
 1

MANUAL

FCBand 2017

by

Shaohong L. Li, and Donald G. Truhlar

Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing

Institute, University of Minnesota, Minneapolis, MN 55455-0431, USA

Program version date: March 26, 2017

Documentation version date: July 15, 2021

Table of Contents
1. Introduction .. 2

2. Licensing .. 2

3. Citation ... 2

4. Installation .. 2

4.1. Dependencies ... 2

4.2. Installing FCBand .. 2

4.3. Validation of installation .. 3

5. Execution ... 3

5.1. Overview .. 3

5.2. Typical FCBand workflow... 4

6. Input File .. 4

6.1. Overview .. 4

6.2. Input blocks .. 5

7. Output .. 6

8. Test Cases .. 6

8.1. Naphthalene S0→S2 transition ... 6

8.2. Permanganate 1 A1→1 T2 transition .. 6

8.3. Fe(CO)5 low-lying transitions .. 7

9. Technical Documentation of Classes AsymmBand, GaussSpectrum ... 8

 2

1. Introduction
FCBand is a Python package for simulating vibronic bands of electronic absorption spectroscopy using

the Franck-Condon displaced harmonic oscillator (FC-DHO) models. These models are suitable for

simulating the unresolved vibronic band shapes of electronic spectra that involve many electronic

transitions and vibrational modes.

2. Licensing

FCBand - version 2017 is licensed under the Apache License, Version 2.0.

The manual of FCBand - version 2017 is licensed under CC-BY-4.0.

Publications of results obtained with the FCBand - version 2017 software should cite the program

and/or the article describing the program.

No guarantee is made that this software is bug-free or suitable for specific applications, and no liability

is accepted for any limitations in the mathematical methods and algorithms used within. No consulting

or maintenance services are guaranteed or implied.

The use of the FCBand - version 2017 implies acceptance of the terms of the licenses.

3. Citation

Citation for the code:

S. L. Li and D. G. Truhlar, FCBand 2017; http://comp.chem.umn.edu/fcband/

Citation for the method:

S. L. Li and D. G. Truhlar, Franck-Condon Models for Simulating the Band Shape of Electronic

Absorption Spectra. J. Chem. Theory. Comp. 2017, 13, 2823.

4. Installation

4.1. Dependencies

Before installing FCBand, you need to have the following programs/packages installed:

• Python 2.7 (https://www.python.org/) (tested with version 2.7.8)

• NumPy (http://www.numpy.org) (tested with version 1.11.2)

• SciPy (https://www.scipy.org) (tested with version 0.18.1)

See the websites of the packages for how to install them.

4.2. Installing FCBand

To install FCBand, simply unzip and untar the package in a directory (let’s call it your_path). For

example, in Linux and OSX you can use the following commands in the terminal:

https://www.apache.org/licenses/LICENSE-2.0.txt
https://creativecommons.org/licenses/by/4.0/

 3

cd your_path

tar -zxvf fcband2016.tgz

A directory fcband should be created, which contains the package files.

Next, add the path to the PYTHONPATH environment variable. For example, if you use a bash shell in

Linux, add the following line to your $HOME/.bashrc file

export PYTHONPATH=$PYTHONPATH:your_path

and run the command

source $HOME/.bashrc

4.3. Validation of installation

Execute the run_tests.sh script to validate the installation, which runs all the tests. Installation is

successful if no error message is printed. The user may compare the generated .out files to the

provided .out.ref files in the test/ directory.

5. Execution

5.1. Overview

FCBand is a Python package. To use it, the user should have basic knowledge of Python. However, if

you are not familiar with Python, you may refer to the test cases we provide (described in Section 8)

and learn how write a Python script to use FCBand. In any case we strongly recommend reading the test

cases to understand how the package works.

FCBand defines a Python module, fcband, which has two classes, AsymmBand and

GaussSpectrum, defined in submodules asymmband and gaussspectrum respectively.

AsymmBand has methods to read quantities from input file(s), simulate a spectral band, and print the

band. GaussSpectrum is a container of AsymmBand objects for simulating a spectrum consisting of

multiple bands. The most important methods are listed below; for complete documentation, see Section

9.

Important AsymmBand methods:

• from_input: Read from an input file and create an AsymmBand object.

• readstuff: Read in a single piece of data from an input file.

• printstuff: Print a certain piece of data.

• xe_q0: Compute the excited-state equilibrium geometry by using the ground-state equilibrium

geometry and the excited-state gradient at the ground-state equilibrium geometry. Compute the

mass-weighted Cartesian displacement. Also compute other important energetic quantities.

• calc_band_param: Calculate parameters needed for simulating a band.

• calc_band_point: Compute one point of band at a certain photon energy.

• plot: Print a band or return an array containing the spectral data.

 4

Important GaussSpectrum methods:

• add_band: Add an AsymmBand object to the spectrum.

• gen_spectrum: Generate a spectrum.

• print_spectrum: Print a spectrum.

• read_exp_spectrum: Read in an experimental spectrum from a file.

• scale_sim_to_exp: Scale the simulated spectrum to the experimental spectrum to

minimize their mean squared difference.

5.2. Typical FCBand workflow

(See Section 5.1 and Section 9 for description of the methods.)

To simulate a single spectral band, follow these steps:

• Prepare an input file (see Section 6)

• Create an AsymmBand object by reading in the input file using the from_input method

• (Optional) Read in additional data from other input files by using the readstuff method

• Compute necessary quantities by calling the xe_q0 and calc_band_param methods

• Simulate and print the band, or obtain the band as an array for further use, by calling the plot

method

To simulate a spectrum consisting of one or more bands, follow these steps:

• Create AsymmBand objects, each one corresponding to one band, using the steps above

• Create an GaussSpectrum object and add the AsymmBand objects to the

GaussSpectrum object by using the add_band method

• (Optional) Read in an experimental or reference spectrum by using the

read_exp_spectrum method

• Simulate a spectrum by calling the gen_spectrum method

• (Optional) Scale the simulated spectrum to minimize its mean squared difference to the read-in

experimental or reference spectrum by calling the scale_sim_to_exp method

• Print the spectrum by calling the print_spectrum method

6. Input File

6.1. Overview

The contents of an input file are organized in blocks. Each block is identified by an identifier line in the

format “$block_name” where block_name is the identifier of the block. The input data starts in

the next line to the identifier line.

Lines starting with a “#” (comment lines) will be ignored.

 5

6.2. Input blocks

$evert: Vertical excitation energy. It accepts a single floating-point number. The energy unit is

specified in the $unit block.

$forcees: (Optional) Excited-state forces (negative of the gradients with respect to nuclear

coordinates) at the ground-state equilibrium geometry. This is needed only if $geomes is not given.

Input format is determined by gradformat (see $misc block).

$freqes: Excited-state frequencies and normal modes. In the FC-DHO approximations, these are the

same as the ground-state values. Input format is determined by freqformat (see $misc block).

$geomes: (Optional) Excited-state equilibrium geometry. If not provided, it will be computed from

the data provided in the $geomgs, $forcees, and $freqes blocks. Input format is determined by

geomformat (see $misc block).

$geomgs: Ground-state equilibrium geometry. Input format is determined by geomformat (see

$misc block).

$misc: (Optional) Miscellaneous settings. It accepts inputs in “keyword=value” format.

keyword meaning valid value

freqformat input format for frequencies

and normal modes (for the

$freqes block)

=g09 (default): As printed in the “Frequencies” section

of the output file of a Gaussian 09 job with the

“freq=hpmodes” keyword.

 =adf: As printed in the “Vibrations and Normal

Modes” section of an ADF 2014 frequencies job.

geomformat input format for geometries

(for the $geomgs,

$geomes blocks)

=g09 (default): As printed in the “Standard

orientation” section of a Gaussian 09 output file. Each

row corresponds to one atom and there are 6 columns

per row:

[dummy] [atomic number] [dummy] [x] [y] [z]

where [dummy] is a placeholder whose value will not

be read in.

 =general: General format. Each row corresponds to

one atom and there are 4 columns per row:

[atomic symbol] [x] [y] [z]

gradformat input format for forces

(negative of gradients;

$forcees block)

=g09 (default): As printed in the “Forces” section of a

Gaussian 09 output file. Each row corresponds to one

atom and there are 5 columns per row:

[dummy] [dummy] [x] [y] [z]

where [dummy] is a placeholder whose value will not

be read in.

 6

$natom: Number of atoms. It accepts a single integer.

$oscstr: (Optional) Oscillator strength. It accepts a single floating-point number. This is needed only

when you want to scale the simulated band by the oscillator strength.

$plot: (Optional) Range of photon energy to print the band. It accepts three numbers separated by

whitespace: start energy (floating-point), end energy (floating-point), number of points in the range

(integer). The energy unit is specified in the $unit block.

$unit: (Optional) Unit for the input energies in the $evert and $plot blocks. It accepts a single

string of either “eV” (default) or “cm_1”.

7. Output
The user can choose what to print out by using the printstuff and plot methods of AsymmBand

and the print_spectrum method of GaussSpectrum. See the documentation of those methods in

Section 9 for details.

8. Test Cases
The test cases are in the test/ directory. Change to that directory first before executing the commands

shown below. Note that these test cases only serve to show how the package works. Their results should

not be used for scientific purposes.

8.1. Naphthalene S0→S2 transition

This test case shows how to use the AsymmBand class.

Execute

python example_main.py example_naphthalene.in >

example_naphthalene.out

and compare example_naphthalene.out to the provided

example_naphthalene.out.ref.

8.2. Permanganate 1 A1→1 T2 transition

This test case shows how to use the AsymmBand class.

Execute

python example_main.py example_permanganate.in >

example_permanganate.out

and compare example_permanganate.out to the provided

example_permanganate.out.ref.

 7

8.3. Fe(CO)5 low-lying transitions

This test case shows how to use the GaussSpetrum class.

First change directory to FeCO5/. Execute

python simulate.py > example_FeCO5.out

and compare example_FeCO5.out to the provided example_FeCO5.out.ref.

 8

9. Technical Documentation of Classes AsymmBand, GaussSpectrum

class AsymmBand(__builtin__.object)

Class for computing overall vibronic shape of a single band.

Methods defined here:

__init__(self)

calc_band_param(self)
Calculate parameters needed for simulating band.

calc_band_point(self, omega, order=0, norm='one')
Compute one point of band at photon energy omega.

omega: photon energy in unit of self.unit

order: band shape model type.

 0 = Gaussian FC-DHO

 -1 = third-order FC-DHO

norm: normalization/scale.

 ='one': no scale

 ='oscstr': scale by oscillator strength

 ='tdm': scale by transition dipole moment squared

 times excitation energy

plot(self, mode='print', norm='oscstr', start=None, end=None, npoints=None, order=0)
Plot spectra or return an array containing the spectral data.

mode: 'print'= print the data for plot;

 'array'= return the data array.

norm: band multiplied by osc. str ('oscstr') or

 transition dipole moment squared ('tdm')

 times excitation energy.

start, end: range of plot.

npoints: number of points in the range.

order: band shape model type.

 0 = Gaussian FC-DHO

 -1 = third-order FC-DHO

return: None if mode='print';

 numpy array if mode='array',

 with col1 = energy, col2 = abs. strength

printstuff(self, stuff)
Print something.

stuff: string of what to print.

 'geomgs' = ground-state equilibrium geometry (x0)

 'geomes' = excited-state equilibrium geometry (xe)

 'dE' = difference of ES energy at x0 and xe

 'Q' = Dimensionless normal coordinate displacement x0->xe

 'bandparam' = band parameters

 'freq' = harmonic frequencies

 'header' = header

readstuff(self, fin, keyw)
Read in a piece of data.

fin: input file name

keyw: keyword

 9

xe_q0(self)
Extrapolate from x0 to xe if necessary.

Calculate mass-weighted Cart. displacement q0.

Calculate deltaE = E_vert - E_adiab.

Class methods defined here:

from_input(cls, fin) from __builtin__.type
Read all stuff from input.

fin: string of input file name.

class GaussSpectrum(__builtin__.object)

Class of a container of AsymmBand to form full spectrum of a system.

Methods defined here:

__init__(self)

add_band(self, band)
Add a band to the spectrum.

band: AsymmBand object

gen_spectrum(self, xs=None, use_exp_xs=False, norm='oscstr', order=0)
Generate spectrum.

xs: a list of energy points at which the spectrum is generated.

use_exp_xs: whether use energy points of the exp. band as xs

norm: spectrum multiplied by osc. str ('oscstr') or

 transition dipole moment squared ('tdm')

 times excitation energy.

order: band shape model type.

 0 = Gaussian FC-DHO

 -1 = third-order FC-DHO

print_spectrum(self, which_spectrum='sim', energy_unit='eV', xs=None, use_exp_xs=False,

norm='oscstr', order=0)
which_spectrum: which to print; 'sim' or 'exp' or 'scaled_sim'

energy_unit: energy unit in the print; 'eV' or 'cm_1' or 'nm'

xs: a list of energy points at which the spectrum is generated.

use_exp_xs: whether use energy points of the exp. band as xs

norm: spectrum multiplied by osc. str ('oscstr') or

 transition dipole moment squared ('tdm')

 times excitation energy.

order: band shape model type.

 0 = Gaussian FC-DHO

 -1 = third-order FC-DHO

read_exp_spectrum(self, filename, energy_unit='cm_1', normalize_to=None)
Read in an experimental spectrum from a file.

The file should have two columns,

where col 1 is energy and col 2 is absorption strength

filename: input file name of experimental spectrum

energy_unit: energy unit of experimental spectrum;

 'cm_1' or 'eV' or 'nm'

normalize_to: whether and how to normalize the exp. spectrum

 ='unit_area': normalize to unit area

 ='unit_maxstr': normalize to unit max abs

 =None: don't normalize

file:///C:/Users/lixx2474/Desktop/tmp/__builtin__.html%23type

 10

scale_sim_to_exp(self)
Scale simulated spectrum to experimental to minimize

the mean squared difference.

return: final mean squared difference

Static methods defined here:

calc_spectrum_area(spectrum)

normalize(spectrum, normalize_to)
Normalize spectrum to unit area (regardless of energy unit).

spectrum: npoints * 2 array; col1 is energy, col2 is strength

normalize_to: how to normalize

 'unit_area' = normalize to unit area

 'unit_maxstr' = normalize maximum strength to one

return: npoints * 2 array of normalized spectrum

