𝛾2) is defined. The resultant set of tuples is (𝜆1, 𝛾1), 

(𝜆2, 𝛾3), and (𝜆3, 𝛾2). Now every eigenmode has been assigned to an isomer, and the set of 

correspondence tuples satisfies the one-to-one condition. The ranking of eigenvectors in an 

ascending order of eigenvalues is carried out for each (T, p) combination, and the first S 

eigenvalues are recognized as CSE modes for that (T, p); then the one-to-one assignment 

algorithm shown above is executed for that (T, p) combination.  
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For cases where a merger occurs (see Section 6.4 for a discussion of mergers), there is a 

probability that eigenvalues whose eigenvectors correspond to chemical reaction processes are 

faster than some internal relaxation processes. If this were to happen, the assumption that the 

first S eigenmodes are CSE modes and others are IERE modes would be invalid. So far, though, 

no systematic way has been presented to handle this case, and therefore TUMME will always 

recognize the first S modes (in order of increasing eigenvalues) as the CSE ones. After ranking 

the eigenmodes, recognizing CSE modes, and binding isomers to CSE modes one-to-one, the 

program checks all CSE modes as to whether they are merged with IERE modes. If a CSE 

eigenvector does merge with the IERE space, this eigenmode will be moved from the CSE 

space into the IERE space, but the one-to-one assignment of other CSE modes will not be 

changed. 

This part is done in the me_lib.py file. 

 

6.4 Handling the merger condition  

When temperatures are very high or pressures are very low, some CSE eigenmodes may 

merge with IERE eigenmodes. In this part of the manual, we give the details of how the 

program detects the merger condition and how it deals with it.  

The value of 𝐸𝑃𝑆𝑅𝑆(𝜆)  provides the criterion to judge whether a CSE eigenmode is 

merging with the IERE space. If this value is greater than MERGETHRESHOLD, the merge is 

assumed to have occurred; otherwise not. 

If a CSE eigenmode is determined to have merged with the IERE space, the corresponding 

isomer is viewed as merging with some other species. There is no unambiguous prescription 

for assigning which species it has merged with. In TUMME, we adopted the viewpoint of 

Georgievskii et al. in their statement: “For an eigenvector describing equilibration with 

bimolecular products, the macroscopic population for each unimolecular species has the same 

sign. For an eigenvector that describes equilibration between two groups of unimolecular 

species, the cumulative populations for those groups are generally approximately equal in 

magnitude and opposite in sign, at least at not too high a temperature.”5 For a merged 

eigenmode 𝜆′, let the one-to-one isomer determined by Section 6.3 be 𝛾′; then the algorithm to 

determine the other merged species is as follows: 

1) For all 𝛾 = 1,… , 𝑆,  all positive 𝐸𝑃𝐶𝑆𝛾
(𝜆′)

 values are summed together, and all negative 

values are summed together.  The absolute values of the two sums are compared. The 

larger one will be a normalization constant to scale the 𝐸𝑃𝐶𝑆𝛾
(𝜆′)

 for all 𝛾 = 1,… , 𝑆. 

2) The program then finds the two largest absolute values of the normalized 𝐸𝑃𝐶𝑆𝛾
(𝜆′)

 

over 𝛾 = 1,… , 𝑆; let the isomer index for them be 𝛾1 and 𝛾2. If the absolute value of 

the normalized 𝐸𝑃𝐶𝑆𝛾1
(𝜆′)

  and 𝐸𝑃𝐶𝑆𝛾2
(𝜆′)

  are both greater than 0.5 and  𝐸𝑃𝐶𝑆𝛾1
(𝜆′)

  and 

𝐸𝑃𝐶𝑆𝛾2
(𝜆′)

 have different sign, this eigenmode will be recognized as the equilibration 

between isomer 𝛾1  and isomer 𝛾2 . Further, if both 𝛾1  and 𝛾2  are not equal to 𝛾′ , the 

program reports an error and exits.  
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3) If one of the absolute values of the normalized 𝐸𝑃𝐶𝑆𝛾1
(𝜆′)

 or 𝐸𝑃𝐶𝑆𝛾2
(𝜆′)

 is less than 0.5, 

this eigenmode will be recognized as the equilibrium between isomer 𝛾′  and a 

bimolecular pair. The kappa matrix (defined next) will be analyzed to further determine 

which bimolecular pair it is.   

4) The (𝛾, 𝜈) element of the kappa matrix is defined as 5,26 

 𝜅𝛾,𝜈 =∑
1

𝐿𝜆
[Σ𝑖′𝛿𝛾𝛾′𝐹𝑖′𝑢𝑖′

(𝜆)
] [Σ𝑖𝑢𝑖

(𝜆)𝐹𝑖
−1𝐵𝑖𝜐]

Φrel𝑄𝜈
𝑄𝛾

𝑁y

𝜆=𝑆+1
 (44) 

where 𝐿𝜆 is the 𝜆-th eigenvalue; 𝐵𝑖𝜐 is a generalized microcanonical bimolecular flux 

coefficient for the bimolecular pair 𝜈  to form unimolecular species 𝛾  with internal 

energy 𝐸𝜂; 𝑄𝛾 is the electronic-vibrational-rotational partition function of the isomer 𝛾; 

𝑄𝜈  is the product of the electronic-vibrational-rotational partition functions of the 

members of the bimolecular pair 𝜈; Φrel is the relative translational partition function 

per unit volume; and S is the number of isomers. 

5) For the merged eigenmode corresponding to isomer 𝛾′ , the program will find the 

maximum  𝜅𝛾′,𝜈 among bimolecular pairs 𝜈 =1, 2, .., m. Let it be 𝜈′. Then the isomer 

𝛾′ and bimolecular pair 𝜈′ will be recognized as in equilibrium.  

This part is done in the me_lib.py file. 

Note that the value of 0.5 in step 2 has nothing to do with MERGETHRESHOLD; 

MERGETHRESHOLD is EPSRS, whereas 0.5 is the normalized EPCS. We emphasize that 

EPSRS is used to judge if an CSE eigenvector is merged, and the normalized EPCS is used to 

determine which two species the merged eigenvector is describing. The threshold 0.5 of the 

normalized EPCS in TUMME cannot be changed by users. MERGETHRESHOLD should 

be specified by the user. 

 

6.5 High-precision dynamic libraries 

In some cases where the magnitudes of eigenvalues span a very wide range of values, it is 

necessary to use quadruple or octuple precision to obtain full accuracy. TUMME includes the 

quadruple and octuple precision code in C++. The quadruple precision version is in dd_lib.py 

file, and the octuple precision version is in qd_lib.py file. TUMME compiles the higher-

precision code into dynamic libraries to let Python call them. We used numpy.ctypes as an 

interface between Python and C++. In the C++ code, all relaxation kernels of the isomers are 

re-calculated in high precision, and the construction of the symmetric transition matrix G and 

its diagonalization are carried out in high precision. Finally, the C++ libraries will return 

eigenpairs of the symmetric transition matrix to the Python process to continue the analysis.  

Users who wish to use quadruple precision or octuple precision to diagonalize their own 

transition matrix can use our simplified mpack library. First go into mpack_dd/src and 

mpack_qd/src and modify the include path and library path of the qd/ folder in the Makefile 

and compile them. If it succeeds, you will get two dynamic library files called 

libmpack_dd.so and libmpack_qd  under mpack_dd/lib and mpack_qd/lib, respectively. Then 

you can call these dynamic libraries by C++ under the GNU compiler. And remember to add 

the path of the dynamic library to your system library-path or compile your own code in 

which you specify the -Wl,-rpath option. There are two examples, the 

mpack_dd/example/eigenvector_dd.cpp and mpack_dd/example/eigenvector_qd.cpp, to show 
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how to call the mpack to diagonalize a matrix. The C++/qd folder is necessary for both 

libraries and should be pre-installed by using the GNU compiler.  If you use the simplified 

mpack, please cite the references of mpack32 and qd33 in your work. 
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7. Test Runs 

7.1 2-methylhexyl radical single-channel unimolecular dissociation 

                              
               Note that hydrogens are not shown, and parentheses are used to show branching.         

Figure 4. Reaction for the first test case 

Anharmonicity:  SSHO 

Variational effect: None (TST) 

Tunneling: Eckart 

Parallelism:  MPI with 4 processors 

Precision: Double 

Standard input file: param.in 

Extra input files: None 

Output files: param.out, param.rate, kE.out, evec.out, eval.out 

Location: example/2MH/Eckart/ 

Run command: tumme param.in 

 

 

7.2 2-methylhexyl radical multi-channel unimolecular dissociation 

 
               Note that hydrogens are not shown, and parentheses are used to show branching.         

Figure 5. Reactions for the second test case. 

 

Anharmonicity:  SSHO 

Variational effect: None (TST) 

Tunneling: No tunneling 

Parallelism:  Serial 

Precision: Quadruple 

Standard input file: param.in 

Extra input files: None 

Output files: param.out, param.rate, kE.out, evec.out, eval.out, time.txt 

Location: example/2MH/highprecision/ 

Run command: tumme param.in 
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7.3 Toluene + OH radical ipso- site addition reaction 

 

 
Figure 6. Reaction for the third test case 

 

Anharmonicity:  MS for C6H5CH3; SSHO for other species. 

Variational effect: None (TST) 

Tunneling: No tunneling 

Parallelism:  MPI with 13 processors 

Precision: Double 

Standard input file: param.in 

Extra input files: R_m.out 

Output files: param.out, param.rate, evec.out, eval.out 

Location: example/T+OH/ipso/ 

Run command: tumme param.in 

 

 

7.4 Toluene + OH radical addition reactions: TST 

 
Figure 7. Reactions for the fourth test case 

 

Anharmonicity:  SSHO 

Variational effect: None (TST) 

Tunneling: No tunneling 

Parallelism:  MP with 6 processors 

Precision: Double 

Standard input file: param.in 

Extra input files: None 

Output files: param.out, param.rate 

Location: example/T+OH/all_plain/ 

Run command: tumme param.in 
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7.5 Toluene + OH radical addition reactions: VTST  

 
Figure 8. Reactions for the fifth test case. 

 

Anharmonicity:  MS for all species except OH 

Variational effect: CVT for four C6H5CH3⋯OH association reaction channels. 

Tunneling: SCT for four C6H5CH3⋯OH association reaction channels. 

Parallelism:  MPI with 4 processors 

Precision: Double 

Standard input file: param.in 

Extra input files: P_add_ortho.out, P_add_ipso.out, P_add_meta.out, 

P_add_para.out, TS_add_ortho.out, TS_add_ipso.out,  

TS_add_meta.out, TS_add_para.out, R_m.out 

Rxn2_ipso.fu6, Rxn2_para.fu6, Rxn2_meta.fu6, Rxn2_ortho.fu6  

Output files: param.out, param.rate, Q.txt, kE.txt 

Location: example/T+OH/all_calibrated/ 

Run command: tumme param.in 

 

 

7.6 H2CO + OH radical abstraction reaction  

 

Figure 9. Reactions for the sixth test case. 

 

Anharmonicity:  MS for van der Waals complex and the transition state of 

reaction 2 

Variational effect: CVT for reaction 2 

Tunneling: SCT for reaction 2 

Parallelism:  MPI with 11 processors 

Precision: Quadruple 

Standard input file: param.in 



 62 

Extra input files: mstor_complex.out, mstor_TS.out, Rxn2.fu6  

Output files: param.out, param.rate, eval.out, time.txt 

Location: example/H2CO+OH/ 

Run command: tumme param.in 
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8. Bibliography of TUMME research articles 

“Energy Dependence of Ensemble-Averaged Energy Transfer Moments and its Effect on 

Competing Decomposition Reactions,” R. M. Zhang, X. Xu, and D. G. Truhlar, 

Journal of Physical Chemistry A 125, 6303-6313 (2021). 

doi.org/10.1021/acs.jpca.1c03845  

(Special Virtual Issue entitled "125 Years of The Journal of Physical Chemistry") 

“TUMME: Tsinghua University Minnesota Master Equation program,” R. M. Zhang, X. Xu, 

and D. G. Truhlar, Computer Physics Communications 270, 108140/1-17 (2021).  

doi.org/10.1016/j.cpc.2021.108140 

“Master Equation Study of Hydrogen Abstraction from HCHO by OH Via a Chemically 

Activated Intermediate,” R. M. Zhang, W. Chen, D. G. Truhlar  and X. Xu, Faraday 

Discussions 2022, online as Accepted Manuscript.  

doi.org/10.1039/D2FD00024e  
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9. Version History of TUMME 

Date Log Version No. 

12/17/2020 The first version of TUMME. 1.0 

06/18/2021 

• Added the dependence of ⟨Δ𝐸d⟩ on bath 

temperature and on initial isomer internal energy 

• Changed subkeywords from TIMEMAX to 

TIMENUM 

• Added a print option for the relaxation kernel 

matrix 

• Improved the output 

• Fixed bugs 

2.0 

08/05/2021 • Fixed some bugs. 2.1 

08/25/2021 

• Changed EEOT from “relative to the max 0 K 

energy of transition states” to “relative to the 

max 0 K energy of all species including 

reactants, transition states, and products” 

• Made it available for a reaction system without 

any transition state 

• Fixed some bugs for reading standard files and 

Polyrate output files 

2.2 

7/03/2022 

• Added the pseudo-first order assumption for 

bimolecular pairs in time evolution calculations, 

making this also available in high precision 

• Added inverse-Laplace-transform in 

REACTION block 

• Abandoned rounding the size of the energy bins 

into integer numbers of wavenumbers (ESOT) 

• Changed the way to run TUMME and provided 

an executable bash script 

• Slightly adjusted the strategy for merges to deal 

with some unexpected cases 

• Adjusted the output for partition functions 

• Fixed some bugs 

3.0 

10/15/2022 

• Add the LCT and μOMT options for the 

tunneling  

• Fixed some bugs 

3.1 
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