
Manual
MULTILEVEL–version 4.4

Yan Zhao, Jocelyn M. Rodgers, Benjamin J. Lynch, Núria González-García,

Patton L. Fast, Jingzhi Pu, Yao-Yuan Chuang, Benjamin A. Ellingson,

Rubén Meana-Pañeda, and Donald G. Truhlar
Department of Chemistry and Supercomputer Institute, University of Minnesota,

Minneapolis, MN 55455-0431

Program Version: 4.4

Program Version Date: November 13, 2013

Manual Version Date: July 21, 2021

Copyright 2014

Abstract: MULTILEVEL is a computer program written in FORTRAN90 for performing

geometry optimizations and calculating single-point energies, gradients, and/or Hessians

using two types of dual-level and multi-level methods: integrated molecular orbital

(IMO) methods and linear combination (LC) methods. The IMO option is implemented

using the integrated molecular orbital method with harmonic cap (IMOHC), and the LC

methods include the linear mixing of Hartree-Fock and molecular orbital (HF||MO)

method, the scaling all correlation (SAC) method, the Gaussian-x (Gx) methods, the

infinite basis (IB) method, and the multi-coefficient (MC) methods, where the MC

methods include the multi-coefficient correlation method (MCCM), the multi-coefficient

scaling all correlation (MCSAC) methods, the multi-coefficient Gaussian-x (MCGx)

methods, the multi-coefficient quadratic configuration interaction with single and double

excitations (MC-QCISD) method, and doubly hybrid density functional theory (DHDFT)

methods. In the case of DHDFT, the MULTILEVEL-v4.4 program can perform calculations

by the MC3BB and MC3MPW methods. The program contains several options for

optimizing stationary points (minima and saddle points), and it also contains the Nudged

Elastic Band (NEB) method, which can be used both to optimize saddle points and to

2

calculate reaction paths. The MULTILEVEL-v4.4 program can also use the optimizers in the

GAUSSIAN program to perform geometry optimization. Note that the use of MULTILEVEL

does not require the GAUSSIAN program, though; it can be used with the output of any

electronic structure package. The code contains 30 test runs.

Licensing

MULTILEVEL - version 4.4 is licensed under the Apache License, Version 2.0.

The manual of MULTILEVEL - version 4.4 is licensed under CC-BY-4.0.

Publications of results obtained with the MULTILEVEL - version 4.4 software should cite

the program and/or the article describing the program.

No guarantee is made that this software is bug-free or suitable for specific applications,

and no liability is accepted for any limitations in the mathematical methods and

algorithms used within. No consulting or maintenance services are guaranteed or implied.

The use of the MULTILEVEL - version 4.4 implies acceptance of the terms of the

licenses.

https://www.apache.org/licenses/LICENSE-2.0.txt
https://creativecommons.org/licenses/by/4.0/

 3

Table of Contents

TITLE PAGE AND ABSTRACT ...1

TABLE OF CONTENTS .. 3

1. INTRODUCTION ... 7!
2. REFERENCES FOR MULTILEVEL PROGRAM .. 13!
3. GENERAL PROGRAM DESCRIPTION ... 18!
4. THEORETICAL BACKGROUND ... 20!

4.A. Integrated Molecular Orbital (IMO) Theory .. 20!
4.A.1. Integrated Molecular Orbital Method with Harmonic Cap (IMOHC) 20!
4.B. Linear Combination (LC) Methods .. 21!
4.B.1. Linear Mixing of Hartree-Fock and Molecular Orbital Methods (HF||MO) . 24!
4.B.2. Scaling All Correlation (SAC) Method ... 24!
4.B.3. Multi-Coefficient SAC (MCSAC) .. 25!
4.B.4. Infinite Basis (IB) Method .. 28!
4.B.5 Multi-Coefficient Correlation Methods (MCCM) ... 29!
4.B.6. Gaussian-x (Gx) and Multi-Coefficient Gaussian-x (MCGx) Methods 38!

5. OPTIMIZATION PROCEDURES .. 53!
5.A. Optimization Algorithms .. 53!
5.B. Hessians Obtained with OPTHHK .. 55!
5.C. Optimization with GAUSSIAN09/03’s Optimizers ... 56!
5.C.1 Note about Gau_External script .. 57!
5.D. Optimization with Nudged Elastic Band Method .. 57!
5.E. Comments on Optimizing Geometries in Cartesian Coordinates 58!

6. INPUT DESCRIPTION ... 61!
6.A. MULTIGEN Section .. 62!
6.B. EXTOPT Section .. 64!
6.C. MULTIOPT Section ... 66!
6.E. LC Section .. 75!
6.G. Running MULTILEVEL in Parallel .. 87!

 4

7. DESCRIPTION OF FILES IN MULTILEVEL .. 88!
7.A. Source Code .. 88!
7.A.1. Source Code Files .. 88!
7.A.2. Subprogram List .. 89!
7.B.1. Basis Set Files ... 108!
7.B.2. Electronic Structure Program Shuttle Scripts .. 109!
7.C. Files Created During a MULTILEVEL Run ... 110!
7.C.1. The Output File: ml.out .. 110!
7.C.2. The Electronic Structure Program Input and Output Files 110!
7.C.3. The Summary Output File: ml.sum .. 112!
7.D. The C Shell Script run.ml ... 113!

8. INSTALLING AND USING MULTILEVEL ... 115!
8.A. Installation Instructions .. 115!
8.B. The MULTILEVEL Test Suite .. 120!
8.B.1. Test 1 ... 121!
8.B.2. Test 2 ... 121!
8.B.3. Test 3 ... 121!
8.B.4. Test 4 ... 121!
8.B.5. Test 5 ... 121!
8.B.6. Test 6 ... 122!
8.B.7. Test 7 ... 122!
8.B.8. Test 8 ... 122!
8.B.9. Test 9 ... 122!
8.B.10. Test 10 ... 122!
8.B.11. Test 11 ... 122!
8.B.12. Test 12 ... 123!
8.B.13. Test 13 ... 123!
8.B.14. Test 14 ... 123!
8.B.15. Test 15 ... 123!
8.B.16. Test 16 ... 123!
8.B.17. Test 17 ... 123!

 5

8.B.18. Test 18 ... 124!
8.B.19. Test 19 ... 124!
8.B.20. Test 20 ... 124!
8.B.21. Test 21 ... 124!
8.B.22. Test 22 ... 124!
8.B.23. Test 23 ... 124!
8.B.24. Test 24 ... 124!
8.B.25. Test 25 ... 124!
8.B.26. Test 26 ... 125!
8.B.27. Test 27 ... 125!
8.B.28. Test 28 ... 125!
8.B.29. Test 29 ... 125!
8.B.30. Test 30 ... 126!
8.C. Viewing MULTILEVEL Output .. 127!
8.D. Computers, Operating Systems, and FORTRAN Compilers on Which the Code

Has Been Tested .. 128!
9. BIBLIOGRAPHY .. 130!
10. REVISION HISTORY... 133!

10. A. Version 1.0 .. 133!
10. B. Version 1.5 ... 133!
10. C. Version 2.0 ... 133!
10. D. Version 2.0.1 ... 133!
10. E. Version 2.1 ... 133!
10. F. Version 2.1.1 .. 133!
10. G. Version 2.2 .. 134!
10. H. Version 2.3 .. 134!
10. I. Version 2.4 .. 134!
10. J. Version 2.5 ... 134!
10. K. Version 2.5.1 .. 134!
10. L. Version 3.0 .. 135!
10. M. Version 3.0.1 .. 135!

 6

10. N. Version 3.1 ... 135!
10. O. Version 4.0 ... 135!
10. P. Version 4.1 .. 135!
10. Q. Version 4.1.1 (not released) .. 135!
10. R. Version 4.2 .. 136!
10. S. Version 4.3 .. 136!
10. S. Version 4.4 .. 137!

 7

Chapter One

1
1. Introduction

MULTILEVEL is a computer program for calculating optimized geometries, single-point

energies, single-point gradients, and/or single-point Hessians using dual-level and multi-

level methods. The present version supports two quite different types of calculations,

namely integrated molecular orbital (IMO) methods and linear combination (LC)

methods. The IMO methods are implemented using the integrated molecular orbital

method with harmonic cap (IMOHC) algorithm, and the LC methods include the linear

mixing of Hartree-Fock and molecular orbital (HF||MO) methods, the scaling all

correlation (SAC) method, the Gaussian-x (Gx) methods, the infinite basis (IB) method,

and the multi-coefficient (MC) methods. The MC methods include the multi-coefficient

correlation method (MCCM), the multi-coefficient scaling all correlation (MCSAC)

method, the multi-coefficient Gaussian-x (MCGx) methods, the minimal multi-coefficient

Gaussian-x (MMCGx) methods, and the multi-coefficient quadratic configuration

interaction with single and double excitations (MC-QCISD) method.

As implied by its name, all calculations carried out by this program involve the

combination of two or more levels, in particular, two or more levels of quantum

mechanical electronic structure theory or one or more levels of quantum mechanical

electronic structure theory combined with a molecular mechanics level. The levels may

be ab initio or semi-empirical. Each level of calculation is obtained by making a call to

an external electronic structure or molecular mechanics package. The external programs

enabled in version 4.4 of this code are GAUSSIAN94, GAUSSIAN98, GAUSSIAN03 and

GAUSSIAN09, but the structure of the code is very modular so that one could also use

other packages with straightforward modifications.

 8

Five kinds of calculations can be done with MULTILEVEL: energies, gradients, Hessians,

optimizations using MULTILEVEL routines, and optimizations using the external electronic

structure packages. Whole reaction path minimizations can also be performed by using

the Nudged Elastic Band (NEB) method as the algorithm. This option is a special case of

the optimizations using MULTILEVEL routines because it does not optimize one point but a

whole reaction path. The list below indicates the order in which each of the calculations

will be done within the program. If the user has not selected one of these calculations

then the program jumps to the next calculation in the list.

 External optimization. This option obtains a geometry from the external

electronic structure package. The use of this option is recommended to give a

good starting point geometry. The geometry resulting from this calculation can

be used as a starting point for step 2, or, if step 2 is omitted, it is used for step 3, 4,

or 5.

 MULTILEVEL Optimization. This option optimizes a geometry with one of the

MULTILEVEL methods. This optimized geometry is then used for all remaining

calculations. If this optimization has been carried out, at least one of the three

options below will be exercised, i.e., at the very least an energy will be calculated.

 Hessian calculation. Frequencies and normal mode coordinate are also calculated

for the Hessian calculation.

 Gradient calculation. This is only carried out if a Hessian was not calculated

since a Hessian calculation outputs a gradient and an energy as well.

 Energy calculation. This is only done if a Hessian or gradient was not calculated

because both of these calculations yield an energy as well.

A given run performs step 1 or step 2 only once, although a MULTILEVEL optimization

may follow a single-level optimization. However, the Hessian, gradient, and energy

calculations have been implemented so that multiple calculations may be carried out in

one run of MULTILEVEL. Additionally, as can be seen in the theory section, many of the

LC calculations require identical calls to the electronic structure package. Thus in order

to minimize the expense of multiple LC calculations, certain groups of calculations

 9

‘cooperate’ and share electronic structure information from calls made. Specifically,

information is currently shared among three possible groups: the G3/MCG3 group, the

G2/MCG2 group, and the SAC/MCSAC/IB/EIB/MCCM group. Once the electronic

structure program calls necessary for the calculations specifically requested by the user

have been made, then all SAC, MCSAC, IB, EIB, and MCCM calculations that are able

to be carried out with these values will be calculated with the default coefficients. This

sharing of information and calculation of lower-level default values among the SAC,

MCSAC, IB, EIB, and MCCM calculations may be turned off by the user if so desired.

(See the NOCOOP keyword in the LC input section.)

MULTILEVEL is run from one input file, called ml.inp; and one output file, called ml.out, is

created. Chapter 6 describes the contents of the input file, and further description of the

files necessary to run MULTILEVEL and the files created by MULTILEVEL can be found in

Chapter 7. Chapter 8 provides installation and usage instructions.

There are two general versions, version 1 (v1) and version 2 (v2), of the coefficients for

the EIB, SAC, MCSAC, MCCM, and MCGx linear combination methods. The two

general versions each have subversions depending on how spin-orbit and core-correlation

effects are included. The subversions are denoted m when both spin-orbit and core-

correlation effects are treated implicitly, denoted s when spin-orbit effects are treated

explicitly and core-correlation effects are treated implicitly, and denoted sc when both

spin-orbit and core-correlation effects are treated explicitly. The version of the

coefficients used in a calculation is controlled by the VERSION keyword for each of the

methods. Table 1 shows which versions of the coefficients are available for each of the

different methods in MULTILEVEL version 4.4. In this table the presence of an entry in a

given row and column indicates that the version does exist for that method, and the value

of the entry denotes the number of molecules in the training set used to obtain the

coefficients. The reference for each entry is indicated in brackets. Coefficient sets

without a reference were determined in the same way as the published coefficients but

have not been published; the reference for those coefficients is either version 4.4 of the

code or this manual. See method descriptions in Chapter 4 and the VERSION keyword of

 10

Section 6.E for additional information on the different versions of the coefficients that are

available.

Scheme 1: Methods available in MULTILEVEL-v4.4
"#

$%
&$
'(
'$
)*+

,+!
&"-! &"-./!

$/!

.011"-!
23/!

23/)"45!
23/)"4+267!
23/)//26!

23/)//268%9!

:;!
:5!
:<!

:<2=8"4<9!

&>!

&>)"45!
&>)"4+!
&>)//26!
&>)//268%9!

"/!

"//"!

"/23/)"4+!
"/23/)"4+267!
"/23/)//26!

"/23/)//268%9!

"//")/-!

"//")/-)"45!
"//")/-)"4+!

"//")/-)"4+267!
"//")/-)//26!

"//")/-)//268%9!

"//")#%!

"//")#%)"45!
"//")#%)"4+!

"//")#%)"4+267!
"//")#%)//26!

"//")#%)//268%9!

"//")?"!

"//")?")"45!
"//")?")"4+!
"//")?")"4+267!
"//")?")//26!

"//")?")//268%9!
"/)7/&26!

"/:;! "/:5!
"/:<!

6.60%! "/<>>!
"/<"4@!

Table 1. Versions of the coefficients available in MULTILEVEL version 4.4 for the SAC, MCSAC, EIB, MCCM, and MCGx LC methods.

Method Version

 1s 1m 1sc 2m 2s 2sc HCO-s v3m v3s

SAC-MP2/pDZ [Fa99] [Fa99b] 82 [Fa00] 82 [Tr99] 82 [Tr99] [Fa01] [Ly02] [Ly02]

SAC-MP2/pTZ [Fa99] [Fa99b] 82 [Fa00] 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

SAC-MP4SDQ/pDZ [Fa99] [Fa99b] 82 82 [Tr99] 82 [Tr99] [Fa01] [Ly02] [Ly02]

SAC-MP4SDQ/pTZ [Fa99] [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

SAC-MP4/pDZ [Fa99] [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

SAC-MP4/pTZ [Fa99] [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

SAC-CCSD/pDZ [Fa99] [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

SAC-CCDS/pTZ [Fa99] [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

SAC-CCSD(T)/pDZ [Fa99] [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

SAC-CCSD(T)/pTZ [Fa99] [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCSAC-MP2/pDZ [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCSAC-MP2/pTZ [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCSAC-MP4SDQ/pDZ [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCSAC-MP4SDQ/pTZ a[Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCSAC-MP4/pDZ a [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCSAC-MP4/pTZ a [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCSAC-CCSD/pDZ a [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCSAC-CCDS/pTZ [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

 12

MCSAC-CCSD(T)/pDZ [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCSAC-CCSD(T)/pTZ [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCCM-CO-MP2 [Fa99b] 82 82 [Tr99] 82 [Tr99] [Fa01] [Ly02] [Ly02]

MCCM-CO-MP2; MG3; D+d [Fa99b] 82 [Fa00] 82 [Tr99] 82 [Tr99] [Fa01] [Ly02] [Ly02]

MCCM-UT-MP2 82 [Fa00] [Ly02] [Ly02] [Ly02]

MCCM-CO-MP4SDQ a[Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCCM-UT-MP4SDQ a [Fa99b] 82 [Fa00] 82 [Tr99] 82 [Tr99] [Fa01] [Ly02] [Ly02]

MCCM-CO-MP4 a [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCCM-UT-MP4 a [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCCM-CO-CCSD [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCCM-UT-CCSD [Fa99b] 82 [Fa00] 82 [Tr99] 82 [Tr99] [Fa01] [Ly02] [Ly02]

MCCM-CO-CCSD(T) [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCCM-UT-CCSD(T) [Fa99b] 82 82 [Tr99] 82 [Tr99] [Ly02] [Ly02] [Ly02]

MCCM-NM-CCSD(T) [Fa99b] 82 82 [Tr99] 82 [Tr99]

MCG2 [Fa99c] [Fa99c] 52 52 [Tr99] 52 [Tr99] [Ly02] [Ly02] [Ly02]

MCG3 b[Fa99c] b[Fa99c] 82 [Fa00] 82 [Tr99] 82 [Tr99] [Fa01] [Ly02] [Ly02]

MC-QCISD 82 [Fa00] [Fa01] [Ly02] [Ly02]

aThis version involves an MP4D component that has been removed in version 2, and therefore this version can only be run with version 1.0

or 1.5 of MULTILEVEL.

bThis version involves an MP4/6-31G(2df,p) component that has been removed in version 2 of the coefficients, and therefore this version

can only be run with version 1.0 or 1.5 of MULTILEVEL. Version ANLsc is also available in version 1.5 of MULTILEVEL.

Chapter Two
2

2. References for MULTILEVEL Program

The recommended reference for the current version of the code is given below in two

styles, first in J. Chem. Phys. style, then in J. Amer. Chem. Soc. style.

J. Chem. Phys. style if MULTILEVEL is used with GAUSSIAN94:

MULTILEVEL-version 4.4/G94 by Y. Zhao, J. M. Rodgers, B. J. Lynch, N. González-

García, P. L. Fast, J. Pu,Y. -Y. Chuang, B. A. Ellingson, R. Meana-Pañeda, and D. G.

Truhlar, University of Minnesota, Minneapolis, 2006, based on GAUSSIAN94, by M. J.

Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R.

Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-

Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A.

Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L.

Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J.

Defrees, J. Baker, J. P. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople,

Gaussian Inc., Pittsburgh, 1995.

J. Chem. Phys. style if MULTILEVEL is used with GAUSSIAN98:

MULTILEVEL-version 4.4/G98 by Y. Zhao, J. M. Rodgers, B. J. Lynch, N. González-

García, P. L. Fast, J. Pu, Y.-Y. Chuang, B. A. Ellingson, R. Meana-Pañeda, and D. G.

Truhlar, University of Minnesota, Minneapolis, 2006, based on GAUSSIAN98, by M. J.

Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V.

G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M.

Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M.

Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamos, S. Clifford, J. Ochterski, G. A.

Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K.

 14

Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A.

Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M.

A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W.

Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S.

Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

J. Chem. Phys. style if MULTILEVEL is used with GAUSSIAN03:

MULTILEVEL-version 4.4/G03 by Y. Zhao, J. M. Rodgers, B. J. Lynch, N. González-

García, P. L. Fast, J. Pu, Y.-Y. Chuang, B. A. Ellingson, R. Meana-Pañeda, and D. G.

Truhlar, University of Minnesota, Minneapolis, 2006, based on GAUSSIAN03, by M. J.

Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J.

A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J.

Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.

Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.

Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,

J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.

Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,

 K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S.

Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.

Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,

 J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.

Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.

Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A.

Pople, Gaussian, Inc., Pittsburgh PA, 2003.

J. Chem. Phys. style if MULTILEVEL is used with GAUSSIAN09:

MULTILEVEL-version 4.4/G09 by Y. Zhao, J. M. Rodgers, B. J. Lynch, N. González-

García, P. L. Fast, J. Pu, Y.-Y. Chuang, B. A. Ellingson, R. Meana-Pañeda, and D. G.

Truhlar, University of Minnesota, Minneapolis, 2012, based on GAUSSIAN09, by M. J.

Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.

Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.

 15

P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,

K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.

Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.

Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.

Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.

M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.

Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.

Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.

Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J.

Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

J. Amer. Chem. Soc. style if MULTILEVEL is used with GAUSSIAN94:

Zhao, Y.; Rodgers, J. M.; Lynch, B. J.; González-García, N.; Fast, P. L.; Chuang, Y.-Y.;

Pu, J.; Ellingson, B.A.; Meana-Pañeda, R.; Truhlar, D. G.; MULTILEVEL-version 4.4/G94;

University of Minnesota, Minneapolis, 2005 based on Frisch, M. J.; Trucks, G. W.;

Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith,

T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.;

Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;

Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.;

Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.;

Defrees, D. J.; Baker, J.; Stewart, J. P. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.;

GAUSSIAN94; Gaussian Inc., Pittsburgh, 1995.

J. Amer. Chem. Soc. style if MULTILEVEL is used with GAUSSIAN98:

Zhao, Y.; Rodgers, J. M.; Lynch, B. J.; González-García, N.; Fast, P. L.; Pu, J.;Chuang,

Y.-Y.; Ellingson, B.A.; Meana-Pañeda, R.; Truhlar, D. G.; MULTILEVEL-version 4.4

/G98; University of Minnesota, Minneapolis, 2005 based on Frisch, M. J.; Trucks, G.

W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.;

Montgomery, J . A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels,

A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,

R.; Mennucci, B.; Pomelli, C.; Adamos, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.;

 16

Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;

Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.;

Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,

M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.;

Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.;

Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; GAUSSIAN98; Gaussian, Inc., Pittsburgh

PA, 1998.

J. Amer. Chem. Soc. style if MULTILEVEL is used with GAUSSIAN03:

Zhao, Y.; Rodgers, J. M.; Lynch, B. J.; González-García, N.; Fast, P. L.; Pu, J.; Chuang,

Y.-Y; Ellingson, B.A.; Meana-Pañeda, R.; Truhlar, D. G.; MULTILEVEL-version 4.4/G03;

University of Minnesota, Minneapolis, 2005 based on M. J. Frisch, G. W. Trucks, H. B.

Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T.

Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B.

Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M.

Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J.

Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.

Pomelli, J. W. Ochterski, P. Y. Ayala,

 K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S.

Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.

Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,

 J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.

Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.

Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A.

Pople.; GAUSSIAN98; Gaussian, Inc.; Pittsburgh PA, 2003.

J. Amer. Chem. Soc. style if MULTILEVEL is used with GAUSSIAN09:

Zhao, Y.; Rodgers, J. M.; Lynch, B. J.; González-García, N.; Fast, P. L.; Pu, J.; Chuang,

Y.-Y; Ellingson, B.A.; Meana-Pañeda R.; Truhlar, D. G.; MULTILEVEL-version 4.4/G09;

University of Minnesota, Minneapolis, 2012 based on M. J. Frisch, G. W. Trucks, H. B.

 17

Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.

Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.

Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R.

Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,

J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.

N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.

C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.

Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.

Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.

Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich,

A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox,

Gaussian, Inc., Wallingford CT, 2009.

Additional references are given in the documentation for GAUSSIAN94, GAUSSIAN98,

GAUSSIAN03, and GAUSSIAN09.

 18

Chapter Three

3

3. General Program Description

MULTILEVEL is written in standard FORTRAN90. The program is written using modular

subprograms called “hooks.” There are four main hooks for MULTILEVEL values: energy

hook (MLEHOOK), gradient hook (MLGHOOK), Hessian hook (MLHHOOK), and optimization

hook (MLOHOOK). The energy, gradient, and Hessian hooks have been designed in order

to allow MULTILEVEL calculations with a variety of methods that are available. They

make a minimum number of calls to the electronic structure package in order to carry out

these calculations. Each of these three MULTILEVEL hooks makes calls to “subhooks,”

one for each of the methods enabled in MULTILEVEL.

The optimization hook is structured somewhat differently in that it makes calls to

routines for the different optimization algorithms available in MULTILEVEL. When

energies, gradients, and/or Hessians are required for the optimization algorithm, three

different hooks may be called for this information: OPTEHK, OPTGHK, and OPTHHK

respectively. These three hooks differ from other energy, gradient, and Hessian hooks in

that they serve only as a front end to the hooks for each type of MULTILEVEL method,

calling the appropriate hook for the method that one is using for optimization.

Whenever the program calls MLHOOK, but not when it calls OPTHHK, the program

also calculate the harmonic vibrational frequencies and normal mode coordinates and

write them to the output file. This calculation is carried out in mass-scaled Cartesian

coordinates, and the translations and rotations are projected out before diagonalizing the

mass-scaled force constant matrix.

 19

As all of the methods require multiple calls to an electronic structure package, program

hooks have been written to make calls to the appropriate electronic structure program and

then extract the energies (PROGEHK), gradients (PROGGHK), and Hessians (PROGHHK) from

the output of that program. Additionally there is a program hook (MPROGEHK) that, for

greater efficiency, will return all the energies available in the output file, not just the

calculation specifically requested. Unfortunately the output files produced by GAUSSIAN

for gradient and Hessian runs contain only the one gradient and/or Hessian that was

requested, so it is not possible to increase the efficiency of those two program hooks.

Besides these four hooks, there is also a program hook to do geometry optimizations

(PROGOHK) using the electronic structure methods of the external program to provide a

starting geometry for all calls to ML hooks. The MULTILEVEL code currently has program

hooks for calling GAUSSIAN94, GAUSSIAN98, GAUSSIAN03 and GAUSSIAN09, but in the

future it is planned that it will contain hooks that will call other electronic structure

packages, for example, ACESII and/or GAMESS.

The hooks are called in the following order to create the functionality described in the

introduction: PROGOHK, MLOHOOK, MLHHOOK, MLGHOOK, MLEHOOK.

See Chapter 7 for a complete listing of all the files that compose the source code of

MULTILEVEL, as well as a description of the subprograms and modules within the source

code.

 20

Chapter Four

4
4. Theoretical Background

This chapter describes the IMO and LC methods available in this version of the

MULTILEVEL code.

4.A. Integrated Molecular Orbital (IMO) Theory

Integrated molecular orbital (IMO) methods combine a calculation with an affordable

level of theory and basis set on a large system (typically a system for which a high level

of theory and/or a large basis set are prohibitively expensive) with a higher-level

calculation on a capped sub-system of the large system (where the capped sub-system is a

system for which high levels of theory and/or basis sets are affordable). The higher-level

calculation on the capped sub-system contributes higher-level character to the composite

calculation on the large system to make up for not doing the higher-level calculation on

the large system. [Ma95, Hu96, Co96, No97, Co97, Sv96]

There are several approaches to combining the higher- and lower-level calculations. In

MULTILEVEL we have implemented the IMO with harmonic cap (IMOHC) method.

[Co98] This method is summarized in the following section.

4.A.1. Integrated Molecular Orbital Method with Harmonic Cap (IMOHC)

For the case of hydrogen being the capping atom, the IMOHC energy is written as

 E E E E k R RES CSS CSS ES XH eqI HL) LL) LL)() (((()= ! + + !
1
2 1

2

 2
eqXYZH3

2
eqXYH2)(

2
1)(

2
1

!!"" #+#+ kk (1)

 21

where I denotes integrated, HL indicates the higher level of calculation, LL is the lower

level of calculation, ES denotes the entire system (or large system), CSS is the capped

subsystem, k1, k2, k3 are the force constants for the bond stretching, bend, and torsion

introduced by the cap, RXH is the X–H bond length where X is the atom capped by H,

Req is the equilibrium bond length for the X–H bond length, !YXH and !eq are the YXH

angle and the equilibrium YXH angle, respectively, and "ZYXH and "eq are the torsion

angle variable and its equilibrium value for the ZYXH torsion. The components of the

gradient and the Hessian are given by the first and second partial derivatives of eq. (1),

respectively.

4.B. Linear Combination (LC) Methods

The LC methods take linear combinations of different levels of theory to obtain an

extrapolated energy, gradient, or Hessian. There are three different approaches to the

extrapolation. The first is the scaling all correlation (SAC) method; this method scales

the correlation energy in an attempt to make up for the incompleteness in the level of

correlation used as well as the one-electron basis set. The second approach is the infinite

basis method (IB); this method uses one level of correlation with two different basis sets

and attempts to extrapolate to the infinite basis limit. The third approach is the multi-

coefficient correlation method (MCCM); this method combines the approaches of SAC

and IB in an attempt to reach the full configuration interaction (CI) limit with an infinite

basis set. The combination of full CI (FCI) with an infinite one-electron basis (IB) is

called complete CI (CCI). These three approaches are described in more detail below.

Throughout this manual we will use the pipe “|” to represent the energy difference either

between two one-electron basis sets B1 and B2, between two many-body levels L1 and

L2, e.g., Møller-Plesset second-order perturbation theory and Hartree-Fock theory, or

between the level increments obtained with two different basis sets. The energy

difference between two basis sets will be represented as

 !E(L / B2 | B1) " E(L / B2) – E(L / B1) (2)

 22

where L is a particular electronic structure method, and B1 is smaller than B2. The

energy change that occurs upon improving the treatment of the correlation energy will be

represented by

 !E(L2 | L1 / B) " E(L2 / B) – E(L1 / B) (3)

where L1 is a lower many-electron level of theory than L2, and B is a common basis set.

Finally, the change in energy increment due to increasing the many-electron level of the

treatment of the correlation energy with one one-electron basis set as compared to the

increment obtained with a smaller basis set will be represented as

 !E(L2 | L1 / B2 | B1) " E(L2 / B2) – E(L1 / B2) – [E(L2 / B1) – E(L1 / B1)]. (4)

Additionally, some standard abbreviations for electronic structure methods will be used

throughout this manual, namely

 HF Hartree-Fock [Ro51, Po54]

 MP2 Møller-Plesset (MP) perturbation theory, second order [Mø34,

Po77]

 MP4D MP perturbation theory, fourth order, with double excitations

[Kr78, Kr80]

 MP4SDQ MP perturbation theory, fourth order, with single, double, and

quadruple excitations [Kr78, Kr80]

 MP4 full fourth-order MP perturbation theory, i.e., MP4SDQ plus triple

excitations (Sometimes, in the older literature, MP4 is called

MP4SDTQ.) [Kr78, Kr80]

 CCSD coupled-cluster theory with single and double excitations [Ci69,

Pu82, Sc88, Sc89]

 CCSD(T) CCSD plus a quasiperturbative treatment of fourth-order and fifth

order connected triple excitations [Ra89]

 QCISD Quadratic configuration interaction with single and double

excitations [Po87]

 QCISD(T) QCISD plus a quasiperturbative treatment of fourth-order and fifth

order connected triple excitations [Po87]

 23

All of the equations defining the methods will be written in terms of energies. However

for all methods, the gradient and Hessian may be determined by applying the analogous

equation to each of their components. It should be noted that, in this version of

MULTILEVEL, the spin-orbit and core-correlation contributions to the energy, if present

in a method, are treated as constants, and as such contribute zero to the gradient and

Hessian components.

The following abbreviations for standard basis sets are used throughout this manual:

 pDZ cc-pVDZ [Du89, Wo93]

 mpDZ maug-cc-pVDZ [Pa09, Fa99b, Ke92, Wo94]

 pTZ cc-pVTZ [Du89, Wo93]

 Dd 6-31G(d) [He86]

 D+d 6-31+G(d) [He86]

 D2dfp 6-31G(2df,p) [He86]

 Tdp 6-311G(d,p) [He86]

 T+dp 6-311+G(d,p) [He86]

 T2dfp 6-311G(2df,p) [He86]

 T+3df2p 6-311+G(3df,2p) [He86]

 MG3 Modified G3large [Fa99d]

 MG3S Semidiffuse MG3 [Ly02]

Note that maug-cc-pVDZ is sometimes called aug!!-cc-pVDZ in older papers. The spin-

orbit and core-correlation energies (ESO and ECC) referred to in the subsequent equations

are simple estimates (requiring negligible computational effort). These methods are

described elsewhere. [Tr99, Fa99, Fa99a] Since the coefficients in the equations

containing ESO and ECC were parameterized with these values in the equation, the user

must supply the correct spin-orbit and core-correlation corrections to obtain an accurate

energy for those methods that require ESO and ECC. (See ESO and ECC in the MULTIGEN

input section.)

 24

4.B.1. Linear Mixing of Hartree-Fock and Molecular Orbital Methods (HF||MO)

The HF||MO method involves a linear combination of the HF and semiempirical

molecular orbital theory (MO) [St90] total electronic energies. The overall HF||MO

energy [Ch99] is written as

 E xE x EHF||MO HF MO= + !()1 (5)

where x is the mixing parameter, EHF is the total electronic energy from Hartree-Fock

theory, and EMO is the total electronic energy from semiempirical MO theory.

4.B.2. Scaling All Correlation (SAC) Method

The scaling all correlation (SAC) method [Fa99, Go86] may be written [Tr99, Fa99b]

 E (SAC-L / B) = E (HF / B) + c1!E (L | HF / B) + ESO + ECC (6)

where ESO and ECC are the spin-orbit and core-correlation contributions to the energy,

respectively, and c1 is a constant. The default for the VERSION variable in the SAC

keyword of the *LC section is v2m. Table 1 gives the value of c1 for all of the different

SAC versions. See the VERSION and COEFF options of the SAC keyword in the *LC section

for changing the default value.

Table 1. Available versions of c1 for the SAC method [Tr99, Fa99, Fa99b,Ly02]

Methods VERSION

 v1s v1sc v2m v2s v2sc v3m v3s HCO-s

SAC-MP2/pDZ 1.2877 1.2768 1.2318 1.2373 1.2181 1.2638 1.2672 1.2660

SAC-MP2/pTZ 1.0578 1.0482 1.0090 1.0138 0.9970 1.0219 1.0255 1.1753

SAC-MP2/6-31G(d) 1.2979 1.3019 1.3577

SAC-MP2/6-31G† 1.3218 1.3258 1.3714

SAC-MP2/6-31G(d,p) 1.1671 1.1707 1.1753

SAC-MP2/6-31+G(d,p) 1.1761 1.1796 1.1888

 25

Methods VERSION

 v1s v1sc v2m v2s v2sc v3m v3s HCO-s

SAC-MP2/6-31+G(2df,p) 1.0530 1.0563 1.0795

SAC-MP2/MG3S 1.0268 1.0300 1.0517

SAC-MP2/6-31G(d,2p) 1.1478 1.1512 1.1526

SAC-MP4SDQ/pDZ 1.4308 1.4189 1.4370 1.4431 1.4209 1.4281 1.4320 1.3980

SAC-MP4SDQ/pTZ 1.1854 1.1747 1.1880 1.1933 1.1737 1.1569 1.1808 1.1569

SAC-MP4/pDZ 1.3355 1.3243 1.3306 1.3362 1.3156 1.3394 1.3430 1.3245

SAC-MP4/pTZ 1.0853 1.0756 1.0739 1.0788 1.0610 1.0766 1.0803 1.0711

SAC-CCSD/pDZ 1.4497 1.4375 1.4665 1.4727 1.4501 1.4573 1.4613 1.4308

SAC-CCSD/pTZ 1.2022 1.1915 1.2125 1.2178 1.1979 1.1997 1.2036 1.1801

SAC-CCSD(T)/pDZ 1.3656 1.3542 1.3716 1.3774 1.3562 1.3753 1.3790 1.3586

SAC-CCSD(T)/pTZ 1.1201 1.1100 1.1181 1.1232 1.1047 1.1156 1.1193 1.1064

Notice that all other methods (level of theory and basis set combination) not specified in

Table 1 are given a default c1 value of 1.2500.

4.B.3. Multi-Coefficient SAC (MCSAC)

The overall methodology for SAC is to scale all of the correlation energy that comes

from a given level of correlation energy treatment as calculated with a single basis.

However the different components of the correlation energy may need different scaling

factors. [Tr99, Fa99b] For example, using CCSD theory and the pDZ basis set, we can

write

 E(MCSAC-CCSD / pDZ) = E(HF / pDZ) + c1!E(MP2 | HF / pDZ)

 + c2!E(CCSD | MP2 / pDZ) + ESO + ECC (7)

where c1 and c2 are constants. In general, we define the multi-coefficient SAC method

(MCSAC) for electron correlation level Ln and basis B as

 26

 E(MCSAC-Ln / B) = E(HF / B) +
m

n

=
!
1

cm!E(Lm | Lm-1 / B) + ESO + ECC (8)

where the lowest level, L0, is HF theory, and L1, L2, … are the correlated members of the

sequence leading up to level Ln. We will define two sequences: the MP sequence and the

CC sequence. The MP sequence consists of L0 = HF, L1 = MP2, L2 = MP4SDQ, and L3

= MP4; and the CC sequence consists of L0 = HF, L1 = MP2, L2 = CCSD, and L3 =

CCSD(T). The default for the VERSION variable in the MCSAC keyword of the *LC section

is v2m. Table 2 gives the value of cm for all of the different MCSAC versions. See the

VERSION and COEFF options of the MCSAC keyword in the *LC section for changing the

default values.

Table 2. Available versions of cm for the MCSAC method [Tr99, Fa99b]

Methods VERSION c1 c2 c3

MCSAC-MP4SDQ/pDZ v2m 1.3740 0.9849

 v2s 1.3727 0.9387

 v2sc 1.3573 0.9644

 v3m 1.3747 0.9511

 v3s 1.3734 0.9093

 HCO-s 1.3885 1.2652

MCSAC-MP4SDQ/pTZ v2m 1.1326 0.8114

 v2s 1.1299 0.7626

 v2sc 1.1169 0.7875

 v3m 1.1366 0.8621

 v3s 1.1334 0.8108

 HCO-s 1.1228 0.8285

 27

Methods VERSION c1 c2 c3

MCSAC-MP4/pTZ v2m 1.0899 1.1081 0.9541

 v2s 1.0880 1.0538 0.9363

 v2sc 1.0775 1.0621 0.8829

 v3m 1.1023 1.1119 0.8192

 v3s 1.1000 1.0539 0.7969

 HCO-s 1.1042 1.0377 0.5628

MCSAC-CCSD/pDZ v1sc 1.4174 1.2403

 v2m 1.3866 0.9543

 v2s 1.3852 0.9121

 v2sc 1.3699 0.9358

 v3m 1.3900 0.9366

 v3s 1.3886 0.8993

 HCO-s 1.4063 1.2066

MCSAC-CCSD/pTZ v1sc 1.1406 0.7433

 v2m 1.1415 0.7796

 v2s 1.1388 0.7353

 v2sc 1.1257 0.7569

 v3m 1.1472 0.8347

 v3s 1.1440 0.7897

 HCO-s 1.1323 0.7868

 28

Table 2. (cont.)

Methods VERSION c1 c2 c3

MCSAC-CCSD(T)/pDZ v1sc 1.3055 1.7800 3.0180

 HCO-s 1.3157 1.8210 3.3330

MCSAC-CCSD(T)/pTZ v1sc 1.0513 1.2183 2.1835

 v2m 1.0818 1.0123 1.3836

 v2s 1.0769 0.9761 1.4314

 v2sc 1.0712 0.9688 1.2601

 v3m 1.1119 0.9676 0.8427

 v3s 1.1062 0.9321 0.9026

 HCO-s 1.0715 1.1969 1.8880

Notice all other methods (level of theory and basis set combination) not specified in

Table 2 are given a set of default cm values of 1.0000.

4.B.4. Infinite Basis (IB) Method

The IB method [Tr98, Fa99e] may be written [Fa99b] as

 E(IB-L / B2 | B1) = E (HF / B1) + c1!E(HF / B2 | B1)

 + !E(L | HF / B1) + c2!E(L | HF / B2 | B1) + ESO + ECC (5)

where, in the original notation, with B1 = pDZ and B2 = pTZ, c1 is given by 3# / (3# –

2#) and c2 is given by 3$ / (3$ – 2$), where # and $ are parameters. The recommended

values (MULTILEVEL default values for the ALPHA and BETA options of the IB keyword in

the *LC section) of # and $ are given in the Table 3. See the ALPHA and BETA options of

the IB keyword in the *LC section for changing the default values.

 29

Table 3. Available versions of # and $ for the IB method [Fa99e]

Methods # $

IB-MP2/pDZ|pTZ 3.39 1.91

IB-MP4/pDZ|pTZ 3.39 2.08

IB-CCSD/pDZ|pTZ 3.39 1.94

IB-CCSD(T)/pDZ|pTZ 3.39 2.02

Notice all other methods (level of theory and basis set combination) not

specified in Table 3 are given default values of # = 3.39 and $ = 2.00.

4.B.5 Multi-Coefficient Correlation Methods (MCCM)

The MCCM methods involve linear combinations of different levels of theory with the

Dunning correlation consistent polarized double and triple zeta (cc-pVDZ, abbreviated

pDZ, and cc-pVTZ, abbreviated pTZ) basis sets. [Fa99b] We recognize three different

kinds of MCCM methods. The Colorado (CO) kind uses a polarized double zeta and

triple zeta basis set for all the correlation calculations that are included as well as for the

HF part. The Utah (UT) kind uses pDZ for all HF and correlation calculations but uses

pTZ only for HF and MP2. The final kind is New Mexico (NM) which is similar to UT,

but adds an additional HF/mpDZ calculation. (The abbreviation mpDZ is shorthand for

the maug-cc-pVDZ basis set, which differs from aug-cc-pVDZ in that diffuse functions

have been omitted on hydrogen and the diffuse subshell corresponding to the highest

angular momentum has been omitted for the heavy atoms.)

4.B.5.a. Colorado Variant

The Colorado (CO) variant of MCCM is formally written as

 E(MCCM-CO-Ln) = c1E(HF / B1) + c2!E(HF / B2 | B1)

 30

 +
m

n

=
!
1
c2m+2!E(Lm | Lm-1 / B2 | B1)

 +
m

n

=
!
1
c2m+1!E(Lm | Lm-1 / B1) + ESO + ECC (6)

where B1 and B2 are pDZ and pTZ or D+d and MG3, respectively. For clarity let’s use

MCCM-CO-CCSD as an example,

 E(MCCM-CO-CCSD) = c1E (HF / pDZ) + c2!E (HF / pTZ | pDZ)

 c3!E (MP2 | HF / pDZ) + c4!E (MP2 | HF / pTZ | pDZ)

c5!E (CCSD | MP2 / pDZ) + c6!E (CCSD | MP2 / pTZ | pDZ)

+ ESO + ECC (7)

where c1 through c6 are constants. The coefficients, given in Table 5, and the

corresponding energy differences can be visualized with Figure 1 given below. The first

circle represents E(HF / pDZ); the vertical lines represent level improvements (e.g.,

!E(MP2|HF/ pDZ)), and the horizontal lines represent basis set improvements (e.g.,

!E(MP2|HF/pTZ|pDZ)). Deleting the last row of the CC tree yields the tree

corresponding to eq. (7); comparing the CC tree to eq. (7) should make the notation

obvious.

 31

Figure 1. Coefficient trees for MCCM-CO-MP4 and MCCM-CO-CCSD(T). Coefficient

trees for other symmetric MCCM methods (Colorado variants) are obtained by deleting

rows successively from the bottom. (left) MP tree. (right) CC tree. [Tr99, Fa99b]

c6

c1
c3 c4

c5

c7 c8

c2

pDZ pTZ

HF

MP2

MP4SDQ

MP4

c6

c1
c3 c4

c5

c7 c8

c2

pDZ pTZ

HF

MP2

CCSD

CCSD(T)

pDZ " cc-pVDZ
pTZ " cc-pVTZ

 32

Table 5. Available versions of cm for the Colorado variant of MCCM [Tr99, Fa99b, Fa00]

Methods VERSION c1 c2 c3 c4 c5 c6 c7 c8

MCCM-CO-MP2 v1sc 0.9971 1.6560 0.7718 2.6398
 v2m 0.9918 1.0276 0.7833 2.6875
 v2s 0.9887 1.0828 0.7768 2.7893
 v2sc 0.9888 1.1177 0.7671 2.7028
 v3m 1.0000 1.1361 0.7609 2.6099
 v3s 1.0000 1.1722 0.7648 2.5938
 HCO-s 1.0349 2.0168 0.7502 1.6960
MCCM-CO-MP2;
MG3; 6-31+G(d)

v2m 0.9724 1.2936 0.8577 2.0067

MCCM-CO-MP4SDQ v2m 0.9613 1.3628 1.0093 2.6287 0.5294 3.1443
 v2s 0.9633 1.3834 0.9872 2.6535 0.5145 2.6409
 v2sc 0.9615 1.4505 1.0035 2.5157 0.5870 2.8439
 v3m 1.0000 1.4282 0.9551 1.9690 0.6646 1.1617
 v3s 1.0000 1.4285 0.9382 2.0131 0.6384 0.7710
 HCO-s 1.0000 1.8089 1.0015 1.5018 0.5966 1.3778
MCCM-CO-MP4 v2m 0.9895 1.4888 0.8535 2.1953 1.1825 3.8465 1.6905 3.9165
 v2s 0.9964 1.5157 0.8123 2.1066 1.2808 3.6512 1.8043 5.0707
 v2sc 0.9886 1.5656 0.8568 2.0846 1.2148 3.5897 1.5567 3.9450
 v3m 1.0000 1.5666 0.8071 2.1216 1.3189 1.9612 2.3753 2.1027
 v3s 1.0000 1.5624 0.7855 2.1292 1.3351 1.6939 2.3521 2.7357
 HCO-s 1.0000 1.6997 0.9601 1.5852 0.8631 1.4685 0.7742 0.7237
MCCM-CO-CCSD v1sc 0.9703 1.6636 1.1206 1.7329 0.7127 2.6136

 33

 v2m 0.9618 1.3810 1.0475 2.4491 0.5782 2.8382
 v2s 0.9635 1.4008 1.0217 2.5017 0.5515 2.4227
 v2sc 0.9629 1.4633 1.0392 2.3290 0.6254 2.5222
 v3m 1.0000 1.4306 0.9709 1.9298 0.7020 0.8383
 v3s 1.0000 1.4321 0.9555 1.9709 0.6752 0.5276
 HCO-s 1.0000 1.6159 1.0392 1.4306 0.6187 1.2756
MCCM-CO-CCSD(T) v1sc 0.9887 1.5377 1.0048 1.5208 1.0106 1.5695 1.7202 0.9124
 v2m 0.9929 1.5121 0.9479 1.7902 0.9462 1.7687 1.9810 0.8222
 v2s 0.9981 1.5432 0.9097 1.7613 0.9684 1.3340 2.1823 1.2716
 v2sc 0.9914 1.5839 0.9477 1.7238 0.9633 1.5365 1.8210 0.7451
 v3m 1.0000 1.5652 0.8370 2.0959 0.9349 1.3857 2.2431 1.1679
 v3s 1.0000 1.5613 0.8168 2.1349 0.9169 1.0760 2.2619 1.4593
 HCO-s 1.0000 1.5895 1.0026 1.3615 0.9520 1.4874 1.5912 0.8156

 34

Table 6. Available versions of cm for the Utah and New Mexico variants of MCCM [Tr99, Fa99b]

Methods VERSION c1 c2 c3 c4 c5 c6 c7
MCCM-UT-MP4SDQ v2m 0.9934 1.2606 1.0363 1.6307 0.8541
 v2s 0.9903 1.2975 1.0099 1.8153 0.7872
 2sc 0.9905 1.3579 1.0280 1.6130 0.8807
 v3m 1.0000 1.3772 0.9318 2.0071 0.7505
 v3s 1.0000 1.3949 0.9231 2.0361 0.6956
 HCO-s 1.0273 1.6167 0.9268 1.1904 0.4652
MCCM-UT-MP4 v2m 1.0040 2.5726 0.9136 2.8707 1.1605 1.7108
 v2s 1.0009 2.5466 0.8862 2.9916 1.0962 1.7254
 v2sc 1.0002 2.6548 0.9165 2.8444 1.1591 1.5546
 v3m 1.0000 1.5394 0.7735 2.3270 1.2431 2.5328
 v3s 1.0000 1.5544 0.7645 2.3611 1.1834 2.5178
 HCO-s 1.0000 1.6043 0.9108 1.7591 0.8669 1.0151
MCCM-UT-CCSD v1sc 0.9949 1.6872 1.1422 0.8323 1.0040
 v2m 0.9969 1.2625 1.0610 1.4813 0.8312
 v2s 0.9935 1.2997 1.0332 1.6755 0.7675
 v2sc 0.9941 1.3580 1.0512 1.4689 0.8502
 v3m 1.0000 1.3800 0.9505 1.9749 0.7531
 v3s 1.0000 1.4008 0.9425 1.9995 0.7073
 HCO-s 1.0325 1.8885 0.7867 1.6133 0.0687

 35

Methods VERSION c1 c2 c3 c4 c5 c6 c7
MCCM-UT-CCSD(T) v1sc 1.0002 1.4852 1.0026 1.1447 1.1869 2.1343
 v2m 1.0143 1.4894 0.9402 1.2493 1.1061 2.3805
 v2s 1.0112 1.5307 0.9101 1.4394 1.0473 2.4238
 v2sc 1.0099 1.5644 0.9413 1.2580 1.1002 2.1652
 v3m 1.0000 1.5118 0.8062 2.2306 0.9670 2.2989
 v3s 1.0000 1.5360 0.7937 2.2635 0.9254 2.3616
 HCO-s 1.0000 1.3069 0.9276 1.6755 0.9415 1.9394
MCCM-NM-CCSD(T) v1sc 1.0013 1.4127 1.0173 1.0516 1.2159 2.1967 0.3790
 v2m 1.0164 1.4933 0.9482 1.1781 1.0779 2.2702 0.3115
 v2s 1.0126 1.5334 0.9156 1.3905 1.0280 2.3481 0.2140
 v2sc 1.0114 1.5672 0.9471 1.2062 1.0798 2.0852 0.2262

 36

4.B.5.b. Utah Variant

The Utah (UT) variant of MCCM truncates the pTZ part of the coefficient tree (shown in

Figure 2) at the MP2 level. This is done for efficiency purposes. The UT version

MCCM is formally written as

 E(MCCM-UT-L!) = c1E(HF / B1) + c2!E(HF / B2 | B1)

 +
m

n

=
!
1
c2m+2!E(Lm | Lm-1 / B2 | B1)

 +
m

n

=
!
1
c2m+1!E(Lm | Lm-1 / B1)

 +
m n= +
!

1

"
cm+n+2!E(Lm | Lm-1 / B1) + ESO + ECC (8)

By definition ! " n + 1. For the suggested values of cm (given in Table 6), B1 is always

pDZ, and B2 is always pTZ. For example,

 E(MCCM-UT-CCSD) = c1E (HF / pDZ) + c2!E (HF / pTZ | pDZ)

 + c 3!E (MP2 | HF / pDZ) + c4!E (MP2 | HF / pTZ | pDZ)

 + c5!E (CCSD | MP2 / pDZ) + ESO + ECC (9)

 37

Figure 2. Coefficient tree for asymmetric MCCM-UT-MP4 and MCCM-UT-CCSD(T).

Coefficient trees for other asymmetric MCCM methods (Utah variants) are obtained by

deleting rows successively from the bottom. (left) MP tree. (right) CC tree. [Tr99,

Fa99b]

 c1
c3 c4

c5

c6

c2

pDZ pTZ

HF

MP2

MP4SDQ

MP4

c1
c3 c4

c5

c6

c2

pDZ pTZ

HF

MP2

CCSD

CCSD(T)

pDZ # cc-pVDZ
pTZ # cc-pVTZ

 38

4.B.5.c. New Mexico Variant

The New Mexico (NM) variant of MCCM (shown in Figure 3) adds a correction for

diffuse functions to the Utah variant and is formally written as

 E(MCCM-NM-L!) = E(MCCM-L!;Ln)

 + cn+!+3!E(HF / mpDZ | pDZ) (10)

The default values of cm for the NM variant are given in Table 6.

Figure 3. Coefficient tree for asymmetric MCCM-NM-CCSD(T). The only New Mexico

variant available.

4.B.6. Gaussian-x (Gx) and Multi-Coefficient Gaussian-x (MCGx) Methods

The G2 and G3 methods were designed to yield accurate thermochemistry, including

vibrational contributions. [Po89, Cu91, Cu98] However the implementation of these two

methods in MULTILEVEL deals only in the electronic energies of the molecules. These

methods involve attempts to get the accuracy of a larger basis set QCISD(T) calculation

without the full expense. In addition they have an empirical ‘higher level correction’.

c1

c3

c7

c4

c5

c6

c2

pDZ mpDZ

HF

MP2

CCSD

CCSD(T)

pTZ

pDZ # cc-pVDZ
mpDZ # maug-cc-pVDZ
pTZ # cc-pVTZ

 39

Multi-coefficient variations on G2 and G3, using a subset of energies have been designed

to scale the correlation energy and extrapolate to an infinite basis set. [Tr99, Fa99c,

Fa99d] As has been noted before, gradients and Hessians maybe obtained by applying

the linear combinations given below to the gradient and Hessian components. The spin-

orbit and core-correlation contributions to the multi-coefficient energies are required to

be zero in the gradient and Hessian since they are treated as constants. Similarly the

spin-orbit and higher level corrections in G2 and G3 also must be zero.

4.B.6.a. Gaussian-2 (G2)

In essence, the G2 method is an empirically corrected approximation to a QCISD(T) / 6-

311+G(3df,2p) calculation obtained from several smaller calculations, in particular, from

QCISD(T) / 6-311G(d,p), MP4 / 6-311+G(d,p), MP4 / 6-311G(2df,p), and MP2 /

6-311+G(3df,2p) energy calculations. For convenience we will abbreviate the basis sets

used in these calculations as Tdp, T+dp, T2dfp, and T+3df2p, respectively. The

electronic energy (including nuclear repulsion but not vibration or rotation) in Gaussian-2

(G2) is given by

 E(G2) = E(QCISD(T) / Tdp) + !E(+) + !E(T2dfp)

 + !E(T+3df2p) + !E(HLC) (11)

where

!E(+) = E(MP4 / T+dp) – E(MP4/Tdp)

!E(2df) = E(MP4/T2dfp) – E(MP4/Tdp)

!E(T+3df2p) = E(MP2/T+3df2p) – E(MP2/T2dfp) – E(MP2/T+dp) + E(MP2/Tdp)

and the higher level correction !E(HLC) is defined elsewhere. [Po89, Cu91]

When optimization are carried out using the G2 energy expression, the result should be

labeled G2//G2 since G2 alone implies MP2(full)//6-431G(d) geometries [Ro00].

 40

4.B.6.b. Multi-Coefficient Gaussian-2 (MCG2)

The multi-coefficient G2 (MCG2) method [Tr99, Fa99c] does not attempt to approximate

a QCISD(T) / T+3df2p calculation, but rather attempts to scale the correlation energy and

extrapolate to an infinite basis set to try to approximate a complete configuration

interaction calculation. Both scaling of the correlation energy and extrapolation to an

infinite basis set involve taking linear combinations of various differences of energy

components, all found in the components of the G2 calculation itself. With these

functional forms as motivation, we define MCG2 by

 E(MCG2) = c1E(HF / Tdp) + c2!E(HF / T+3df2p | Tdp)

 + c3!E(MP2 | HF / (Tdp) + c4!E(MP2 | HF / T+3df2p| Tdp)

 + c5!E(MP4SDQ | MP2 / Tdp) + c6!E(MP4SDQ | MP2 / T2dfp | Tdp)

 + c7!E(MP4 | MP4SDQ / Tdp) + c8!E(MP4 | MP4SDQ / T2dfp | Tdp)

 + c9!E(QCISD(T) | MP4 / Tdp) + ESO + ECC (12)

where the coefficients {ci} are constants. In Ref. Fa99c we presented two

parameterizations different parameterizations of MCG2, one called MCG2 that included

spin-orbit and core-correlation, and one called minimal MCG2 (MMCG2) that did not

included either of these effects. These parameterizations will be referred to as

MCG2v1sc instead of MCG2 and MCG2v1m instead of MMCG2. The methods will be

denoted in a similar fashion when using the version 2 coefficients [Tr99]. Figure 4

provides a diagram that helps one to visualize the terms in eq. (12) and Table 7 gives the

values of the coefficients.

 41

Table 7. Available versions of cm for the MCG2 method [Tr99, Fa99c]

Method VERSION c1 c2 c3 c4 c5 c6 c7 c8 c9

MCG2 v1m 0.9949 0.9462 1.1414 1.0396 1.0784 3.6766 0.6666 3.3428 1.1427

 v1sc 0.9911 1.0329 1.1498 1.0160 1.0242 3.4914 0.3824 3.1698 1.0826

 v2m 0.9926 0.6149 1.1703 0.9968 1.0233 4.6485 0.5703 4.3440 1.2560

 v2s 0.9932 0.6787 1.1695 0.9901 0.9980 4.4804 0.5096 4.2274 1.2598

 v2sc 0.9900 0.7229 1.1715 0.9504 1.0366 4.1810 0.4366 3.8767 1.2064

 v3m 1.0144 1.1576 1.0266 1.1630 1.3435 1.4462 1.6410 1.2324 1.1482

 v3s 1.0146 1.1567 1.0258 1.1589 1.3331 1.2197 1.5563 1.6337 1.1578

 HCO-s 0.9922 0.5822 1.1349 1.3589 0.8900 4.4271 0.4245 3.4042 1.1790

 42

Figure 4. Coefficient tree for MCG2 [Fa99c]

c3

c5

c7

c9

c8

c6

c4

c2

c1
HF

MP2

MP4SDQ

MP4

QCISD(T)

Tdp T2dfp T+3df2p

Tdp # 6-311G(d,p)
T2dfp # 6-311G(2df,p)
T+3df2p # 6-311+G(3df,2p)

 43

4.B.6.c. Gaussian-3 (G3)

The G3 method [Cu98] involves three essential changes from G2, namely (i) substitution

of a polarized 6-31G basis set for the polarized 6-311G basis set in some of the steps, (ii)

a more balanced treatment of contracted s and p functions and valence polarization

functions for first- and second-row atoms, and (iii) a final-step calculation involving core

correlation and core polarization functions. Improvement (i) lowers the cost more than

improvements (ii) and (iii) raise it, and the gain in accuracy from improvements (ii) and

(iii) outweigh the potential loss in accuracy from modification (i).

The G3 method essentially provides an approximation to a QCISD(T)/G3large

calculation from several smaller calculations, namely, from QCISD(T)/6-31G(d), MP4/6-

31+G(d), MP4/6-31G(2df,p), and MP2(full)/G3large energy calculations, where the

notation is standard, and the frozen-core (FC) approximation is implied except where we

indicate “full.” In order to condense the notation in eq. (13) below, we will abbreviate

the first through third basis sets used in these calculations as Dd, D+d, and D2dfp,

respectively. The electronic energy (including nuclear repulsion but not vibration or

rotation) in Gaussian-3 (G3) is given by

 E(G3) = E[QCISD(T) /Dd] + !E(+) + !E(D2df)

 + !E(G3large) + !E(SO) + E(HLC) (13)

where

!E(+) = E(MP4/D+d) – E(MP4/Dd)

!E(2df) = E(MP4/D2dfp) – E(MP4/Dd)

!E(G3large) = E(MP2/G3large) – E(MP2/D2dfp) – E(MP2/D+d) + E(MP2/Dd)

and where G3large is a new basis set containing core polarization functions and !E(SO)

and !E(HLC) are defined elsewhere. [Cu98]

When optimization are carried out using the G2 energy expression, the result should be

labeled G2//G2 since G2 alone implies MP2(full)//6-431G(d) geometries [Ro00].

 44

4.B.6.d. Gaussian-3 with Reduced-order Møller-Plesset Perturbation Theory

Method (G3SX(MP3))

The G3SX with reduced-order Møller-Plesset perturbation theory method (G3SX(MP3))

[Cu01] is defined as :

 E(G3SX(MP3)) = E[HF / Dd] + c1!E[MP4|HF / Dd]

 + c2!E[QCISD(T) | MP4 / Dd] + c3!E[HF / G3XLarge | Dd]

 + c4 (!E[MP2(full) | HF / G3Large] - !E[MP2 | HF / Dd])

 + c5!E[MP3 | MP2 /D2dfp| Dd] + ESO

The coefficients [Cu01] are:

 c1 1.050200

 c2 1.185400

 c3 1.080300

 c4 1.202700

 c5 1.008100

 Note that Gx methods (include G3SX(MP3)) include spin-orbit energy only for atoms

whereas MCCM methods that include explicit spin-orbit terms for any open-shell species

for which ESO is nonzero.

 45

4.B.6.f. Multi-Coefficient Gaussian-3 (MCG3)

MCG3 [Tr99, Fa99d] may be obtained from most of the same energy calculations

required for G3. For future reference we note that performing a QCISD(T) energy

calculation with a given basis set also yields lower-level Hartree-Fock (HF), MP2,

MP4SDQ, and MP4 results for that basis at no additional cost because they are all part of

the overall calculation. Similarly MP4 calculations include MP4SDQ as a subset, and

MP2 calculations include HF. These facts become important as we define the MCG3

method.

The MCG3 method is written as

 E(MCG3) = c1E[HF / Dd] + c2!E[HF / MG3 | Dd]

 + c3!E[MP2 | HF / Dd] + c4!E[MP2 | HF / MG3 | Dd]

 + c5!E[MP4SDQ | MP2 / Dd] + c6!E[MP4SDQ | MP2 /D2dfp| Dd]

 + c7!E[MP4 | MP4SDQ / Dd] + c8!E[QCISD(T) | MP4 / Dd] + ESO + ECC (14)

where the pipe “|” notation is defined above, cm are constants (defaults given in Table 8),

and the MG3 (modified G3) basis set denotes the G3large basis set without the core

polarization functions. Note that we perform an MP2/MG3 calculation instead of the

MP2(full)/G3large calculation used in the G3 method. This is because we obtain the

core-correlation effects by a simple estimate (ECC) instead of by the more expensive

electronic structure calculation. Also note that the ESO in eq. (14) is different from

!E(SO) used in G3. [Fa99] In Ref. Fa99d we presented two different parameterizations

of MCG3, one called MCG3 that included spin-orbit and core-correlation, and one called

minimal MCG3 (MMCG3) that did not included either of these effects. These

parameterizations will be referred to as MCG3v1sc instead of MCG3 and MCG3v1m

instead of MMCG3. The methods will be denoted in a similar fashion when using the

version 2 coefficients, namely MCG3v2sc and MCG3v2m [Tr99]. Figure 5 provides a

diagram that helps one to visualize the terms in eq. (14). The values of the coefficients

are given in Table 8.

 46

MCG3 version 3s [Ly02] and version 3m are slightly different from previous versions of

MCG3. In version 3, the full MP4 energy is no longer calculated and the MG3S basis set

replaces the MG3 basis set. The MCG3 version 3s is also referred to as MCG3/3. The

MCG3/3 energy can be expressed as:

E(MCG3/3) = c1E[HF / Dd] + c2!E[HF / MG3S | Dd]

 + c3!E[MP2 | HF / Dd] + c4!E[MP2 | HF / MG3S | Dd]

 + c5!E[MP4SDQ | MP2 / Dd] + c6!E[MP4SDQ | MP2 /D2dfp| Dd]

 + c7!E[QCISD(T) | MP4SDQ / Dd] + ESO (15)

When a MCG3 energy calculation is performed, the MCQCISD energy can be obtained

without any other additional electron structure calculation. Thus the MCQCISD energy is

also reported in the MCG3 energy calculation output file.

Table 8. Available versions of cm for the MCG3 method [Tr99, Fa99d]

Method version c1 c2 c3 c4 c5 c6 c7 c 8

MCG3 v2m 1.0121 1.2047 1.0646 1.0975 1.1859 0.8139 1.4470 1.4142

 v2s 1.0096 1.2246 1.0637 1.1363 1.1506 0.5224 1.3219 1.3980

 v2sc 1.0080 1.2750 1.0661 1.0998 1.1330 0.8006 1.1689 1.3192

 cho 1.0054 0.9060 1.0527 1.2504 0.9272 0.4746 1.0165 1.5713

MCG3 version c0 c1 c2 c3 c4 c5 c6

 v3s 1.0067 1.1249 1.0585 1.2027 1.1369 0.5024 1.2666

 v3m 1.0073 1.1172 1.0588 1.1951 1.1212 0.8412 1.3058

 47

Figure 5. Coefficient tree for MCG3v2 [Tr99].

c3

c5

c7

c8

c6

c4

c2

c1
HF

MP2

MP4SDQ

MP4

QCISD(T)

Dd D2dfp MG3

Dd # 6-31G(d)
D2dfp # 6-31G(2df,p)
MG3 # Modified G3large

 48

Figure 6. Coefficient tree for MCG3/3 [Ly02].

c2

c4

c6

c5

c3

c1

c0
HF

MP2

MP4SDQ

QCISD(T)

6-31G(d)

6-31G(2df,p)

M
G3S

 49

4.B.7. Multi-Coefficient QCISD (MC-QCISD)

Multi-coefficient quadratic interaction with single and double excitations (MC-QCISD) is
obtained from a subset of the energy calculations used in obtaining the MCG3 energy.

 The MC-QCISD energy is defined by:
 E(MC-QCISD) = c1E(HF/6-31G(d)) + c2!E(MP2|HF/6-31G(d))
 + c3!E(MP2/MG3|6-31G(d))
 + c4!E(QCISD|MP2/6-31G(d)) (16)

where the pipe “|” notation is defined above [eqs. (2), (3), and (4)], cm are constants

(defaults given in Table 9), and the MG3 (modified G3) basis set denotes the G3large
basis set without the core polarization functions. We do not include core-correlation,
spin-orbit, or scalar relativistic contributions explicitly, and thus they are implicit in the
model. This approach is called a “minimal” model in previous work[Fa99b, Fa99c,
Fa99d]. Figure 7 gives the coefficient tree for the MC-QCISD v2m method.

The v3m and v3s versions of MC-QCISD are slightly different from version 2.

MC-QCISD version 3 (also referred to as MC-QCISD/3) replaces the MG3 basis with the

MG3S basis. It also scales the energy difference between basis sets at the HF level and

no longer scales the HF/6-31G(d) energy. The MC-QCISD/3 energy is defined by:

 E(MC-QCISD) = E(HF/6-31G(d)) + c1!E(HF/MG3S|6-31G(d))
 + c2!E(MP2|HF/6-31G(d))
 + c3!E(MP2|HF/MG3S|6-31G(d))
 + c4!E(QCISD|MP2/6-31G(d)) (17)

Figure 8 illustrates the coefficient tree for the MC-QCISD v3 methods.

 50

Table 9. Available versions of cm for the MC-QCISD methods [Fa00, Ly02]

Method c1 c2 c3 c4

MC-QCISD - v2m 1.0038 1.0940 1.2047 1.0441

MC-QCISD - cho 1.0173 0.9304 1.3959 0.4421

MC-QCISD - v3s 1.0452 1.1305 1.2302 1.1673

MC-QCISD - v3m 1.0325 1.1357 1.2226 1.2208

Figure 7. MC-QCISD coefficient tree [Fa00]

c2

c4

c3

c1
HF

MP2

QCISD

Dd MG3

Dd # 6-31G(d)
MG3 # modified G3large

 51

Figure 8. MC-QCISD/3 coefficient tree [Ly02]

c2

c4

c3

c1 HF

MP2

QCISD

6-31G(d)

M
G3S

 52

4.B.7. Doubly Hybrid Density Functional Theory (DHDFT)

Doubly hybrid density functional methods [Zh04] are obtained by mixing the SAC

method with hybrid density functional methods. In particular, there are two methods in

the current version of MULTILEVEL; they are the multi-coefficient three-parameter

Becke88-Becke95 (MC3BB) method and the multi-coefficient three-parameter modified

Perdew-Wang (MC3MPW) method.

The MC3BB method is defined in eq. (18):

E(MC3BB) = c2 [E(HF/DIDZ) +c1!E(MP2|HF/DIDZ)]

 + (1–c2) E(BBX/MG3S) (18)

where BBX is same as BB1K except that the percentage, X, of HF exchange was

determined by parametrization.

The MC3MPW method is defined in eq. (19):

E(MC3MPW) = c2 [E(HF/DIDZ) +c1!E(MP2|HF/DIDZ)]

 + (1–c2) E(MPWX/MG3S) (19)

where MPWX is same as MPW1K except that the percentage, X, of HF exchange was

determined by parametrization.

The parameters for MC3BB and MC3MPW are listed in Table 10.

Table 10. Parameters for MC3BB and MC3MPW [Zh04]

Methods c1 c2 X

MC3BB 1.332 0.205 39

MC3MPW 1.339 0.266 38

 53

Chapter Five

5
5. Optimization Procedures

This chapter describes the optimization procedures available in this version of the

MULTILEVEL code.

5.A. Optimization Algorithms

Currently there are two kinds of geometry optimization algorithms available in

MULTILEVEL: (1) Newton-Raphson algorithm and (2) the eigenvector following (EF)

algorithm.

The difference among the Newton-Raphson algorithms are in the treatment of the

Hessian in those steps where it is not recalculated with an HHOOK call. Each of the three

algorithms takes a Newton-Raphson (NR) step with Brent line minimization at every

iteration of the optimization. The NR step is calculated by solving the following linear

equation for x:

H x = " g (20)

where H is the Hessian matrix, x is a vector consisting of the Cartesian components of

the step, and g is the gradient vector. The Hessian and gradient are both in unscaled

Cartesian coordinates.

Brent line minimization [Pr92] then scales the geometry step x to a magnitude which

minimizes the energy by the greatest amount. This line minimization avoids taking steps

that are too large or too small.

The first Newton-Raphson algorithm (to be called just plain NR from now on) does not

alter the Hessian in steps where the Hessian is not recalculated with an HHOOK. Equation

(20) is simply solved using the most recently calculated Hessian. The remaining two

 54

algorithms are quasi-Newton methods; in the steps between Hessian recalculations, eq.

(20) is not solved using a true Hessian from a previous iteration, but rather using an

approximate inverse Hessian created from a variable metric update. The second

algorithm uses Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian updates, and the

third uses Davidon-Fletcher-Powell (DFP) Hessian updates [Pr92a]. Both of these

updating algorithms take advantage of information contained in the change in the

gradient from one iteration to the next in order to build up corrections to the inverse

Hessian matrix, which should in principal tend to converge to the true inverse Hessian, at

least for the important components. In fact the two types of inverse Hessian updates

differ from one another by only one term.

One might notice that both updating schemes operate on the inverse Hessian. Due to this,

in the implementation of the BFGS and DFP algorithms the step size is obtained with

another equation instead of eq. (20):

 x = " H-1 g (21)

This manner of solving for the Newton-Raphson step is somewhat more memory

intensive than just solving eq. (20) in that it involves explicitly finding the inverse of the

Hessian, the NR algorithm does not actually compute H-1 but rather solves eq. (20).

Since the BFGS and DFP algorithms require the inverse Hessian, utilization of eq. (21) is

most reasonable for them.

EF is an optimization routine based on Jack Simons P-RFO algorithm as implemented by

Jon Baker [Ba85]. Step scaling to keep the step size within the trust radius is taken from

Culot et al. [Cu92]. The trust radius is automatically updated dynamically by the method

of Fletcher[Fl87]. The EF step is calculated by the following linear equation for x :

 x = (sI-H)-1 g (22)

where s is a shift factor which ensures that the step length is within or on a hypersphere,

and I is the unit vector. If the Hessian has one and only one negative eigenvalue, the shift

factor is set equal to zero. If this step is longer than the trust radius, a P-RFO step is

attempted. If this is also too long, then the best step on the hypersphere is made via the

 55

QA formula. Both P-RFO and QA steps are obtained with eq. (22), but these methods

use different formulas for s.

Using the step calculated, a new geometry is obtained, at which a new energy and

gradient are evaluated. If it is a TS search, two criteria are used in determining whether

the step is accepted. The ratio between the actual and predicted energy change should

ideally be 1. If it deviates substantially from this value, the second order Taylor

expansion is no longer accurate. If the ratio is outside the interval defined by the RMIN

and RMAX limits, the step is rejected, the trust radius reduced by a factor of two, and a

new step is determined. The second criterion is that the eigenvector along which the

energy is being maximized should not change substantially between iterations. The

minimum overlap of the TS eigenvector with that of the previous iteration should be

larger than OMIN; otherwise the step is rejected.

In the EF routine, there are three Hessian update options which are specified by the

keyword IUPD. The BFGS and DFP updating schemes are included in the EF routine.

The third option is to reuse the Hessian without updating, i.e., to freeze the Hessian. The

BFGS update is generally regarded as the best update to use for optimizing to a minimum

energy structure, but it tends to preserve positive definiteness, i.e., if the Hessian before

the update is positive definite (all the eigenvalues are positive), then the updated Hessian

will also have this property. For this reason, BFGS is not recommended for a transition

state search. The DFP update has no particular bias towards positive definiteness. Thus

the DFP updating scheme is recommended for transition state optimization.

Historical note: As discussed elsewhere [Po71, Yp95], a more appropriate name for the

Newton-Raphson method would be “Newton-Raphson-Simpson method.”

5.B. Hessians Obtained with OPTHHK

As the above equations make clear, each optimization algorithm calculates the step size

based upon the Hessian or some update of the Hessian inverse. For smaller molecules,

 56

using some of the less expensive methods within MULTILEVEL, the use of the true Hessian

is reasonable. Yet many of the methods contained in this program are not inexpensive,

and, due to this, calculating a Hessian every few steps in an optimization may not be

feasible. Therefore, OPTHHK may employ 3 different types of Hessian strategies

depending on the user’s specifications. Option 1 is to use the high level or true Hessian.

Option 2 is that one may use a Hessian calculated at a lower level of electronic structure

theory. And the third option is to use a unit matrix scaled to the approximate magnitude

of the components of the true Hessian. While the last two types of Hessians do not

contain information on the exact second derivatives of the potential energy surface, it has

been shown that any type of Hessian results in faster geometry convergence than simply

following the gradient.

In particular, we have found that optimizations using lower level Hessians recalculated

every several steps converge in as few if not fewer iterations than optimizations using a

‘true’ Hessian. And one must remember that not only does the optimization with the

lower level Hessian converge in a comparable number of iterations, but it is also costs

considerably less than an optimization with the higher level Hessian.

5.C. Optimization with GAUSSIAN09/03’s Optimizers

If one uses MULTILEVEL in conjunction with GAUSSIAN09/03 (where GAUSSIAN09/03 is

shorthand for GAUSSIAN09 or GAUSSIAN03) one can use the algorithm keyword gauext to

specify that geometry optimization is to be carried out by using the optimizers in

GAUSSIAN09/03. The overall control for this procedure is:

MULTILEVEL " GAUSSIAN09/03 " Gau_External " MULTILEVEL

If one uses gauext as the optimization algorithm keyword, the primary MULTILEVEL

calculation will call a GAUSSIAN09/03 optimization with the external keyword. This

GAUSSIAN09/03 calculation calls an external PERL scripts Gau_External, which will

provide the MULTILEVEL energy, gradient and Hessian needed for optimization.

Gau_External will call a secondary MULTILEVEL calculation and pass the secondary

MULTILEVEL results to GAUSSIAN09/03. When GAUSSIAN09/03 finishes the optimization,

 57

it will return the optimized geometry to the primary MULTILEVEL calculation. Note that

in the GAUSSIAN09/03 manual, it says Gau_External can pass energy, gradient, and

Hessian, but our tests show that in GAUSSIAN09/03, Gau_External can only pass energy

and gradient, and GAUSSIAN09/03 will use numerical differentiation to calculate the

Hessian needed for optimization.

5.C.1 Note about Gau_External script

The default Gau_External script in MULTILVEL-V4.4 is developed only to work with

GAUSSIAN09 and with the Revisions D01 and D02 of GAUSSIAN03. The script directory

also contains the script Gau_External_old, which works with older revisions of

GAUSSIAN03. In order to use the old version of Gau_External the user has to replace the

default version of the script by the older version (e.g. using the unix command: cp

Gau_External_old Gau_External). It should be noted that the default geometry

optimization algorithm in GAUSSIAN09 is different than that which was used in earlier

versions (The use of the microiterations scheme for geometry optimizations has been

made by default in GAUSSIAN09 when the "External" keyword is used). The optimization

keywords ‘Opt=NoMicro’ must be included in the route section of the Gaussian input file

in order to use the previous optimization algorithm.

5.D. Optimization with Nudged Elastic Band Method

If one uses Nudged Elastic Band (NEB) method (Go06) for optimization, the reaction

path is described by a discrete sequence of images, consisting of two fixed end points and

n intermediate movable images, that form the chain or the elastic band.

Spring interactions are added between adjacent images so the total (also called the

adjusted) force acting on each image is the sum of the spring force s
iF
!

and the force t
iF
!

from the potential energy surface (which will be called true force). The band is

optimized, minimizing the total force acting on each image.

The adjusted force acting on an image, i, is given by:

 58

t
i

s
ii FFF !+= ,||,

!!!

which is the sum of the spring force along the tangent to the chain and the true force

perpendicular to the chain. The perpendicular component of the true force is obtained by:

i
t
i

t
i

t
i FFF !̂,

!!!
"=#

The parallel component of the spring force as well as the tangent can be estimated by

different procedures depending on the version of the NEB algorithm.

The versions available in the MULTILEVEL code are: the Bisection or B-NEB,[Mi94,Mi95]

Improved Tangent or IT-NEB, [He00] and the Climbing Image or CI-NEB.[He00,He00a]

The last algorithm (the CI-NEB) is a modification of the NEB code introduced for the

purpose of using an NEB calculation to converge a saddle point. This method modifies

the definition of the total force acting on the highest-energy image after a few iterations

(in MULTILEVEL code, five iterations). After identifying this image as point imax, the force

on imax is given by:

iiiiiii RRVRVRVF !! ˆ)ˆ)((2)(|)(2)(||max
"#+$#=#+$#=

!!!!!

The CI-NEB version of the algorithm was introduced for the purpose of using an NEB

calculation to converge a saddle point.

After evaluating all the adjusted force vectors acting on each movable image, a global

vector F
!

, which collects the M (where M is the number of movable images) iF
!

, is

obtained. The components of the resulting vector F
!

, of order M#3N (where N is the

number of atoms of the system), will be minimized using one of the available quasi-

Newton methods.

5.E. Comments on Optimizing Geometries in Cartesian Coordinates

Cartesian coordinates are currently the only way to specify geometries in MULTILEVEL,

and the geometry optimizations are performed in Cartesian coordinates.

One issue which must be addressed is that Cartesian coordinates have $ more degrees of

freedom than are needed to fully describe the system ($ = 6 for non-linear systems and

 59

$ = 5 for linear systems). If all Cartesian coordinates are allowed to vary, the

optimization becomes unstable because the changes in geometry correspond not only to

movement of the atoms relative to one another but also to translations of the entire

molecule across space and rotations of the whole molecule. Thus either 6 or 5 Cartesian

coordinates are fixed during the optimization; the default constant coordinates are x, y,

and z for the first atom, y and z for the second atom, and if the molecule is non-linear z

for the third atom. These may be changed (see the CONSTANT keyword in the MULTIGEN

section), yet the remainder of this discussion will be carried out using the default. If

different coordinates are held constant, the treatment described below should change only

superficially in terms of axes and coordinates.

It is not sufficient though to only hold the designated six coordinates constant. The

molecule must be oriented in a certain way in order not to lose any generality in the

optimization. The y and z coordinates of the second atom must be the same as the y and z

coordinates of the first atom. And for non-linear molecules, the z coordinate of the third

atom must be the same the z coordinate for the first and second atoms. However the user

is not required to enter a geometry, which adheres to these requirements. The

optimization routine automatically reorients the molecule to adhere to these requirements

(or requirements applicable to the constant coordinates specified by the user). This is

achieved by first translating the molecule so that the first atom is at the origin. Then the

molecule is rotated about the z-axis so that the y-coordinate of the second atom is 0.

Subsequently a similar rotation is made about the y-axis in order to set the z-coordinate of

the second atom to 0. Finally (for non-linear molecules) the molecule is rotated about the

x-axis in order to force the z-coordinate of the third atom to 0.

Since this reoriented geometry may be undesirable to the user, at the end of the

optimization these rotations and translations are reversed to place the first three atoms

back in their original plane. (See NOREORIENT in the MULTIGEN section to switch this

off.) Note that this reorientation requires only that the first atom’s coordinates all remain

the same. The coordinates of the other two atoms most likely will have changed during

the optimization. Yet these three atoms should still define the same plane as before the

 60

optimization. In our (limited) experience, this reorientation at the end usually results in a

negligible energy change of 10–12 hartrees. In certain cases however a change as large as

10–9 hartrees has been observed, so the user may want to pay attention to the energy

before and after the reorientation.

The freezing of the coordinates has very little effect on the algorithms actually employed

during the optimization as described in Section 4.A. The portions of the Hessian and the

gradient that are specific to these frozen coordinates are ignored during the calculation of

the geometry steps, thus allowing the step for each of the frozen coordinates to be zero.

 61

Chapter Six

6
6. Input Description

The input file (ml.inp) is divided into six sections namely, the *MULTIGEN section, the

*EXTOPT section, the *MULTIOPT section, the *IMO section, the *LC section, and the *TEST

section. The *MULTIGEN section must be first in the input file, and each section must be

preceded by the asterisk as shown above. The description for each of these sections is

given below. There are three types of keywords: switches, variables, and lists. The

syntax for each type of keyword is as follows:

 Switch
……………………………………………
 Variable Value
……………………………………………
 List
 .
 .
 .
 End

List keywords must be terminated by END, and they may contain other keywords within

their bodies (when this is the case, it shall be indicated in the description of the keyword).

All keywords are case insensitive. The value for a variable should be on the same line as

a variable keyword, though, and the contents of a list keyword should be on the lines

between the list keyword and its terminating END but not on those two lines. Also, all list

keywords specifically designated for a title or for electronic structure program options are

constrained to a maximum content of 5 lines.

In the sections below, each keyword is in bold, and directly following the keyword is both

its type and its default value.

 62

6.A. MULTIGEN Section

The MULTIGEN section contains keywords that are needed for any calculation; in other

words, they are not specific to an IMO or LC type calculation. The keywords are:

CHARGE VARIABLE 0

The CHARGE keyword is used to specify the charge of the entire system.

ENERGY/NOENERGY SWITCH ENERGY

The ENERGY keyword is used to specify a single-point energy calculation of the system

defined by the GEOM keyword.

ESO, ECC VARIABLE 0.0000

The ESO and ECC keywords are used to input the values of the spin-orbit correction to the

energy and the core-correlation correction to the energy. The suggested values may be

found in References [Fa99] and [Fa99a]. The values should be in atomic units. Accurate

values should be given when the following methods will be used: IB, EIB, SAC,

MCSAC, MCCM, MCG2, and MCG3.

GEOM LIST No Default.

The GEOM keyword specifies the geometry of the entire system. It is required, and the

following is an example of the input format, although there are no strict requirements on

spacing or number formats so long as an atom and its 3 coordinates are on the same line.

 GEOM
 O 0.4515E+00 -0.3543E+00 0.0000E+00
 H 0.4853E+00 0.6115E+00 0.0000E+00
 H -0.4788E+00 -0.6161E+00 0.0000E+00
 END

GEOMTYPE VARIABLE cartesian

The GEOMTYPE keyword is used to specify the format of the geometry. Currently

Cartesian coordinates are the only valid type of geometry specification.

 63

GEOMUNIT VARIABLE ang

The GEOMUNIT keyword is used to specify the units of the geometry.

 ang: Angstroms
 au: atomic units (bohrs)

GRADIENT/NOGRADIENT SWITCH NOGRADIENT

The GRADIENT keyword is used to specify a single-point gradient calculation of the

system defined by the GEOM keyword. The energy is also calculated.

HESSIAN/NOHESSIAN SWITCH NOHESSIAN

The HESSIAN keyword is used to specify a single-point Hessian calculation of the system

defined by the GEOM keyword. The energy and gradient are also calculated, and the

program will also calculate the harmonic vibrational frequencies and the normal mode

eigenvectors in the mass-scaled coordinates. The eigenvalues are printed (including the

six zero eigenvalues corresponding to translations and rotations), and the eigenvectors are

printed both in mass-scaled Cartesians and in unscaled Cartesians.

MULTIPLICITY VARIABLE 1

The MULTIPLICITY keyword is used to specify the multiplicity of the system, i.e., 1 for

singlet, 2 for doublet, etc.

NATOMS VARIABLE No Default.

The NATOMS keyword is used to specify the total number of atoms in the system. When

requesting an IMO calculation, NATOMS should include the cap atom (number of atoms in

the entire system plus the cap atom). This keyword is required for all calculations.

PRSUM/NOPRSUM SWITCH NOPRSUM

The PRSUM keyword is used to specify whether a summary file is printed.

TITLE LIST No Default.

The TITLE keyword allows the user to give up to a five-line description of the calculation.

 64

6.B. EXTOPT Section

The EXTOPT section contains keywords that are needed for an optimization with an

external electronic structure program. This section is useful for creating good starting

point geometries. The initial guess geometry for the external optimization should be

supplied by the GEOM keyword in the MULTIGEN section. The keywords in the EXTOPT

section are:

BASIS VARIABLE cc-pvdz

Keyword that indicates the basis set to be used for the optimization. Note that for certain

chemistry models the basis set is already predefined.

GENECP VARIABLE No Default.

This keyword indicates the use of effective core potentials. The argument must be the

name of the file that contains the specifications of the basis set and pseudopotentials for

all the atoms in Gaussian format. That file must be put into the basis subdirectory of

MULTILEVEL. This keyword must be used in combination with the variable gen in the

BASIS keyword.

METHOD VARIABLE mp2

This keyword specifies the electronic structure theory level at which to carry out the

optimization.

OPTIONS LIST No Default.

This keyword is used to give the options the user desires for the external optimization.

There may be a maximum of 5 lines of options, yet there must at the very least be one

line specifying the optimization algorithm. For example to request a transition state

Berny optimization in GAUSSIAN one must give the following OPTIONS:

 Options
 Opt=TS

 65

 End

To specify the memory requirements and the number of processors to be used when
calling GAUSSIAN, simply add Link1 commands to this list. Link1 commands (%
commands) must come first in the list of options as shown below:

 Options
 %nproc=2
 %mem=800mb
 scf=(tight,maxcycle=1000) Opt=(ts,noeigentest)
 End

PROGRAM VARIABLE g03

The PROGRAM keyword specifies the electronic structure package to be used to optimize

the geometry. Currently only GAUSSIAN09 (g09), GAUSSIAN03 (g03) and GAUSSIAN98

(g98) and GAUSSIAN94 (g94) are valid input values.

 66

6.C. MULTIOPT Section

The MULTIOPT section contains keywords to specify a geometry optimization of the

system via MULTILEVEL algorithms and electronic structure methods. If an external

optimization has been carried out that optimized geometry will be used as a starting point

for this optimization. Otherwise, the initial geometry is obtained from the GEOM keyword

in the MULTIOPT section. If MULTIOPT is used, the geometry is subsequently redefined for

all remaining calculations as the resulting multilevel optimized geometry. Six of the

keywords in this section, inparticular DDMAX, DDMAXTS, IUPD, OMIN, RMAX and

RMIN are used only with the EF algorithm. The valid options are:

ALGORITHM VARIABLE nr

This keyword specifies the optimization algorithm to be used. The algorithms currently

available are Newton-Raphson with Brent line minimization (nr), NR with Broyden-

Fletcher-Goldfarb-Shanno updates on the Hessian (bfgs), NR with Davidon-Fletcher-

Powell updates to the Hessian (dfp), EF with three Hessian update scheme, Berny

algorithm using redundant internal coordinates in GAUSSIAN09/03 (gauext), and the

Nudged Elastic Band method (neb).

CONSTANT LIST See below.

The CONSTANT keyword indicates which coordinates will be frozen during the

optimization. The default is that after reorientation the first atom will be frozen at the

origin (i.e. its x, y, and z coordinates remain fixed). In addition, the second atom will be

fixed on the x-axis and the y and z coordinates of the second atom will be held constant.

If the molecule is non-linear, the third atom will be in the xz-plane and its z-coordinate

will remain fixed. The user may change which coordinates will be fixed, but it is

strongly recommended that these coordinates be chosen in such a way that one atom has

3 coordinates fixed, a second atom has 2 coordinates fixed, and (if the system is non-

linear) a third atom has 1 coordinate fixed. Additionally the coordinate held constant for

this third atom should be one of the two coordinates held constant for the second atom.

As long as these guidelines are adhered to, the system will be neither over- nor under-

 67

constrained during an optimization. An example of the use of the CONSTANT keyword is

given below. The first integer on each line is the number of an atom, and the letters

following specify which coordinates will be frozen for that atom.

 CONSTANT
 3 x
 7 x y z
 2 x z
 END

DDMAX VARIABLE 0.5

DDMAXTS VARIABLE 0.3

The DDMAX and DDMAXTS variables are used to set the maximum of the trust radius

(in angstroms); the DDMAX variable is used for minima (equilibrium structures), and the

DDMAXTS variable is used for saddle points (transition statex).

GAUEXTOPTIONS LIST No Default.

This keyword is used to give the options the user desires for the external optimization.

There may be a maximum of 5 lines of options, and there must be at least one line

specifying the optimization algorithm. For example to request a transition state Berny

optimization in GAUSSIAN one can give the following OPTIONS:

 Gauextoptions
 Opt= (ts,noeigentest)
 End

GCOMP VARIABLE 10e-3

This keyword gives the convergence criteria for the optimization. Once the component of

the gradient with the maximum magnitude falls below this value, the structure is

considered optimized. The value is in atomic units.

 68

HBAS VARIABLE 6-31G*

The HBAS keyword indicates the basis set to be used for the lower level Hessian

calculations. Note: this keyword is only valid when the HESSIAN keyword value is

lowlev.

HESSIAN VARIABLE lowlev

The HESSIAN keyword specifies the type of Hessian to be used in the optimization

algorithm. In this version the three options are a scaled unit matrix (unitmat), a Hessian

at a lower level of electronic structure theory (lowlev), and a Hessian at the same level as

the optimization method chosen (highlev).

HMETH VARIABLE hf

This keyword gives the method for the lower level Hessian to be calculated. Note: this

keyword is only valid when the HESSIAN keyword value is lowlev.

HPROG VARIABLE g98

This keyword indicates the program to be used to gather the low level Hessian.

HREC VARIABLE 10

This keyword indicates the number of iterations between recalculation of the Hessian.

HSCALE VARIABLE 10e-5

The HSCALE keyword gives the value by which the unit matrix used for a Hessian is

scaled. Note: this keyword is only significant when the unit matrix is chosen for the

HESSIAN keyword or INITHESS is set to off.

INITHESS VARIABLE on

This keyword tells whether a Hessian should be calculated before the first step of the

optimization or a scaled unit matrix should be used initially as the Hessian.

 69

IUPD VARIABLE 0

IUPD = n selects the Hessian updating scheme in Eigenvector Following optimizations.

IUPD = 0 No updating

IUPD = 1 Powell updating scheme

IUPD = 2 BFGS updating scheme

METHOD VARIABLE sac

This keyword specifies the MULTILEVEL theory level at which to carry out the

optimization. The valid values for the variable are imohc, hfmo, sac, mcsac, ib, mccmco,

mcomp2, mccmut, mccmnm, g2, mcg2, g3, mcg3, mcqcisd, or test. In order to specify the

details of these theories such as theory levels and basis sets to be used, see the TEST

section (for a TEST optimization) or the keywords in the LC and IMO sections

corresponding to the method names above.

MOLTYPE VARIABLE nonlin

This keyword indicates the type of molecule to be optimized. Currently the four valid

values for this variable are lin, nonlin, lints, or nonlints, for a linear reactant/product, a

non-linear reactant/product, a linear saddle point, or a non-linear saddle point,

respectively. Currently this keyword has two effects. The first is that if the molecule is a

saddle point, Brent line minimization is turned off. The second is that the program will

freeze 5 coordinates during the optimization for a linear species, as opposed to 6 for a

non-linear species.

NITER VARIABLE 50

This keyword gives the maximum number of iterations in the optimization.

OMIN VARIABLE 0.8
During transition state optimizations, the EF algorithm calculates the dot product between

the previously followed direction and the Hessian eigenvectors. The new step will be

along the direction defined by the eigenvector for which this dot product is maximum, if

this value is greater than OMIN.

 70

REORIENT/NOREORIENT SWITCH REORIENT

As stated above, for an optimization the molecule’s orientation is changed in such a way

that one atom will remain at the origin, another will remain on an axis, and a third will

remain in a plane. REORIENT returns these three atoms to their original plane once the

optimization is done. If the user prefers to leave the molecule in the orientation it had

during the optimization for any further energy, gradient, and Hessian calculations, this

may be achieved by switching on NOREORIENT.

RETRY VARIABLE on

This keyword tells whether the optimization routine should switch to HREC=1 if the

optimization fails with regards to STPTOL.

RMIN VARIABLE 0.0
RMAX VARIABLE 4.0
For an Eigenvector Following step to be accepted, the value of the ratio of the calculated

energy change to the predicted energy change must be bracketed by the values of RMIN

and RMAX. Default values are RMIN = 0 and RMAX = 4.

SCALE VARIABLE 1.0

This keyword gives the maximum value (in bohrs) of the square root of the sum of the

squares of the components of the calculated step in the geometry. Should the step exceed

this value, every component of the step is scaled smaller to yield a sum of this size.

STPTOL VARIABLE 10e-5

The STPTOL keyword specifies the failure criteria for an optimization. If the maximum

component of the calculated step is smaller than this value, the optimization will fail

unless RETRY is on. The reason for this is that when a geometry step is of such a small

magnitude, there is very little change in either the energy or the gradient. The overall

effect of this situation is a useless geometry step. And since the gradient has not changed

at all, the next geometry step will have the exact same result. So the net effect of such a

small geometry step is a stalled optimization.

 71

VERSION VARIABLE v2m

The VERSION keyword specifies the version of the coefficients that will be used with

multilevel method chosen for the multilevel optimization. Please see the particular

method in Section 4.B. for the available versions of the coefficients. The default is v2m.

NEB LIST No Default

This keyword indicates all the options for the NEB algorithm. Its keywords are:

 REACT LIST No Default.

The REACT keyword specifies the geometry of the first fixed end point. It is

required, and it follows the same rules as the the GEOM keyword in the MULTIGEN

section.

 PROD LIST No Default.

The PROD keyword specifies the geometry of the second fixed end point. It is

required, and it follows the same rules as the the GEOM keyword in the MULTIGEN

section.

NIMG VARIABLE No default.

The NIMG keyword indicates the number of movable images to be used in the

band.

NEBITER VARIABLE 40

The NEBITER keyword gives the maximum number of iterations in the NEB

optimization.

INTERP VARIABLE LINEAR

The INTERP keyword defines the interpolation method to be used to generate the

initial chain of images. The only method available in MULTILEVEL-V4.1 is linear

interpolation between the two fixed end points (linear).

 72

IMGFILE VARIABLE No default.

The IMGFILE keyword gives the name of the file that will be created or already

exists which contains the initial chain of images (this file also contains the two

fixed end points)

KSPR VARIABLE 0.01

The KSPR keyword specifies the value for the spring constant to be used to

evaluate the spring force (in a.u.).

NEBALG VARIABLE No default.

The NEBALG keyword specifies the version of the NEB method to be used when

computing the tangent and the spring forces. The available values for this

keyword are: b-neb (for the Bisect NEB), it-neb (for the Improved Tangent NEB),

and ci-neb (for the Climbing Image NEB).

OPTM VARIABLE No default.

The OPTM keyword gives the optimization algorithm to be used for the NEB

minimization. All the options are quasi-Newton methods and they differ in the

way of evaluating (recalculate or update) the Hessian along the minimization

cycles. The options available for this keyword are: bfgs (for the Broyden-Fletcher-

Goldfarb-Shanno update of the Hessian), dfp (for the Davidson-Fletcher-Powell

update scheme), nr (for recalculating the Hessian using the hhooks subroutines),

and vb (for the Modified Broyden method).

Recommended values for all of these keywords can be found in reference [Go06].

 73

6.D. IMO Section

This section contains keywords that are specific to the IMO methods.

IMOHC LIST Not used.

This keyword indicates the all the options for the IMOHC method. Its keywords are:

CAPATOM VARIABLE No default.

The CAPATOM keyword is a variable keyword that specifies the atom number of

the capping atom. Required.

CSS LIST No default.

The CSS keyword is a keyword that specifies the atom numbers (in GEOM) of the
atoms in the small system, excluding the capping atom. It must be specified.

HC LIST No default.

The HC keyword is a keyword that specifies the atoms involved in the three
harmonic interaction terms as well as the force constants. The general format is
as follows:
 HC
 k1 R0 atom1 atom2
 k2 A0 atom1 atom2 atom3
 k3 D0 atom1 atom2 atom3 atom4
 END

for example,

 HC
 0.10 1.079 1 2
 0.02 0.000 1 2 3
 0.01 3.141 1 2 3 7
 END

The force constants and the equilibrium bond length should be in atomic units,
and the equilibrium angles should be in degrees. The atoms are indicated by their
atom numbers (from GEOM).

HLKEY LIST

This keyword specifies the options for the high-level calculations to be done. The
following are its valid options:

 74

 BASIS VARIABLE No default.

 The BASIS keyword indicates the basis set for the high level calculation.

 METHOD VARIABLE mp2 / hf

 The METHOD keyword specifies the method for the high level calculation.

 OPTIONS LIST No default.

This keyword indicates the options for the high level electronic structure

program call.

 PROGRAM VARIABLE g03

This keyword indicates the electronic structure package to be used for the
high level calculations. The four valid options are g09, g03, g94 and g98.

LLKEY LIST

This keyword specifies the options for the low-level calculations to be done. The
following are its valid options:

 BASIS VARIABLE No default.

 The BASIS keyword indicates the basis set for the low level calculation.

 METHOD VARIABLE mp2 / hf

 The METHOD keyword specifies the method for the low level calculation.

 OPTIONS LIST No default.

This keyword indicates the options for the low level electronic structure

program call.

 PROGRAM VARIABLE g03

This keyword indicates the electronic structure package to be used for the
low level calculations. The four valid options are g09, g03, g94 and g98.

 75

6.E. LC Section

This section contains keywords that are specific to the linear combination (LC) methods.

Its keywords are as follows:

COOP/NOCOOP SWITCH NOCOOP

This switch keyword indicates whether electronic structure information will be shared

between SAC, MCSAC, IB, MCCMCO, MCCMUT, and MCCMNM method, and

whether all possible default calculations will be carried out with the available

information.

G2 LIST Not used.

The G2 keyword lists the options for a G2 calculation. The valid keywords are as

follows:

ALPHA VARIABLE 0

BETA VARIABLE 0

These two keywords indicate the number of % and & electrons, respectively, in the

molecule. These values must be specified to obtain a valid G2 energy. Note that % > &.

G2OPTIONS VARIABLE No default.

This keyword specifies any options required for the electronic structure program for the

G2 and MCG2 calculations.

G2PROGRAM VARIABLE g03

This keyword indicates the electronic structure program to be called to gather electronic

structure information for the G2 and MCG2 calculations. Currently g09, g03, g94 and

g98 are the supported values, which correspond to the GAUSSIAN09, GAUSSIAN03,

GAUSSIAN98, and GAUSSIAN94 electronic structure programs, respectively.

 76

G3PROGRAM VARIABLE g98

This keyword indicates the electronic structure program to be called to gather electronic

structure information for the G3 and MCG3 calculations. Currently g09, g03, g98 and

g94 are the supported values for serial mode, which correspond to the GAUSSIAN09,

GAUSSIAN03, GAUSSIAN98 and GAUSSIAN94 electronic structure programs, respectively.

If the program has been compiled for parallel execution, the value pg98 will run MCG3

energies and gradients in parallel using GAUSSIAN98. For MCG3 energies, one thread

calculates the MP2/MG3 component, and the second thread calculates the MP4SDQ/6-

31G(2df,p) and QCISD(T)/6-31G(d) components. For MCG3 Gradients, one thread

calculates the MP2/MG3 and MP4SDQ/6-31G(2df,p) components, and the second thread

calculates the QCISD(T)/6-31G(d) component. See section 6.G. for more information

on parallel operation.

G3OPTIONS LIST No default.

This keyword specifies any options required for the electronic structure program for the

G3 calculations.

G3 LIST Not used.

The G3 keyword lists the options for a G3 calculation. The valid keywords are as

follows:

ALPHA VARIABLE 0

BETA VARIABLE 0

These two keywords indicate the number of % and & electrons, respectively, in the

molecule. These values must be specified to obtain a valid G3 energy.

G3SXMP3

The G3SXMP3 keyword specifies the G3SX(MP3) method. The valid options are:

COEFFS LIST PAGE 42

The COEFFS keyword indicates the coefficients for the given G3SX(MP3) method.

G3SX(MP3)OPTIONS LIST No default.

This keyword specifies any options required for the electronic structure program for the

G3SX(MP3) calculations.

 77

HFMO LIST Not used.

The HFMO keyword is a list keyword used to specify an HF||MO calculation and the

options for the calculation. The valid options are:

HFKEY LIST Not used.

 This keyword specifies the options for the HF calculation. The valid options are:

PROGRAM VARIABLE g98

The PROGRAM keyword indicates the electronic structure program to be used
for the HF calculation.

 BASIS VARIABLE sto-3g

 The BASIS keyword indicates the basis set for the HF calculation.

 OPTIONS LIST Not used.

This keyword is to list any special program options for the HF calculations.

MOKEY LIST NOT USED.

 The mokey keyword is used to indicate the options for the MO calculation. Its
valid options are:

 METHOD VARIABLE am1

 This keyword indicates the MO method for the calculation.

 OPTIONS LIST Not used.

 This keyword indicates any options for use in the electronic structure package.

 PROGRAM VARIABLE g98

The PROGRAM keyword indicates the electronic structure program to be used
for the MO calculation.

 FRACHF VARIABLE 0.25

The FRACHF keyword specifies the fraction x of the HF contribution in the

HF||MO method.

 78

IB LIST Not used.

The IB keyword is a list keyword that specifies the options for IB calculations. The

following are the valid keyword options for the list:

ALPHA VARIABLE 3.39

The ALPHA keyword specifies the IB % parameter, corresponding to the HF
contribution.

BETA VARIABLE [see Table 3]

The BETA keyword specifies the IB & parameter, corresponding to the correlation
contribution. The default value is set appropriately based on the IB method and
basis set combination chosen.

HLBASIS VARIABLE cc-pvtz

This keyword indicates the higher-level basis set.

LLBASIS VARIABLE cc-pvdz

This keyword specifies the lower-level basis set.

METHOD VARIABLE mp2

The METHOD keyword indicates the IB method to be used.

MC3BB

The MC3BB keyword specifies the multi-coefficient three-parameter Becke-Becke95

method. The valid options are:

COEFFS LIST [see Table 10]

The COEFFS keyword indicates the coefficients for the given MC3BB method.

MC3BBOPTIONS LIST No default.

This keyword specifies any options required for the electronic structure program for the

MC3BB calculations.

 79

MC3MPW

The MC3MPW keyword specifies the multi-coefficient three-parameter modified Perdew-

Wang method. The valid options are:

COEFFS LIST [see Table 10]

The COEFFS keyword indicates the coefficients for the given MC3MPW method.

MC3MPWOPTIONS LIST No default.

This keyword specifies any options required for the electronic structure program for the

MC3MPW calculations.

MCCMCO

The MCCMCO keyword is a list keyword that specifies the options for the Colorado

variant of the MCCM (MCCM-CO) method. The following are the valid options for the

list:

METHOD VARIABLE mp2

The METHOD keyword indicates the MCCM-CO method to be used.

LLBASIS VARIABLE cc-pvdz

This keyword specifies the lower-level basis set for the calculation. Currently
default coefficients are only available for cc-pVDZ as the lower-level basis set.

HLBASIS VARIABLE cc-pvtz

This keyword specifies the higher-level basis set for the calculation. In this
version, default coefficients are only available for cc-pVTZ as the higher-level
basis set.

COEFFS LIST [see Table 5]

The COEFFS keyword indicates the coefficients for the given MCCM-CO method.

VERSION VARIABLE v2m

The VERSION keyword indicates the version of the coefficients for the given
MCCM-CO method. The valid options are given in Table 5.

 MCCMUT

The MCCMUT keyword is a list keyword that specifies the options for the Utah variant of

the MCCM (MCCM-UT) method. The following are the valid options for the list:

 80

METHOD VARIABLE ccsd(t)

The METHOD keyword indicates the MCCM-UT method to be used.

LLBASIS VARIABLE cc-pvdz

This keyword specifies the lower-level basis set for the calculation. Currently
default coefficients are only available for cc-pVDZ as the lower-level basis set.

HLBASIS VARIABLE cc-pvtz

This keyword specifies the higher-level basis set for the calculation. In this
version, default coefficients are only available for cc-pVTZ as the higher-level
basis set.

COEFFS LIST [see Table 6]

The COEFFS keyword indicates the coefficients for the given MCCM-UT method.

VERSION VARIABLE v2m

The VERSION keyword indicates the version of the coefficients for the given
MCCM-UT method. The valid options are given in Table 6.

MCCMNM

The MCCMNM keyword is a list keyword that specifies the options for the New Mexico

variant of the MCCM (MCCM-NM) method. The following are the valid options for the

list:

METHOD VARIABLE ccsd(t)

The METHOD keyword indicates the MCCM-NM method to be used.

LLBASIS VARIABLE cc-pvdz

This keyword specifies the lower-level basis set for the calculation. Currently
default coefficients are only available for cc-pVDZ as the lower-level basis set.

MLBASIS VARIABLE pdz+

This keyword specifies the middle-level basis set for the calculation. Currently
default coefficients are only available for pDZ+ as the lower-level basis set.

HLBASIS VARIABLE cc-pvtz

This keyword specifies the higher-level basis set for the calculation. In this
version, default coefficients are only available for cc-pVTZ as the higher-level
basis set.

 81

COEFFS LIST [see Table 6]

The COEFFS keyword indicates the coefficients for the given MCCM-NM method.

VERSION VARIABLE v2m

The VERSION keyword indicates the version of the coefficients for the given

MCCM-NM method. The valid options are given in Table 6.

MCG2

The MCG2 keyword specifies the multi-coefficient Gaussian-2 (MCG2) method. The

valid options are:

COEFFS LIST [see Table 7]

The COEFFS keyword indicates the coefficients for the given MCG2 method.

VERSION VARIABLE v2m

The VERSION keyword indicates the version of the coefficients for the given
MCG2 method. The valid options are given in Table 7.

MCG3

The MCG3 keyword specifies the multi-coefficient Gaussian-3 (MCG3) method. The

valid options are:

COEFFS LIST [see Table 8]

The COEFFS keyword indicates the coefficients for the given MCG3 method. The
coefficient tree used will be a version 3 tree (see figure 6).

VERSION VARIABLE v2m

The version keyword indicates the version of the coefficients for the given MCG3
method. The valid options are given in Table 8.

MCG3OPTIONS LIST No default.

This keyword specifies any options required for the electronic structure program for the

MCG3 calculations.

 82

MCOMP2

The MCOMP2 keyword specifies an MP2 variant of the MCCM method, in particular

MCCM-CO; MG3; 6-31+G(d). Note that this method can be obtained using the MCCMCO

keyword by specifying the 2 basis sets and the coefficients in Table 9. The valid options

are:

COEFFS LIST [see Table 9]

The COEFFS keyword indicates the coefficients for the given MCOMP2 method.
The coefficient tree used will be a version 3 tree using the MG3S basis set.

VERSION VARIABLE v2m

The VERSION keyword indicates the version of the coefficients for the given
MCCM-CO; MG3; 6-31+G(d) method. The valid options are given in Table 9.

MCOPTIONS LIST Not used.

This list keyword is used to indicate any special options for the electronic structure

package for calculations employinh SAC, MC-SAC, IB, MCCM-CO, MCCM-UT, and

MCCM-NM.

MCQCISD

The MCQCISD keyword specifies the multi-coefficient quadratic configuration interaction

with single and double excitations (MC-QCISD) method. The valid options are:

COEFFS LIST [see Table 9]

The COEFFS keyword indicates the coefficients for the given MC-QCISD method.
The coefficient tree used will be a version 3 tree (see figure 8).

VERSION VARIABLE v2m

The VERSION keyword indicates the version of the coefficients for the given MC-
QCISD method. The valid options are given in Table 9.

MCQCISDOPTIONS LIST Not used.

This list keyword is used to indicate any special options for the electronic structure

package for calculations employing MC-QCISD.

 83

MCPROGRAM VARIABLE g98

This keyword indicates the electronic structure program to be called to gather electronic

structure information for SAC, MCSAC, IB, MCCMCO, MCCMUT, and MCCMNM

calculations. Currently only GAUSSIAN09 (g09), GAUSSIAN03 (g03), GAUSSIAN98 (g98)

and GAUSSIAN94 (g94) are supported values.

MCSAC
The MCSAC keyword is a list keyword that specifies the options for the MCSAC method.

The following keywords are the valid options for the list:

 METHOD VARIABLE ccsd

 The METHOD keyword indicates the MCSAC method to be used.

 BASIS VARIABLE cc-pvdz

 This keyword specifies the basis set for the calculation.

COEFFS LIST [see Table 2]

The COEFFS keyword indicates the coefficients for the given MCSAC method.

VERSION VARIABLE v2m

The VERSION keyword indicates the version of the coefficients for the given
MCSAC method. The valid options are given in Table 2.

SAC

The SAC keyword is a list keyword that specifies the options for the SAC method. The

following are the valid options for the list:

BASIS VARIABLE cc-pvdz

This keyword specifies the basis set for the calculation.

COEFFS LIST [see Table 1]

The COEFFS keyword indicates the coefficients for the given SAC method.

METHOD VARIABLE mp2

The METHOD keyword indicates the SAC method to be used.

 84

VERSION VARIABLE v2m

The version keyword indicates the version of the coefficients for the given SAC method.
The valid options are given in Table 1.

 85

6.F. TEST Section

This section contains keywords that are specific to the testing function of MULTILEVEL.

This function allows the user to gather energies, gradients, and Hessians at only one level

of electronic structure theory. The user may also optimize at the specified level using the

algorithms enabled in MULTILEVEL. This may be helpful in testing starting point

geometries and Hessian levels to be used in an optimization, before attempting to

optimize with the more expensive MULTILEVEL methods. Its keywords are as follows:

BASIS VARIABLE cc-pvdz

The BASIS keyword indicates the basis set to be used in the calculation. Note that for

certain chemistry models the basis set is already predefined.

GENECP VARIABLE No Default.

This keyword indicates the use of effective core potentials. The argument must be the

name of the file that contains the specifications of the basis set and pseudopotentials for

all the atoms. That file must be put into the basis subdirectory of MULTILEVEL. This

keyword must be used in combination with the variable gen in the BASIS keyword.

METHOD VARIABLE mp2

This keyword specifies the electronic structure method to be used.

OPTIONS LIST No default

The OPTIONS keyword may be used to specify any options necessary for the electronic

structure program. As in previous sections, this keyword can be use to specify also the

memory requirements and the number of processors to be used.

PROGRAM VARIABLE g03

This keyword indicates the electronic structure program to be called for the TEST

energies, gradients, and Hessians. Currently g09, g03, g98, and g94 are the supported

 86

values, which correspond to the GAUSSIAN09, GAUSSIAN03, GAUSSIAN98, and

GAUSSIAN94 electronic structure programs, respectively.

 87

6.G. Running MULTILEVEL in Parallel

There are two ways in which MULTILEVEL calculations can be run in parallel. The first,

and most simple, is to run GAUSSIAN in parallel by passing link1 commands to

GAUSSIAN09/03/98 through the program option. See page 47 and testrun 11. The second

method of parallel execution involves spawning multiple threads within MULTILEVEL

itself. MULTILEVEL can be compiled with the appropriate OpenMP libraries to offer

limited parallel capabilities. The parallel operation of multilevel allows multiple

GAUSSIAN09/03 calculations to be run simultaneously. Currently, only the calculation of

MCG3 energies and gradients will operate in parallel mode.

 88

Chapter Seven

7
7. Description of Files in MULTILEVEL

This chapter gives a description of the files involved in the compiling and running of

MULTILEVEL, such as: the source code needed to compile the program, files required to

run MULTILEVEL, files created during a run of MULTILEVEL, and a script supplied to

simplify the running of MULTILEVEL.

7.A. Source Code

MULTILEVEL source code is composed of eight FORTRAN90 files. In the following

subsections, 7.A.1 describes each of the files in the source code, and 7.A.2 gives an

alphabetical listing and description of each subprogram in MULTILEVEL.

7.A.1. Source Code Files

display.F
 This file contains the subprograms for displaying most of the MULTILEVEL output.

ef.F

This file contains the driver for the eigenvector following algorithm.

ehooks.F
 This file contains the subprograms for carrying out energy calculations as well as the

formula subroutines.

freq.F

This file contains the subprograms for calculating the harmonic vibrational
frequencies and normal mode coordinates.

gau_ext_opt.F
 This file contains the subprograms for calling GAUSSIAN09/03’s Berny optimizer.

 89

ghooks.F
 This file contains the subprograms for carrying out gradient calculations.

hhooks.F
 This file contains the subprograms for conducting Hessian calculations.

main.F
 This file contains the driver for the MULTILEVEL program.

ml.F
 This file contains the subprograms for parsing the MULTILEVEL input file, ml.inp.

module.F
 This file contains all the modules defining parameters for the program, defining the

default coefficients for multi-coefficient methods, creating structures for the input
information, and defining common blocks for the energies, gradients, and Hessians to
be calculated.

ohooks.F
 This file contains the subprograms for carrying out optimizations with multilevel.

nebmin.F
 This file contains the main driver for the NEB algorithm.

neb.F
 This file contain all the subprograms needed for the NEB minimization.

7.A.2. Subprogram List

The listings in this section have the subprogram name in bold. On that same line is the

type of subprogram and the file that contains the subprogram. The following lines then

give a short description of the subprogram.

ADX, ADX2 subroutine ghooks.F
 Calculates the components of the harmonic angle correction to the IMOHC gradient.

ATMINFO module module.F
 Contains the information used to confirm that the atomic symbols given in the input

geometry are valid and to assign an atomic mass based on this symbol.

BRENT function ohooks.F
 Performs Brent line minimization given three points bracketing a minimum.

 90

CALG subroutine ehooks.F
 Calculates a G2 or G3 energy, gradient component, or Hessian component.

CALG3SXMP3 subroutine ehooks.F
 Calculates a G3SX(MP3) energy, gradient component, or Hessian component.

CALHFMO subroutine ehooks.F
 Calculates an HF||MO energy, gradient component, or Hessian component.

CALIB subroutine ehooks.F
 Calculates an IB energy, gradient component, or Hessian component.

CALMC3BB subroutine ehooks.F
 Calculates an MC3BB energy, gradient component, or Hessian component.

CALMC3MPW subroutine ehooks.F
 Calculates an MC3MPW energy, gradient component, or Hessian component.

CALMCO subroutine ehooks.F
 Calculates an MCCM-CO energy, gradient component, or Hessian component.

CALMCS subroutine ehooks.F
 Calculates an MCSAC energy, gradient component, or Hessian component.

CALMG subroutine ehooks.F
 Calculates an MCG2 or MCG3 energy, gradient component, or Hessian component.

CALMNM subroutine ehooks.F
 Calculates an MCCM-NM energy, gradient component, or Hessian component.

CALMQC subroutine ehooks.F
 Calculates an MC-QCISD energy, gradient component, or Hessian component.

CALMUT subroutine ehooks.F
 Calculates an MCCM-UT energy, gradient component, or Hessian component.

CALTYP module module.F
 Contains parameters for identifying the type of calculation (i.e., optimization, energy,

gradient, or Hessian calculation)

CALSAC subroutine ehooks.F
 Calculates an SAC energy, gradient component, or Hessian component.

CASE function ml.F
 Converts input strings to all lower case letters for case consistency.

 91

CFLOAT function ml.F
 Converts a string to a double precision number.

CFLTFMT function ehooks.F
 Converts a string from a formatted checkpoint file to a double precision number.

Takes advantage of the known formats of numbers in the checkpoint files.

CHKLN subroutine ml.F
 Checks a line for special characters such as a comment, a section start, or a list

keyword end.

D2XX, D2XY subroutine hhooks.F
 Calculates the components of the harmonic bond correction to the IMOHC Hessian.

DATTIM subroutine display.F
 Gets the date and time for the output file.

DAX1X1, DAX1X2, DAX1X3, DAX2X2, DAX1Y1, DAX1Y2, DAX1Y3, DAX2Y2
 subroutine hhooks.F
 Calculates the components of the harmonic angle correction to the IMOHC Hessian.

DAXPY subroutine freq.F

BLAS routine calculates cx+y vector.

DEFGEN subroutine ml.F
 Sets the defaults for the MULTIGEN section input information.

DEFIMO subroutine ml.F
 Sets the defaults for the IMO section input information.

DEFLC subroutine ml.F
 Sets the defaults for the LC section input information.

DEFPROG subroutine ml.F
 Sets the defaults for the electronic structure programs to be called for different

MULTILEVEL calculations.

DEFTEST subroutine ml.F
 Sets the defaults for the TEST section input information.

DGEDI subroutine freq.F

Computes the determinant and inverse of a matrix using the factors computed by
DGEFA.

DGEFA subroutine freq.F
Factors a double precision matrix by Gaussian elimination.

 92

DSWAP subroutine freq.F

BLAS routine interchanges two vectors.

DX1X1, DX1X2, DX1X3, DX1X4, DX2X2, DX2X3, DX1Y1, DX1Y2, DX1Y3, DX1Y4, DX2Y2, DX2Y3
 subroutine hhooks.F
 Calculates the components of the harmonic torsion correction to the IMOHC Hessian.

EF subroutine ef.F
 Eigenvector following driver.

EFOVLP subroutine ef.F
Determines the overlap of the geometry steps in the eigenvector following algorithm.

ENERGY module module.F
 Defines all the COMMON block energy variables.

ESGPARSE subroutine ghooks.F
 Makes all the calls to PROGGHK for the SAC, MCSAC, IB, and MCCM methods

when COOP is on.

ESHPARSE subroutine hhooks.F
 Makes all the calls to PROGHHK for the SAC, MCSAC, IB, and MCCM methods

when COOP is on.

ESPARSE subroutine ehooks.F
 Makes all the calls to PROGEHK for the SAC, MCSAC, IB, and MCCM methods when

COOP is on.

F1DIM function ohooks.F
 A pseudo 1-dimensional function for the energy of the molecule used to perform

Brent line minimization of the step size during optimization.

FCHAR subroutine ml.F
 Finds the next character on a line.

FILES module module.F
 Contains the definitions of the file handles, names, and locations used throughout

MULTILEVEL. May be modified to change file handle numbers, basis set file
locations, or memory allocations used in GAUSSIAN input files. But the filenames
themselves should not be changed.

FREQCAL subroutine freq.F

Calculates the harmonic vibrational frequencies and normal mode coordinates.

 93

FSPACE subroutine ml.F
 Finds the next blank space on a line.

G2DISP subroutine display.F
 Displays the G2 output information.

G2EHK subroutine ehooks.F
 Gets the G2 energy, using information from MCG2 calculations, if done.

G2GHK subroutine ghooks.F
 Gets the G2 gradient and energy, using information from MCG2 calculations, if

performed.

G2HHK subroutine hhooks.F
 Gets the G2 Hessian, gradient, and energy, using information from MCG2

calculations, if performed.

G3DISP subroutine display.F
 Displays the G3 output information.

G3SXMP3DISP subroutine display.F
 Displays the G3SX(MP3) output information.

G3EHK subroutine ehooks.F
 Gets the G3 energy, using information from MCG3/MMCG3 calculations, if done.

G3GHK subroutine ghooks.F
 Gets the G3 gradient and energy, using information from MCG3 calculations, if

performed.

G3HHK subroutine hhooks.F
 Gets the G3 Hessian, gradient, and energy, using information from MCG3

calculations, if performed.

G3SXMP3EHK subroutine ehooks.F
 Carries out G3SX(MP3) energy calculations.

G3SXMP3GHK subroutine ghooks.F
 Carries out G3SX(MP3) gradient and energy calculations.

G3SXMP3HHK subroutine hhooks.F
 Carries out G3SX(MP3) Hessian, gradient, and energy calculations.

G98INP subroutine ehooks.F
 Creates input files for GAUSSIAN94, GAUSSIAN98, GAUSSIAN03, and GAUSSIAN09.

 94

G98OUTE subroutine ehooks.F
 Reads the energy from a GAUSSIAN94, GAUSSIAN98, GAUSSIAN03, or GAUSSIAN09

formatted checkpoint file.

G98OUTG subroutine ghooks.F
 Reads the gradient from GAUSSIAN94, GAUSSIAN98, GAUSSIAN03, or GAUSSIAN09

formatted checkpoint file.

G98OUTH subroutine hhooks.F
 Reads the Hessian from GAUSSIAN94, GAUSSIAN98, GAUSSIAN03, or GAUSSIAN09

formatted checkpoint file.

G98OUTO subroutine ohooks.F
 Reads the optimized geometry, energy, and gradient from a GAUSSIAN94,

GAUSSIAN98, GAUSSIAN03, or GAUSSIAN09 formatted checkpoint file.

GAU_EXT_OPT subroutine gau_ext_opt.F
 Gau_ext_opt is an interface subroutine which create an input file for GAUSSIAN09/03

to perform multilevel optimization by using the GAUSSIAN09/03’s Berny optimizer.

GETEIB subroutine ehooks.F
 Gets an IB energy using previously calculated electronic structure information when

COOP is on.

GETEMCO subroutine ehooks.F
 Gets an MCCM-CO energy using previously calculated electronic structure

information when COOP is on.

GETEMCS subroutine ehooks.F
 Gets an MCSAC energy using previously calculated electronic structure information

when COOP is on.

GETEMNM subroutine ehooks.F
 Gets an MCCM-NM energy using previously calculated electronic structure

information when COOP is on.

GETEMUT subroutine ehooks.F
 Gets an MCCM-UT energy using previously calculated electronic structure

information when COOP is on.

GETESAC subroutine ehooks.F
 Gets a SAC energy using previously calculated electronic structure information when

COOP is on.

 95

GETGIB subroutine ghooks.F
 Gets an IB gradient using previously calculated electronic structure information when

COOP is on.

GETGMCO subroutine ghooks.F
 Gets an MCCM-CO gradient using previously calculated electronic structure

information when COOP is on.

GETGMCS subroutine ghooks.F
 Gets an MCSAC gradient using previously calculated electronic structure information

when COOP is on.

GETGMNM subroutine ghooks.F
 Gets an MCCM-NM gradient using previously calculated electronic structure

information when COOP is on.

GETGMUT subroutine ghooks.F
 Gets an MCCM-UT gradient using previously calculated electronic structure

information when COOP is on.

GETGSAC subroutine ghooks.F
 Gets a SAC gradient using previously calculated electronic structure information

when COOP is on.

GETHIB subroutine hhooks.F
 Gets an IB Hessian using previously calculated electronic structure information when

COOP is on.

GETHLC function ehooks.F
 Calculates the higher level energy correction for G2 or G3.

GETHMCO subroutine hhooks.F
 Gets an MCCM-CO Hessian using previously calculated electronic structure

information when COOP is on.

GETHMCS subroutine hhooks.F
 Gets an MCSAC Hessian using previously calculated electronic structure information

when COOP is on.

GETHMNM subroutine hhooks.F
 Gets an MCCM-NM Hessian using previously calculated electronic structure

information when COOP is on.

GETHMUT subroutine hhooks.F
 Gets an MCCM-UT Hessian using previously calculated electronic structure

information when COOP is on.

 96

GETHSAC subroutine hhooks.F
 Gets a SAC Hessian using previously calculated electronic structure information

when COOP is on.

GETSO function ehooks.F
 Calculates the spin-orbit energy correction for G3.

GPARAM module module.F
 Contains the parameters and names for the components of G2, MCG2, G3, and

MCG3, as well as all default coefficients for MCG2 and MCG3.

GRADIENT module module.F
 Defines all the COMMON block gradient variables.

HCGEOM subroutine ehooks.F
 Creates geometries for the small and large systems in IMOHC based on the atoms

specified with CAPATOM and CSS.

HESSIAN module module.F
 Defines all the COMMON block Hessian variables.

HFMODISP subroutine display.F
 Displays all the HF||MO output.

HFMOEHK subroutine ehooks.F
 Gets the HF||MO energy.

HFMOGHK subroutine ghooks.F
 Gets the HF||MO energy and gradient.

HFMOHHK subroutine hhooks.F
 Gets the HF||MO energy, gradient, and Hessian.

HGRAD subroutine ghooks.F
 Adds the harmonic correction to the IMOHC gradient.

HHESS subroutine hhooks.F
 Adds the harmonic correction to the IMOHC Hessian.

HNRG subroutine ehooks.F
 Adds the harmonic correction to the IMOHC energy.

IBCHK subroutine ehooks.F
 Determines which electronic structure program calls are to be made for a requested

IB gradient or Hessian calculation when COOP is on.

 97

IBDISP subroutine display.F
 Displays the IB output from IBEHK, IBGHK, or IBHHK.

IBEHK subroutine ehooks.F
 Gets an IB energy when NOCOOP is on.

IBGHK subroutine ghooks.F
 Gets an IB gradient and energy when NOCOOP is on.

IBHHK subroutine hhooks.F
 Gets an IB Hessian, gradient, and energy when NOCOOP is on.

IBMCHK subroutine ehooks.F
 Determines which electronic structure program calls are to be made for a requested

IB energy calculation when COOP is on.

ICINT function ml.F
 Converts a string to an integer.

IDAMAX subroutine freq.F

BLAS routine finds the index of element having maximum absolute value.

IMOHCDISP subroutine display.F
 Displays the IMOHC output.

IMOHCEHK subroutine ehooks.F
 Gets an IMOHC energy.

IMOHCGHK subroutine ghooks.F
 Gets an IMOHC gradient and energy.

IMOHCHHK subroutine hhooks.F
 Gets an IMOHC Hessian, gradient, and energy.

INPUT module module.F
 Contains the structure types into which all the user input information is placed.

INSUMRY subroutine display.F
 Prints out a summary of the user input information.

LINMN subroutine ohooks.F
 Optimizes the geometry step during an optimization via Brent line minimization.

LOWDISP subroutine display.F
 Displays the low level Hessian calculated for a geometry optimization.

 98

LUDCMP subroutine ohooks.F
 Conducts LU decomposition on a matrix.

LUBKSB subroutine ohooks.F
 Back substitutes into an LU decomposed matrix to find a solution to a linear equation.

MC3BBEHK subroutine ehooks.F
 Carries out MCG3BB energy calculations.

MC3BBGHK subroutine ghooks.F
 Carries out MCG3BB gradient and energy calculations.

MC3BBHHK subroutine hhooks.F
 Carries out MC3BB Hessian, gradient, and energy calculations.

MC3MPWEHK subroutine ehooks.F
 Carries out MCG3MPW energy calculations.

MC3MPWGHK subroutine ghooks.F
 Carries out MCG3MPW gradient and energy calculations.

MC3MPWHHK subroutine hhooks.F
 Carries out MC3MPW Hessian, gradient, and energy calculations.

MCCHK subroutine ehooks.F
 Determines all possible SAC, MCSAC, IB, and MCCM calculations that are able to

be done based on the electronic structure program calls being made when COOP is on.

MCDISP subroutine display.F
 Displays all SAC, MCSAC, IB, and MCCM output when COOP is on.

MCEHK subroutine ehooks.F
 Serves as a front end for all SAC, MCSAC, IB, and MCCM energy calculations when

COOP is on.

MCGHK subroutine ghooks.F
 Serves as a front end for all SAC, MCSAC, IB, and MCCM gradient and energy

calculations when COOP is on.

MCHHK subroutine hhooks.F
 Serves as a front end for all SAC, MCSAC, IB, and MCCM Hessian, gradient, and

energy calculations when COOP is on.

MCOCHK subroutine ehooks.F

 99

 Determines which electronic structure program calls are to be made for a requested
MCCM-CO gradient or Hessian calculation when COOP is on.

MCODISP subroutine display.F
 Displays the MCCM-CO output from MCOEHK, MCOGHK, or MCOHHK.

MCOEHK subroutine ehooks.F
 Gets an MCCM-CO energy when NOCOOP is on.

MCOGHK subroutine ghooks.F
 Gets an MCCM-CO gradient and energy when NOCOOP is on.

MCOHHK subroutine hhooks.F
 Gets an MCCM-CO Hessian, gradient, and energy when NOCOOP is on.

MCOMCHK subroutine ehooks.F
 Determines which electronic structure program calls are to be made for a requested

MCCM-CO energy calculation when COOP is on.

MCSCHK subroutine ehooks.F
 Determines which electronic structure program calls are to be made for a requested

MCSAC gradient or Hessian calculation when COOP is on.

MCSDISP subroutine display.F
 Displays the MCSAC output from MCSEHK, MCSGHK, or MCSHHK.

MCSEHK subroutine ehooks.F
 Gets an MCSAC energy when NOCOOP is on.

MCSGHK subroutine ghooks.F
 Gets an MCSAC gradient and energy when NOCOOP is on.

MG2EHK subroutine ehooks.F
 Carries out MCG2 energy calculations.

MG2GHK subroutine ghooks.F
 Carries out MCG2 gradient and energy calculations.

MG2HHK subroutine hhooks.F
 Carries out MCG2 Hessian, gradient, and energy calculations.

MG3DISP subroutine display.F
 Displays MCG3 output.

MG3EHK subroutine ehooks.F
 Carries out MCG3 energy calculations.

 100

MG3GHK subroutine ghooks.F
 Carries out MCG3 gradient and energy calculations.

MG3HHK subroutine hhooks.F
 Carries out MCG3 Hessian, gradient, and energy calculations.

MG98OUTE subroutine ehooks.F
 Extracts multiple energies from either a GAUSSIAN94, GAUSSIAN98, GAUSSIAN03, or

GAUSSIAN09 formatted checkpoint file.

MLEHOOK subroutine ehooks.F
 Serves as a front end for all MULTILEVEL energy calculations.

MLGHOOK subroutine ghooks.F
 Serves as a front end for all MULTILEVEL gradient and energy calculations.

MLHEDR subroutine display.F
 Prints out the program header in the output file.

MLHHOOK subroutine hhooks.F
 Serves as a front end for all MULTILEVEL Hessian calculations.

MLOHOOK subroutine ohooks.F
 Serves as a front end for all MULTILEVEL optimization algorithms.

MNBRAK subroutine ohooks.F
 Brackets a minimum of a 1-dimensional function with three points.

MNMCHK subroutine ehooks.F
 Determines which electronic structure program calls are to be made for a requested

MCCM-NM gradient or Hessian calculation when COOP is on.

MNMDISP subroutine display.F
 Displays the MCCM-NM output from MNMEHK, MNMGHK, or MNMHHK.

MNMEHK subroutine ehooks.F
 Gets an MCCM-NM energy when NOCOOP is on.

MNMGHK subroutine ghooks.F
 Gets an MCCM-NM gradient and energy when NOCOOP is on.

MNMHHK subroutine hhooks.F
 Gets an MCCM-NM Hessian, gradient, and energy when NOCOOP is on.

MNMMCHK subroutine ehooks.F

 101

 Determines which electronic structure program calls are to be made for a requested
MCCM-NM energy calculation when COOP is on.

MPROGEHK subroutine ehooks.F
 Carries out an energy call with the specified electronic structure program, extracting

multiple energies.

MQCDISP subroutine display.F
 Displays the MC-QCISD output from MQCEHK, MQCGHK, or MQCHHK.

MQCEHK subroutine ehooks.F
 Gets an MC-QCISD energy.

MQCGHK subroutine ghooks.F
 Gets an MC-QCISD gradient and energy.

MQCHHK subroutine hhooks.F
 Gets an MC-QCISD Hessian, gradient, and energy.

MTOLTM subroutine hhooks.F
 Converts a symmetric matrix to a 1-dimensional array containing the lower triangular

portion of the matrix.

MUTCHK subroutine ehooks.F
 Determines which electronic structure program calls are to be made for a requested

MCCM-UT gradient or Hessian calculation when COOP is on.

MUTDISP subroutine display.F
 Displays the MCCM-UT output from MUTEHK, MUTGHK, or MUTHHK.

MUTEHK subroutine ehooks.F
 Gets an MCCM-UT energy when NOCOOP is on.

MUTGHK subroutine ghooks.F
 Gets an MCCM-UT gradient and energy when NOCOOP is on.

MUTHHK subroutine hhooks.F
 Gets an MCCM-UT Hessian, gradient, and energy when NOCOOP is on.

MUTMCHK subroutine ehooks.F
 Determines which electronic structure program calls are to be made for a requested

MCCM-UT energy calculation when COOP is on.

MXLNEQ subroutine ohooks.F
 Calculates the inverse of a matrix.

 102

NEWT subroutine ohooks.F
 Carries out Newton-Raphson optimization with Brent line minimization using either a

high level Hessian, a low level Hessian, or a scaled unit matrix, kept frozen when not
recalculated.

NEWT2 subroutine ohooks.F
 Carries out Newton-Raphson optimization with Brent line minimization using either a

high level Hessian, a low level Hessian, or a scaled unit matrix with either BFGS or
DFP updates, when not recalculated.

NUMFMT module module.F
 Contains information on the formats of numbers in the GAUSSIAN94, GAUSSIAN98,

GAUSSIAN03 and GAUSSIAN09 formatted checkpoint files.

OPTDISP subroutine ohooks.F
 Displays a step in the optimization.

OPTEHK subroutine ohooks.F
 Gets the appropriate energy during an optimization.

OPTGHK subroutine ohooks.F
 Gets the appropriate gradient and energy during an optimization.

OPTHHK subroutine ohooks.F
 Gets the appropriate Hessian (and possibly gradient and energy, as well) during an

optimization.

OPTIMIZE module module.F
 Contains COMMON block variables used during optimization.

PARAM module module.F
 Contains the parameters and names for components of SAC, MCSAC, IB, and

MCCM methods as well as some general program parameters.

PRJFC subroutine ehooks.F

Calculates the projected force constant matrix.

PROGDEF module module.F
 Contains the default electronic structure programs called by the various parts of

MULTILEVEL. Automatically all default programs are set to GAUSSIAN09, but the user
may alter some or all to another supported electronic structure package.

PROGEHK subroutine ehooks.F
 Carries out a single energy call to the specified electronic structure program.

 103

PROGGHK subroutine ghooks.F
 Carries out a gradient call to the specified electronic structure program.

PROGHHK subroutine hhooks.F
 Carries out a Hessian call to the specified electronic structure program.

PROGOHK subroutine ohooks.F
 Carries out an optimization call to the specified electronic structure program.

RCOEF subroutine ml.F
 Reads the coefficients from the COEFFS keywords in the input file.

RCONST subroutine ml.F
 Reads the CONSTANT list keyword from the MULTIGEN section.

RCSS subroutine ml.F
 Reads the CSS list keyword from the IMO section.

RDX subroutine ghooks.F
 Calculates the components of the harmonic bond correction to the IMOHC gradient.

READ5 subroutine ml.F
 Reads the MULTILEVEL input file.

REXTOPT subroutine ml.F
 Reads the EXTOPT list keyword from the MULTIGEN section.

RG2 subroutine ml.F
 Reads the G3 list keyword from the LC section.

RG3 subroutine ml.F
 Reads the G3 list keyword from the LC section.

RG3SXMP3 subroutine ml.F
 Reads the G3SX(MP3) list keyword from the LC section.

RGEOM subroutine ml.F
 Reads the RGEOM list keyword from the MULTIGEN section.

RHC subroutine ml.F
 Reads the RHC list keyword from the IMOHC section.

RHFMO subroutine ml.F
 Reads the HFMO list keyword from the LC section.

RIB subroutine ml.F

 104

 Reads the IB list keyword from the LC section.

RLINE subroutine ml.F
 Reads the next non-blank and non-comment line of the input file.

RLIST subroutine ml.F
 Reads the OPTIONS list keywords.

RMC3BB subroutine ml.F
 Reads the MC3BB list keyword from the LC section.

RMC3MPW subroutine ml.F
 Reads the MC3MPW list keyword from the LC section.

RMCCMCO subroutine ml.F
 Reads the MCCMCO list keyword from the LC section.

RMCCMNM subroutine ml.F
 Reads the MCCMNM list keyword from the LC section.

RMCCMUT subroutine ml.F
 Reads the MCCMUT list keyword from the LC section.

RMCG2 subroutine ml.F
 Reads the MCG2 list keyword from the LC section.

RMCG3 subroutine ml.F
 Reads the MCG3 list keyword from the LC section.

RMCSAC subroutine ml.F
 Reads the MCSAC list keyword from the LC section.

RMLGEN subroutine ml.F
 Reads the MULTIGEN section.

RMLOPT subroutine ml.F
 Reads the MLOPT list keyword from the MULTIGEN section.

RMQCISD subroutine ml.F
 Reads the MCQCISD list keyword from the LC section.

ROTCOL subroutine ohooks.F
 Given the geometry coordinates for 2 axes, rotates those coordinates about the third

axis by a specified angle.

ROTMOL subroutine ohooks.F

 105

 Either rotates a molecule to place appropriate atoms at the origin, on an axis, and in a
plane for an optimization, or undoes these rotations afterwards.

RSAC subroutine ml.F
 Reads the SAC list keyword from the LC section.

RSP subroutine ef.F

EISPACK diagonalization routine. Finds the eigenvalues and eigenvectors of a real
symmetric packed matrix.

RTEST subroutine ml.F
 Reads the TEST section.

RVAR function ml.F
 Returns the string following a variable keyword.

RWORD subroutine ml.F
 Reads the next word on a line.

SACCHK subroutine ehooks.F
 Determines which electronic structure program calls are to be made for a requested

SAC gradient or Hessian calculation when COOP is on.

SACDISP subroutine display.F
 Displays the SAC output from SACEHK, SACGHK, or SACHHK.

SACEHK subroutine ehooks.F
 Gets a SAC energy when NOCOOP is on.

SACGHK subroutine ghooks.F
 Gets a SAC gradient and energy when NOCOOP is on.

SACHHK subroutine hhooks.F
 Gets a SAC Hessian, gradient, and energy when NOCOOP is on.

SACMCHK subroutine ehooks.F
 Determines which electronic structure program calls are to be made for a requested

SAC energy calculation when COOP is on.

SETIB subroutine ehooks.F
 Determines all possible IB calculations that are able to be done with available

electronic structure information if COOP is on.

SETMCO subroutine ehooks.F
 Determines all possible MCCM-CO calculations that are able to be done with

available electronic structure information if COOP is on.

 106

SETMCS subroutine ehooks.F
 Determines all possible MCSAC calculations that are able to be done with available

electronic structure information if COOP is on.

SETMCSW subroutine ehooks.F
 Sets a new calculation in the switch array storing the possible SAC, IB, MCSAC, and

MCCM calculations.

SETMNM subroutine ehooks.F
 Determines all possible MCCM-NM calculations that are able to be done with

available electronic structure information if COOP is on.

SETMUT subroutine ehooks.F
 Determines all possible MCCM-UT calculations that are able to be done with

available electronic structure information if COOP is on.

SETROT subroutine ohooks.F
 Sets the 3 rotations to be performed based on the atoms and coordinates specified in

CONSTANT.

SETSAC subroutine ehooks.F
 Determines all possible SAC calculations that are able to be done with available

electronic structure information if COOP is on.

SUMDISP subroutine display.F
 Displays the summary output file ml.sum.

TESTDISP subroutine display.F
 Displays the output from a TEST calculation.

TDX, TDX2 subroutine ghooks.F
 Calculates the components of the harmonic torsion correction to the IMOHC gradient.

TQL2 subroutine ef.F

Computes the eigenvalues and eigenvectors of a symmetric tridiagonal matrix by the
QL method [H. Bowdler, R. S. Martin, C. H. Reinsch, and J. H. Wilkinson, Num.
Math 11 (1968) 293].

TQLRAT subroutine ef.F
Finds the eigenvalues of a symmetric tridiagonal matrix by the rational QL
method [C. H. Reinsch, Comm. ACM 16 (1973) 689].

TRBAK3 subroutine ef.F
Forms the eigenvectors of a real symmetric matrix by back transformation of the
eigenvectors of the similar symmetric tridiagonal matrix.

 107

TRED3 Newton-Raphson subroutine ef.F
 Reduces a real symmetric matrix to a symmetric tridiagonal matrix.

NEBNR subroutine nebmin.F

Performs the NEB minimization when the optimizer chosen is BFGS or DFP.

NEBNR2 subroutine nebmin.F

Performs the NEB minimization when the optimizer chosen is NR (do not updatethe
Hessian along the minimization).

NEBVB subroutine nebmin.F

Performs the NEB minimization when the optimizer chosen is VB.

RMINV subroutine nebmin.F

Computes the inverse of a Hessian

NEBHHK subroutine nebmin.F

Computes the Hessian matrix along the NEB minimization.

NEBGST subroutine nebmin.F

Computes the adjusted force acting only on the adjacent images

NEBGHK subroutine nebmin.F

Computes the total force vector containing the M (where M is the number of images)
adjusted force vectors acting on each image.

REORIENT subroutine nebmin.F

Does the initial reorientation between the two fixed end points.

INTERP subroutine nebmin.F

Performs the linear interpolation between the two previously reoriented fixed end
points, and generates the initial chain of structures.

TANGCALC subroutine nebmin.F

Computes the tangent vector for each image

FORCALC subroutine nebmin.F

Computes the total force vector acting on each image

OPTNEBDISP subroutine nebmin.F

Displays NEB information in the output file

 108

7.B. Files Required to Run MULTILEVEL

Aside from the executable itself, there are three types of files which are necessary to run

MULTILEVEL: the input file, the basis set files, and shuttle scripts. All such files are

required to be in the directory in which the user is running the program. (See 7.D for a

script that handles this requirement.) The following two subsections give the details of

the basis set files and the shuttle scripts. The input file, which must be named ml.inp, has

been described in detail in the previous chapter.

7.B.1. Basis Set Files

Due to the fact that several of the MULTILEVEL calculations require electronic structure

program calls for non-standard basis sets, one or more of the three non-standard

GAUSSIAN basis set files may be required. The basis set files and the MULTILEVEL

methods which require them are listed below:

Basis Set:

mpDZ

File Name:

mpdz.gbs

Methods Required For:

MCCM-NM

pDZ+ pdz+.gbs MCCM-NM

G3Large g3large.gbs G3

G3XLarge g3xlarge.gbs G3SX(MP3)

Modified G3 (MG3) mg3.gbs MCG3, MC-QCISD,

MCOMP2

MG3-semidiffuse (MG3S) mg3s.gbs MCG3/3, MC-QCISD/3,

MCOMP2/3

Basis sets and ECPs lanl2dz.gbs 6-31+G(d,p)

 109

7.B.2. Electronic Structure Program Shuttle Scripts

MULTILEVEL makes many calls to the specified electronic structure package throughout

the course of a run. In order to minimize the system calls made within the program, a C-

shell shuttle script has been provided for each of the electronic structure packages

supported in MULTILEVEL. The only system calls made are directly to these shuttles. The

usage of each shuttle script is: shuttle input-file output-file. The scripts in this version

of MULTILEVEL are named g94shuttle, g98shuttle g03shuttle, and g09shuttle, and they are

designed for calling GAUSSIAN94, GAUSSIAN98, GAUSSIAN03, and GAUSSIAN09.

Within each script, the user must modify at least two variables – the one specifying the

path of GAUSSIAN and the one for the system scratch directory. The user may also alter

the handling of the GAUSSIAN input, output, and scratch files. It is important to keep in

mind though that the formatted checkpoint file must remain after the shuttle script has

finished, for the GAUSSIAN output is read by MULTILEVEL from that file.

To use the Berny optimizer in GAUSSIAN09/03, a PERL script Gau_External is needed for

calling a secondary MULTILEVEL calculation of energy, gradient, and Hessian and passing

them to GAUSSIAN09/03.

We note that a subdirectory is created within the user specified scratch directory for the

handling of scratch files; this subdirectory is named by the process ID to ensure a unique

name. All GAUSSIAN scratch files are stored in that subdirectory. At the end of the

GAUSSIAN job, the subdirectory itself is removed. This process allows the user to run

more than one MULTILEVEL job at once and not worry about the removal of the scratch

files from another GAUSSIAN job. This may be altered at the user’s discretion.

 110

7.C. Files Created During a MULTILEVEL Run

Several files are created in the process of running MULTILEVEL which may be of

importance to the user.

7.C.1. The Output File: ml.out

The output file is created under the name ml.out. The first portion of the file summarizes

the options specified in the input file. The remainder details the results of the external

optimization, each step in a MULTILEVEL optimization, and all energies, gradients, and

Hessians calculated. All values should be clearly identified within the output.

7.C.2. The Electronic Structure Program Input and Output Files

Currently there are seven files created that fall under this category. Each will be

described below. These files should indicate to the user which job is currently being run.

A line is also written to standard error for each electronic structure job run by

MULTILEVEL.

g94.inp, g98.inp, g03.inp, and g09.inp

These are the input files for GAUSSIAN94, GAUSSIAN98, GAUSSIAN03, and GAUSSIAN09

respectively for all energy, gradient, and Hessian calculations made with the electronic

structure package. They are rewritten for each call to the electronic structure program.

The method and basis set are those required for the current MULTILEVEL calculation. The

two options specified in every input file are FChk=All (in order to read the GAUSSIAN

output) and NoSymm (in order to avoid calculation failures due to a changing of the

molecular symmetry). The three types of calculations that may be specified in these files

are SP, Force, and Freq to obtain the energy, gradient, and Hessian respectively. The

option Force=EnOnly is always chosen for those methods that do not have analytic

gradients, due to the fact that GAUSSIAN98 fails otherwise. All calculations employing

 111

CCSD(T) specify it as ccsd(t)=e4t so that MP4SDTQ energies will be available in the

formatted checkpoint file.

The user may specify additional options in the MULTILEVEL input file. However the user

may not alter the Link0 command lines in the input files. The only Link0 command

specified in these two files is the memory allocation line, and MULTILEVEL writes no

other Link0 lines. The memory requirements are hardwired into the program, to the

values of 100MB for energy calculations, 250MB for gradient calculations, and 500MB

for both Hessian calculations and geometry optimizations. If these memory allocations

are undesirable for some reason, the user may alter these constant amounts in the module

FILES, so long as the amount is in a format accepted by GAUSSIAN. In addition, the only

non-standard basis sets able to be used in any calculation are the three listed in 6.B.1.

They should be named in the MULTILEVEL input file as pDZ+, G3large, and MG3;

otherwise MULTILEVEL will not recognize the basis.

g94.out, g98.out, g03.out, and g09.out

These are the output files resulting from each GAUSSIAN run of g94.inp, g98.inp, g03.inp,

and g09inp. As is true for the input files, these two files are overwritten with each run of

the electronic structure package. They are not used in the running of MULTILEVEL.

However, should the user encounter an error reading the checkpoint file, examination of

these output files may prove useful in identifying the problem.

extopt.inp

This is the input file for the geometry optimization with an external electronic structure

program. While this file and extopt.out (described later) are both technically going to be

either GAUSSIAN94, GAUSSIAN98 GAUSSIAN03, or GAUSSIAN09 files, these two files have

unique names so that they will not be overwritten, allowing the user to examine them at a

later time. As was true for g94.inp, g98.inp, g03.inp, and g09.inp, the options FChk=All

and NoSymm are always activated. And the memory allocation specified in Link0 is

 112

500MB (although this may be altered as well in the module FILES). While for the other

input files, the user input options are not necessary, the user must specify options for an

external geometry optimization (Opt at the very minimum). Otherwise GAUSSIAN will

not carry out an optimization.

extopt.out

Unlike the other output files from GAUSSIAN, MULTILEVEL does access this file to ensure

that the optimization was successful before reading data from Test.FChk. But the user

may want to examine the results of the geometry as well; thus this file will not be

overwritten.

Test.FChk

This is the formatted checkpoint file created by either GAUSSIAN94, GAUSSIAN98,

GAUSSIAN03, or GAUSSIAN09. It is integral to the operation of MULTILEVEL in that all

energies, gradients, Hessians, and optimized geometries output by the electronic structure

packages are read from this file.

7.C.3. The Summary Output File: ml.sum

Whether a summary output file is printed is specified by the switch keyword

PRSUM/NOPRSUM in the MULTIGEN section. The summary output file is created under the

name ml.sum. It lists the final geometry, gradients and Hessians obtained from

MULTILEVEL calculations.

 113

7.D. The C Shell Script run.ml

While MULTILEVEL may be run by simply typing multilevel.exe, there is a fair amount of

file bookkeeping that is necessary. The shuttles and basis set files must be in the current

working directory. And in addition since MULTILEVEL’s input and output always use the

same filenames, sequential runs of MULTILEVEL require a large amount of file handling.

Thus a sample script run.ml has been provided to illustrate these procedures.

Within this script the user must alter one line: the initial line of the foreach loop. The list

that the foreach loop parses should contain the prefixes of each MULTILEVEL input file the

user desires to run. Each of these input files should be named prefix.dat.

The usage of the script is run.ml directory, where directory is the location of the input

files to be run. If this argument is omitted, the input files are assumed to be in the current

working directory. With the script, the only file handling required of the user is to have

the MULTILEVEL input files in the directory specified. The script then copies the shuttle

scripts and the basis set files from the directory containing the MULTILEVEL executable to

the current working directory. Then for each prefix listed in run.ml, prefix.dat is copied

to ml.inp and MULTILEVEL is called. At the end of each run of MULTILEVEL the output

files are transferred as follows:

ml.out ' prefix.out

extopt.out ' prefix.extopt

g09.inp ' prefix.g09inp

g09.out ' prefix.g09out

 g03.inp ' prefix.g03inp

g03.out ' prefix.g03out

g98.inp ' prefix.g98inp

g98.out ' prefix.g98out

g94.inp ' prefix.g94inp

g94.out ' prefix.g94out

 114

Test.FChk ' prefix.fchk

This way the user may observe the MULTILEVEL output, the external optimization output,

and the final GAUSSIAN input, output, and formatted checkpoint files for each

MULTILEVEL run.

There is also one additional file created by the script for each prefix in the list:

prefix.jobs. This file contains all the standard error messages which include a list of all

the electronic structure package jobs called. Also the final file line gives the system and

user time spent on that MULTILEVEL run.

At the end of the script when all the MULTILEVEL calls have been made, all files are

removed with the exception of those beginning with one of the prefixes.

The user may alter the handling of the input and output files but should keep in mind

which files are required for the running of MULTILEVEL. Run.ml is provided as a template

script which observes these considerations.

 115

Chapter Eight

8
8. Installing and Using MULTILEVEL

A step-by-step procedure for installing MULTILEVEL on a Unix computer and testing it is

given here. Compilation of the code can be accomplished with the script named

configure. The test runs should illustrate the proper way in which to use this program.

8.A. Installation Instructions

Step 1:

The MULTILEVEL program should have been obtained in the tar format with the following

file name: multilevel4.4.tar.gz. This file should be placed in the directory in which the

user wishes to install MULTILEVEL, and then the following two commands should be

executed:

 tar –xzvf multilevel4.4.tar.gz

Once these two commands have been executed the directory structure on the next page

should have been created in the directory in which MULTILEVEL was untarred. Please

verify that this is true.

Step 2:

Verify that the files have been placed into the directory structure above as follows.

In the multilevel4.4 directory:

basis/ configure exe/ script/ src/ testo/ testrun/

 116

In the src directory:

Makefile ef.F freq.F ghooks.F main.F module.F

nebmin.F display.F ehooks.F gau_ext_opt.F hhooks.F ml.F

neb.F ohooks.F

In the script directory:

Gau_External Gau_External_old ex_shuttle g09shuttle g03shuttle

g94shuttle g98shuttle mlcompile mmol pg98shuttle

In the basis directory:

 g3large.gbs g3xlarge.gbs mg3.gbs mg3s.gbs

 pdz+.gbs lanl2dz.gbs

In the testrun directory:

 test_g94/ test_g98/ test_g03/ test_g09/

In the testrun/test_g94 directory:

 test1.dat test1.ml test2.dat test2.ml

 test3.dat test3.ml test4.dat test4.ml

 test5.dat test5.ml test6.dat test6.ml

 test7.dat test7.ml test8.dat test8.ml

 test9.dat test9.ml test10.dat test10.ml

In the testrun/test_g98 directory:

 test1.dat test1.ml test2.dat test2.ml

 test3.dat test3.ml test4.dat test4.ml

 test5.dat test5.ml test6.dat test6.ml

 test7.dat test7.ml test8.dat test8.ml

 test9.dat test9.ml test10.dat test10.ml

 test11.dat test11.ml test12dat test12.ml

 test13.dat test13.ml test14dat test14.ml

 test15.dat test15.ml test16dat test16.ml

 test17.dat test17.ml test18.dat test18.ml

 test19.dat test19.ml test20.dat test20.ml

 test21.dat test21.ml test22.dat test22.ml

 117

 test23.dat test23.ml test24.dat test24.ml

In the testrun/test_g03 and testrun/test_g09 directory:

 test1.dat test1.ml test2.dat test2.ml

 test3.dat test3.ml test4.dat test4.ml

 test5.dat test5.ml test6.dat test6.ml

 test7.dat test7.ml test8.dat test8.ml

 test9.dat test9.ml test10.dat test10.ml

 test11.dat test11.ml test12dat test12.ml

 test13.dat test13.ml test14dat test14.ml

 test15.dat test15.ml test16dat test16.ml

 test17.dat test17.ml test18.dat test18.ml

 test19.dat test19.ml test20.dat test20.ml

 test21.dat test21.ml test22.dat test22.ml

 test23.dat test23.ml test24.dat test24.ml

 test25.dat test25.ml test26.dat test26.ml

 test27.dat test27.ml test28.dat test28.ml

 test29.dat test29.ml test28.img test30.ml

In the testo/g98, testo/g03, or testo/g09 directory:

 test1.out test2.out test3.out test4.out

 test5.out test6.out test7.out test8.out

 test9.out test10.out test11.out test12.out

 test13.out test14.out test15.out test16.out

 test17.out test18.out test19.out test20.out

 test21.out test22.out test23.out test24.out

 test25.out test26.out test27.out test28.out

 test29.out test30.out

 118

Step 3:

Change the working directory to the multilevel4.4 directory, and run the script configure

by typing ./configure <Return>. This script will create a file in the home directory named

.multi_path stating where the MULTILEVEL directory structure is located. This file is used

by other scripts to locate MULTILEVEL on the user’s system.

This script also attempts to find the system’s f90 compiler and creates the Makefile. If a

compiler is found, the script tells the Makefile to compile the program. If a compiler is

not found, the user must fill in the correct compiler on the first line of the Makefile.

Once the correct compiler is supplied, the code may be compiled by typing gmake

MULTILEVEL <Return> from within the src/ directory.

Please note that the Makefile uses the timestamps on the files to determine if anything

needs to be recompiled. If the user wishes to use a different compiler after source files

have been compiled, the touch command should be used to update the timestamps on the

source files before attempting to remake the executable.

Note: As MULTILEVEL is distributed, GAUSSIAN09 is the default electronic structure

program for all PROGRAM keywords options. If only GAUSSIAN98 is available to the user,

this default may be changed within the code now. To do so, edit the module.F file in the

src directory, so that every ‘g09 ’ in the module PROGDEF becomes ‘g98 ’. Indeed, the

distributed program can handle up to 50 atoms. For larger systems the value of the

parameter ‘maxatm’ must be modified in all modules included in module.F file in the src

directory. This can be easily done by executing the UNIX command:

sed -i 's/maxatm\ =\ 50/maxatm\ =\ 150/g' module.F

Step 4:

While still in the script directory, edit the shuttle scripts present, so that the paths

indicated for electronic structure packages within these scripts are accurate for the

 119

computer system on which MULTILEVEL has been installed. In addition, the user should

specify the scratch directory to be used by GAUSSIAN by properly setting the scratchdir

environmental variable in the script. Version g09.d01 is recommended if the Gaussian

external options of testruns 25-27 are used.

In order to use the GAUSSIAN optimizer of GAUSSIAN09/03 the “./” must be added to the

$PATH environment variable (e.g.: using the bash shell command: ‘export

PATH=$PATH:.’). It should be noted that in the $PATH environment variable must not

contain any the location of any Gau_External executable.

 120

8.B. The MULTILEVEL Test Suite

The test suite has been designed to give the user a sample of the MULTILEVEL capabilities

and input files and to provide examples of test input and output. It does not give

examples of everything that can be done with the program, but each test run demonstrates

a key feature of the program. These test runs also allow the user to familiarize himself or

herself with the MULTILEVEL output format.

In order to use the test suite, one must change the test run directory in the multilevel4.4

directory. Within this directory there are 4 subdirectories – test_g94, test_g98, test_g03,

and test_g09. The only difference between the input files in these three directories is that

they run with GAUSSIAN94, GAUSSIAN98, GAUSSIAN03, or GAUSSIAN09. Each of these

subdirectories contains MULTILEVEL input files.

While it is recommended that the user run all test runs, he or she may select certain

portions of the test suite to run. This may be done by changing to either the testrun/test_g

09, testrun/test_g 03, testrun/test_g98 or the testrun/test_g94 directory and running the

test#.ml script for the specific test run. In this case, the usage of the script for test3, for

example, would be test3.ml <Return>.

A portion of the output that these test runs should produce can be found in the directory

testo. This directory contains both the MULTILEVEL output files test#.out, the external

optimization output file test1.extopt, and the test#.jobs files detailing the run time and the

electronic structure jobs called by MULTILEVEL. For the most part, the output the user

generates should be identical to that in the testo directory (whether running with

GAUSSIAN94, GAUSSIAN98, GAUSSIAN03, or GAUSSIAN09). Some minor numerical

differences may arise due to round-off issues, and the run time listed in test#.jobs files

will in all likelihood be different. But most output values should have similar values

between your test runs and the sample test run output supplied.

 121

When examining the output in both testrun/test_g#/ and testo/, the file of most interest to

the user will probably be the output file from MULTILEVEL. These files will be named

test#.out. Examining the test#.jobs files will give the user a clearer view of all the calls

made to the electronic structure program throughout a MULTILEVEL run.

8.B.1. Test 1

Test run 1 performs an MCCM-CO-CCSD. The coefficients used are v3s.

8.B.2. Test 2

Test run 2 is an MP2/cc-pVDZ gradient calculation of the water molecule using the TEST

option in MULTILEVEL

8.B.3. Test 3

Test run 3 is an MCCM-CO-MP2 optimization of the OH molecule. HF/6-31G*

Hessians are calculated every third step during the optimizations. The optimization uses

the Newton-Raphson algorithm in MULTILEVEL. The coefficients used are the v3s

coefficients.

8.B.4. Test 4

Test run 4 carries out MCSAC-CCSD/cc-pVDZ and MCG3 energy calculations for OH.

The v3s coefficients are used for the MCG3 calculation, and user specified coefficients

are used for the MCSAC calculation by using the COEFFS keyword. Since the NOCOOP

keyword has been specified, only the MCSAC- CCSD/cc-pVDZ and MCG3 energies are

calculated.

8.B.5. Test 5

Test run 5 performs a single-point HF||MO calculation of the water molecule using HF/3-

21G and PM3. The fraction of the HF energy is given by FRACHF = 0.213.

 122

8.B.6. Test 6

Test run 6 performs an MCCM-UT-CCSD geometry optimization of water utilizing the

Newton-Raphson algorithm in MULTILEVEL, in which lower-level HF/6-31G* Hessians

are calculated at every third optimization cycle. The coefficients used are v3s.

8.B.7. Test 7

Test run 7 performs a single-point energy calculation of ethanol using the IMOHC

method with the low level being UFF and the high level being MP2/STO-3G.

8.B.8. Test 8

Test run 8 performs a single-point energy calculation of ethanol using the IMOHC

method with AM1 as the low level and B3LYP/STO-3G as the high level.

8.B.9. Test 9

Test run 9 is a geometry optimization of the water molecule using the MC-QCISD

method. The Newton-Raphson algorithm in MULTILEVEL is used, and HF/6-31G*

Hessians are calculated every third optimization cycle. The coefficients for the

MC-QCISD optimization are the version 2m coefficients.

8.B.10. Test 10

Test run 10 is a transition state optimization of the H$ + H2 (H$H + H reaction using the

MC-QCISD method. The Newton-Raphson algorithm in MULTILEVEL is used, and

HF/6-31G* Hessians are calculated every third optimization cycle. The coefficients for

the MC-QCISD optimization are the version 2m coefficients.

8.B.11. Test 11

Test run 11 is an MCG3 single-point energy calculation on the H$ + H2 (H$H + H

transition state. It runs GAUSSIAN in parallel by requesting two processors with Link1

commands through the G3OPTIONS keyword.

 123

8.B.12. Test 12

Test run 12 is an MCG3 single point energy calculation on the H3 transition state. It runs

MULTILEVEL in parallel mode. If MULTILEVEL has not been compiled with the parallel

options, this test will run in serial mode. The script to run this test (test12.ml) is slightly

different than the script for serial jobs. The script creates an extra subdirectory named

par to work in.

8.B.13. Test 13

Test run 13 is a calculation of the energy, gradient, Hessian, vibrational frequencies, and

normal modes of H2 using MCOMP2 method with SRP coefficients. The input for this

run is a geometry previously optimized for H2O at the same level.

8.B.14. Test 14

Test run 14 is a calculation of the energy, gradient, Hessian, vibrational frequencies, and

normal modes of H2O for MCOMP2/3. The input for this run is a geometry previously

optimized for H2O at the MCOMP2/3 level.

8.B.15. Test 15

Test run 15 is a calculation of the energy, gradient, Hessian, vibrational frequencies, and

normal modes of H2O for MC-QCISD/3. The input for this run is a geometry previously

optimized for H2O at the MC-QCISD/3 level. (Test 9)

8.B.16. Test 16

Test run 16 is a calculation of the energy, gradient, Hessian, vibrational frequencies, and

normal modes of OH for MCG3/3m. The input for this run is a geometry previously

optimized for OH at the MCG3/3m level.

8.B.17. Test 17

Test run 17 is an energy calculation on OH with the new cho parameters for MC-QCISD.

 124

8.B.18. Test 18

Test run 18 is a transition state optimization of the H$ + H2 (H$H + H reaction using the

MC-QCISD method. The Eigenvector Following (EF) algorithm in MULTILEVEL is used,

and MC-QCISD Hessians are updated by the DFP scheme.

8.B.19. Test 19

Test run 19 is a transition state optimization of the H$ + H2O(H$H + OH reaction using

the MC-QCISD method. The Eigenvector Following(EF) algorithm in MULTILEVEL is

used, and MC-QCISD Hessians are updated by the DFP scheme.

8.B.20. Test 20

Test run 20 is a SAC/3 energy calculation on OH.

8.B.21. Test 21

Test run 21 is a MP2-SAC version 3m calculation on OH. MCOPTIONS controls the

memory in GAUSSIAN09/03.

8.B.22. Test 22

Test run 22 is a MCCO/3m energy calculation on OH.

8.B.23. Test 23

Test run 23 is an MP2/MG3S-SAC calculation with a user-defined coefficient.

8.B.24. Test 24

Test run 24 is a MCG3/3, MCCO/3 and SAC/3 energy calculation on OH. The spin-orbit

energy is defined as 0.23kcal/mol (0.0003665 Hartrees).

8.B.25. Test 25

Test run 25 is a G3SX(MP3) optimization of H2 using the Berny optimizer in

GAUSSIAN09/03.

 125

8.B.26. Test 26

Test run 26 is a MC3BB optimization of the transition state of the H + H2O reaction

using the Berny optimizer in GAUSSIAN09/03 with keyword calcfc.

8.B.27. Test 27

Test run 27 is a MC3MPW optimization of the transition state of the OH + CH4 reaction

using the Berny optimizer in GAUSSIAN09/03.

8.B.28. Test 28

Test run 28 is an MPW1K NEB optimization of the OH + CH4 reaction path using the

following NEB options:

 INITHESS off

 HSCALE 10

 NIMG 11

 NEBITER 20

 INTERP linear

 IMGFILE (external image file already built)

 NEBALG ci-neb

 OPTM bfgs

8.B.29. Test 29

Test run 29 is an MPW1K NEB optimization of the decomposition of CH3SO2 to CH3 +

SO2, using the following NEB options:

 INITHESS off

 HSCALE 10

 NIMG 5

 NEBITER 20

 INTERP linear

 IMGFILE (image file built by the program)

 NEBALG it-neb

 126

 OPTM vb

8.B.30. Test 30

Test run 30 is an MPW1K NEB optimization of the transition state of the decomposition

of CH3SO2 to CH3 + SO2, using the options of test29 and the following basis sets: 6-

31G(d) for C, H, and O and the LANL2DZ ECP for S.

 127

8.C. Viewing MULTILEVEL Output

The script mmol will parse the output of MULTILEVEL geometry optimizations, so that

they are viewable with the program MOLDEN. To use this script you must have a version

of MOLDEN 3.6. A single line in the beginning of the script needs to be changed to the

location of the MOLDEN executable. Example of script use:

 mmol test6.out

 128

8.D. Computers, Operating Systems, and FORTRAN Compilers on Which the Code

Has Been Tested

In each case we give the MULTILEVEL version number and the computers and

operating system on which MULTILEVEL was tested. For each computer and operating

system we also specify the FORTRAN compiler that was used for testing.

MULTILEVEL4.2
__
Computer Operating System FORTRAN Compiler
__
IBM SP AIX 4.3.3 XL Fortran for AIX

IBM Power4 Regatta AIX 5.1 XL Fortran for AIX

SGI Octane2 IRIX 6.4 MIPSpro 7

Netfinity Cluster RedHat Linux 9.0 PGHPF® Workstation

SunBlade 1000 SunOS 5.8 Sun WorkShop 6

__

MULTILEVEL4.3
__
Computer Operating System FORTRAN Compiler
__
HP Proliant BL280C G6 Blade CentOS 6.4 ifort/12.1

SGI Altix XE 1300 CentOS 6.3 ifort/12.1

SGI Altix UV1000 SUSE Linux ifort12.1

 Enterprise Server 11 SP1

Sun Fire X4600 Linux cluster CentOS 6.3 ifort/11.1

MULTILEVEL4.4
__
Computer Operating System FORTRAN Compiler
__
HP Proliant BL280C G6 Blade CentOS 6.4 ifort/13.1.3

SGI Altix XE 1300 CentOS 6.3 ifort/13.1.3

 129

SGI Altix UV1000 SUSE Linux ifort/13.1

 Enterprise Server 11 SP2

__

 130

Chapter Nine

9
9. Bibliography

[Ba91] J. Baker, J. Comp. Chem. 7 (1985), 385.

[Ch99] Y.-Y. Chuang, M. L. Radhakrishnan, P. L. Fast, C. J. Cramer, and D. G.

Truhlar, J. Phys. Chem. A 103 (1999) 4893.

[Ci69] J. Cizek, Adv. Chem. Phys. 14 (1969) 35.

[Co96] E. L. Coitiño, D. G. Truhlar, and K. Morokuma, Chem. Phys. Lett. 259 (1996)

159.

[Co97] E. L. Coitiño and D. G. Truhlar, J. Phys. Chem. A 101 (1997) 4641.

[Co98] J. C. Corchado and D. G. Truhlar, J. Phys. Chem. A 102 (1998) 1895.

[Cu91] L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys.

94 (1991) 7221.

[Cu92] P. Culot, G. Dive, V. H. Nguyen and J. M. Ghuysen, Theor. Chim. Acta 82

(1992), 189.

[Cu98] L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J.

Chem. Phys. 109 (1998) 7764.

[Cu99] L. A. Curtiss, private communication of parameterization mentioned

 on page 1129 of L. A. Curtiss, K. Raghavachari, P. Redfern, and

 J. A. Pople, J. Chem. Phys. 112 (2000) 1125.

[Cu01] L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople, J. Chem. Phys.

114 (2001) 108.

[Du89] T. H. Dunning, Jr., J. Chem. Phys. 90 (1989) 1007.

[Fa99] P. L. Fast, J. Corchado, M. L. Sanchez, and D. G. Truhlar, J. Phys. Chem. A

103 (1999) 3139.

[Fa99a] P. L. Fast and D. G. Truhlar, J. Phys. Chem. A 103 (1999) 3802.

 131

[Fa99b] P. L. Fast, J. C. Corchado, M. L. Sanchez, and D. G. Truhlar, J. Phys. Chem. A

103 (1999) 5129.

[Fa99c] P. L. Fast, M. L. Sanchez, J. C. Corchado, and D. G. Truhlar, J. Chem. Phys.

110 (1999) 11679.

[Fa99d] P. L. Fast, M. L. Sanchez, and D. G. Truhlar, Chem. Phys. Lett. 306 (1999)

407.

[Fa99e] P. L. Fast, M. L. Sanchez, and D. G. Truhlar, J. Chem. Phys. 111 (1999) 2921.

[Fa00] P. L. Fast and D. G. Truhlar, J. Phys. Chem. A. 104 (2000) 6111.

[Fa01] P. L. Fast, N. E. Schultz and D. G. Truhlar. J. Phys. Chem. A. 105 (2001) 4143.

[Fl87] R. Fletcher, Practical methods of optimization, Chichester ; New

York: Wiley, c1987

[Go06] N. González-García, J. Pu, A. González-Lafont, J. M. Lluch , and D. G.

Truhlar, J. Chem. Theory Comput. 2 (4) (2006) 895.

[Go86] M. S. Gordon and D. G. Truhlar, J. Am. Chem. Soc. 108 (1986) 5412.

[He00] G. Henkelman, and H. Jónsson, J. Chem. Phys. 113 (2000) 9978.

[He00a] G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113 (2000)

9901.

[He86] W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular

Orbital Theory, Wiley, New York, 1986.

[Hu96] S. Humbel, S. Sieber, and K. Morokuma, J. Chem. Phys. 105 (1996) 1959.

[Ke92] R. A. Kendall, T. H. Dunning, Jr., J. Chem. Phys. 96 (1992) 6796.

[Kr78] R. Krishnan and J. A. Pople, Int. J. Quant. Chem. 14 (1978) 91.

[Kr80] R. Krishnan, M. J. Frisch, and J. A. Pople, J. Chem. Phys. 72 (1980) 4244.

[Ly02] B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A 107 (19) (2003) 3898–3906.

[Ma95] F. Maseras and K. Morokuma, J. Comput.. Chem. 16 (1995) 1170.

[Mi94] G. Mills, and H. Jónsson, Phys. Rev. Lett. 72 (1994) 1124.

[Mi95] G. Mills, H. Jónsson, and G. K. Schenter, Surf. Sci. 324 (1995) 305.

[Mø34] C. Møller and M. S. Plesset, Phys. Rev. 46 (1934) 618.v

[No97] M. Noland, E. L. Coitiño, and D. G. Truhlar, J. Phys. Chem. A 101 (1997)

1193.

 132

[Pa09] E. Papajak, H. R. Leverentz, J. Zheng and D. G. Truhlar J. Chem. Theory

Comput., 2009, 5 (5), (2009) 1197.

[Po54] J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22 (1954) 571.

[Po71] M. S. D. Powell, J. Inst. Maths. Applics. 7 (1971) 21.

[Po77] J. A. Pople, R. Seeger, and R. Krishnan, Int. J. Quant. Chem. Symp. 11 (1977)

149.

[Po87] J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87 (1987)

5968.

[Po89] J. A. Pople, M. Head-Gordon, and D. J. Fox, J. Chem. Phys. 90 (1989) 5622.

[Pr92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in Fortran77 (Cambridge University Press, Cambridge, 1992) 406.

[Pr92a] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in Fortran77 (Cambridge University Press, Cambridge, 1992) 418.

[Pu82] G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76 (1982) 1910.

[Ra89] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys.

Lett. 157 (1989) 479.

[Ro51] C. C. J. Roothaan, Rev. Mod. Phys. 23 (1951) 69.

[Ro00] J. M. Rodgers, P. L. Fast, and D. G. Truhlar, J. Chem. Phys. 112 (2000) 3141.

[Sc88] G. E. Scuseria, C. L. Jansen, and H. F. Schaefer, J. Chem. Phys. 89 (1988)

7382.

[Sc89] G. E. Scuseria and H. F. Schaefer, J. Chem. Phys. 90 (1989) 3700.

[St90] J. J. P. Stewart, Rev. Comp. Chem. 1 (1990) 45.

[Sv96] M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K.

Morokuma, J. Phys. Chem. 100 (1996) 19375.

[Tr98] D. G. Truhlar, Chem. Phys. Lett. 294 (1998) 45.

[Tr99] C. M. Tratz, P. L. Fast, and D. G. Truhlar, Phys .Chem. Comm. 2 (1999) Article

14.

[Yp95] T. J. Ypma, SIAM Rev. 37 (1995) 531.

[Wo93] D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 98 (1993) 1358.

[Wo94] D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100 (1994) 2975.

[Zh04] Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. 108 (2004) 4786.

 133

Chapter Ten

10
10. Revision History

10. A. Version 1.0

First distributed version

10. B. Version 1.5

1. The ANLsc [Cu99] version of MCG3 has been added.

10. C. Version 2.0

1. Versions of methods containing MP4D components were removed.

2. The VERSION keyword has been added.

3. The MP4/6-31G(2df,p) component of MCG3 has been removed. Therefore versions

1m, 1sc, and ANLsc of MCG3 are no longer available.

10. D. Version 2.0.1

1. Several bugs that were causing errors when interfacing with GAUSSIAN have been fixed.

2. A bug in the MC-QCISD hessian has been fixed

3. Several FORMAT statements have been fixed to prevent warnings with some

compilers.

10. E. Version 2.1

1. The MCCM-CO-MP2; MG3; 6-31+G(d) method was given it’s own keyword

[Fa00].

10. F. Version 2.1.1

1. A bug that prevented calculations with charged species was fixed.

 134

10. G. Version 2.2

1. MCG3 energies and gradients can be calculated in parallel when MULTILEVEL

is compiled with OpenMP

2. The script mmol was added to interface with the MOLDEN GUI.

3. Memory and processor requirements for GAUSSIAN jobs can now be specified

in MULTILEVEL input.

4. The maximum number of iterations for the triples calculation in QCISD(T)

calculations has been increased to 100.

10. H. Version 2.3

1. A switch keyword PRSUM/NOPRSUM is added to MULTIGEN section to specify

whether a summary output file ml.sum is printed. This summary file will be

used by the direct dynamics calculation interface program MULTILEVELRATE.

10. I. Version 2.4

1. The version 3 coefficients and methods have been implemented for MCG3,

MC-QCISD, and MCOMP2 methods. The CHO-SGP parameters have also

been added for MCG3 and MC-QCISD.

2. The MG3S basis set is included in this distribution and can be used in any

user-defined multilevel calculation.

10. J. Version 2.5

1. The EF optimizer has been added to the program.

2. MQCOPTIONS was changed to MCQCISDOPTIONS, and MCG3OPTIONS

was added.

3. The MCQCISD energy is now calculated and printed in every MCG3 energy

calculation.

10. K. Version 2.5.1

1. Changes were made to prevent 60 warnings on some compilers

 135

10. L. Version 3.0

1. The SAC/3 and MCCO/3 methods have been added to the program.

2. Version 3s, 3m, and CHO coefficients have been added for most other MCCM

methods.

10. M. Version 3.0.1

1. The coefficients in MCG3 v3s and v3m have been changed to the correct

values. This error affected MCG3 v3s and v3m in versions 2.4–3.0 of

MULTILEVEL.

10. N. Version 3.1

1. Harmonic vibrational frequencies and normal mode coordinates calculations

were implemented in the program.

2. MULTILEVEL has been updated so that it now works with GAUSSIAN03 as well

as with gaussian98 and gaussian94.

10. O. Version 4.0

1. MULTILEVEL-v4.0 can use the optimizers in the GAUSSIAN03 program to

perform geometry optimization.

2. The G3SX(MP3), MC3BB, and MC3MPW methods have been added to the

program.

10. P. Version 4.1

1. MULTILEVEL-v4.1 has the Nudged Elastic Band (NEB) method to perform

global path minimizations for gas-phase systems.

10. Q. Version 4.1.1 (not released)

1. Minor bug fix in neb.F related to formatting output.

2. Scripts corrected to install correctly and display proper version information.

3. Added keyword ‘calcfc’ to test27 due to transition state optimization.

 136

10. R. Version 4.2

Authors: Yan Zhao, Jocelyn M. Rodgers, Benjamin J. Lynch, Núria González-García,

Patton L. Fast, Jingzhi Pu, Yao-Yuan Chuang, Benjamin A. Ellingson, and Donald G.

Truhlar

1. A Makefile is now used for installation.

2. The location file has been changed to generic .multi_path for easy updating.

3. All system calls now include “./”, which makes the code portable to

environments that do not include the current working directory in the path.

10. S. Version 4.3

Authors: Yan Zhao, Jocelyn M. Rodgers, Benjamin J. Lynch, Núria González-García,

Patton L. Fast, Jingzhi Pu, Yao-Yuan Chuang, Benjamin A. Ellingson, Rubén

Meana-Pañeda, and Donald G. Truhlar

1. The code has been updated so that now it works with GAUSSIAN09 as well as

GAUSSIAN03, GAUSSIAN98, and GAUSSIAN94.

2. Due to the fact that the default optimization algorithm in GAUSSIAN09 is

different than that which was used in ealier versions, the optimization keywords

‘opt=NoMicro’ have been included in the test files test25.dat, test26.dat, and test27.dat in

order to use the optimization algorithm used by the previous versions of MULTILEVEL.

3. Several FORMAT statements have been fixed to prevent warnings with some

compilers, and now it is possible to compile the code with the GNU Fortran compiler

(gfortran).

4. A bug corresponding to the value of the percentage X of HF exchange in the

MPWX density functional has been corrected.

5. The version of the code and the basis sets are now properly displayed in the

output file.

6. Errors in two of the input files and in one of the output files have been fixed.

In test12.dat the version number has been fixed. In test20.dat the coefficient and basis set

have been fixed. The output file test14.out has been corrected according to the options

that appear in the manual.

 137

7. The csh –f option has been added to all the csh scripts to avoid reading the

.chsrc file of the user home directory.

10.S. Version 4.4

Authors: Yan Zhao, Jocelyn M. Rodgers, Benjamin J. Lynch, Núria González-García,

Patton L. Fast, Jingzhi Pu, Yao-Yuan Chuang, Benjamin A. Ellingson, Rubén

Meana-Pañeda, and Donald G. Truhlar

1. The keyword GENECP that allows the use of ECPs has been added. The code

includes now a new test file for the use of ECPs in a NEB optimization and its

corresponding file in the basis subdirectory.

End of Manual

