
# Integrated Tools for **Computational Chemical Dynamics**

**Research Tools Design Consortium** 





# **Participants**

### U of M

- Donald Truhlar, PI
- Yan Zhao, U of M coordinator
- Chris Cramer
- Jiali Gao
- Ilja Siepmann
- Darrin York
- Aleksandr Marenich
- Ryan Olson
- Jake Rafferty
- Pablo Jaque
- Adam Chamberlin

### PNNL

- Bruce Garrett, co-PI
- Marat Valiev, PNNL coordinator
- Michel Dupuis
- Shawn Kathmann
- Greg Schenter
- Peng-Dong Fan

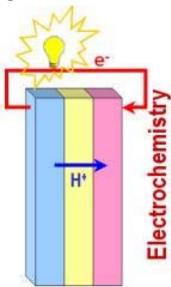
# Goals

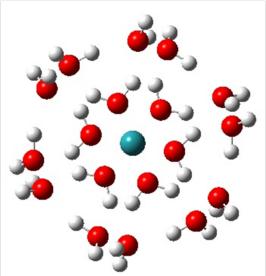
- Develop more powerful simulation methods and incorporate them into a user-friendly high-throughput integrated software suite for chemical dynamics
- Combine electronic structure packages with dynamics codes and efficient sampling algorithms for *condensedphase* modeling of problems in the areas of:
  - thermochemical kinetics and rate constants
  - photochemistry and spectroscopy
  - chemical and phase equilibria

### **Research Areas**

#### Computational Electrochemistry

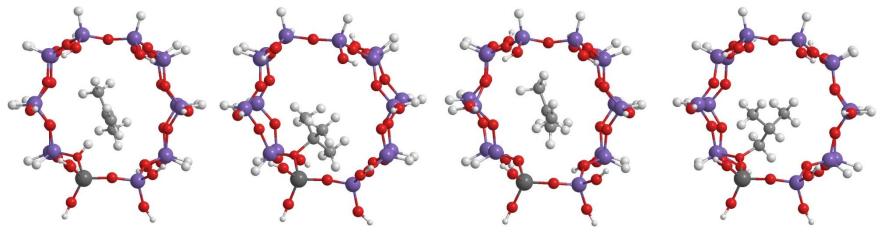
- Thermochemistry and kinetics of redox processes, e.g.,
  - redox potentials
  - electron/hole transport


### Heterogeneous Catalysis


- Thermochemistry and kinetics of interfacial reaction processes, e.g.,
  - adsorption and/or diffusion of the reactants to the active site
  - catalytic conversion at the active site
  - desorption and/or diffusion of products from the active side
- Computational Photochemistry
  - Energetics and dynamics of electronically excited states, e.g.,
    - solvatochromatic shifts
    - nonadiabatic coupling (e.g., conical intersections) and dynamics

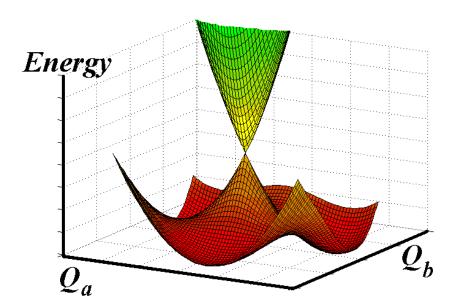
# **Computational Electrochemistry**

Charge transfer processes play critical roles in


- Reduction/oxidation of contaminants in the environment
- electron/hole creation
- transport for hydrogen production and fuel cells
- The sensitivity of charge transfer processes to condensedphase surroundings presents a challenge for computational methods






# **Heterogeneous Catalysis**

- Catalysis is a common element in many applications areas (energy conversions, chemical synthesis, etc.)
- Molecular environment can be a major influence on reaction energetics, which requires simulation tools to adequately sample environmental variables
- Accuracy of relevant reaction energetics for condensed phase is the major limitation to the accuracy of computed rate constants and requires integration of accurate electronic structure methods with simulations



# **Computational Photochemistry**

- Electronic excitations offer a means to control chemical processes, but require understanding radiationless deexcitation processes
- Treatment of the electronic structure and dynamics of curve crossings is challenging for gas-phase systems and a major challenge for condensed phase systems





# **Integrating Dynamics & Energetics**

#### Accurate energetics are necessary …

 Existing electronic structure methods (e.g., DFT, Coupled Cluster, etc.) provide the foundations for computing the energetics of molecular processes

#### ... but not sufficient

• New methods are required that build on this foundation and interface with the electronic structure methods to calculate physical observables

### Electronic structure has dominated computational chemistry ...

- High computational costs drive computational needs
- and equal weight now needs to be placed on dynamics and statistical mechanics for *condensed-phase* systems
  - Getting the statistical mechanics right is an imperative; the entropic driving force competes with the energetic one, and free energies dictate thermodynamic stability and activation barriers

### Challenges for Computations of Molecular Processes in *Condensed Phases*

### Energetics

- Classical potentials (molecular mechanics) are inadequate to treat chemical reactions
- Accurate energetics of bond-breaking/making require high-order electronic structure methods (i.e., with N<sup>6</sup> scaling or higher) and are difficult for condensed-phases systems

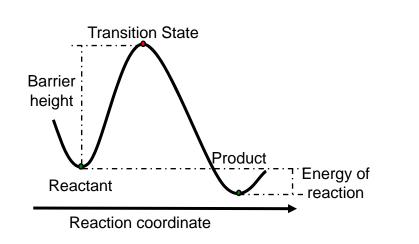
### Dynamics

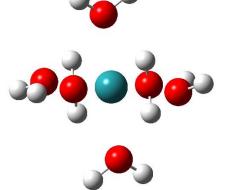
- Reaction pathways for condensed-phase processes are generally limited to un-optimized reaction coordinates
- Accurate kinetics and thermodynamics require sufficient sampling need to get the statistical mechanics right

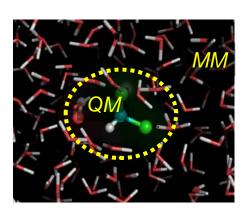
### Status Report on Methods Development and Implementation

- Energetics build on existing electronic structure methods to develop efficient representations of potential energy surfaces
  - New classes of density functionals have been developed
  - Coupled cluster methods are now implemented for ground and excited states in QM/MM studies
  - Hybrid methods developed and/or implemented
    - QM/MM approaches based on high-level methods
    - T-dependent solvation models for aqueous and nonaqueous solutions
    - Electrostatically embedded many-body expansion (EE-ME)
    - Multiconfiguration molecular mechanics (MCMM)
  - Direct calculations of diabatic representation of electronic states is planned for next phase

### Status Report on Methods Development and Implementation


- Dynamics and Statistical Mechanics interface to new representations of potential energy surfaces for calculations in condensed-phase systems
  - Approach for geometry optimizations in extended systems is developed and implemented
  - Potentials of mean force (PMFs) calculations for general reaction pathways based on QM(CC)/MM calculations now possible
  - Grand canonical and Gibbs ensemble Monte Carlo methods are implemented
  - Adaptive partitioning (flexible QM region in QM/MM calculations) is developed and being implemented
  - Methods for solvatochromic shifts in progress
  - Non-adiabatic dynamics is planned for next phase


# **Method Integration into a Software Suite**


- Modular components can be implemented in a variety of codes (NWChem, GAMESS, Jaguar, Q-Chem...)
  - Increase impact of new methods by having them available in a number of commonly used, widely accessible codes
- U of M software is a primary target
- NWChem is the primary platform for implementation in a massively parallel framework

### Presentations

- Advances in New Density Functionals for Computational Chemical Dynamics – Yan Zhao
- Solvation Models and Computational Electrochemistry Alek Marenich
- Hybrid Methods for Studies of Chemical Processes in Condensed Phase – Marat Valiev
- Methods and Code Integration Ryan Olson





