Photochemical Dynamics in the Truhlar Group

Developing new methods for studying photochemical and other non-Born-Oppenheimer processes

Coupled potential energy surfaces of NH₃ molecules

 NH_3 has two low-lying electronic states; the higher one (excited state) is planar. Experimentalists found that the excitation of a particular vibration of the planar structure leads to the adiabatic dissociation of NH_3 into $H + NH_2^*$, where * denotes an excited electronic state, while exciting other vibrations leads to amino radical in the ground electronic state.

We are using computational methods to understand why.

The first step of our study consists in building a multidimensional surface.

Dynamical study of NH₃ molecules

Methods	Quantum methods	Mixed quantum- classical methods	Classical adiabatic methods	Statistical methods
Number of surfaces	N _{surf} ≤ 5-10	N _{surf} ≤ 50-100	N _{surf} = 1	No
Number of atoms	N _{at} ≤ 4	N _{at} ≤ 20	N _{at} ≤ a few 100	N _{at} ≥ 100
Simulation time	t _{end} ≤ 100 fs	t _{end} ≤ 100 ps	t _{end} ≤ 10 ns	t _{end} ≤ 1 ms - 1 s
Example of Method	Multi- Configuration Time-Dependent Hartree	Mean-field and surface hopping methods	Molecular dynamics	Kinetic Monte Carlo

Photofragmentation of NH₃ Molecules

Mixed quantum-classical method:

- Nuclei are treated classically by following classical equation of motion in Cartesian coordinates
- The electronic part is treated quantum mechanically (wave function)
- The existence of two surfaces is taken into account by allowing for hops between surfaces (surface hopping techniques) or generating an average surface (mean field techniques)

Results:

- Following the fragmentation process as a function of time (energies, distances, electronic state populations, mode populations,...) → top figure
- Determining speed and kinetic energy distributions of departing H atoms (comparison to experiments) → bottom figure
- Testing the reliability of mean field and surface hopping techniques in diabatic and adiabatic representations

A simple model to include spin-orbit effects in photochemistry

Spin-orbit interaction has two very important effects

1) Fine-structure splitting

Formulation of the model

- Express the energy of triplet states in terms of the energy of singlet states
- (b) Assume spin-orbit coupling does not depend on internuclear distances

 $3\Sigma^+$

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R(H-Br) (Å)

зп

Energy (eV)

(c) With these two approximations compute potential energy curves

model

ab initio

No spin-orbit

п

2) Singlet-triplet interaction and mixing. Example: HBr molecule

2

Spin-orbit included

Reactive quenching of the excited \tilde{A} state of OH by hydrogen and deuterium molecules

This project involves

- obtaining diabatic molecular orbitals by the fourfold way
- obtaining diabatic potential energy surfaces by configurational uniformity
- fitting the surfaces and couplings by multi-configuration molecular mechanics
- calculating the non-Born-Oppenheimer dynamics and product energy distributions by decay of mixing with coherent switches

Todd, Anderson, and Lester, JPC A, 2001