

New Density Functionals

- DFT is the most successful method for the calculation of the electronic structure, properties, and potential energy surfaces of all but the smallest chemical systems.
- The development of improved approximations to the exchangecorrelation functional has been a crucial ingredient in the success of DFT
- The optimization of new functionals depends on two factors:
 - the functional form must be physically appropriate and flexible enough to catch most of the possible systematic improvements, but not too flexible, in order to avoid over-fitting.
 - the databases used in the process must include a large number of data for different properties, avoiding however data that is beyond the predictive ability of the chosen functional form.

We introduced a new generation of approximation to the exchange-correlation functional called the 11 Generation.

There are four new functionals in the set:

SOGGA11 SOGGA11-X

M11-L M11 The M11 functionals are the most accurate.

The SOGGA11 functionals are best in their class for simpler functional forms.

Peverati, Zhao, Truhlar (Univ. of Minnesota)

Second-Order GGA family

SOGGA11

- The first GGA correct to second order that provide good accuracy for a broad variety of chemical problems.
- Simple implementation in any quantum chemistry software

Performance of SOGGA11 compared to other GGA functionals for a broad chemistry database:

SOGGA11-X

- The most successful hybrid-GGA for chemical calculation of a broad variety of chemical problems.
- Simple implementation in any quantum chemistry software

Performance of SOGGA11-X compared to other hybrid GGA functionals for a broad chemistry database:

Functional	MUE (kcal/mol)	Functional	MUE (kcal/mol)	Functional	MUE (kcal/mol)	Functional	MUE (kcal/mol)
PBE	7.27	HCTH407	4.47	PBE0	4.86	O3LYP	3.02
BP86	6.56	RPBE	4.46	B1LYP	3.90	B3PW91	2.99
BLYP	5.16	BPW91	4.32	B3LYP	3.67	B98	2.81
revPBE	4.74	OLYP	4.19	mPW1PW	3.13	B97-3	2.43
mPWPW	4.62	SOGGA11	3.77			SOGGA11-X	1.93

MUE is mean unsigned error.

SOGGA11: Peverati, Zhao, Truhlar; J.Phys Chem. Lett. 2, 1991(2011)² SOGGA11-X: Peverati, Truhlar; J. Chem. Phys. 135, in press

Minnesota 11 meta-GGA family

M11

- The first range-separated hybrid meta-GGA optimized for a broad variety of chemical problems.
- Big improvement over the previous generation of very successful Minnesota functionals (M05, M06, and M08)

M11-L

- The first dual-range local meta-GGA functional.
- The first local functional to have similar accuracy as hybrid functionals, but local has a much lower computational cost.
- Good performances for chemistry and solid-state physics calculations.

Performance of M11 and M11-L compared to other Minnesota meta-GGA functionals for a broad chemistry database:

Functional:	M05	M05-2X	M06-L	M06	M06-2X	M06-HF	M11-L	M11
MUE: (kcal/mol)	2.88	2.31	3.24 (local)	2.30	2.11	3.17	2.52 (local)	1.84

M11: Peverati, Truhlar; J.Phys Chem. Lett. 2, 2810 (2011) 3 M11-L: Peverati, Truhlar; manuscript in preparation.