Solvation Modeling and Computational Electrochemistry

Alek Marenich

Cramer - Truhlar Group

University of Minnesota

Outline

- > Solvation and charge models
- > Energetics and dynamics in solution
- > Computational electrochemistry
- Future plans

Solvation Modeling

• Explicit solvation models

Implicit solvation models

 Poisson equation
 Generalized Born equation
 ✓ Partial atomic charges

Charge Models and Classes

Class I

• classical mechanics (e.g., for diatomics)

The Family History of SMx

Solvation Modeling Arlington, VA: October 18, 2007

Recent Solvation Models

SM5.42 (aqueous, nonaqueous) based on Charge Model 2 (CM2)

SM5.43 (aqueous, nonaqueous) based on Charge Model 3 (CM3)

SM6 (only aqueous) based on Charge Model 4 (CM4)

SM8 (aqueous, nonaqueous) based on CM4 J. Chem. Theory Comp. 2007 (Polarization issue) http://dx.doi.org/10.1021/ct7001418

Implicit Solvation

The free energy of solvation is a change in a solute's free energy upon passing the solute from the gas phase into solution

$$\Delta G_{\rm S}^{\rm O} = \Delta E_{\rm N} + \Delta E_{\rm E} + G_{\rm P} + G_{\rm CDS}$$

nuclear electronic polarization cavity
relaxation reorganization energy dispersion

 $\Delta G_{\text{ENP}} \leftarrow$ both long- and short-range electrostatic effects are treated as bulk electrostatics using a *self-consistent reaction field* procedure

 $G_{CDS} \leftarrow$ semiempirical correction for non-bulk electrostatic effects proportional to a solute's solvent accessible surface area (SASA)

The Generalized Born Approximation

$$G_{\rm P} = -\frac{1}{2} \left(1 - \frac{1}{\varepsilon} \right) \sum_{k, k'} q_k \gamma_{kk'} q_{k'}$$

- ε is the dielectric constant of the solvent.
- q_k is the partial atomic charge of atom k.
- $\gamma_{kk'}$ is a Coulomb integral involving atoms *k* and *k'*. It depends on intrinsic atomic Coulomb radii.

Parametrization of SM8

> 332 solvation free energies for 223 ions in

- water
- acetonitrile
- dimethyl sulfoxide
- methanol

> 2346 solvation free energies for 318 neutrals in

- water
- 90 organic solvents

> 143 transfer free energies for *93 neutrals* between

- water
- 15 organic solvents

Parametrization of SM8

Step I

Optimization of atomic Coulomb radii that determine the bulk *electrostatic* component of $\Delta G_{\rm S}$ (using ions)

• Each radius is a function of the solvent hydrogen bond acidity parameter

Step II

Optimization of the atomic surface tension parameters that determine the *non-bulk-electrostatic* component of ΔG_8 (using neutrals)

• 54 parameters

Solvation Modeling Arlington, VA: October 18, 2007 11

Conclusions on SM8

- **SM8** is a universal continuum solvation model for
 - Ions and neutrals in aqueous and nonaqueous solutions

It is applicable to any solvent or liquid medium using a few key descriptors such as

- Dielectric constant
- Abraham's hydrogen bond acidity and basicity
- Refractive index
- Macroscopic surface tension
- Carbon aromaticity and electronegative halogenicity

> It may be used with any level of theory as long as accurate partial charges can be computed for that level

Applications

Electronic dynamics in solution

- electronic relaxation
- charge transfer
- polarization effects

J. Chem. Theory Comp. 2007 (Polarization issue) <u>http://dx.doi.org/10.1021/ct7001539</u>

> Nuclear dynamics in solution

Iiquid-phase geometry optimization for reagents and transition states

Electrochemistry

computation of reduction potential in solution
 J. Phys. Chem. C 2007, 111, 5783 <u>http://dx.doi.org/10.1021/jp066765w</u>

Theoretical prediction of reduction potential in solution

Thermochemical (Born-Haber) Cycle:

The Ru³⁺|Ru²⁺ Redox Couple in Aqueous Solution

 $Ru^{3+} + e^- \rightarrow Ru^{2+}$ Ru²⁺ and Ru³⁺ do not exist as bare ions.

 $[Ru(H_2O)_6]^{3+} + e^- \rightarrow [Ru(H_2O)_6]^{2+}$

 $[Ru(H_2O)_{18}]^{3+} + e^- \rightarrow [Ru(H_2O)_{18}]^{2+}$

Molecular Structures

37 Tested Density Functionals

Generalized Gradient Approximation (GGA)

Meta GGA (MGGA)

Hybrid (H)

Hybrid Meta (HM)

Reduction Potential *E*^o (in volts)

calculated with

One Hydration Shell

Two Hydration Shells

Solvation Modeling Arlington, VA: October 18, 2007 19

Future Plans

Parametrization of models based on the Poisson equation (without partial charge models)

- Solvent-dependent intrinsic atomic radii
- Cavity dispersion solvent structure formalism

Future Plans

Extension of the generalized Born approximation to excited electronic states (e. g., for modeling *solvatochromism*)

- Equilibrium solvation: fast and slow polarization energy components
- Configuration interaction method
- Time-dependent density functional theory
- Hybrid explicit/implicit approaches

Contributors

- > Ryan Olson
- Pablo Jaque
- Casey Kelly
- Adam Chamberlin (temperature-dependent models)
- Professors C. J. Cramer and D. G. Truhlar

\$ Acknowledgments are made to the Office of Naval Research **\$**