Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

April 4, 2015

Database 2015

ELECTRONIC SUPPLEMENTARY INFORMATION

for a paper in *PCCP* entitled

Nonseparable Exchange–Correlation Functional for Molecules, Including Homogeneous Catalysis Involving Transition Metals

Haoyu S. Yu,^a Wenjing Zhang,^{a,b} Pragya Verma,^a Xiao He,^{a,c} and Donald G. Truhlar*,^a

^aDepartment of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.

^bThe College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China

^cState Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China

*E-mail: truhlar@umn.edu

Database 2015 Haoyu S. Yu, Wenjing Zhang, Pragya Verma, Xiao He, and Donald G. Truhlar

Based on our previous Common Database 2.0,¹ we developed this new database called Database 2015. It comprises of 427 molecular data plus 56 solid-state data for a total of 483 data. The total of 483 data has been divided into 29 subdatabases in this new database, which includes 417 molecular energetic (ME417) data such as energies of atomization, isomerization energies, reaction barrier heights, proton affinities, electron affinities, ionization potentials, and atomic energies, ten molecular structural (MS10) data such as diatomic bond distances, 39 solid-state energetic (SSE39) data, in particular solid-state cohesive energies and semiconductor band gaps, and 17 solid-state structural (SSS17) data, in particular solid-state lattice constants..

As compared to Common Database 2.0, we have added additional 3d and 4d transition metal data, noble-gas-dimer weak interactions data, and 2p and 4p isomerization energy data into

this present database, and we reorganized the data into restructured subdatabases containing both new data and data from Common Database 2.0. In the new database we divide bond energies into those for single-reference (SR) systems and those for multi-reference (MR) systems, and we also classify each of these categories into three subcategories consisting of molecules containing only main-group nonmetals (MGN), those containing one or more main-group metals (MGM), and those containing one or more transition metals (TM). We believe that dividing molecules into such groups help in recognizing systematic performance trends in tested methods.

In many places, the subdatabases are called databases, and the subsubdatabases are called subdatabases or databases – the usage depends on the context. Next we give details about each subdatabase in Database 2015.

1. Single-Reference Main-Group-Metal Bond Energies (SR-MGM-BE9): Nine main group molecules are included, in particular, AlCl₃, AlF₃, AlCl, LiCl, KOH, NaO, LiO, ZnSe, and ZnCl. This database contains three subdatabases, namely, SRM2, SRMGD5, and 3dBESR2.

-Single-reference main-group bond energy (SRM2): we selected two single-reference molecules, AlCl₃ and AlF₃ that contain main-group metals from the previous database (MGAE109/11)^{1,2,3,38}.

-Single-reference main-group diatomic molecules (SRMGD5): this subset includes bond dissociation energies of five main-group single-reference diatomic molecules, AlCl, LiCl, KOH, NaO, and LiO. Among these five molecules, AlCl and LiCl are selected from the previous database (SRMBE13),^{1,4} whereas KOH, NaO, and LiO are selected from eight main-group single-reference molecules, first reported in our recent work⁵. We carried out representative-database analysis for these eight molecules; and we selected KOH, NaO, and LiO as best representing all eight molecules. For details of representative analysis, see references 6 and 7. The benchmark values of bond dissociation energies of KOH and NaO are from references 8 and 9, respectively. The benchmark value of the bond dissociation energy of LiO is obtained by CCSDT(Q)₂/aug-cc-pCVQZ.

-3d single-reference metal-ligand bond energies (3dSRBE2): This subset includes two zinc-ligand molecules, in particular ZnCl and ZnSe. They are selected from the 3d transition metal-ligand bond energies (3dBE70) database, which was first reported in our previous paper,¹⁰ by careful representative analysis. Actually, the 3dBE70 database consists of 19 single-reference

(denoted as 3dSRBE19) and 51 multi-reference (denoted as 3dMRBE51) molecules, and we did representative analysis separately for the single-reference subset and the multi-reference subset. Six molecules are selected from each of the subset since the percentage errors in representation (PEIR, see definition in ref 7) resulted from them are only 15.0% and 11.3%, respectively. The six molecules selected from 3dMRBE51 are integrated as the 3dMRBE6 subset, which will be illustrated in detail below, while the ones selected from 3dSRBE19 are divided into two subsets, namely 3dSRBE2 (which includes ZnCl and ZnSe) and 3dSRBE4 (which includes CrCl₂, MnF₂, FeCl₂, and CoCl₂), and are ranged respectively to the single-reference main group metal bond energies (SR-MGM-BE9) and single-reference transition metal bond energies (SR-TM-BE17) databases, because the 3*d* orbitals of zinc are fully occupied. The best estimates of bond energies for all these representative subsets are from reference 10.

2. Single-Reference Main-Group Nonmetal Bond Energies (SR-MGN-BE107): This is a regrouped database that combines the previously reported alkyl bond dissociation energies (ABDE12) database^{1,3,11,49,50} with 95 single-reference molecules selected from the previous so-called main-group atomization energies (MGAE109/11)^{1,2,3,38} database. These 95 molecules were categorized as single-reference ones on the basis of their B_1 diagnostic values.¹³ A molecule with B_1 value less than 10 kcal/mol per bond was considered to be a single-reference system. The ABDE12 database consists of the alkyl bond dissociation energies (ABDE4/05) and the larger set of alkyl bond dissociation energies (ABDEL8) subsets. The D_0 values for ABDE4/05 and ABDEL8 subsets are taken from a paper by Izgorodina *et al.*,¹¹ and we use the B3LYP/6-31G(d) zero-point vibrational energies scaled with a scale factor of 0.9806 to obtain our best estimate of the D_e values in the database. In this work, we denote the 95 single-reference molecules as the single-reference nonmetal atomization energies (SRNM95) subset. This subset is composed of all main group single-reference molecules in these three subsets, please see reference 1.

3. Single-Reference Transition Metal Bond Energies (SR-TM-BE17): SR-TM-BE17 is

obtained by merging the 3dSRBE4 subset as mentioned above when we illustrated the 3dBESR2 subset, ten molecules selected from the previously reported single-reference metal bond energies

(SRMBE10) subset, two palladium complexes (PdBE2), and FeCl molecule (unpublished). Each of these subsets is described next.

-3d single-reference metal-ligand bond energies (3dSRBE4): 3dSRBE4 include four molecules, in particular CrCl₂, MnF₂, FeCl₂, and CoCl₂, and they are chosen from representative analysis of the 3dBE19 subset that is presented in a 2013 paper.¹⁰

-Single-reference metal bond energies (SRMBE10): This database is selected from the subset SRMBE13 of Database 2.0. More detailed information about the source of the 13 data has been explained in our earlier work.^{1,4} We select ten molecules containing transition metals from the original SRMBE13 database to form the new database SRMBE10. Bond energies for all molecules in this database are equilibrium ones (D_e), obtained from the experimental bond energies in the ground vibrational state (D_0). Two molecules, CoH and FeH, were corrected for their bond energies compared to their original reference values in Database 2.0.

-Palladium complex bond energies (PdBE2): The two palladium complexes, namely $Pd(PH_3)_2C_6H_8$ and $Pd(PH_3)_2C_{10}H_{12}$, are selected from our previous study¹² on the binding energies of d¹⁰ transition metals to alkenes. They are set into this SR-TM-BE17 database because the B_1^{13} diagnostic shows that both of them are single-reference systems. As it is stated in reference 12, there are two possible conformations for Pd(PH_3)_2C_{10}H_{12} and here we chose the less planar conjugated conformation (denoted as 10b in reference 12) as it has an energy of about 2 kcal/mol lower than the other one (denoted as 10a in reference 12).

4. Multi-Reference Main-Group Metal Bond Energies (MR-MGM-BE4): This database

includes four main-group multi-reference diatomic molecules, CaO, LiO⁻, KO⁻, and MgS. Representative analysis has been done for 7 multi-reference molecules,⁵ where LiO⁻, KO⁻, and MgS have been found to be the best representative of all the seven molecules. Besides these three, we selected CaO from our recent paper¹⁴. The bond energies of CaO and MgS are from references15, 16, 17, and 18. The benchmark bond energy of LiO⁻ is obtained by $CCSDT(Q)_2/aug$ -cc-pCVQZ and that of KO⁻ is obtained by CCSD(T)/aug-cc-pCVQZ.

5. Multi-Reference Main-Group Nonmetal Bond Energies (MR-MGN-BE17): This database is composed of subsets of MGAE109/11^{1,2,3,38} and MRBE10.^{1,4} Twelve multi-reference

nonmetal molecules were selected from the previous MGAE109/11 database, namely, NF₃, CO₂, SiO, SO₂, CO, SO, ClO, F₂, N₂, O₂, NO, and CN. Five non-metal molecules were selected from the previous MRBE10 database, namely, B₂, O₃, C₂, S₄, and Cl₂O. All seventeen molecules of this database were classified as multi-reference molecules based on their B_1 diagnostic values being greater than 10 kcal/mol per bond.

6. Multi-Reference Transition Metal Bond Energies (MR-TM-BE13): MR-TM-BE13

includes three subsets, namely 3d multi-reference metal-ligand bond energies (3dMRBE6), multi-reference bond energies (MRBE5), and 3d transition metal containing molecules such as CuH, VO, CuCl, and NiCl (*taken from a manuscript under preparation*).

-3d multi-reference metal-ligand bond energies (3dMRBE6): 3dMRBE6 is constructed as a representative of the 3dMRBE51 database.¹⁰ This subset consists of six molecules, in particular TiCl, VF₅, CrCl, CrOF, (FeBr₂)₂, and Co(CO)₄H.

-Multi-reference bond energies (MRBE3): Three transition metal molecules are selected from a previous database MRBE10,¹ namely, NiCH₂⁺, Fe(CO)₅, and VS.

7. Multi-Reference Transition Metal Dimer Bond Energies (MR-TMD-BE2): Cr_2 and V_2 are selected from a previous database MRBE10.^{1,4} The bond energy for Cr_2 is corrected compared to its original reference value in Database 2.0.

8. Ionization Potential (IP23): Sc and Co are added to the previous database IP21.1^{,3,19,20,2144,48,} Sc and Co are selected as representative data from 3d atoms of a recent paper "Density Functional Theory of Open-Shell Systems. The 3d-Series Transition Metal Atoms and Their Cations."²²

9. Noncovalent Complexation Energies (NCCE30): This database is obtained by selecting 27 data from NCCE31/05 database^{1,44,45} and then combining them with three new data, in particular the complexation energies of CO_2 ···Ar, parallel-displaced (CO_2)₂ (denoted as (CO_2)₂PD), and pyridine dimer (C_5H_5N)₂. These three new data are selected from Voorhis' 2012 paper,²³ and the reference complexation energies for CO_2 ···Ar, (CO_2)₂PD, and (C_5H_5N)₂ are from refs. 24, 25, and 26, respectively.

10. Noble Gas Dimer Weak Interactions (NGDWI21): This database is composed of seven noble gas dimers, four of which are taken from the previous NCCE31/05 database^{1,44,45} and three of them are new dimers, He₂, Ar₂, and Kr₂. For each dimer, three data points are selected from the potential energy curve,²⁷ where one of them is the equilibrium point and the other two points are 0.3 Å away from the equilibrium point (on either side). This results in 21 data points.

11. 3d Transition Metal Atomic Excitation Energies (3dAEE7): The 3dAEE7 database is composed of the excitation energies of Ca^+ and six 3d transition metal atoms or cations, namely, Sc, V, Mn⁺, Fe, Ni⁺, and Zn. These six transition metal atoms or cations are chosen as a representative subset of the excitation energies of the ten 3d-series transition metal atoms and their cations.¹⁵ The Ca⁺ is included in this database because of its excitation from Ca⁺(4s) state to Ca⁺(3d) state.¹⁴

12. 4d Transition Metal Atomic Excitation Energies (4dAEE5): The 4dAEE5 database is composed of five multiplicity-changing excitation energies of 4d transition metal atoms or cations, namely, Mo⁺, Ru⁺, Rh⁺, Pd, and Y⁺. They are selected as a representative subset of a recent study on 4d transition metal atoms and their cations.²⁸

13. p-block Excitation Energies (pEE5): The pEE5 database is chosen as a representative subset from the previously reported database²⁹ that contains nine multiplicity-changing valence (V9 database) and eight Rydberg (R8 database) excitation energies of p-block elements. The five p-block elements or cations included in this representative database are F, Ar, C⁺, Al, and Si⁺. The best-estimated excitation energies are experimental values with spin-orbit coupling excluded.

14. 4p Isomerization Energies (4pIsoE4): The 4pIsoE4 database was chosen from ref. 30.

15. 2p Isomerization Energies (2pIsoE4): The 2pIsoE4 database was chosen from ref. 30.

16. Diatomic Geometries of Light-Atom Molecules (DGL6): Diatomic geometries for molecules containing only light (DG6L) atoms. DG6L is selected from the previous databases MGNHBL11^{31,51} and MGHBL9³¹ which were also reported in reference 1.

17. Diatomic Geometries of Heavy-Atom Molecules (DGH4): Diatomic geometries for molecules with one or more heavy (DG4H) atoms. The reference geometries for DG4H molecules are taken from the NIST website³² and reference 33.

18. Lattice Constants (LC17): The LC17 database is a subset of the previous lattice constant database, solid-state structure database 47 (SSS47).¹

19. Other Databases: Besides the 18 new databases mentioned above, there are another 11 databases in Database 2015, namely

- IsoL6/11: six isomerization energies of large organic molecules
- EA13/03: 13 electron affinities
- PA8: eight proton affinities
- π TC13: 13 thermochemical data for π systems
- HTBH38/08: 38 hydrogen transfer barrier heights
- NHTBH38/08: 38 non-hydrogen transfer barrier heights
- AE17: 17 atomic energies
- HC7/11: seven hydrocarbon data
- DC9/12: nine difficult cases
- SBG31: semiconductor band gaps
- SSCE8: solid-state cohesive energies

that were part of Common Database 2.0 and are used with no changes. For more information about these 11 previous databases, please see reference 1.

DETAILS

Spin-orbit coupling

The reference data in Database 2015 are from experiments or from high-level quantum mechanical calculations, and they include spin-orbit coupling when it is nonzero.

When testing density functional methods, similar to what was done in the previous work,^{34,35} we include spin-orbit effects post-SCF using the following equation for the electronic energy:

$$E = E(SCF) - E(SO)$$

where E(SO) is a positive value, usually taken from experiment but in a few cases taken from theory. All E(SO) values needed for Database 2015 are in Table S3. There is one database that is an exception to the inclusion of spin-orbit effects, namely the AE17 database. For the AE17 database, we compare to experimental results that exclude relativistic effects;^{36,37} therefore, we do not include the SO values given in Table S3 for the AE17 database.

Scalar relativistic effects

We use two protocols for the treatment of scalar relativistic effects. For the comparison of databases pEE5, 3dAEE7, and 4dAEE5 to the reference values, we include scalar relativistic effects in our calculations. For all other databases, we neglect scalar relativistic effects when we compare to the reference data. Because of this second protocol, when we took reference data from Karton et al.³⁸ for bond energies, we took the values that do not include scalar relativistic effects. For other reference data, taken from experiment, the neglect of scalar relativistic effects can only be justified by these effects being small relative to the typical error in the methods being tested.

Vibrational contributions

As already mentioned, the data in Database 2015 are from experiments or high-level quantum mechanical calculations. Throughout the database, as in previous work,¹ we only present vibration-exclusive energies (also sometimes called zero-point-exclusive energies). When the data is from high-level calculations, it corresponds to the electronic energy, including nuclear repulsion but not zero-point energy or thermal energy. When the data comes from experiments, vibrational and rotational contributions (both thermal energy and zero-point energy, where the latter is abbreviated ZPE) are removed theoretically. Thus, for example, bond energies are D_e and not D_0 .

For the 3dSRBE2, 3dSRBE4, 3dMRBE6, SRMBE13, and MRBE5 subdatabases and for the FeCl, CuH, VO, CuCl, and NiCl molecules, vibration-exclusive data is obtained by

subtracting vibrational energies from experimental data to get the reference data. For the alky bond dissociation energies (ABDE12), which are included in the SR-MGN-BE107 database in Database 2015, a scalar factor of 0.9806 is used to estimate the vibrational contribution from B3LYP/6-31G(d) calculations, and this is added to D_0 values to get D_e .¹ For the SSCE8 database, Table S4 provides the calculated ZPEs.¹

In summary, all the energetic data in the database are Born-Oppenheimer potential energy differences without ZPE or thermal vibrational, rotational, or translational contributions.

Geometries and basis sets for testing with Database 2015

In using the molecular energetics database ME417 for testing electronic structure methods, we perform single-point calculations; the sources of the geometries used for these single-point calculations are given in Table S1. For databases MS10, SSS17, and SSE39, we use geometries or lattice constants optimized self-consistently by the method being tested (in such cases we put "optimized" in the geometries column of Table S1). The basis sets used for these tests are given in Table S2.

Energetic data of Database 2015

In order to make our new database available for use by other groups, all the reference data are provided in Table S5. We also include the energetic data calculated by BLYP, PBE, N12, and GAM. We selected BLYP and PBE because of their wide availability in software packages; reproducing this data may be useful for checking. We included N12 and GAM because they are the only published NGAs, and again, this data may be useful for checking.

There is one thing worth emphasizing about Table S5. Since the reference data include the spin-orbit correction, the values in the third, fourth, fifth, and sixth columns have the spin-orbit values that are provided in Table S3 already subtracted (when they are nonzero).

Geometries of Database 2015

We provide the information about the geometries for single-point calculations on Database 2015 in Table S7. Some geometries are from Common Database 2 (CD2), which can be found at <u>http://comp.chem.umn.edu/db/</u>. All the geometries used in Database 2015, inclduing

the ones that were part of CD2, are given in Table S7 (in Å units) along with charges and multiplicities.

April 4, 2015

Database 2015

Table S1. Geometries for testing electronic structure methods.

primary subset ^b	secondary	description	geometries	Ref.
ME417				
SR-MGM-BE9		single-reference main-group metal bond energies		
	SRM2	single-reference main-group bond energies	QCISD/MG3	39
	SRMGD5	single-reference main-group diatomic molecules	CCSDT(Q)2/aug-cc-pCVQZ	40
	3dSRBE2	3d single-reference metal-ligand bond energies	M05/def2-TZVP (metals), ma-TZVP (non-metals)	- <i>a</i> -
SR-MGN-BE107		single-reference main-group non-metal bond energies	QCISD/MG3	39
SR-TM-BE17		single-reference TM^{c} bond energies		
	3dSRBE4	3d single-reference metal-ligand bond energies	M05/def2-TZVP (metals), ma-TZVP (non-metals)	- <i>a</i> -
	SRMBE10	single-reference metal bond energies	experiment	1
	PdBE2	palladium complex bond energies	M06/BS3	- <i>a</i> -
	FeCl	FeCl bond energy	experiment	41
MR-MGM-BE4		multi-reference main-group metal bond energies	M06-L/aug-cc-pCVOZ	14
MR-MGN-BE17		multi-reference main-group non-metal bond energies	OCISD/MG3	39
MR-TM-BE13		multi-reference TM bond energies	× ·	
	CuH and VO	CuH and VO bond energies	experiment	42
	CuCl	CuCl bond energy	experiment	43
	NiCl	NiCl bond energy	M06-L/ma-TZVP	- <i>a</i> -
	3dMRBE6	3d multi-reference metal-ligand bond energies	M05/def2-TZVP (metals), ma-TZVP (non-metals)	- <i>a</i> -
	MRBE3	Multi-reference bond energies	QCISD/MG3	39
MR-TMD-BE2		Multi-reference TM dimer bond energies (Cr_2 and V_2)	QCISD/MG3	39
IP23		ionization potentials		
NCCE30		noncovalent complexation energies		
	CO ₂ …Ar	complexation energy of CO ₂ Ar	experiment	24
	$(CO_2)_2PD$	complexation energy of parallel-displaced (CO ₂) ₂	experiment	25
	$(C_5H_5N)_2$	complexation energy of pyridine dimer	experiment	26
	rest	noncovalent complexation energies of remaining 27 complexes	MC-QCISD/3	44,45
NGDWI21		noble gas dimer weak interaction		27
3dAEE7		3d TM atomic excitation energies		
4dAEE5		4d TM atomic excitation energies		
pEE5		p-block excitation energies		
4pIsoE4		4p isomerization energies	PBE0-D3/def2-TZVPP	- <i>a</i> -
2pIsoE4		2p isomerization energies	PBE0-D3/def2-TZVPP	- <i>a</i> -
IsoL6/11		isomerization energies of large molecules	B97-D/TZVP	46
EA13/03		electron affinities	QCISD/MG3	39
PA8		proton affinities	MP2/6-31G(2df,p)	47
TC12			MD2/(21+C(1-))	47 40 40

S-11

Database 2015

NHTBH38/08	non-hydrogen transfer barrier heights	QCISD/MG3	39
AE17	atomic energies		
HC7/11	hydrocarbon chemistry	MP2/6-311+G(d,p)	50
DC9/12	difficult cases	MP2/6-311+G(d,p)	51
MS10			
DGL6	diatomic geometries for light-atom molecules	optimized	
DGH4	diatomic geometries for heavy-atom molecules	optimized	
SSS17			
LC17	lattice constants	optimized	
SSE39			
SBG31	Semiconductor band gaps	optimized	
SSCE8	solid-state cohesive energies	optimized	

^aGeometries were calculated in this work.

 b In the name of a database or subdatabase, the number at the end of the name or before the solidus is the number of data. For example, ME417, SR-MGM-BE9, and IsoL6/11 contain respectively 417, 9, and 6 data.

^{*c*}TM denotes transition metal.

primary subset	secondary	description	basis set
ME417			
SR-MGM-BE9		single-reference main-group metal bond energies	
	SRM2	single-reference main-group bond energies	MG3S
	SRMGD5	single-reference main-group diatomic molecules	aug-cc-pcVQZ; cc-pcVQZ
	3dSRBE2	3d single-reference metal-ligand bond energies	def2-TZVP(metal); ma-TZVP(non-metal)
SR-MGN-BE107		single-reference main-group non-metal bond energies	MG3S
SR-TM-BE17		single-reference TM ^b bond energies	
	3dSRBE4	3d single-reference metal-ligand bond energies	def2-TZVP (metal); ma-TZVP (non-metal)
	SRMBE10	single-reference metal bond energies	def2-TZVP
	PdBE2	palladium complex bond energies	SDD-2fg (Pd); cc-pVTZ (non-metal)
	FeCl	FeCl bond energy	aug-pwCVTZ (Fe); aug-pVTZ (Cl)
MR-MGM-BE4		multi-reference main-group metal bond energies	cc-pCVQZ (metal); aug-cc-pCVQZ (non-metal)
MR-MGN-BE17		multi-reference main-group non-metal bond energies	MG3S
MR-TM-BE13		multi-reference TM bond energies	
	CuH, CuCl, NiCl, VO	CuH, CuCl, NiCl, and VO bond energies	aug-cc-pwCVTZ (metal); aug-cc-pVTZ (non-metal)
	3dMRBE6	3d multi-reference metal-ligand bond energies	def2-TZVP (metal); ma-TZVP (non-metal)
	MRBE3	Multi-reference bond energies	def2-TZVP
MR-TMD-BE2		Multi-reference TM dimer bond energies (Cr_2 and V_2)	def2-TZVP
IP23		ionization potentials	MG3S
NCCE30		noncovalent complexation energies	MG3S
NGDWI21		noble gas dimer weak interaction	aug-cc-pVQZ
3dAEE7		3d TM atomic excitation energies	cc-pCVQZ (Ca); cc-pVQZ-DK
4dAEE5		4d TM atomic excitation energies	cc-pVTZ-DK
pEE5		p-block excitation energies	cc-pVQZ-DK; d-aug-cc-pVQZ-DK (F, Ar)
4plsoE4		4p isomerization energies	cc-pVQZ
2plsoE4		2p isomerization energies	cc-pVQZ
IsoL6/11		isomerization energies of large molecules	MG3SXP
EA13/03		electron affinities	MG38
PA8		proton affinities	MG38
$\pi 1C13$		thermochemistry of π systems	MG3S
H1BH38/08		hydrogen transfer barrier heights	MG3S
NH1BH38/08		non-nydrogen transfer barrier heights	MU38
			For H, He, atoms from B to Ne, and atoms from AI to Ar,
AE17		atomia anargias	he basis set is co-pwC v 52; for L1, Be, Na, and Mg, the
AEI/ HC7/11		atomic energies	$6.211 \pm C(2df 2n)$
$\Pi U //11$ DC0/12		difficult assos	0-511+0(201,2p)
DC9/12		difficult cases	IVIU 35

Table S2. Basis sets for testing density functional theory.

MS10			
DGL6		diatomic geometries for light-atom molecules	6-311+G(2df,2p)
DGH4		diatomic geometries for heavy-atom molecules	
	HBr, ZnS	diatomic geometries for HBr and ZnS	aug-cc-pVQZ (H, Zn, S), B2 for Zn, ⁵² cc-pwCVQZ
	NaBr	diatomic geometry for NaBr	$-DK^{a}$ for Br
	Ag_2	diatomic geometry for Ag ₂	jun-cc-pVTZ-PP
SSS17			
LC17		lattice constants	m-6-311G*
SSE39			
SBG31		semiconductor band gaps	m-6-311G*
SSCE8		solid-state cohesive energies	m-6-311G*

^{*a*}A scalar relativistic correction of 0.003 Å was added to the geometry.

^bTM denotes transition metal.

Chemical species	Spin-orbit coupling	Chemical species	Spin-orbit coupling
Al	0.21	NiCl	1.50
В	0.03	NO	0.18
Br	3.51	0	0.22
С	0.09	0-	0.16
C^+	0.13	OH	0.20
$CH(^{2}\Pi)$	0.04	P ⁻	0.28
Cl	0.84	P^+	0.90
Cl^+	1.05	S	0.56
ClO	0.46	S^{-}	0.55
Со	2.27	Se	2.70
СоН	2.10	SH	0.54
F	0.38	Si	0.43
Fe	1.15	Si^+	0.58
Fe[CO] ₅	1.52	Si ₂ (triplet)	0.20
FeH	1.10	TiCl	0.50
FeCl	1.10	Ti	0.60
HS	0.54	V_2	1.83
Li	0.14	V	0.90
LiCl	0.84	VS	1.47
Ni	2.80	Zr_2	3.30
$NiCH_2^+$	1.72		

 Table S3. Spin-orbit coupling in kcal/mol.^a

^{*a*}In all cases the spin–orbit coupling lowers the energy.

Solid	ZPE
С	4.985
Si	1.431
SiC	2.754
Ge	0.827
NaCl	0.718
NaF	1.100
LiCl	0.943
LiF	1.636

Table S4. Zero point energy (in kcal/mol) of solids in the SSCE8 database.

Table S5. Energetic data (in kcal/mol) of ME417 computed using BLYP, PBE, N12, a GAM exchange-correlation functionals.

SR-MGM-BE9	Reference	BLYP	PBE	N12	GAM
AlCl ₃	309.91	286.79	303.85	317.30	300.75
AlF ₃	429.60	418.56	424.60	435.52	419.88
КОН	85.00	81.04	83.07	74.85	84.31
NaO	65.23	67.84	67.28	55.75	65.57
LiO (aug-cc-pCVQZ)	82.54	89.51	87.56	73.92	82.19
LiCl	113.90	107.13	108.43	105.23	110.50
AlCl	121.56	117.05	121.11	124.77	119.95
ZnSe	25.20	23.13	29.25	32.98	22.81
ZnCl	53.48	43.10	51.36	50.40	49.49
SR-MGN-BE107	Reference	BLYP	PBE	N12	GAM
C ₂ H ₆	97.39	90.42	96.87	97.56	96.26
iPr-CH ₃	95	80.83	86.95	87.48	84.27
C_2H_6O	89.79	82.66	89.61	90.17	88.89
iPr-OCH ₃	91.51	77.36	83.89	84.37	80.88
Et-H	108.92	104.83	104.87	106.75	104.93
Et-CH ₃	95.89	86.43	93.08	93.89	92.31
Et-OCH ₃	95.26	80.14	86.38	87.11	83.42
Et-OH	100.29	93.53	99.77	99.95	96.09
tBu-H	103.86	97.35	97.32	98.98	97.54
tBu-CH ₃	93.67	78.82	86.16	86.29	85.52
tBu-OCH ₃	89.27	73.12	80.12	80.10	77.08
tBu-OH	115.02	90.50	97.19	96.81	93.34
$CH(^{2}\Pi)$	84.18	85.40	84.51	80.99	81.42
$CH_2(^{3}B_1)$	190.66	179.65	178.62	176.18	195.06

$CH_2(^1A_1)$	181.37	189.93	194.44	191.44	182.06
$CH_{3}(^{2}A''_{2})$	307.79	306.94	309.94	306.25	307.42
CH ₄	420.34	416.89	420.10	417.98	417.89
NH	83.1	89.26	88.25	78.29	80.39
NH ₂	182.59	189.11	188.24	174.57	176.41
NH ₃	298.02	301.42	301.71	289.63	289.95
ОН	107.19	109.37	109.55	103.94	103.58
H ₂ O	232.75	231.94	233.52	228.80	226.60
HF	141.25	140.26	141.21	142.49	139.80
$SiH_2(^1A_1)$	151.79	151.45	147.42	151.74	146.18
$SiH_2(^{3}B_1)$	131.05	130.04	131.24	132.63	134.03
SiH ₃	227.58	223.90	221.98	226.76	221.80
SiH ₄	324.52	317.27	312.98	321.34	311.40
PH ₂	153.2	157.41	154.44	158.56	149.27
PH ₃	242.27	242.35	239.12	246.92	233.62
H_2S	183.35	180.09	181.46	188.11	179.79
HCl	106.66	103.45	105.43	109.40	106.07
C_2H_2	405.35	404.85	414.68	402.31	407.93
CH ₂ CH ₂	563.51	560.54	571.44	562.25	565.12
CH ₃ CH ₃	712.8	704.26	716.76	710.12	711.16
HCN	313.34	320.00	326.04	302.03	309.67
НСО	279.11	286.54	294.70	279.70	282.47
H ₂ CO	374.35	377.36	385.59	373.13	374.34
CH ₃ OH	513.22	510.23	519.53	510.32	507.71
NH ₂ NH ₂	438.6	446.84	452.61	425.34	426.44
НООН	268.57	274.47	281.01	265.58	261.91
Si ₂ (triplet)	75.72	73.67	79.25	82.53	78.92
P ₂	117.59	121.42	121.47	129.41	110.57
S_2	103.13	105.70	113.56	119.78	109.53
Cl ₂	58.07	55.64	63.19	67.61	59.24
SC	171.11	171.41	178.79	176.17	171.94
ClF	61.57	64.46	69.61	69.65	63.22
Si ₂ H ₆	535.03	519.14	519.15	533.93	516.41
CH ₃ Cl	395.51	388.55	398.90	398.78	395.42
CH ₃ SH	473.84	467.02	477.54	479.83	472.41
HOCI	165.17	166.39	173.27	167.73	161.86
BCl ₃	322.9	308.88	332.71	341.14	330.10
BF ₃	469.79	466.79	479.89	482.08	468.32
C_2Cl_4	466.28	451.41	496.50	492.42	486.81
C_2F_4	589.36	594.16	628.83	615.24	604.92

C ₃ H ₄ (propyne)	704.79	701.22	720.82	703.95	710.88
C ₄ H ₄ O	993.74	988.72	1030.93	1000.59	1003.85
C_4H_4S	962.73	951.06	995.57	977.60	977.89
C ₄ H ₅ N	1071.57	1067.91	1110.71	1074.00	1080.97
C ₄ H ₆ (<i>trans</i> -1,3-butadiene)	1012.37	1005.67	1034.35	1013.33	1020.71
C_4H_6 (2-butyne)	1004.13	996.22	1025.60	1004.20	1012.53
C ₅ H ₅ N	1237.69	1235.63	1284.97	1240.67	1251.80
ССН	265.13	266.02	276.77	262.38	254.71
CCl ₄	312.74	293.79	329.07	332.08	320.70
CF ₃ CN	639.85	646.33	679.13	647.45	646.80
CF ₄	476.32	473.15	500.35	494.93	482.04
CH ₂ OH	409.76	411.59	421.12	409.88	408.70
CH ₃ CN	615.84	619.75	635.43	607.16	615.98
CH ₃ NH ₂	582.22	581.82	590.75	574.11	574.71
CH ₃ NO ₂	601.27	616.78	641.46	600.83	610.34
CHCl ₃	343.18	329.33	355.85	358.23	349.63
CHF ₃	457.5	456.81	476.75	472.22	462.22
ClF ₃	125.33	143.00	159.31	154.07	141.60
H ₂	109.49	109.49	104.71	106.52	105.91
CH ₂ CH	445.91	446.54	457.74	446.49	451.86
HCOOCH ₃	785.26	786.49	810.81	786.50	785.61
НСООН	500.98	505.35	521.63	502.00	501.48
PF ₃	363.87	361.13	370.39	376.70	351.77
SH	86.98	87.66	87.92	90.76	85.91
SiCl ₄	384.94	352.77	381.23	400.42	375.99
SiF ₄	574.35	555.50	567.60	581.43	556.57
C ₂ H ₅	603.75	599.45	611.88	603.29	606.16
C ₄ H ₆ (bicylobutane)	987.2	970.69	1011.27	989.09	1007.13
C_4H_6 (cyclobutene)	1001.61	987.94	1023.83	1003.96	1010.29
НСОСОН	633.35	639.96	662.71	635.23	638.69
CH ₃ CHO	677.03	676.30	694.27	677.31	679.57
C ₂ H ₄ O	650.7	647.42	669.49	651.40	655.29
C ₂ H ₅ O	698.64	692.44	710.32	694.91	698.29
CH ₃ OCH ₃	798.05	792.05	809.67	795.64	792.99
CH ₃ CH ₂ OH	810.36	802.12	820.99	807.14	805.72
C ₃ H ₄ (allene)	703.2	704.15	723.86	707.10	713.24
C ₃ H ₄ (cyclopropene)	682.74	676.44	701.38	684.07	696.22
CH ₃ COOH	803.04	801.52	827.56	803.57	803.88
CH ₃ COCH ₃	977.96	972.06	999.98	978.37	981.84
C ₃ H ₆ (cyclopropane)	853.41	841.68	867.94	853.98	862.39

CH ₃ CHCH ₂	860.61	852.80	873.53	859.57	863.85
C_3H_8	1006.87	992.73	1014.92	1003.52	1005.99
C ₂ H ₅ OCH ₃	1095.12	1083.83	1111.06	1092.36	1090.93
C ₄ H ₁₀ (isobutane)	1303.04	1281.53	1313.84	1297.40	1301.58
C ₄ H ₁₀ (antiperiplanar butane)	1301.32	1281.13	1313.05	1296.86	1300.78
C ₄ H ₈ (cyclobutane)	1149.01	1130.27	1167.07	1149.95	1153.75
C ₄ H ₈ (isobutene)	1158.61	1144.50	1175.33	1156.45	1162.33
C ₅ H ₈ (spiropentane)	1284.28	1265.51	1315.19	1289.02	1306.62
C ₆ H ₆	1367.56	1355.87	1409.19	1375.72	1386.66
CH ₃ CO	581.58	585.72	603.41	584.40	587.89
$(CH_3)_2CH$	900.75	892.06	914.25	900.86	905.15
(CH ₃) ₃ C	1199.34	1184.20	1216.44	1198.28	1203.91
H ₂ CCO	532.32	539.73	557.87	537.84	543.21

SR-TM-BE17	Reference	BLYP	PBE	N12	GAM
CrCl ₂	181.13	172.66	175.77	175.75	174.00
MnF ₂	232.26	246.27	254.45	257.54	238.28
FeCl ₂	190.29	183.66	196.13	199.82	187.54
CoCl ₂	182.9	172.64	183.99	184.99	178.35
Ag_2	38.3	38.46	40.57	44.66	39.10
AgH	54	56.54	55.86	57.34	51.99
СоН	45.5	61.04	60.33	61.35	70.27
CrCH ₃ ⁺	28.8	42.24	43.74	39.71	41.86
Cu ₂	47.2	45.71	47.98	51.09	40.27
CuAg	40.7	39.14	44.30	46.27	36.10
CuH_2O^+	38.8	41.52	43.06	42.60	38.23
FeH	36.9	52.15	51.58	55.45	52.19
VCO^+	28.2	34.69	38.34	30.87	39.89
Zr ₂	70.8	78.99	92.93	103.08	70.85
$Pd(PH_3)_2C_6H_8$	16.2	2.38	13.32	9.05	6.40
$Pd(PH_3)_2C_{10}H_{12}$ (structure b)	17.3	-3.85	9.11	3.64	1.78
FeCl	78.5	75.98	84.87	81.32	79.43
MR-MGM-BE4	Reference	BLYP	PBE	N12	GAM
CaO	96.15	118.39	124.23	117.38	107.75
LiO ⁻	57.59	62.43	61.83	51.71	63.27
KO ⁻	33.14	35.50	37.69	27.50	40.40
MgS	55.68	50.14	55.31	59.35	49.17

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MR-MGN-BE17	Reference	BLYP	PBE	N12	GAM
CO2 389.61 398.98 415.56 391.92 398.39 SiO (singlet) 192.4 194.66 195.65 190.28 183.14 SO2 259.61 262.95 277.06 264.61 255.30 CO 259.42 261.25 268.30 253.14 255.74 SO (triplet) 125.69 133.23 139.56 133.92 128.27 CIO 64.84 73.41 79.92 72.01 69.03 F2 38.27 47.14 51.24 44.69 41.45 N2 228.48 239.62 242.97 206.41 218.77 O2 120.37 134.46 142.81 123.85 131.19 NO 152.7 166.03 171.75 143.46 151.87 CN 181.27 190.72 197.02 170.36 181.80 B2 → 2B 67.4 67.02 76.97 70.77 77.18 O3 → O2 + O 26.61 34.51 41.16 23.89 23.86 Cl2O → Cl2 + O 41.61 106.35 115.67	NF ₃	204.53	225.18	242.56	217.54	214.80
SiO (singlet) 192.4 194.66 195.65 190.28 183.14 SO2 259.61 262.95 277.06 264.61 255.30 CO 259.42 261.25 268.30 253.14 255.74 SO (triplet) 125.69 133.23 139.56 133.92 128.27 CIO 64.84 73.41 79.92 72.01 69.03 F2 38.27 47.14 51.24 44.69 41.45 N2 228.48 239.62 242.97 206.41 218.77 O2 120.37 134.46 142.81 123.85 131.19 NO 152.7 166.03 171.75 143.46 151.87 CN 181.27 190.72 197.02 170.66 181.80 O3 → O2 + O 26.61 34.51 41.16 23.89 23.86 C2 → 2C 146.88 145.45 93.61 125.16 148.78 S4 → 2S2 25.75 18.84 28.37 31.54 23.61 Cl_2 → Cl_2 + O 41.71 48.21 53.04 <td>CO_2</td> <td>389.61</td> <td>398.98</td> <td>415.56</td> <td>391.92</td> <td>398.39</td>	CO_2	389.61	398.98	415.56	391.92	398.39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO (singlet)	192.4	194.66	195.65	190.28	183.14
CO 259.42 261.25 268.30 253.14 255.74 SO (triplet) 125.69 133.23 139.56 133.92 128.27 CIO 64.84 73.41 79.92 72.01 69.03 F_2 38.27 47.14 51.24 44.69 41.45 N_2 228.48 239.62 242.97 206.41 218.77 O_2 120.37 134.46 142.81 123.85 131.19 NO 152.7 166.03 171.75 143.46 151.87 CN 181.27 190.72 197.02 170.36 181.80 $B_2 \rightarrow 2B$ 67.4 67.02 76.97 70.77 77.18 $O_3 \rightarrow O_2 + O$ 26.61 34.51 41.16 23.89 23.86 $C_2 \rightarrow 2C$ 146.88 145.45 93.61 125.16 148.78 $S_4 \rightarrow 2S_2$ 25.75 18.84 28.37 31.54 23.61 Cl2O → Cl_2 + O 41.71 48.21 53.04 41.99 41.33 MR-TM-BE13 Reference BLYP	SO_2	259.61	262.95	277.06	264.61	255.30
SO (triplet) 125.69 133.23 139.56 133.92 128.27 CIO 64.84 73.41 79.92 72.01 69.03 F ₂ 38.27 47.14 51.24 44.69 41.45 N ₂ 228.48 239.62 242.97 206.41 218.77 O ₂ 120.37 134.46 142.81 123.85 131.19 NO 152.7 166.03 171.75 143.46 151.87 CN 181.27 190.72 197.02 170.36 181.80 B ₂ → 2B 67.4 67.02 76.97 70.77 77.18 O ₃ → O ₂ + O 26.61 34.51 41.16 23.89 23.86 C ₂ → 2C 146.88 145.45 93.61 125.16 148.78 S ₄ → 2S ₂ 25.75 18.84 28.37 31.54 23.61 Cl ₂ O → Cl ₂ + O 41.71 48.21 53.04 41.99 41.33 $\frac{MR-TM-BE13}{TCl} \frac{Reference}{100.78} 106.35 115.67 121.31 103.16}{15.67 121.31 103.16} VF_5$ 564.15 609.78 629.82 622.37 584.58 CrCl 90.15 87.52 88.95 90.22 94.00 CrOF 247.58 255.56 254.80 241.31 229.25 (FeBr ₂) ₂ 366.8 336.68 367.57 371.83 338.57 Co(CO) ₄ H 1230.13 1250.35 1310.05 1246.10 1225.99 NiCL ₂ + → Ni ⁺ + CH ₂ 76.3 93.69 94.26 87.90 82.90 Fe(CO) ₅ → Fe + 5CO 147.4 161.10 194.57 198.47 149.54 VS → V + S 106.9 64.48 129.75 133.08 116.34 CuH 62.6 65.68 64.51 65.28 57.84 CuCl 87.7 80.11 86.40 91.21 79.96 VO 151 171.71 182.07 173.27 154.03 NiCL 88 83.11 89.44 95.69 82.90 Fe(CO) ₅ → Fe + 5CO 147.4 161.10 194.57 198.47 149.54 VS → V + S 106.9 64.48 129.75 133.08 116.34 CuH 62.6 65.68 64.51 65.28 57.84 CuCl 87.7 80.11 86.40 91.21 79.96 VO 151 171.71 182.07 173.27 154.03 NiCL 88 83.11 89.44 95.69 82.90 Fe(CO) ₅ → Fe + 5CO 147.4 161.10 194.57 198.47 149.54 VS → V + S 106.9 64.48 129.75 133.08 116.34 CuH 62.6 65.68 64.51 65.28 57.84 CuCl 87.7 80.11 86.40 91.21 79.96 VO 151 171.71 182.07 173.27 154.03 NiCL 88 83.11 89.44 95.69 82.90 FC → 227 36.0 44.36 21.46 38.70 23.00 V ₂ → 2V 64.2 -14.65 104.05 115.63 70.71	CO	259.42	261.25	268.30	253.14	255.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SO (triplet)	125.69	133.23	139.56	133.92	128.27
F_2 38.27 47.14 51.24 44.69 41.45 N_2 228.48 239.62 242.97 206.41 218.77 O_2 120.37 134.46 142.81 123.85 131.19 NO 152.7 166.03 171.75 143.46 151.87 CN 181.27 190.72 197.02 170.36 181.80 $B_2 \rightarrow 2B$ 67.4 67.02 76.97 70.77 77.18 $O_3 \rightarrow O_2 + O$ 26.61 34.51 41.16 23.89 23.86 $C_2 \rightarrow 2C$ 146.88 145.45 93.61 125.16 148.78 $S_4 \rightarrow 2S_2$ 25.75 18.84 28.37 31.54 23.61 $Cl_2 O \rightarrow Cl_2 + O$ 41.71 48.21 53.04 41.99 41.33 MR-TM-BE13 Reference BLYP PBE N12 GAM VF_5 564.15 609.78 629.82 622.37 584.58 CrCl 90.15 87.52 89.59 90.22 94.00 CroF 247.58 255.56	ClO	64.84	73.41	79.92	72.01	69.03
N2 228.48 239.62 242.97 206.41 218.77 O2 120.37 134.46 142.81 123.85 131.19 NO 152.7 166.03 171.75 143.46 151.87 CN 181.27 190.72 197.02 170.36 181.80 B2 → 2B 67.4 67.02 76.97 70.77 77.18 O3 → O2 + O 26.61 34.51 41.16 23.89 23.86 C2 → 2C 146.88 145.45 93.61 125.16 148.78 S4 → 2S2 25.75 18.84 28.37 31.54 23.61 Clo → Cl2 + O 41.71 48.21 53.04 41.99 41.33 MR-TM-BE13 Reference BLYP PBE N12 GAM TiCl 100.78 106.35 115.67 121.31 103.16 VF5 564.15 609.78 629.82 622.37 584.58 CrCl 90.15 87.52 88.95 90.22 94.00 CrGPF 247.58 255.56 254.80	F_2	38.27	47.14	51.24	44.69	41.45
O2 120.37 134.46 142.81 123.85 131.19 NO 152.7 166.03 171.75 143.46 151.87 CN 181.27 190.72 197.02 170.36 181.80 B2 → 2B 67.4 67.02 76.97 70.77 77.18 O3 → O2 + O 26.61 34.51 41.16 23.89 23.86 C2 → 2C 146.88 145.45 93.61 125.16 148.78 S4 → 2S2 25.75 18.84 28.37 31.54 23.61 Clo → Cl2 + O 41.71 48.21 53.04 41.99 41.33 MR-TM-BE13 Reference BLYP PBE N12 GAM TiCl 100.78 106.35 115.67 121.31 103.16 VF5 564.15 609.78 629.82 622.37 584.58 CrCl 90.15 87.52 88.95 90.22 94.00 CrOF 247.58 255.56 254.80 241.31 229.25 (FeBr2)2 366.8 336.68 367.57 <t< td=""><td>N₂</td><td>228.48</td><td>239.62</td><td>242.97</td><td>206.41</td><td>218.77</td></t<>	N ₂	228.48	239.62	242.97	206.41	218.77
NO 152.7 166.03 171.75 143.46 151.87 CN 181.27 190.72 197.02 170.36 181.80 B ₂ → 2B 67.4 67.02 76.97 70.77 77.18 O ₃ → O ₂ + O 26.61 34.51 41.16 23.89 23.86 C ₂ → 2C 146.88 145.45 93.61 125.16 148.78 S ₄ → 2S ₂ 25.75 18.84 28.37 31.54 23.61 Cl ₂ → Cl ₂ + O 41.71 48.21 53.04 41.99 41.33 MR-TM-BE13 Reference BLYP PBE N12 GAM TiCl 100.78 106.35 115.67 121.31 103.16 VF ₅ 564.15 609.78 629.82 622.37 584.58 CrCl 90.15 87.52 88.95 90.22 94.00 CrOF 247.58 255.56 254.80 241.31 229.25 (FeBr ₂)2 366.8 336.68 367.57 371.83 338.57 Co(CO) ₄ H 1230.13 1250.35	O_2	120.37	134.46	142.81	123.85	131.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NO	152.7	166.03	171.75	143.46	151.87
B2 → 2B67.467.0276.9770.7777.18 $O_3 → O_2 + O$ 26.6134.5141.1623.8923.86 $C_2 → 2C$ 146.88145.4593.61125.16148.78 $S_4 → 2S_2$ 25.7518.8428.3731.5423.61 $C_{12}O → Cl_2 + O$ 41.7148.2153.0441.9941.33MR-TM-BE13ReferenceBLYPPBEN12GAMTiCl100.78106.35115.67121.31103.16VF_5564.15609.78629.82622.37584.58CrCl90.1587.5288.9590.2294.00CrOF247.58255.56254.80241.31229.25(FeBr2)2366.8336.68367.57371.83338.57Co(CO)_4H1230.131250.351310.051246.101225.99NiCH2 ⁺ → Ni ⁺ + CH276.393.6994.2687.9082.90Fe(CO)_5 → Fe + 5CO147.4161.10194.57198.47149.54VS → V + S106.964.48129.75133.08116.34CuH62.665.6864.5165.2857.84CuCl87.780.1186.4091.2179.96VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09VO151171.71182.07173.27154.03NiCl8883.1189.4495.69 <td>CN</td> <td>181.27</td> <td>190.72</td> <td>197.02</td> <td>170.36</td> <td>181.80</td>	CN	181.27	190.72	197.02	170.36	181.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$B_2 \rightarrow 2B$	67.4	67.02	76.97	70.77	77.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_3 \rightarrow O_2 + O$	26.61	34.51	41.16	23.89	23.86
S4 → 2S225.7518.8428.3731.5423.61Cl2O → Cl2 + O41.7148.2153.0441.9941.33MR-TM-BE13ReferenceBLYPPBEN12GAMTiCl100.78106.35115.67121.31103.16VF5564.15609.78629.82622.37584.58CrCl90.1587.5288.9590.2294.00CrOF247.58255.56254.80241.31229.25(FeBr2)2366.8336.68367.57371.83338.57Co(CO)4H1230.131250.351310.051246.101225.99NiCH2 ⁺ → Ni ⁺ + CH276.393.6994.2687.9082.90Fe(CO)5 → Fe + 5CO147.4161.10194.57198.47149.54VS → V + S106.964.48129.75133.08116.34CuCl87.780.1186.4091.2179.96VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 → 2Cr36.044.3621.4638.7023.00V2 → 2V64.2-14.65104.05115.6370.71	$C_2 \rightarrow 2C$	146.88	145.45	93.61	125.16	148.78
Cl_2O → Cl_2 + O41.7148.2153.0441.9941.33MR-TM-BE13ReferenceBLYPPBEN12GAMTiCl100.78106.35115.67121.31103.16VF_5564.15609.78629.82622.37584.58CrCl90.1587.5288.9590.2294.00CrOF247.58255.56254.80241.31229.25(FeBr2)2366.8336.68367.57371.83338.57Co(CO)4H1230.131250.351310.051246.101225.99NiCH2 ⁺ → Ni ⁺ + CH276.393.6994.2687.9082.90Fe(CO)5 → Fe + 5CO147.4161.10194.57198.47149.54VS → V + S106.964.48129.75133.08116.34CuCl87.780.1186.4091.2179.96VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 → 2Cr36.044.3621.4638.7023.00V2 → 2V64.2-14.65104.05115.6370.71	$S_4 \rightarrow 2S_2$	25.75	18.84	28.37	31.54	23.61
MR-TM-BE13 Reference BLYP PBE N12 GAM TiCl 100.78 106.35 115.67 121.31 103.16 VF5 564.15 609.78 629.82 622.37 584.58 CrCl 90.15 87.52 88.95 90.22 94.00 CrOF 247.58 255.56 254.80 241.31 229.25 (FeBr2)2 366.8 336.68 367.57 371.83 338.57 Co(CO)4H 1230.13 1250.35 1310.05 1246.10 1225.99 NiCH2 ⁺ → Ni ⁺ + CH2 76.3 93.69 94.26 87.90 82.90 Fe(CO)5 → Fe + 5CO 147.4 161.10 194.57 198.47 149.54 VS → V + S 106.9 64.48 129.75 133.08 116.34 CuCl 87.7 80.11 86.40 91.21 79.96 VO 151 171.71 182.07 173.27 154.03 NiCl 88 83.11 89.	$Cl_2O \rightarrow Cl_2 + O$	41.71	48.21	53.04	41.99	41.33
MR-1M-BE13ReferenceBLYPPBEN12GAMTiCl100.78106.35115.67121.31103.16VF5564.15609.78629.82622.37584.58CrCl90.1587.5288.9590.2294.00CrOF247.58255.56254.80241.31229.25(FeBr2)2366.8336.68367.57371.83338.57Co(CO)4H1230.131250.351310.051246.101225.99NiCH2+ \rightarrow Ni+ + CH276.393.6994.2687.9082.90Fe(CO)5 \rightarrow Fe + 5CO147.4161.10194.57198.47149.54VS \rightarrow V + S106.964.48129.75133.08116.34CuH62.665.6864.5165.2857.84CuCl87.780.1186.4091.2179.96VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 \rightarrow 2Cr36.044.3621.4638.7023.00V2 \rightarrow 2V64.2-14.65104.05115.6370.71		D. A	DLUD	DDE	2110	
TiCl100.78106.35115.67121.31103.16VF5564.15609.78629.82622.37584.58CrCl90.1587.5288.9590.2294.00CrOF247.58255.56254.80241.31229.25(FeBr2)2366.8336.68367.57371.83338.57Co(CO)4H1230.131250.351310.051246.101225.99NiCH2+ \rightarrow Ni+ + CH276.393.6994.2687.9082.90Fe(CO)5 \rightarrow Fe + 5CO147.4161.10194.57198.47149.54VS \rightarrow V + S106.964.48129.75133.08116.34CuH62.665.6864.5165.2857.84CuCl87.780.1186.4091.2179.96VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 \rightarrow 2Cr36.044.3621.4638.7023.00V2 \rightarrow 2V64.2-14.65104.05115.6370.71	MR-IM-BE13	Reference	BLYP	PBE	N12	GAM
VF5564.15609.78629.82622.37584.58CrCl90.1587.5288.9590.2294.00CrOF247.58255.56254.80241.31229.25(FeBr2)2366.8336.68367.57371.83338.57Co(CO)4H1230.131250.351310.051246.101225.99NiCH2+ \rightarrow Ni+ + CH276.393.6994.2687.9082.90Fe(CO)5 \rightarrow Fe + 5CO147.4161.10194.57198.47149.54VS \rightarrow V + S106.964.48129.75133.08116.34CuH62.665.6864.5165.2857.84CuCl87.780.1186.4091.2179.96VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 \rightarrow 2Cr36.044.3621.4638.7023.00V2 \rightarrow 2V64.2-14.65104.05115.6370.71	TiCl	100.78	106.35	115.67	121.31	103.16
CrCl90.15 87.52 88.95 90.22 94.00 CrOF 247.58 255.56 254.80 241.31 229.25 (FeBr2)2 366.8 336.68 367.57 371.83 338.57 Co(CO)4H 1230.13 1250.35 1310.05 1246.10 1225.99 NiCH2+ \rightarrow Ni+ CH2 76.3 93.69 94.26 87.90 82.90 Fe(CO)5 \rightarrow Fe + 5CO 147.4 161.10 194.57 198.47 149.54 VS \rightarrow V + S 106.9 64.48 129.75 133.08 116.34 CuH 62.6 65.68 64.51 65.28 57.84 CuCl 87.7 80.11 86.40 91.21 79.96 VO 151 171.71 182.07 173.27 154.03 NiCl 88 83.11 89.44 95.69 82.09 MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 \rightarrow 2Cr 36.0 44.36 21.46 38.70 23.00 V2 \rightarrow 2V 64.2 -14.65 104.05 115.63 70.71	VF ₅	564.15	609.78	629.82	622.37	584.58
CrOF 247.58 255.56 254.80 241.31 229.25 (FeBr2)2 366.8 336.68 367.57 371.83 338.57 Co(CO)4H 1230.13 1250.35 1310.05 1246.10 1225.99 NiCH2 ⁺ \rightarrow Ni ⁺ + CH2 76.3 93.69 94.26 87.90 82.90 Fe(CO)5 \rightarrow Fe + 5CO 147.4 161.10 194.57 198.47 149.54 VS \rightarrow V + S 106.9 64.48 129.75 133.08 116.34 CuH 62.6 65.68 64.51 65.28 57.84 CuCl 87.7 80.11 86.40 91.21 79.96 VO 151 171.71 182.07 173.27 154.03 NiCl 88 83.11 89.44 95.69 82.09 MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 \rightarrow 2Cr 36.0 44.36 21.46 38.70 23.00 V2 $\rightarrow 2V$ 64.2 -14.65 104.05 115.63 70.71	CrCl	90.15	87.52	88.95	90.22	94.00
$\begin{array}{ccccccc} (FeBr_2)_2 & 366.8 & 336.68 & 367.57 & 371.83 & 338.57 \\ Co(CO)_4H & 1230.13 & 1250.35 & 1310.05 & 1246.10 & 1225.99 \\ NiCH_2^+ \rightarrow Ni^+ + CH_2 & 76.3 & 93.69 & 94.26 & 87.90 & 82.90 \\ Fe(CO)_5 \rightarrow Fe + 5CO & 147.4 & 161.10 & 194.57 & 198.47 & 149.54 \\ VS \rightarrow V + S & 106.9 & 64.48 & 129.75 & 133.08 & 116.34 \\ CuH & 62.6 & 65.68 & 64.51 & 65.28 & 57.84 \\ CuCl & 87.7 & 80.11 & 86.40 & 91.21 & 79.96 \\ VO & 151 & 171.71 & 182.07 & 173.27 & 154.03 \\ NiCl & 88 & 83.11 & 89.44 & 95.69 & 82.09 \\ \hline \\ $	CrOF	247.58	255.56	254.80	241.31	229.25
Co(CO) ₄ H1230.131250.351310.051246.101225.99NiCH2+ \rightarrow Ni+ + CH276.393.6994.2687.9082.90Fe(CO)5 \rightarrow Fe + 5CO147.4161.10194.57198.47149.54VS \rightarrow V + S106.964.48129.75133.08116.34CuH62.665.6864.5165.2857.84CuCl87.780.1186.4091.2179.96VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 \rightarrow 2Cr36.044.3621.4638.7023.00V2 \rightarrow 2V64.2-14.65104.05115.6370.71	$(\text{FeBr}_2)_2$	366.8	336.68	367.57	371.83	338.57
N1CH2 \rightarrow N1 + CH276.393.6994.2687.9082.90Fe(CO)5 \rightarrow Fe + 5CO147.4161.10194.57198.47149.54VS \rightarrow V + S106.964.48129.75133.08116.34CuH62.665.6864.5165.2857.84CuCl87.780.1186.4091.2179.96VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 \rightarrow 2Cr36.044.3621.4638.7023.00V2 \rightarrow 2V64.2-14.65104.05115.6370.71	$Co(CO)_4H$	1230.13	1250.35	1310.05	1246.10	1225.99
Fe(CO)5 \rightarrow Fe + 5CO147.4161.10194.57198.47149.54VS \rightarrow V + S106.964.48129.75133.08116.34CuH62.665.6864.5165.2857.84CuCl87.780.1186.4091.2179.96VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 \rightarrow 2Cr36.044.3621.4638.7023.00V2 \rightarrow 2V64.2-14.65104.05115.6370.71	$N_1CH_2 \rightarrow N_1 + CH_2$	76.3	93.69	94.26	87.90	82.90
VS \rightarrow V + S106.964.48129.75133.08116.34CuH62.665.6864.5165.2857.84CuCl87.780.1186.4091.2179.96VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAMCr2 \rightarrow 2Cr36.044.3621.4638.7023.00V2 \rightarrow 2V64.2-14.65104.05115.6370.71	$Fe(CO)_5 \rightarrow Fe + 5CO$	147.4	161.10	194.57	198.47	149.54
CuH62.665.6864.5165.2857.84CuCl 87.7 80.11 86.40 91.21 79.96 VO 151 171.71 182.07 173.27 154.03 NiCl 88 83.11 89.44 95.69 82.09 MR-TMD-BE2ReferenceBLYPPBEN12GAM $Cr_2 \rightarrow 2Cr$ 36.0 44.36 21.46 38.70 23.00 $V_2 \rightarrow 2V$ 64.2 -14.65 104.05 115.63 70.71	$VS \rightarrow V + S$	106.9	64.48	129.75	133.08	116.34
CuCl 87.7 80.11 86.40 91.21 79.96 VO151 171.71 182.07 173.27 154.03 NiCl88 83.11 89.44 95.69 82.09 MR-TMD-BE2ReferenceBLYPPBEN12GAM $Cr_2 \rightarrow 2Cr$ 36.0 44.36 21.46 38.70 23.00 $V_2 \rightarrow 2V$ 64.2 -14.65 104.05 115.63 70.71	CuH	62.6	65.68	64.51	65.28	57.84
VO151171.71182.07173.27154.03NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAM $Cr_2 \rightarrow 2Cr$ 36.044.3621.4638.7023.00 $V_2 \rightarrow 2V$ 64.2-14.65104.05115.6370.71	CuCl	87.7	80.11	86.40	91.21	79.96
NiCl8883.1189.4495.6982.09MR-TMD-BE2ReferenceBLYPPBEN12GAM $Cr_2 \rightarrow 2Cr$ 36.044.3621.4638.7023.00 $V_2 \rightarrow 2V$ 64.2-14.65104.05115.6370.71	VO	151	171.71	182.07	173.27	154.03
MR-TMD-BE2ReferenceBLYPPBEN12GAM $Cr_2 \rightarrow 2Cr$ 36.044.3621.4638.7023.00 $V_2 \rightarrow 2V$ 64.2-14.65104.05115.6370.71	NiCl	88	83.11	89.44	95.69	82.09
MR-1MD-D12ReferenceDE111BE 1412 OAM $Cr_2 \rightarrow 2Cr$ 36.044.3621.4638.7023.00 $V_2 \rightarrow 2V$ 64.2-14.65104.05115.6370.71					2710	<u> </u>
$V_2 \rightarrow 2V$ 64.2 -14.65 104.05 115.63 70.71	MR-TMD-RF?	Reference	RI VP	PRF	NI 2	(÷ Δ Ν/
	MR-TMD-BE2 $Cr_2 \rightarrow 2Cr$	Reference	BLYP 44 36	21 46	N12 38 70	GAM 23.00

IsoL6/11	Reference	BLYP	PBE	N12	GAM
10-	6.82	1.81	5.26	4.76	5.36
13-	33.52	29.73	31.06	31.28	32.43
14-	5.3	3.85	6.23	6.02	5.50
20-	4.66	4.09	4.90	4.99	5.05
3-	9.77	3.28	7.18	9.44	4.45
9-	21.76	16.68	17.65	17.04	18.49
IP23	Reference	BLYP	PBE	N12	GAM
С	259.7	263.05	266.14	261.75	264.76
S	238.9	240.60	240.91	239.04	232.52
SH	238.9	238.46	239.82	238.94	233.95
Cl	299.1	297.26	298.84	299.44	293.21
Cl ₂	265.3	255.07	256.88	256.52	254.46
ОН	299.1	305.17	304.59	295.83	295.91
0	313.9	326.99	324.72	306.87	309.00
O_2	278.9	283.57	282.78	288.56	281.75
Р	241.9	233.95	241.03	238.23	241.51
PH	234.1	230.02	236.20	232.83	235.28
PH ₂	226.3	224.68	229.94	225.61	227.00
S_2	216	213.46	217.27	214.88	216.79
Si	187.9	182.99	188.89	185.16	186.03
Cr	156.009	167.19	170.50	158.24	165.25
Cu	178.173	194.47	193.05	183.51	188.80
FeC	173.71	185.31	186.16	175.96	171.52
Мо	163.71	168.09	172.08	160.20	164.40
Pd	192.24	203.75	204.21	206.52	202.45
Rh	172.11	180.21	180.85	173.76	171.35
Ru	169.86	177.18	178.98	167.96	171.74
Zn	216.629	223.84	221.22	219.05	216.67
Со	181.1	187.88	187.23	173.65	195.61
Sc	151.32	148.34	146.89	132.85	156.38

EA13/03	Reference	BLYP	PBE	N12	GAM
С	29.1	30.26	35.75	29.09	34.68
S	47.9	48.64	49.60	45.75	44.79
SH	53.3	50.76	52.70	49.61	50.05
Cl	83.4	81.23	83.12	81.03	80.41
Cl ₂	55.6	62.46	59.76	53.44	58.32
ОН	42.1	41.98	42.32	35.11	37.82
0	33.7	39.24	38.26	25.62	29.03
O2	10.8	11.16	8.63	3.70	-1.88
Р	17.2	20.53	20.16	14.93	14.48
PH	23.2	23.21	24.02	19.50	19.71
PH ₂	29.4	26.26	28.18	24.49	25.54
S_2	38.5	34.51	35.69	31.39	30.53
Si	31.9	26.98	33.26	28.95	32.90
PA8	Reference	BLYP	PBE	N12	GAM
NH ₃	211.9	209.55	210.89	212.97	214.43
H ₂ O	171.8	168.96	170.39	172.03	172.70
C_2H_2	156.6	157.00	158.91	160.66	163.56
SiH ₄	156.5	158.14	157.01	157.68	162.00
PH ₃	193.1	191.29	190.24	192.98	195.47
H_2S	173.7	174.44	174.38	175.41	178.21
HCl	137.1	138.25	138.93	139.21	141.94
H ₂	105.9	104.17	106.03	105.57	109.02
πTC13	Reference	BLYP	PBE	N12	GAM
E2-E1	-1.4	3.07	3.10	3.40	2.49
E4-E3	-8.8	0.06	0.16	0.51	-0.64
E6-E5	-14.3	-1.60	-1.42	-0.98	-2.35
P-2	167.81	166.27	167.91	170.06	172.61
P-4	193.45	197.47	196.42	199.75	200.44
P-6	209.68	215.55	214.26	217.78	218.28
P-8	219.67	227.12	225.72	229.39	229.78
P-10	225.95	235.42	233.96	237.75	238.05
SB-2	214.46	213.17	213.72	217.46	218.09
SB-4	226.15	227.96	228.25	232.69	232.63
SB-6	233.44	238.09	238.26	243.07	242.66
SB-8	238.16	245.25	245.34	250.39	249.76
SB-10	240.97	250.68	250.72	255.95	255.14

HTBH38/08	Reference	BLYP	PBE	N12	GAM
$H + HCl \rightarrow H_2 + Cl$	5.7	-2.67	0.34	2.04	3.12
	8.7	3.37	-0.38	-0.85	2.96
$OH + H_2 \rightarrow H_2O + H$	5.1	-2.91	-5.74	-2.44	-0.95
	21.2	10.18	13.53	15.90	16.15
$CH_3 + H_2 \rightarrow CH_4 + H$	12.1	7.35	4.02	6.13	7.83
	15.3	7.81	9.47	11.35	12.38
$OH + CH_4 \rightarrow H_2O + CH_3$	6.7	-2.14	-5.00	-1.87	-0.35
	19.6	10.49	8.82	11.26	12.20
$H + H_2 \rightarrow H_2 + H$	9.6	2.96	3.77	6.53	7.73
	9.6	2.96	3.77	6.53	7.73
$OH + NH_3 \rightarrow H_2O + NH_2$	3.2	-8.67	-11.35	-7.57	-5.57
	12.7	1.60	-0.85	2.23	3.91
$HCl + CH_3 \rightarrow CH_4 + Cl$	1.7	-3.28	-5.71	-3.89	-2.08
	7.9	3.22	-0.98	-1.56	2.31
$OH + C_2H_6 \rightarrow H_2O + C_2H_5$	3.4	-5.57	-8.45	-5.17	-4.02
	19.9	12.19	10.65	12.86	13.99
$F + H_2 \rightarrow HF + H$	1.8	-10.74	-12.05	-9.36	-8.65
	33.4	20.03	24.46	26.61	25.24
$O + CH_4 \rightarrow OH + CH_3$	13.7	2.33	0.16	6.72	7.40
	8.1	1.75	-0.44	-1.07	0.51
$H + PH_3 \rightarrow H_2 + PH_2$	3.1	-2.50	-1.65	0.72	0.37
	23.2	22.05	18.38	18.88	21.93
$H + HO \rightarrow H_2 + O$	10.7	1.58	3.76	3.28	4.46
	13.1	1.69	-1.08	5.86	6.79
$\mathrm{H} + \mathrm{H}_2\mathrm{S} \longrightarrow \mathrm{H}_2 + \mathrm{H}\mathrm{S}$	3.5	-2.12	-1.13	1.09	1.92
	17.3	14.94	10.04	10.25	13.95
$O + HCl \rightarrow OH + Cl$	9.8	-8.14	-9.88	-1.80	-1.20
	10.4	-2.22	-5.75	-7.27	-3.69
$CH_3 + NH_2 \rightarrow CH_4 + NH$	8	3.48	0.66	0.78	2.67
	22.4	13.57	10.83	16.23	17.11
$C_2H_5 + NH_2 \rightarrow C_2H_6 + NH$	7.5	5.87	2.86	2.87	5.11
	18.3	10.83	7.76	13.42	14.09
$\mathrm{NH}_2 + \mathrm{C}_2\mathrm{H}_6 \longrightarrow \mathrm{NH}_3 + \mathrm{C}_2\mathrm{H}_5$	10.4	5.31	1.52	4.42	6.02
	17.4	12.80	10.12	12.65	14.54
$\rm NH_2 + \rm CH_4 \rightarrow \rm NH_3 + \rm CH_3$	14.5	8.08	4.51	7.18	9.08
	17.8	10.43	7.82	10.52	12.14
<i>s-trans cis</i> - $C_5H_8 \rightarrow s$ - <i>trans cis</i> - C_5H_8	38.4	36.04	31.43	33.25	36.56

	38.4	36.04	31.43	33.25	36.56
NHTBH38/08	Reference	BLYP	PBE	N12	GAM
$H + N_2O \rightarrow OH + N_2$	17.13	8.95	10.46	11.34	16.15
	82.47	62.18	53.04	59.00	57.69
$H + FH \rightarrow HF + H$	42.18	26.78	27.98	30.53	36.09
	42.18	26.78	27.98	30.53	36.09
$H + CIH \rightarrow HCI + H$	18	10.53	10.40	13.69	15.85
	18	10.53	10.40	13.69	15.85
$H + FCH_3 \rightarrow HF + CH_3$	30.38	16.33	18.73	20.71	23.07
	57.02	42.33	41.14	43.39	47.98
$H + F_2 \rightarrow HF + F$	2.27	-11.45	-9.59	-10.37	-6.85
	106.18	81.67	80.38	87.43	91.50
$CH_3 + FCl \rightarrow CH_3F + Cl$	6.73	-6.91	-6.41	-5.90	-5.64
	60	42.89	42.79	44.25	46.03
$F^- + CH_3F \rightarrow FCH_3 + F^-$	-0.34	-7.88	-8.33	-7.45	-6.28
	-0.34	-7.88	-8.33	-7.45	-6.28
$F^-\cdots CH_3F \rightarrow FCH_3\cdots F^-$	13.38	6.11	6.66	7.06	9.06
	13.38	6.11	6.66	7.06	9.06
$Cl^- + CH_3Cl \rightarrow ClCH_3 + Cl^-$	3.1	-3.87	-3.73	-1.07	0.16
	3.1	-3.87	-3.73	-1.07	0.16
$Cl^-\cdots CH_3Cl \rightarrow ClCH_3\cdots Cl^-$	13.41	5.56	6.94	8.39	11.12
	13.41	5.56	6.94	8.39	11.12
$F^- + CH_3Cl \rightarrow FCH_3 + Cl^-$	-12.54	-19.31	-19.51	-17.89	-16.20
	20.11	12.88	12.09	14.10	14.49
$F^-\cdots CH_3Cl \rightarrow FCH_3\cdots Cl^-$	3.44	-1.96	-0.98	-0.20	1.76
	29.42	20.72	21.04	22.00	24.18
$OH^- + CH_3F \rightarrow HOCH_3 + F^-$	-2 44	-9.78	-10.66	-9.62	-8.14
	17.66	9.59	9 63	11 92	12 47
$OH^-\cdots CH_2F \rightarrow HOCH_2\cdots F^-$	10.96	3 20	3 37	3 87	6.52
	47.2	39.80	42.72	44 31	43.34
$H + N_2 \rightarrow HN_2$	14 36	5 59	5 57	6.92	917
	10.61	8 58	9.24	12.58	11 54
$H + CO \rightarrow HCO$	3 17	-1 93	-1 69	-0.34	0.57
	22.68	23.36	24.72	26.22	27.30
$H + C_2H_4 \rightarrow CH_3CH_2$	1.72	-0.61	-0.04	1.28	1.52
2 52	41.75	38.29	40.39	42.31	42.55
$CH_3 + C_2H_4 \rightarrow CH_3CH_2CH_2$	6.85	4.75	1.57	3.14	3.11
5 _ 2	32.97	24.87	29.72	30.85	31.08

April 4, 2015	Database 2015				
$HCN \rightarrow HNC$	48.07	47.04	45.95	46.48	48.54
	32.82	32.10	30.97	33.81	32.82
NCCE30	Reference	BLYP	PBE	N12	GAM
(NH ₃) ₂	3.15	2.36	3.34	2.40	3.64
(HF) ₂	4.57	4.37	5.00	4.84	5.06
$(H_2O)_2$	4.97	4.55	5.44	4.99	5.55
NH ₃ …H ₂ O	6.41	6.01	7.15	6.43	7.09
(HCONH ₂) ₂	14.94	12.02	14.24	13.31	14.18
(HCOOH) ₂	16.15	13.80	16.33	16.41	15.53
$C_2H_4\cdots F_2$	1.06	2.68	3.17	2.76	3.49
NH ₃ …F ₂	1.81	4.95	5.45	4.79	5.62
C_2H_2 ···ClF	3.81	4.36	6.18	4.74	6.25
HCN…ClF	4.86	4.75	5.93	4.80	6.04
NH ₃ ···Cl ₂	4.88	6.46	7.95	6.37	7.50
H ₂ O…ClF	5.36	6.08	7.41	6.27	7.30
NH ₃ …ClF	10.62	14.62	17.09	15.67	15.28
$(H_2S)_2$	1.66	0.73	1.80	0.67	2.33
(HCl) ₂	2.01	1.13	2.11	1.13	2.54
$HC1 \cdots H_2S$	3.35	2.80	4.16	2.98	4.42
CH ₃ Cl···HCl	3.55	1.90	3.39	2.07	3.90
HCN…CH3SH	3.59	2.16	3.52	2.29	3.87
CH ₃ SH···HCl	4.16	3.63	5.61	4.10	5.80
CH ₄ …Ne	0.22	-0.10	0.27	-0.05	0.26
C ₆ H ₆ …Ne	0.47	-0.39	0.35	-0.26	0.43
(CH ₄) ₂	0.51	-0.82	0.01	-1.02	0.49
CO ₂ …Ar	0.57	0.43	-0.26	0.65	-0.45
$(C_2H_2)_2$	1.34	0.10	1.00	-0.03	1.47
$(C_2H_4)_2$	1.42	-1.08	0.36	-1.19	1.27
sandwich $(C_6H_6)_2$	1.81	-3.69	-1.56	-2.60	0.73
T-shaped $(C_6H_6)_2$	2.74	-1.81	0.11	-0.20	1.88
parallel-displaced (C ₆ H ₆) ₂	2.78	-3.49	-0.97	-2.12	1.37
parallel-displaced (CO ₂) ₂	1.49	0.13	-0.71	0.29	-0.98
sandwich $(C_5H_5N)_2$	2.89	2.48	0.19	2.69	-1.31

NGDWI21	Reference	BLYP	PBE	N12	GAM
He ₂	0.022	-0.08	0.06	-0.05	0.041
Ne ₂	0.080	-0.14	0.12	-0.10	0.080
Ar ₂	0.290	-0.38	0.11	-0.46	0.271
Kr ₂	0.400	-0.52	0.09	-0.64	0.439
HeNe	0.040	-0.10	0.09	-0.07	0.058
HeAr	0.060	-0.14	0.09	-0.13	0.086
NeAr	0.130	-0.20	0.13	-0.20	0.139
HeHe_L_0.3A	0.007	-0.14	0.07	-0.10	0.031
HeHe_R_0.3A	0.017	-0.05	0.04	-0.02	0.029
ArAr_L_0.3A	0.141	-0.82	-0.18	-0.87	0.155
ArAr_R_0.3A	0.239	-0.22	0.14	-0.27	0.209
NeNe_L_0.3A	0.015	-0.30	0.04	-0.22	-0.002
NeNe_R_0.3A	0.067	-0.09	0.10	-0.06	0.067
KrKr_L_0.3A	0.236	-1.10	-0.29	-1.17	0.251
KrKr_R_0.3A	0.343	-0.29	0.16	-0.39	0.361
HeNe_L_0.3A	0.006	-0.19	0.08	-0.14	0.030
HeNe_R_0.3A	0.033	-0.07	0.06	-0.03	0.045
HeAr_L_0.3A	0.025	-0.26	0.06	-0.25	0.074
HeAr_R_0.3A	0.049	-0.09	0.07	-0.07	0.061
NeAr_L_0.3A	0.053	-0.41	0.02	-0.39	0.085
NeAr_R_0.3A	0.109	-0.12	0.11	-0.11	0.104
4.5.1.7	D.C		DDE	2110	<u></u>
AEI7	Reference	BLYP	PBE	N12	GAM
Н	-0.50	-0.50	-0.50	-0.50	-0.50
Не	-2.90	-2.91	-2.89	-2.92	-2.92
Li	-7.48	-7.46	-7.46	-7.53	-7.52
Be	-14 67	-14 63	-14 63	-14 71	-14 71

Н	-0.50	-0.50	-0.50	-0.50	-0.50
He	-2.90	-2.91	-2.89	-2.92	-2.92
Li	-7.48	-7.46	-7.46	-7.53	-7.52
Be	-14.67	-14.63	-14.63	-14.71	-14.71
В	-24.65	-24.65	-24.61	-24.69	-24.70
С	-37.85	-37.84	-37.80	-37.87	-37.88
Ν	-54.59	-54.59	-54.54	-54.61	-54.62
0	-75.07	-75.08	-75.01	-75.07	-75.07
F	-99.73	-99.75	-99.68	-99.73	-99.73
Ne	-128.94	-128.95	-128.87	-128.95	-128.93
Na	-162.25	-162.27	-162.17	-162.29	-162.24
Mg	-200.05	-200.08	-199.95	-200.08	-200.06
Al	-242.35	-242.37	-242.24	-242.37	-242.35
Si	-289.36	-289.38	-289.23	-289.38	-289.36
Р	-341.26	-341.27	-341.12	-341.27	-341.27
S	-398.11	-398.12	-397.95	-398.12	-398.11

Cl	-460.15	-460.15	-459.97	-460.17	-460.15
HC7/11	Reference	BLYP	PBE	N12	GAM
E22-E1	14.34	-11.53	13.78	17.05	15.57
E31-E1	25.02	-13.37	18.42	22.69	17.68
octane iso	1.90	-9.58	-5.18	-7.16	-5.84
DE (reaction a)	9.81	4.07	5.78	4.71	5.96
DE (reaction b)	14.84	6.01	8.59	6.96	8.86
DE (reaction c)	193.99	135.86	193.00	196.37	184.95
DE (reaction d)	127.22	83.93	124.90	126.79	118.74
3dAEE7	Reference	BLYP	PBE	N12	GAM
Sc	32.91	17.34	13.28	4.95	26.67
Mn^+	27.08	19.64	26.57	15.69	15.46
Fe	34.32	18.98	21.35	12.36	45.39
Ni ⁺	25.02	24.14	25.21	43.42	37.44
Zn	93.48	104.03	97.93	104.59	97.48
Ca ⁺	39.10	25.91	26.44	22.76	21.45
V	5.60	-3.31	-12.57	-16.77	-0.17
4dAEE5	Reference	BLYP	PBE	N12	GAM
Mo ⁺	43.96	26.07	33.40	32.07	39.93
Ru ⁺	25.15	26.50	22.98	34.74	30.35
Rh^+	18.62	10.83	11.74	9.59	14.12
Pd	21.96	21.11	21.90	29.79	27.24
Y^+	3.41	2.63	-0.42	-9.44	10.53
pEE5	Reference	BLYP	PBE	N12	GAM
F	292.88	296.52	293.55	285.45	293.88
Ar	268.12	260.68	262.05	262.85	268.53
C^+	122.92	124.88	114.12	87.95	115.91
Al	82.98	90.82	82.87	74.38	86.58
Si ⁺	126	130.64	121.83	107.96	123.09

April 4, 2015

DC9/12	Reference	BLYP	PBE	N12	GAM
$HCN \cdots BF_3 \rightarrow HCN + BF_3$	5.70	2.71	4.33	4.04	4.80
$\mathrm{C_6Cl_6} + \mathrm{6HCl} \rightarrow \mathrm{6Cl_2} + \mathrm{C_6H_6}$	148.30	114.96	135.99	141.13	160.55
$P_4 \rightarrow 4P$	289.90	283.42	308.07	325.38	304.77
$SF_6 \rightarrow S + 6F$	477.50	463.87	501.88	503.59	472.41
$PF_5 \rightarrow P + 5F$	556.40	540.64	562.00	571.23	535.61
$P_4O_{10} \rightarrow P_4 + 5O_2$	719.70	605.03	618.57	656.30	539.58
$C_6F_6 \rightarrow 6C + 6F$	1388.10	1398.03	1485.06	1443.03	1434.16
$Si(OCH_3)_4 \rightarrow Si + 4C + 4O + 12H$	2023.50	1996.50	2046.37	2012.09	1987.05
urotropin $\rightarrow 6C + 4N + 12H$	2151.10	2122.01	2214.43	2121.45	2122.96
2pIsoE4	Reference	BLYP	PBE	N12	GAM
С	3.8	0.35	1.45	0.81	1.39
Ν	57.1	71.19	64.37	65.84	70.26
0	9.9	10.53	9.43	8.78	5.62
F	26.9	23.27	26.06	26.11	26.68
4pIsoE4	Reference	BLYP	PBE	N12	GAM
As	33.0	45.84	37.90	37.40	42.29
Br	-6.3	-6.44	-5.22	-5.88	-6.01
Ge	24.6	23.25	22.73	24.44	20.73
Se	20.8	22.47	22.67	22.73	19.96

 Table S6. MUEs (in kcal/mol for energetics and Å for distances) for each primary

 subdatabase using GAM exchange-correlation functional.

Subset	MUE	Subset	MUE
MSR2	3.15	PA-CP5/06	8.52
MGDSR5	1.06	PA-SB5/06	9.02
3dSRBE2	3.19	HATBH12/08	9.06
ABDE12	7.95	NSBH16/08	4.15
ABDE4/05	5.85	UABH10/08	2.04
ABDEL8	8.99	DBH24/08	4.93
NMSR95	1.55	HB6/04	0.60
AE6/11	3.48	CT7/04	2.73
3dSRBE4	2.56	DI6/04	0.75
SRMBE12	8.34	EDCE19	1.43
MBE15	8.32	WI8	0.16

April 4, 2015			Database 2015
TMBE15	8.32	pSI7	1.47
3dMRBE6	4.11	SB1AE97	1.59
MRBE5	8.26	MGLC4	0.038
IP13/03	3.77	ILC5	0.096
IPM10	5.65	TMLC4	0.087
πIE3/06	8.00	SLC5	0.134

Table S7. Geometries (in Å), Charge, and Multiplicity for Single-Point Calculations.

SR-MGM-BE9			
КОН			
0, 1			
K	0.0000000	0.0000000	2.1800000
0	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	-0.9700000
NaO			
0, 2			
Na	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	2.0500000
LiO			
0.2			
U, Z	0 0000000	0.0000000	1 6800000
0	0.0000000	0.0000000	0.0000000
7.0			
ZnSe			
0, 1	0.000000	0.000000	1 100/000
Zn	0.0000000	0.0000000	-1.1906800
Se	0.0000000	0.0000000	1.0506000
ZnCl			
0, 2			
Zn	0.0000000	0.0000000	0.7864940
Cl	0.0000000	0.0000000	-1.3879310

AlCl ₃			
0, 1			
Al	0.0000000	0.0000000	0.0000000
Cl	2.0713000	0.0000000	0.0000000
Cl	-1.0356500	-1.7938000	0.0000000
Cl	-1.0356500	1.7938000	0.0000000
AlF ₃			
0, 1			
Al	0.0000000	0.0000000	0.0000000
F	1.6284800	0.0000000	0.0000000
F	-0.814240	-1.410310	0.0000000
F	-0.814240	1.4103100	0.0000000
LiCl			
0, 1			
Li	0.0000000	0.0000000	0.0000000
Cl	0.0000000	0.0000000	2.0206700
AlCl			
0.1			
Cl	0.0000000	0.0000000	-1.0705300
Al	0.0000000	0.0000000	1.0705300

SR-MGN-BE107			
C_2H_6			
0, 1			
С	-0.7652700	0.0000000	0.0000000
С	0.7652700	0.0000000	0.0000000
Н	1.1643500	1.0209400	0.0000000
Н	1.1643500	-0.5104700	0.8841600
Н	1.1643500	-0.5104700	-0.8841600
Н	-1.1643500	-1.0209400	0.0000000
Н	-1.1643500	0.5104700	0.8841600
Н	-1.1643500	0.5104700	-0.8841600
iPr-CH ₃			
0, 1			
C	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.1005600
С	1.4620900	0.0000000	-0.4685500
С	-0.7310500	-1.2662100	-0.4685500
С	-0.7310500	1.2662100	-0.4685500
Н	1.5211800	0.0000000	-1.5650500
Н	-0.7605900	-1.3173800	-1.5650500
Н	-0.7605900	1.3173800	-1.5650500

Н	1.9975500	0.8862200	-0.1072300
Н	1.9975500	-0.8862200	-0.1072300
Н	-0.2312900	-2.1730400	-0.1072300
Н	-1.7662600	-1.2868200	-0.1072300
Н	-1.7662600	1.2868200	-0.1072300
Н	-0.2312900	2.1730400	-0.1072300
C ₂ H ₆ O			
0, 1			
0	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.4098600
С	1.3043100	0.0000000	-0.5352500
Η	-1.0441800	0.0000000	1.7341000
Η	1.2078600	0.0000000	-1.6243400
Н	0.5010100	0.8929500	1.8197700
Η	1.8737300	0.8929500	-0.2273700
Н	0.5010100	-0.8929500	1.8197700
Н	1.8737300	-0.8929500	-0.2273700
iPr-OCH ₃			
0, 1			
0	0.2581800	0.9378800	0.0407400
С	1.6365600	1.0423000	0.3233000
Н	1.8990700	2.1004100	0.2355500
Н	2.2623400	0.4702400	-0.3784700
C	-0.2958100	-0.3651000	0.2296100
Н	0.0737300	-0.7702300	1.1884200
С	0.0999600	-1.3221900	-0.8997900
С	-1.8070700	-0.1766000	0.3188300
Н	-2.3094100	-1.1343600	0.4933800
H	-2.0591700	0.5065000	1.1358100
Н	-2.1901500	0.2507100	-0.6147500
H	-0.3461700	-2.3107400	-0.7410700
H	-0.2515800	-0.9340800	-1.8625300
Н	1.1853100	-1.4555200	-0.9606300
Н	1.8687800	0.7036000	1.3466100
Et-H			
0, 1	0.7(50700	0.000000	0.000000
C	-0./652/00	0.0000000	0.0000000
C	0.7652700	0.0000000	0.0000000
H	1.1643500	1.0209400	0.0000000
H	1.1643500	-0.5104/00	0.8841600
H	1.1643500	-0.5104/00	-0.8841600
H	-1.1643500	-1.0209400	0.0000000
H	-1.1643500	0.5104700	0.8841600
Н	-1.1643500	0.5104/00	-0.8841600

Et-CH ₃			
0, 1			
С	0.0000000	0.0000000	0.5864600
Н	0.8776200	0.0000000	1.2471600
Н	-0.8776200	0.0000000	1.2471600
С	0.0000000	-1.2771800	-0.2598900
С	0.0000000	1.2771800	-0.2598900
Н	0.0000000	-2.1759600	0.3676200
Н	-0.8846200	-1.3221900	-0.9073900
Н	0.8846200	-1.3221900	-0.9073900
Н	0.0000000	2.1759600	0.3676200
Н	0.8846200	1.3221900	-0.9073900
Н	-0.8846200	1.3221900	-0.9073900
Et-OCH ₃			
0, 1			
Ċ	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.4096200
С	1.3060800	0.0000000	1.9578700
С	1.1922100	0.0000000	3.4735300
Н	2.1866600	0.0000000	3.9333200
Н	-1.0441000	0.0000000	-0.3247400
Н	0.5007900	-0.8926700	-0.4105100
Н	0.5007900	0.8926700	-0.4105100
Н	1.8643500	-0.8872800	1.6105600
Н	1.8643500	0.8872800	1.6105600
Н	0.6498100	-0.8869000	3.8167300
Н	0.6498100	0.8869000	3.8167300
Et-OH			
0.1			
H H	-1 8176300	-0.8062000	0.0000000
0	-0.8507800	-0.8715100	0.0000000
Č	-0 3229800	0 4520600	0.0000000
Č	1.1930800	0.3476000	0.0000000
H	1.6489800	1.3439400	0.0000000
Н	-0.6606200	1.0125200	-0.8875300
Н	-0.6606200	1.0125200	0.8875300
Н	1.5377700	-0.1943400	-0.8868200
Н	1.5377700	-0.1943400	0.8868200
4D., 11			
0, 1 C	0.000000	0.000000	0.000000
			0.0000000
	1.4620000	0.0000000	1.1003000
C	1.4020900	1 2662100	-0.4083300
C	-0.7310300	-1.2002100	-0.4083300
U	-0./310300	1.2002100	-0.4083300

Н	1.5211800	0.0000000	-1.5650500
Н	-0.7605900	-1.3173800	-1.5650500
Н	-0.7605900	1.3173800	-1.5650500
Н	1.9975500	0.8862200	-0.1072300
Н	1.9975500	-0.8862200	-0.1072300
Н	-0.2312900	-2.1730400	-0.1072300
Н	-1.7662600	-1.2868200	-0.1072300
Н	-1.7662600	1.2868200	-0.1072300
Н	-0.2312900	2.1730400	-0.1072300
tBu-CH ₃			
0, 1			
C	0.0000000	0.0000000	0.0000000
C	1.5402500	-0.0000900	-0.0000400
C	-0.5133300	1.4521900	-0.0000500
C	-0.5134900	-0.7261100	-1.2575600
C	-0.5134200	-0.7259900	1.2576500
Н	-1.6099900	1.4848900	-0.0000200
Н	-1.6101500	-0.7423700	-1.2858000
Н	-1.6100800	-0.7422500	1.2859600
Н	-0.1631200	1.9963800	0.8859100
Н	-0.1631600	1.9963000	-0.8860800
Н	-0.1633300	-0.2309600	-2.1718600
Н	-0.1633900	-1.7655100	-1.2858000
Н	-0.1633200	-1.7653900	1.2859600
Н	-0.1632000	-0.2307700	2.1718900
Н	1.9365200	-1.0231600	-0.0000100
Н	1.9365800	0.5113800	-0.8860700
Н	1.9366300	0.5114600	0.8859200
tBu-OCH ₃			
0, 1			
C	0.0000000	0.0000000	0.0000000
C	0.0000000	0.0000000	1.5330700
0	1.4034400	0.0000000	1.8630700
C	1.7631400	0.0000000	3.2288700
H	-1.0228900	0.0000000	-0.3917600
Н	0.5199500	-0.8862500	-0.3781500
H	0.5199500	0.8862500	-0.3781500
Н	2.8567700	0.0000000	3.2541300
Н	1.4070800	-0.8921700	3.7647500
Н	1.4070800	0.8921700	3.7647500
C	-0.6925200	-1.2669400	2.0622200
C	-0.6925200	1.2669400	2.0622200
H	-0.1536600	-2.1608800	1.7298200
H	-0.1536600	2.1608800	1.7298200
Н	-1.7201100	-1.3251500	1.6864900

Н	-1.7201100	1.3251500	1.6864900
Н	-0.7436500	-1.2818800	3.1563800
Н	-0.7436500	1.2818800	3.1563800
tBu-OH			
0, 1			
C	-1.5323300	0.0224700	0.0000000
С	-0.0019200	0.0142100	0.0000000
0	0.3723900	1.4035600	0.0000000
Н	1.3424800	1.4403600	0.0000000
Н	-1.9299100	-0.9981900	0.0000000
Н	-1.9079700	0.5438200	-0.8865300
Н	-1.9079700	0.5438200	0.8865300
С	0.5430300	-0.6646600	-1.2658000
С	0.5430300	-0.6646600	1.2658000
Н	0.1783600	-0.1475200	-2.1594300
Н	0.1783600	-0.1475200	2.1594300
Н	0.2375200	-1.7160000	-1.3228000
Н	0.2375200	-1.7160000	1.3228000
Н	1.6408400	-0.6376700	-1.2803200
Н	1.6408400	-0.6376700	1.2803200
$CH(^{2}\Pi)$			
0,2			
Ċ	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.1191300
$CH_2({}^{3}B_1)$			
0.3			
C	0.0000000	0.0000000	0.0000000
H	0.0000000	0.0000000	1.0767200
Н	0.7766500	0.0000000	-0.7457500
$CH_2(^1A_1)$			
0 1			
C C	0 000000	0 0000000	0 0000000
H	0.0000000	0.0000000	1.1077100
Н	1.0837800	0.0000000	-0.2289900
$CH_{3}(^{2}A''_{2})$			
0.2			
C	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.0773200
Н	0.9329800	0.0000000	-0.5386600
Н	-0.9329800	0.0000000	-0.5386600
CH₄			
0, 1			
Ċ	0.0000000	0.0000000	0.0000000

Н	0.0000000	0.0000000	1.0874400
Н	1.0252500	0.0000000	-0.3624800
Н	-0.5126300	0.8878900	-0.3624800
Н	-0.5126300	-0.8878900	-0.3624800
NILI			
NП 0.3			
0, 5 N	0.000000	0.000000	0.000000
IN LI	0.0000000	0.0000000	1.0267200
11	0.0000000	0.0000000	1.0307300
NH ₂			
0, 2			
Ν	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.0240500
Н	0.9971600	0.0000000	-0.2331400
NH2			
0 1			
N	0 000000	0 0000000	0 1128900
Н	0.0000000	0.9380200	-0 2634100
Н	0.8123500	-0 4690100	-0 2634100
Н	-0.8123500	-0.4690100	-0.2634100
OH			
0, 2			
0	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	0.9689000
H ₂ O			
0, 1			
Ó	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	0.9569100
Н	0.9263600	0.0000000	-0.2398700
LIE.			
0, 1 E	0.000000	0.000000	0 000000
Г	0.0000000	0.0000000	0.0000000
11	0.0000000	0.0000000	0.9155800
$SiH_2(^1A_1)$			
0, 1			
Si	0.0000000	0.0000000	0.1309600
Н	0.0000000	1.0947500	-0.9167600
Н	0.0000000	-1.0947500	-0.9167600
$SiH_2(^{3}B_1)$			
0 3			
Si	0.0000000	0.0000000	0.0000000
Н	1.2694600	0.0000000	0.7575200
Н	-1.2694600	0.0000000	0.7575200

SiH ₃			
Si	0 000000	0 0000000	0.0791800
H	0.0000000	1.4079800	-0.3694900
Н	1.2193500	-0.7039900	-0.3694900
Н	-1.2193500	-0.7039900	-0.3694900
SiH ₄			
0, 1			
Si	0.0000000	0.0000000	0.0000000
Η	0.0000000	0.0000000	1.4767000
Η	1.3922500	0.0000000	-0.4922300
Н	-0.6961200	-1.2057200	-0.4922300
Н	-0.6961200	1.2057200	-0.4922300
PH ₂			
0, 2			
P	0.0000000	0.0000000	-0.1156600
H	1.0201300	0.0000000	0.8674300
Н	-1.0201300	0.0000000	0.8674300
PH ₃			
0, 1			
Р	0.0000000	0.0000000	0.1264100
H	1.1913400	0.0000000	-0.6320600
H	-0.5956700	-1.0317300	-0.6320600
Н	-0.5956/00	1.031/300	-0.6320600
H_2S			
0, 1			
S	0.0000000	0.0000000	0.1025200
H	0.0000000	0.9662500	-0.8201500
Н	0.0000000	-0.9662500	-0.8201500
HC1			
0, 1			
Cl	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.2744500
C_2H_2			
0, 1			
C	0.0000000	0.0000000	0.0000000
C	0.0000000	0.0000000	1.2031400
H	0.0000000	0.0000000	2.2657500
Н	0.0000000	0.0000000	-1.0626100
CH ₂ CH ₂			
0, 1	0.000000	0.0000000	0.0000000
C	0.0000000	0.0000000	0.0000000
U	0.0000000	0.0000000	1.3311900
Н	0.9214900	0.0000000	-0.5660700
---------------------------------	------------	------------	------------
Н	-0.9214900	0.0000000	-0.5660700
Н	0.9214900	0.0000000	1.8972600
Н	-0.9214900	0.0000000	1.8972600
CH ₃ CH ₃			
0, 1			
C	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.5261800
Н	1.0160700	0.0000000	1.9214000
Н	0.5096000	-0.8790400	-0.3952200
Н	-0.5080300	-0.8799400	1.9214000
Н	-0.5080400	0.8799400	1.9214000
Н	-1.0160700	-0.0018000	-0.3952200
Н	0.5064700	0.8808400	-0.3952200
HCN			
0, 1			
С	0.0000000	0.0000000	-0.5003600
Ν	0.0000000	0.0000000	0.6526400
Н	0.0000000	0.0000000	-1.5662900
НСО			
0, 2			
C	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.1766100
Н	0.9129300	0.0000000	-0.6428700
H ₂ CO			
0.1			
0	0.0000000	0.0000000	0.6746200
C	0.0000000	0.0000000	-0.5297100
Н	0.0000000	0.9354900	-1.1093700
Н	0.0000000	-0.9354900	-1.1093700
CH ₃ OH			
0, 1			
Ć	-0.0464200	0.6630700	0.0000000
0	-0.0464200	-0.7550600	0.0000000
Н	-1.0869600	0.9759400	0.0000000
Н	0.8605900	-1.0570400	0.0000000
Н	0.4381500	1.0715900	0.8895400
Н	0.4381500	1.0715900	-0.8895400
NH ₂ NH ₂			
0, 1			
Ν	0.0000000	0.0000000	0.0000000
Ν	0.0000000	0.0000000	1.4338300
Н	0.9401400	0.0000000	-0.3744700

Н	-0.4512800	0.8508900	-0.3007000
Н	0.8350000	0.4320200	1.8083100
Н	-0.0098000	-0.9631000	1.7345400
НООН			
0, 1			
0	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.4398400
Н	0.9448300	0.0000000	-0.1771600
Н	-0.3850500	0.8628100	1.6170000
Si ₂			
0, 3			
Si	0.0000000	0.0000000	0.0000000
Si	0.0000000	0.0000000	2.1579200
P ₂			
0, 1			
Р	0.0000000	0.0000000	0.0000000
Р	0.0000000	0.0000000	1.8903800
S_2			
0, 3			
S	0.0000000	0.0000000	0.0000000
S	0.0000000	0.0000000	1.8925900
Cl ₂			
0, 1			
Cl	0.0000000	0.0000000	0.0000000
Cl	0.0000000	0.0000000	2.0078300
SC			
0 1			
0, 1 C	0.000000	0.0000000	0.0000000
S	0.0000000	0.0000000	1 5363500
	0.0000000	0.0000000	1.0000000
0, 1 E	0.000000	0.000000	0 000000
r Cl	0.0000000	0.0000000	1,6202200
	0.0000000	0.0000000	1.0303300
Si_2H_6			
0, 1	0 000000	0.000000	0 000000
SI Si	0.000000	0.0000000	0.0000000
51	0.0000000	0.0000000	2.3400100
П	1.3001100	0.0000000	-0.3131800
п	-0.0940300	-1.2021400	-0.5151800
п	-0.0940300	1.2021400	-0.3131800
П	-1.3881100	0.0000000	2.855/900
Н	0.6940500	-1.2021400	2.855/900

Н	0.6940500	1.2021400	2.8557900
CH ₃ Cl			
0, 1			
Ċ	0.0000000	0.0000000	-1.1258900
Cl	0.0000000	0.0000000	0.6568300
Н	0.0000000	1.0279900	-1.4702600
Н	0.8902700	-0.5140000	-1.4702600
Н	-0.8902700	-0.5140000	-1.4702600
CH ₃ SH			
0, 1			
C	-0.0477500	1.1501100	0.0000000
S	-0.0477500	-0.6636400	0.0000000
Н	1.2780600	-0.8296600	0.0000000
Н	-1.0912000	1.4564300	0.0000000
Н	0.4317800	1.5453800	0.8910000
Н	0.4317800	1.5453800	-0.8910000
HOCI			
0 1			
0	0 0000000	0 0000000	0 0000000
H	0.0000000	0.0000000	0.9621100
Cl	1.6421500	0.0000000	-0.3923200
DCI			
BCI3			
0, 1 P	0.000000	0.000000	0.000000
D Cl	1 7406400	0.0000000	0.0000000
Cl	0.8703200	1.5074400	0.0000000
Cl	-0.8703200	-1.5074400	0.0000000
CI	-0.8703200	1.3074400	0.0000000
BF ₃			
0, 1	0.000000	0.000000	0.0000000
В	0.0000000	0.0000000	0.0000000
F	0.0000000	0.0000000	1.3083600
F	1.1330800	0.0000000	-0.6541800
F	-1.1330800	0.0000000	-0.6541800
C_2Cl_4			
0, 1			
С	0.0000000	0.0000000	0.6692300
C	0.0000000	0.0000000	-0.6692300
Cl	0.0000000	1.4473800	1.5854300
Cl	0.0000000	-1.4473800	1.5854300
Cl	0.0000000	-1.4473800	-1.5854300
CI	0.0000000	1.4473800	-1.5854300
C_2F_4			

0, 1

С	0.0000000	0.0000000	0.6594900
С	0.0000000	0.0000000	-0.6594900
F	0.0000000	1.0941800	1.3815800
F	0.0000000	-1.0941800	1.3815800
F	0.0000000	1.0941800	-1.3815800
F	0.0000000	-1.0941800	-1.3815800
C ₃ H ₄ (propyne)			
0, 1			
C	0.0000000	0.0000000	0.2195100
C	0.0000000	0.0000000	1.4239600
С	0.0000000	0.0000000	-1.2437600
Н	0.0000000	0.0000000	2.4862600
Н	0.0000000	1.0190100	-1.6281500
Н	0.8824900	-0.5095000	-1.6281500
Н	-0.8824900	-0.5095000	-1.6281500
C ₄ H ₄ O			
0, 1			
0	0.0000000	0.0000000	1.1581400
С	0.0000000	1.0901600	0.3453000
C	0.0000000	-1.0901600	0.3453000
С	0.0000000	0.7197300	-0.9560100
C	0.0000000	-0.7197300	-0.9560100
Н	0.0000000	2.0445000	0.8383500
Н	0.0000000	-2.0445000	0.8383500
Н	0.0000000	1.3774800	-1.8066100
Н	0.0000000	-1.3774800	-1.8066100
C_4H_4S			
0, 1			
S	0.0000000	0.0000000	0.0000000
C	0.0000000	0.0000000	1.7153500
C	1.7144200	0.0000000	-0.0563700
C	1.2669400	0.0000000	2.2200500
C	2.2604900	0.0000000	1.1933000
Н	-0.9296100	0.0000000	2.2586800
Н	2.2269100	0.0000000	-1.0033400
Н	1.4872000	0.0000000	3.2762300
Н	3.3233300	0.0000000	1.3787300
C ₄ H ₅ N			
0, 1			
Н	0.0000000	0.0000000	2.1206400
N	0.0000000	0.0000000	1.1195600
С	0.0000000	1.1209700	0.3297700
С	0.0000000	-1.1209700	0.3297700
С	0.0000000	0.7133800	-0.9798900

С	0.0000000	-0.7133800	-0.9798900
Н	0.0000000	2.1059300	0.7609900
Н	0.0000000	-2.1059300	0.7609900
Н	0.0000000	1.3609300	-1.8390300
Н	0.0000000	-1.3609300	-1.8390300
C ₄ H ₆ (trans-	-1,3-butadiene)		
0, 1	. ,		
С	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.3365900
С	1.2146700	0.0000000	2.1485300
С	1.2146700	0.0000000	3.4851100
Н	-0.9202300	0.0000000	-0.5659600
Н	0.9256700	0.0000000	-0.5614600
Н	-0.9424700	0.0000000	1.8733100
Н	2.1571400	0.0000000	1.6118000
Н	0.2890000	0.0000000	4.0465700
Н	2.1349000	0.0000000	4.0510700
C_4H_6 (2-but	yne)		
0, 1			
С	0.0000000	0.0000000	2.0668000
С	0.0000000	0.0000000	0.6024600
С	0.0000000	0.0000000	-0.6024600
С	0.0000000	0.0000000	-2.0668000
Н	0.0000000	1.0181800	2.4549300
Н	-0.8817700	-0.5090900	2.4549300
Н	0.8817700	-0.5090900	2.4549300
Н	0.0000000	1.0181800	-2.4549300
Н	0.8817700	-0.5090900	-2.4549300
Н	-0.8817700	-0.5090900	-2.4549300
C ₅ H ₅ N			
0, 1			
N	0.0000000	0.0000000	1.4170400
С	0.0000000	0.0000000	-1.3813400
С	0.0000000	1.1387000	0.7191500
С	0.0000000	-1.1387000	0.7191500
С	0.0000000	-1.1941300	-0.6708000
С	0.0000000	1.1941300	-0.6708000
Н	0.0000000	0.0000000	-2.4624000
Н	0.0000000	2.0514200	1.3012600
Н	0.0000000	-2.0514200	1.3012600
Н	0.0000000	-2.1490300	-1.1757800
Н	0.0000000	2.1490300	-1.1757800
COLL			

CCH 0, 2

С	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.2073000
Н	0.0000000	0.0000000	-1.0634000
CCl ₄			
0, 1			
С	0.0000000	0.0000000	0.0000000
Cl	0.0000000	0.0000000	1.7673000
Cl	1.6662300	0.0000000	-0.5891000
Cl	-0.8331100	-1.4429900	-0.5891000
Cl	-0.8331100	1.4429900	-0.5891000
CF ₃ CN			
0, 1	0.000000	0.000000	0.0000000
C	0.0000000	0.0000000	-0.3272500
C	0.0000000	0.0000000	1.15/3200
F F	0.0000000	1.2425200	-0.7832100
F F	1.0760500	-0.6212600	-0.7832100
F N	-1.0/60500	-0.6212600	-0./832100
N	0.0000000	0.0000000	2.3094600
CF_4			
0, 1 C	0.000000	0.000000	0.000000
F	0.0000000	0.0000000	1 3150700
F	1 2398600	0.0000000	-0.4383600
F	-0.6199300	-1 0737500	-0 4383600
F	-0.6199300	1.0737500	-0.4383600
CH ₂ OH			
0, 2			
Ć	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.3655800
Н	0.9036400	0.0000000	1.6815100
Н	0.8719400	-0.3709600	-0.5186200
Н	-0.9828100	-0.0804900	-0.4321400
CH ₃ CN			
0, 1			
С	0.0000000	0.0000000	-1.1809800
С	0.0000000	0.0000000	0.2814900
N	0.0000000	0.0000000	1.4359800
Н	0.0000000	1.0224300	-1.5516200
Н	0.8854500	-0.5112100	-1.5516200
Н	-0.8854500	-0.5112100	-1.5516200
CH ₃ NH ₂			
0, 1	0.0400000	0.7050500	0.0000000
C	0.0499200	0.7059500	0.0000000

Ν	0.0499200	-0.7576300	0.0000000
Н	-0.9437300	1.1656200	0.0000000
Н	-0.4400800	-1.111100	0.8099800
Н	-0.4400800	-1.111100	-0.8099800
Н	0.5874700	1.0621800	0.8774800
Н	0.5874700	1.0621800	-0.8774800
CH ₃ NO ₂			
0, 1			
С	-0.0768600	-1.3131100	0.0000000
N	0.0000000	0.1727500	0.0000000
Н	0.9467500	-1.6772100	0.0000000
Н	-0.5893500	-1.6219200	0.9026500
Н	-0.5893500	-1.6219200	-0.9026500
0	0.0433200	0.7244000	-1.0826900
0	0.0433200	0.7244000	1.0826900
CHCl ₃			
0, 1			
C	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.0807800
Cl	1.6785000	0.0000000	-0.5432000
Cl	-0.8392500	-1.4536200	-0.5432000
Cl	-0.8392500	1.4536200	-0.5432000
CHF ₃			
0, 1			
C	0.0000000	0.0000000	0.0000000
H	0.0000000	0.0000000	1.0857600
F	1.2460100	0.0000000	-0.4651500
F	-0.6230100	-1.0790800	-0.4651500
F	-0.6230100	1.0790800	-0.4651500
ClF ₃			
0, 1	0.000000	0.000000	0.000000
	0.0000000	0.0000000	0.0000000
F	0.0000000	0.0000000	1.5930300
F	1.6936800	0.0000000	0.0795300
F	-1.6936800	0.0000000	0.0795300
H_2			
0, 1	0 000000	0.000000	0 000000
H	0.000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	0.7418800
CH ₂ CH			
0, 2 C	0 000000	0 000000	0.000000
C			0.0000000
U	0.0000000	0.0000000	1.5101200

Н	0.9288100	0.0000000	-0.5674600
Н	-0.9189000	0.0000000	-0.5736300
Н	0.7321600	0.0000000	2.1005700
HCOOCH ₃			
0, 1			
С	-0.9275600	-0.0857100	0.0000000
0	-0.7114800	-1.2656400	0.0000000
0	0.0000000	0.8739100	0.0000000
Н	-1.9224400	0.3673100	0.0000000
С	1.3533600	0.3993700	0.0000000
Н	1.9750400	1.2876700	0.0000000
Н	1.5422100	-0.2015300	0.8862300
Н	1.5422100	-0.2015300	-0.8862300
НСООН			
0, 1			
0	-1.0277800	-0.4408400	0.0000000
С	0.0000000	0.4208800	0.0000000
0	1.1564300	0.1106400	0.0000000
Н	-0.6554300	-1.3309800	0.0000000
Н	-0.3737200	1.4472900	0.0000000
PF ₃			
0 1			
P	0 0000000	0 0000000	0 4976300
F	0.0000000	1 3566900	-0 2764600
F	1 1749300	-0 6783400	-0 2764600
F	-1.1749300	-0.6783400	-0.2764600
CII			
SH			
0, 2 S	0 000000	0.000000	0.000000
5	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.3402000
SiCl ₄			
0, 1			
Si	0.0000000	0.0000000	0.0000000
Cl	0.0000000	0.0000000	2.0232000
Cl	1.9074900	0.0000000	-0.6744000
Cl	-0.9537500	1.6519400	-0.6744000
Cl	-0.9537500	-1.6519400	-0.6744000
SiF ₄			
0, 1			
Si	0.0000000	0.0000000	0.0000000
F	0.0000000	0.0000000	1.5546000
F	1.4656900	0.0000000	-0.5182000
F	-0.7328400	-1.2693300	-0.5182000

F	-0.7328400	1.2693300	-0.5182000
C_2H_5			
0, 2			
С	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.4901400
Н	1.0137700	0.0000000	1.8911400
Н	-0.8485500	0.3741300	-0.5528700
Н	-0.5010600	-0.8876800	1.8958500
Н	-0.5250100	0.8674800	1.8910500
Н	0.7721800	-0.5127000	-0.5535700
C ₄ H ₆ (bicylobutan	e)		
0, 1			
С	0.0000000	1.1302800	0.3160500
С	0.0000000	-1.1302800	0.3160500
С	0.7434800	0.0000000	-0.3229700
С	-0.7434800	0.0000000	-0.3229700
Н	0.0000000	1.2135600	1.4001700
Н	0.0000000	2.0775200	-0.2094500
Н	0.0000000	-1.2135600	1.4001700
Н	0.0000000	-2.0775200	-0.2094500
Н	1.4300500	0.0000000	-1.1492100
Н	-1.4300500	0.0000000	-1.1492100
C ₄ H ₆ (cyclobutene	e)		
C ₄ H ₆ (cyclobutene 0, 1	:)		
C ₄ H ₆ (cyclobutene 0, 1 C	e) 0.0000000	0.6699900	0.8138700
C ₄ H ₆ (cyclobutene 0, 1 C C	e) 0.0000000 0.0000000	0.6699900 -0.6699900	0.8138700 0.8138700
C ₄ H ₆ (cyclobutene 0, 1 C C C	e) 0.0000000 0.0000000 0.0000000	0.6699900 -0.6699900 0.7834000	0.8138700 0.8138700 -0.7000700
C ₄ H ₆ (cyclobutene 0, 1 C C C C	e) 0.0000000 0.0000000 0.0000000 0.0000000	0.6699900 -0.6699900 0.7834000 -0.7834000	0.8138700 0.8138700 -0.7000700 -0.7000700
C ₄ H ₆ (cyclobutene 0, 1 C C C C H	e) 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	0.6699900 -0.6699900 0.7834000 -0.7834000 1.4137500	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H	e) 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	0.6699900 -0.6699900 0.7834000 -0.7834000 1.4137500 -1.4137500	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 1.5983600
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H	e) 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400	0.6699900 -0.6699900 0.7834000 -0.7834000 1.4137500 -1.4137500 1.2396000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 1.5983600 -1.1406000
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H	e) 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400 -0.8868400	0.6699900 -0.6699900 0.7834000 -0.7834000 1.4137500 -1.4137500 1.2396000 1.2396000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 1.5983600 -1.1406000 -1.1406000
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H	 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400 -0.8868400 -0.8868400 	0.6699900 -0.6699900 0.7834000 -0.7834000 1.4137500 -1.4137500 1.2396000 1.2396000 -1.2396000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 1.5983600 -1.1406000 -1.1406000 -1.1406000
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H H H	e) 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400 -0.8868400 -0.8868400 0.8868400	0.6699900 - 0.6699900 0.7834000 - 0.7834000 1.4137500 - 1.4137500 1.2396000 1.2396000 - 1.2396000 - 1.2396000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 1.5983600 -1.1406000 -1.1406000 -1.1406000 -1.1406000
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H H H H H H H H H H	e) 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400 -0.8868400 -0.8868400 0.8868400	0.6699900 - 0.6699900 0.7834000 - 0.7834000 1.4137500 - 1.4137500 1.2396000 - 1.2396000 - 1.2396000 - 1.2396000	0.8138700 0.8138700 -0.7000700 1.5983600 1.5983600 -1.1406000 -1.1406000 -1.1406000 -1.1406000
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H H H H H H H H H H OCOH 0, 1	e) 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400 -0.8868400 -0.8868400 0.8868400	0.6699900 - 0.6699900 0.7834000 - 0.7834000 1.4137500 - 1.4137500 1.2396000 1.2396000 - 1.2396000 - 1.2396000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 1.5983600 -1.1406000 -1.1406000 -1.1406000
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H H H H H H H C C O C O	 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400 -0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 	0.6699900 - 0.6699900 0.7834000 - 0.7834000 1.4137500 - 1.4137500 1.2396000 - 1.2396000 - 1.2396000 - 1.2396000 - 1.2396000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 -1.1406000 -1.1406000 -1.1406000 -1.1406000 -1.1406000
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H H H H H H H H C C O C O	 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.0000000 0.0000000 0.0000000 	0.6699900 - 0.6699900 0.7834000 - 0.7834000 1.4137500 - 1.4137500 1.2396000 - 1.2396000 - 1.2396000 - 1.2396000 - 1.2396000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 -1.1406000 -1.1406000 -1.1406000 -1.1406000 -1.1406000 0.0000000 1.5207100
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H H H H H H H H H C C O O	 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 1.0278300 	0.6699900 - 0.6699900 0.7834000 - 0.7834000 1.4137500 - 1.4137500 1.2396000 - 1.2396000 - 1.2396000 - 1.2396000 - 1.2396000 0.0000000 0.0000000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 -1.1406000 -1.1406000 -1.1406000 -1.1406000 0.0000000 1.5207100 -0.6264700
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H H H H H H H H H C C C O H	 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.9966700 	0.6699900 -0.6699900 0.7834000 -0.7834000 1.4137500 -1.4137500 1.2396000 -1.2396000 -1.2396000 -1.2396000 -1.2396000 0.0000000 0.0000000 0.0000000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 1.5983600 -1.1406000 -1.1406000 -1.1406000 -1.1406000 0.0000000 1.5207100 -0.6264700 -0.4673100
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H H H H H H H H H H C C C O H O	e) 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.8868400 -0.8868400 -0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.0000000 0.0000000 1.0278300 -0.9966700 -1.0278300	0.6699900 - 0.6699900 0.7834000 - 0.7834000 1.4137500 - 1.4137500 1.2396000 - 1.2396000 - 1.2396000 - 1.2396000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 -1.1406000 -1.1406000 -1.1406000 -1.1406000 -1.1406000 0.0000000 1.5207100 -0.6264700 -0.4673100 2.1471800
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H H H H H H H H H C C C O H O H	 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.9966700 1.0278300 0.9966700 	0.6699900 - 0.6699900 0.7834000 - 0.7834000 1.4137500 - 1.4137500 1.2396000 - 1.2396000 - 1.2396000 - 1.2396000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 1.5983600 -1.1406000 -1.1406000 -1.1406000 -1.1406000 0.0000000 1.5207100 -0.6264700 -0.4673100 2.1471800 1.9880200
C ₄ H ₆ (cyclobutene 0, 1 C C C C H H H H H H H H H H H H H H H	e) 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.8868400 -0.8868400 -0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.8868400 0.9966700 -1.0278300 0.9966700	0.6699900 -0.6699900 0.7834000 -0.7834000 1.4137500 -1.4137500 1.2396000 -1.2396000 -1.2396000 -1.2396000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	0.8138700 0.8138700 -0.7000700 -0.7000700 1.5983600 -1.1406000 -1.1406000 -1.1406000 -1.1406000 -1.1406000 0.0000000 1.5207100 -0.6264700 -0.4673100 2.1471800 1.9880200

0	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.2063100
Н	0.9556900	0.0000000	1.7610900
С	-1.2379700	0.0000000	2.0569500
Н	-2.1301100	0.0000000	1.4366300
Н	-1.2331800	-0.8777200	2.7058000
Н	-1.2331800	0.8777200	2.7058000
C_2H_4O			
0, 1			
С	0.0000000	0.7314100	-0.3719900
0	0.0000000	0.0000000	0.8518000
С	0.0000000	-0.7314100	-0.3719900
Н	0.9175100	1.2638800	-0.5876200
Н	-0.9175100	1.2638800	-0.5876200
Н	-0.9175100	-1.2638800	-0.5876200
Н	0.9175100	-1.2638800	-0.5876200
C ₂ H ₅ O			
0, 2			
С	0.9987900	-0.5824500	0.0000000
С	0.0000000	0.5875900	0.0000000
0	-1.2553700	0.0196200	0.0000000
Н	0.1587600	1.1938600	0.8972900
Н	0.1587600	1.1938600	-0.8972900
Н	2.0101900	-0.1790700	0.0000000
Н	0.8612500	-1.1982200	0.8860000
Н	0.8612500	-1.1982200	-0.8860000
CH ₃ OCH ₃			
0, 1		1 1 (2 2 (0 0	
C	0.0000000	1.1633600	-0.1970300
0	0.0000000	0.0000000	0.5943900
C	0.0000000	-1.1633600	-0.1970300
Н	0.0000000	2.0176100	0.4751400
Н	0.8891600	1.2096900	-0.8352500
Н	-0.8891600	1.2096900	-0.8352500
Н	0.0000000	-2.0176100	0.4751400
Н	-0.8891600	-1.2096900	-0.8352500
Н	0.8891600	-1.2096900	-0.8352500
CH ₃ CH ₂ OH			
0, 1	1 1/0/000	0.4020(00	0 000000
C	1.1090900	-0.4020600	0.0000000
	0.0000000	0.3364400	0.0000000
U	-1.1919800	-0.2204100	0.0000000
H	-1.9440300	0.3707200	0.0000000
Н	0.0381200	1.1990000	0.8847500

Н	0.0381200	1.1990000	-0.8847500
Н	2.1122800	0.1453700	0.0000000
Н	1.1366100	-1.0385400	0.8832700
Н	1.1366100	-1.0385400	-0.8832700
C ₃ H ₄ (allene)			
0, 1			
C	0.0000000	0.0000000	0.0000000
C	0.0000000	0.0000000	1.3074000
С	0.0000000	0.0000000	-1.3074000
Н	0.0000000	0.9267900	1.8643900
Н	0.0000000	-0.9267900	1.8643900
Н	0.9267900	0.0000000	-1.8643900
Н	-0.9267900	0.0000000	-1.8643900
C ₃ H ₄ (cycloprop	ene)		
0, 1	,		
C	0.0000000	0.0000000	0.8615500
С	0.0000000	0.6467600	-0.5000200
С	0.0000000	-0.6467600	-0.5000200
Н	-0.9101700	0.0000000	1.4542000
Н	0.9101700	0.0000000	1.4542000
Н	0.0000000	1.5750900	-1.0387600
Н	0.0000000	-1.5750900	-1.0387600
CH ₃ COOH			
0, 1			
C	0.0000000	0.1554800	0.0000000
0	0.1886000	1.3427200	0.0000000
0	-1.2395900	-0.3822500	0.0000000
Н	-1.8599400	0.3553500	0.0000000
С	1.0581000	-0.9077600	0.0000000
Н	2.0391000	-0.4460200	0.0000000
Н	0.9400900	-1.5397000	0.8787500
Н	0.9400900	-1.5397000	-0.8787500
CH ₃ COCH ₃			
0, 1			
0	0.0000000	0.0000000	1.3963400
С	0.0000000	0.0000000	0.1859100
С	0.0000000	1.2837400	-0.6128900
С	0.0000000	-1.2837400	-0.6128900
Н	0.0000000	2.1402400	0.0548200
H	0.0000000	-2.1402400	0.0548200
H	-0.8777300	1.3200100	-1.2602600
H	0.8777300	1.3200100	-1.2602600
H	0.8777300	-1.3200100	-1.2602600
Н	-0.8777300	-1.3200100	-1.2602600

C ₃ H ₆ (cyclopropane)				
0, 1				
С	0.0000000	0.8683500	0.0000000	
С	0.7520100	-0.4341800	0.0000000	
С	-0.7520100	-0.4341800	0.0000000	
Н	0.0000000	1.4538200	0.9074400	
Н	0.0000000	1.4538200	-0.9074400	
Н	1.2590400	-0.7269100	-0.9074400	
Н	1.2590400	-0.7269100	0.9074400	
Н	-1.2590400	-0.7269100	0.9074400	
Н	-1.2590400	-0.7269100	-0.9074400	
CH ₃ CHCH ₂				
0, 1				
С	1.2889400	0.1419900	0.0000000	
С	0.0000000	0.4780000	0.0000000	
Н	1.6010900	-0.8950200	0.0000000	
Н	2.0682600	0.8910400	0.0000000	
Н	-0.2662900	1.5298300	0.0000000	
С	-1.1369500	-0.4994900	0.0000000	
Н	-0.7725000	-1.5263000	0.0000000	
Н	-1.7712600	-0.3612800	0.8775000	
Н	-1.7712600	-0.3612800	-0.8775000	
C_3H_8				
0, 1				
С	0.0000000	0.0000000	0.5902000	
С	0.0000000	1.2666700	-0.2605000	
С	0.0000000	-1.2666700	-0.2605000	
Н	-0.8741500	0.0000000	1.2454900	
Н	0.8741500	0.0000000	1.2454900	
Н	0.0000000	2.1658900	0.3560800	
Н	0.0000000	-2.1658900	0.3560800	
Н	0.8805900	1.3026700	-0.9045700	
Н	-0.8805900	1.3026700	-0.9045700	
Н	-0.8805900	-1.3026700	-0.9045700	
Н	0.8805900	-1.3026700	-0.9045700	
C ₂ H ₅ OCH ₃				
0, 1				
0	0.0089100	-0.7126500	0.0000000	
С	0.0000000	0.6986900	0.0000000	
С	1.3170600	-1.2306700	0.0000000	
С	-1.4372800	1.1699900	0.0000000	
Н	0.5305800	1.0734800	0.8844300	
Н	0.5305800	1.0734800	-0.8844300	
Н	1.2407900	-2.3151300	0.0000000	
Н	1.8715200	-0.9111700	-0.8890900	

Н	1.8715200	-0.9111700	0.8890900
Н	-1.9575100	0.8021600	-0.8833600
Н	-1.9575100	0.8021600	0.8833600
Н	-1.4799200	2.2593800	0.0000000
C_4H_{10} (isobutane)			
0, 1 C	0 000000	0.000000	0 2708500
	0.0000000	0.0000000	0.3/98300
С	0.0000000	1.4511200	1.4/43100
С u	0.0000000	1.4311200	-0.0903000
П Ц	0.0000000	1.4938000	-1.1884700
П Ц	-0.8829100	1.9856900	0.2377200
II C	1 2567100	0.7255600	0.2377200
Ч	1.2307100	-0.7255000	-1.188/1700
и И	2 1611100	-0.7407500 -0.2282200	0 2577200
и И	2.1011100	-0.2282200 -1.7574700	0.2377200
II C	1.2782000	0 7255600	0.0063600
Ч	-1.2307100 -1.2937200	-0.7255000	-1.188/1700
и П	1 2782000	-0.7407500 1 7574700	0 2577200
н Ц	-1.2782000	-1.7374700 -0.2282200	0.2377200
11	-2.1011100	-0.2282200	0.2377200
C_4H_{10} (antiperiplat	nar butane)		
C	0.7032400	1.8211500	0.0000000
C	0.7032400	0.2956900	0.0000000
C	-0.7032400	-0.2956900	0.0000000
C	-0.7032400	-1.8211500	0.0000000
Н	1.7167600	2.2231500	0.0000000
Н	-1.7167600	-2.2231500	0.0000000
Н	0.1897600	2.2111700	0.8807000
Н	0.1897600	2.2111700	-0.8807000
Н	-0.1897600	-2.2111700	0.8807000
Н	-0.1897600	-2.2111700	-0.8807000
Н	1.2472100	-0.0730500	-0.8746200
Н	1.2472100	-0.0730500	0.8746200
Н	-1.2472100	0.0730500	-0.8746200
Н	-1.2472100	0.0730500	0.8746200
C ₄ H ₈ (cyclobutane	2)		
0, 1			
C	0.0000000	1.0762900	0.1428600
C	0.0000000	-1.0762900	0.1428600
C	-1.0762900	0.0000000	-0.1428600
C	1.0762900	0.0000000	-0.1428600
H	0.0000000	1.9792000	-0.4651600
H	0.0000000	1.3592200	1.1958200
Н	0.0000000	-1.9792000	-0.4651600

Н	0.0000000	-1.3592200	1.1958200
Н	-1.9792000	0.0000000	0.4651600
Н	-1.3592200	0.0000000	-1.1958200
Н	1.9792000	0.0000000	0.4651600
Н	1.3592200	0.0000000	-1.1958200
CII (inclustor	n a)		
$C_4\Pi_8$ (ISODULE)	ne)		
0, 1 C	0.000000	0.000000	1 4566700
C C	0.0000000	0.0000000	0.1226300
С U	0.0000000	0.0000000	2 0208000
П Ц	0.0000000	0.9233200	2.0208000
П	0.0000000	-0.9233200	2.0208000
	0.0000000	2 1510200	-0.0780000
П	0.0000000	2.1319200	-0.0338900
П	0.8773800	1.3190300	-1.32/4100
H C	-0.8//3800	1.3196300	-1.32/4100
C U	0.000000	-1.2/26600	-0.6/80000
H	0.0000000	-2.1519200	-0.0358900
H	-0.8773800	-1.3196300	-1.3274100
Н	0.8773800	-1.3196300	-1.3274100
C_5H_8 (spirope	ntane)		
0,1	,		
Ć	0.0000000	0.0000000	0.0000000
С	0.0000000	0.7639500	1.2655500
C	0.0000000	-0.7639500	1.2655500
C	0.7639500	0.0000000	-1.2655500
Ċ	-0 7639500	0 0000000	-1 2655500
H	-0.9112200	1 2621800	1 5665000
Н	0.9112200	1 2621800	1 5665000
Н	-0.9112200	-1 2621800	1 5665000
Н	0.9112200	-1 2621800	1 5665000
Н	1 2621800	-0.9112200	-1 5665000
Н	1 2621800	0.9112200	-1 5665000
Н	-1 2621800	-0.9112200	-1 5665000
H	-1 2621800	0.9112200	-1 5665000
	1.2021000	0.9112200	1.0000000
C_6H_6			
0, 1	0.000000	0.000000	1 2020000
C	0.0000000	0.0000000	1.3920000
C	1.2055100	0.0000000	0.6960000
C	1.2055100	0.0000000	-0.6960000
C	0.0000000	0.0000000	-1.3920000
C	-1.2055100	0.0000000	-0.6960000
C	-1.2055100	0.0000000	0.6960000
Н	0.0000000	0.0000000	2.4730000
Н	2.1416800	0.0000000	1.2365000
Н	2.1416800	0.0000000	-1.2365000

Н	0.0000000	0.0000000	-2.4730000
Н	-2.1416800	0.0000000	-1.2365000
Н	-2.1416800	0.0000000	1.2365000
CH ₃ CO			
0, 2			
Ć	-0.9672500	-0.6655400	0.0000000
С	0.0000000	0.4955700	0.0000000
Н	-0.4314100	-1.6151600	0.0000000
Н	-1.6038900	-0.5858900	0.8790800
Н	-1.6038900	-0.5858900	-0.8790800
0	1.1803300	0.4758400	0.0000000
(CH ₃) ₂ CH			
0, 2			
C	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.4913100
С	1.2901600	0.0000000	-0.7480000
Н	-0.9066100	-0.2740800	-0.5223300
Н	-0.9920000	0.1918900	1.8986700
Н	1.1450200	0.1918900	-1.8105100
Н	0.3376000	-0.9638500	1.8960300
Н	0.6835400	0.7566300	1.8851500
Н	1.9737200	0.7566300	-0.3541900
Н	1.8096200	-0.9638500	-0.6589300
(CH ₃) ₃ C			
0, 2			
Ċ	0.0000000	0.0000000	0.1870700
С	0.0000000	1.4803200	-0.0194300
С	1.2819900	-0.7401600	-0.0194300
С	-1.2819900	-0.7401600	-0.0194300
Н	0.0000000	1.7342100	-1.0900200
Н	-0.8847600	1.9473100	0.4162300
Н	0.8847600	1.9473100	0.4162300
Н	1.5018700	-0.8671000	-1.0900200
Н	2.1288000	-0.2074300	0.4162300
Н	1.2440400	-1.7398800	0.4162300
Н	-1.5018700	-0.8671000	-1.0900200
Н	-1.2440400	-1.7398800	0.4162300
Н	-2.1288000	-0.2074300	0.4162300
H ₂ CCO			
0, 1			
С	0.0000000	0.0000000	-1.2099700
С	0.0000000	0.0000000	0.1033300
Н	0.0000000	0.9391200	-1.7354400
Н	0.0000000	-0.9391200	-1.7354400

0	0.0000000	0.0000000	1.2638400
SR-TM-BE17			
CrCl ₂			
0, 5 Cr	0.000000	0.000000	0.000000
Cr Cl	0.0000000	0.0000000	0.0000000
Cl	0.0000000	0.0000000	-2.2187740
MnF ₂			
0, 6	0.000000	0.000000	0.0102710
IVIN E	0.0000000	0.0000000	0.0193/10
Г Г	0.0000000	-1.8003110	-0.0269050
Г	0.0000000	1.8003110	-0.0209030
FeCl ₂			
0, 5			
Cl	0.0000000	0.0000000	2.1363190
Cl	0.0000000	0.0000000	-2.1363190
Fe	0.0000000	0.0000000	0.0000000
FeCl			
0, 6			
Fe	0.0000000	0.0000000	0.0000000
Cl	0.0000000	0.0000000	2.1790000
CoCl			
0 4			
Co	0.0000000	0.0000000	0.0000000
Cl	0.0000000	0.0000000	2.0970190
Cl	0.0000000	0.0000000	-2.0970190
$Pu(P\Pi_3)_2 - C_6\Pi_8$			
Pd	0.000000	0.000000	0 4610420
P	0.0000000	2.0283390	1 6528010
P	0.0000000	-2.0283390	1.6528010
Ċ	-0.0156460	0.6959950	-1.6527290
С	0.0156460	-0.6959950	-1.6527290
С	-1.1645900	-1.5150630	-1.8460670
С	1.1645900	1.5150630	-1.8460670
С	-1.1532730	-2.8279860	-2.0672590
C	1.1532730	2.8279860	-2.0672590
H	0.2497020	3.2063260	0.9016430
Н	-0.2497020	-3.2063260	0.9016430

Н	-2.0651990	-3.3906710	-2.2076860
Н	2.0651990	3.3906710	-2.2076860
Н	-0.2202650	-3.3784220	-2.1224910
Н	0.2202650	3.3784220	-2.1224910
Н	-1.1308210	2.5271000	2.3447330
Н	1.1308210	-2.5271000	2.3447330
Н	0.9248650	2.3236040	2.6838690
Н	-0.9248650	-2.3236040	2.6838690
Н	-2.1167780	-0.9903400	-1.8017850
Н	2.1167780	0.9903400	-1.8017850
Н	0.9747710	-1.1906290	-1.7979420
Н	-0.9747710	1.1906290	-1.7979420

$Pd(PH_3)_2-C_{10}H_{12}$ (structure b) 0. 1

0, 1			
Pd	0.0000000	0.0000000	0.7447810
Р	0.0000000	2.0439550	1.9232440
Р	0.0000000	-2.0439550	1.9232440
Н	1.1951430	2.5845990	2.4580770
Н	-1.1951430	-2.5845990	2.4580770
Н	-0.3511360	3.1794590	1.1487350
Н	0.3511360	-3.1794590	1.1487350
Н	-0.8074810	2.3657750	3.0415330
Н	0.8074810	-2.3657750	3.0415330
С	-2.3976420	-1.5445540	-0.9389140
С	2.3976420	1.5445540	-0.9389140
С	-0.0457350	-0.7116120	-1.3610510
С	0.0457350	0.7116120	-1.3610510
С	1.3190410	1.3955350	-1.6918520
С	-1.3190410	-1.3955350	-1.6918520
С	1.1475720	-1.5365100	-1.5546620
С	-1.1475720	1.5365100	-1.5546620
Н	3.2739190	2.0591700	-1.3118030
Н	-3.2739190	-2.0591700	-1.3118030
Н	2.4451790	1.1467830	0.0702080
Н	-2.4451790	-1.1467830	0.0702080
Н	1.3263670	1.8346400	-2.6895280
Н	-1.3263670	-1.8346400	-2.6895280
С	1.1561870	-2.8596560	-1.7155340
С	-1.1561870	2.8596560	-1.7155340
Н	2.0936840	-1.0068370	-1.5584990
Н	-2.0936840	1.0068370	-1.5584990
Н	0.2478210	-3.4507230	-1.7084020
Н	-0.2478210	3.4507230	-1.7084020
Н	2.0849580	-3.3948690	-1.8568730

Н	-2.0849580	3.3948690	-1.8568730
Fragments for	r Pd complexes		
$Pd(PH_3)_2$			
0, 1			
Pd	0.0000000	0.0000000	0.0000000
Р	0.0000000	0.0000000	2.2871160
Р	0.0000000	0.0000000	-2.2871160
H	0.0000000	1.2143280	3.0122300
H	-1.0516390	-0.6071640	3.0122300
H	1.0516390	-0.6071640	3.0122300
H	0.0000000	1.2143280	-3.0122300
H	1.0516390	-0.6071640	-3.0122300
Н	-1.0516390	-0.6071640	-3.0122300
C_6H_8			
0, 1			
С	0.0005840	0.6694290	0.0000000
С	-0.0005840	-0.6694290	0.0000000
С	-1.1920100	-1.4779660	0.0000000
С	1.1920100	1.4779660	0.0000000
С	-1.1920100	-2.8082660	0.0000000
С	1.1920100	2.8082660	0.0000000
Н	-2.1087740	-3.3807360	0.0000000
Н	2.1087740	3.3807360	0.0000000
Н	-0.2630920	-3.3668520	0.0000000
Н	0.2630920	3.3668520	0.0000000
H	-2 1373860	-0 9410450	0 0000000
H	2 1373860	0 9410450	0 0000000
H	0 9510550	-1 1978100	0.0000000
H	-0.9510550	1.1978100	0.0000000
$C_{10}H_{12}$			
0 1			
C	-0 4356080	1 5045070	-2.6253710
C	0.000000	0.0000000	-0.6825400
C	0.0000000	0.0000000	0.6825400
C C	0.0000000	-1 2610230	1 4219420
C C	-0.4356080	-1.2010230	2 6253710
C C	-0.4330080	-1.3043070	1 /210/20
C C	0.0737730	1.2010230	-1.4219420
C	-0.0737730	-1.2010230 1.2610220	-1.4219420
	-0.0737730	1.2010230	1.4219420
	-0.3331330	-2.4/9/430	J.U819/90
	-0.9/92630	-0./544040	3.1830380
H	0.58/1610	-2.0/43360	0.91959/0
Н	0.587/1610	2.0743360	-0.9195970

Н	-0.3351350	2.4797430	-3.0819790
Н	-0.9792650	0.7544040	-3.1850580
С	0.4356080	-1.5045070	-2.6253710
Н	-0.5871610	-2.0743360	-0.9195970
Н	0.9792650	-0.7544040	-3.1850580
Н	0.3351350	-2.4797430	-3.0819790
C	0 4356080	1 5045070	2 6253710
H	-0 5871610	2.0743360	0.9195970
Н	0 3351350	2 4797430	3 0819790
Н	0.9792650	0.7544040	3.1850580
Ag ₂			
0, 1			
Ag	0.0000000	0.0000000	0.0000000
Ag	0.0000000	0.0000000	2.5871100
AgH			
0, 1			
Ag	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.6180000
СоН			
0, 3			
Co	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.5310000
CrCH ₃ ⁺			
1, 5			
C	0.0000000	0.0000000	0.0000000
H	0.0000000	0.0000000	1.1000000
H	1.0370900	0.0000000	-0.3666700
Н	-0.5185500	0.8981500	-0.3666700
Cr	-0.8956700	-1.5513400	-0.6333300
Cu ₂			
0, 1			
Cu	0.0000000	0.0000000	0.0000000
Cu	0.0000000	0.0000000	2.2200000
CuAg			
0, 1			
Cu	0.0000000	0.0000000	0.0000000
Ag	0.0000000	0.0000000	2.2592900
$\mathrm{CuH_2O}^+$			
1, 1			

Cu	0.0000000	0.0000000	-0.4938500
0	0.0000000	0.0000000	1.3361500
Н	-0.8313800	0.0000000	1.8161500
Н	0.8313800	0.0000000	1.8161500
FeH			
0,4			
Fe	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.6100000
VCO^+			
1, 5			
V	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	2.1131400
0	0.0000000	0.0000000	3.2335100
Zr_2			
0, 3			
Źr	0.0000000	0.0000000	0.0000000
Zr	0.0000000	0.0000000	2.2400000

MR-MGM-BE4			
CaO			
0, 1			
Ca	0.0000000	0.0000000	1.8210000
0	0.0000000	0.0000000	0.0000000
LiO ⁻			
-1, 1			
Li	0.0000000	0.0000000	1.6300000
0	0.0000000	0.0000000	0.0000000
KO ⁻			
-1, 1			
Κ	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	2.1900000
MgS			
0, 1			
Mg	0.0000000	0.0000000	2.1400000
S	0.0000000	0.0000000	0.0000000

MR-MGN	-BE17		
NF ₃			
0, 1			
Ν	0.0000000	0.0000000	0.4761000
F	0.0000000	1.2217200	-0.1234300
F	1.0580400	-0.6108600	-0.1234300
F	-1.0580400	-0.6108600	-0.1234300
CO_2			
0.1			
Ć	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.1594900
0	0.0000000	0.0000000	-1.1594900
S:0			
0, 1 Si	0.000000	0.000000	0.000000
0	0.0000000	0.0000000	1 5126700
0	0.0000000	0.0000000	1.3120700
SO_2			
0, 1			
S	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.4295000
0	1.2486200	0.0000000	-0.6960100
СО			
0, 1			
Ó	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.1296100
50			
SU 0_2			
0, 5	0.000000	0.000000	0.000000
0 S	0.0000000	0.0000000	1.4780100
3	0.0000000	0.0000000	1.4/09100
ClO			
0, 2			
Cl	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.5791800
F_2			
0, 1			
F	0.0000000	0.0000000	0.0000000
F	0.0000000	0.0000000	1.3952000
N			
IN2 0 1			
U, I N	0.000000	0.000000	0.000000
1 N	0.0000000	0.0000000	0.0000000

Ν	0.0000000	0.0000000	1.0971100
O_2			
0, 3			
0	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.2013200
NO			
0, 2			
Ν	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.1520600
CN			
0, 2			
С	0.0000000	0.0000000	0.0000000
Ν	0.0000000	0.0000000	1.1672100
B_2			
0, 3			
В	0.0000000	0.0000000	0.8070500
В	0.0000000	0.0000000	-0.8070500
O_3			
0, 1			
0	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.2688100
0	1.1293300	0.0000000	-0.5783600
C_2			
0, 1			
С	0.0000000	0.0000000	-0.6200000
С	0.0000000	0.0000000	0.6200000
S_4			
0, 1			
S	0.0000000	0.0000000	0.0000000
S	0.0000000	0.0000000	1.9063400
S	2.0670400	0.0000000	2.4487200
S	3.0030300	0.0000000	0.7879800
Cl ₂ O			
0, 1			
0	0.0000000	0.0000000	0.6424200
Cl	1.4011700	0.0000000	-0.3212100
Cl	-1.4011700	0.0000000	-0.3212100

MR-TM-BE13			
CuH			
0, 1 C	0.000000	0.000000	0.0000000
Cu u	0.0000000	0.0000000	0.0000000
Π	0.0000000	0.0000000	1.4030000
VO			
0, 4			
V	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.5890000
0.01			
0, 1 Cu	0.000000	0.000000	0.000000
Cu Cl	0.0000000	0.0000000	2 0500000
CI	0.0000000	0.0000000	2.0300000
NiCl			
0, 2			
Ni	0.0000000	0.0000000	0.0000000
Cl	0.0000000	0.0000000	2.0730000
T : 01			
TiCl			
0, 4 Ti	0.000000	0.000000	0.0010010
Γ	0.0000000	0.0000000	0.9818810
CI	0.0000000	0.0000000	-1.2700070
VF ₅			
0, 1			
V	0.0000010	0.0000450	0.0000010
F	0.0000140	-1.7058210	-0.0037130
F	1.7441660	-0.0009970	-0.0000090
F	-0.0000110	0.8570820	-1.4748060
F	-0.0000050	0.8506400	1.4785310
F	-1.7441660	-0.0010180	-0.0000040
CrCl			
0.6			
Cr	0.0000000	0.0000000	0 9180970
Cl	0.0000000	0.0000000	-1.2961370
CrOF			
0, 4			
Cr	0.0000000	0.2573080	0.0000000
0	1.5735830	0.1639690	0.0000000
F	-1.3987410	-0.8319050	0.0000000

$(FeBr_2)_2$			
0,9			
Fe	-0.0000020	-1.6229260	0.0000000
Br	-0.0000010	-3.9000320	0.0000000
Br	-1.8673960	0.0000090	0.0000000
Br	1.8673980	0.0000050	0.0000000
Fe	0.0000030	1.6229180	0.0000000
Br	-0.0000020	3.9000240	0.0000000
Co(CO) ₄ H			
0, 1			
Ćo	-0.0000800	-0.0000580	-0.1676540
Н	-0.0001330	-0.0004420	-1.6561860
С	-0.0001160	0.0003720	1.6358970
С	0.8428780	1.5665600	-0.4703810
С	-1.7783250	-0.0535760	-0.4701430
С	0.9355020	-1.5133300	-0.4697490
0	1.5195610	-2.4577630	-0.7227620
0	-0.0001190	0.0006460	2.7733640
0	-2.8882110	-0.0870000	-0.7233710
0	1.3691010	2.5443470	-0.7235950
NiCH ₂ ⁺			
1, 2			
C	0.0000000	0.0000000	0.0000000
Ni	0.0000000	0.0000000	1.7813000
Н	0.9328700	0.0000000	-0.5871800
Н	-0.9328700	0.0000000	-0.5871800
Fe(CO) ₅			
0, 1			
Fe	-0.2017300	-0.0720500	0.0000000
С	1.7282600	-0.0720500	0.0000000
0	2.8436700	-0.0720500	0.0000000
С	-0.2017000	-0.0720500	-1.9300000
0	-0.2017300	-0.0720500	-3.0454000
С	-0.2017000	-0.0720500	1.9300000
0	-0.2017300	-0.0720500	3.0454000
С	-1.1667500	-1.7434700	0.0000000
0	-1.7244300	-2.7094400	0.0000000
С	-1.1667500	1.5993800	0.0000000

0	-1.7244300	2.5653500	0.0000000
VS			
0, 4			
V	0.0000000	0.0000000	0.0000000
S	0.0000000	0.0000000	2.0480000

MR-TMD-BE2			
Cr ₂			
0, 1			
Cr	0.0000000	0.0000000	0.0000000
Cr	0.0000000	0.0000000	1.6800000
V_2			
0, 3			
V	0.0000000	0.0000000	0.0000000
V	0.0000000	0.0000000	1.7700000

IsoL6/11			
10-educt			
0, 1			
С	-1.6793600	1.0830800	0.4844300
С	-2.9806200	1.5998300	0.4358800
С	-4.0358900	0.8127200	-0.0239200
С	-3.7924300	-0.4963800	-0.4472200
С	-2.4917100	-1.0064900	-0.3913700
С	-1.4111200	-0.2483400	0.0800200
Ο	-0.7084100	1.9397500	0.9476600
С	0.0100200	-0.8372900	0.2376100
С	1.0129000	0.1012600	-0.4883300
С	2.2481200	0.4648500	-0.0652400
С	0.4986800	0.5726200	-1.8464400
С	3.0950800	1.4584700	-0.8408100
С	2.9697300	-0.0732800	1.1614900
С	0.1533500	-2.2321300	-0.4141600
Н	0.1712000	1.5743700	0.7285700
С	0.1970300	-1.0227100	1.7697200
Н	-3.1399700	2.6265800	0.7574500
Н	-5.0421900	1.2259700	-0.0570300
Н	-4.6039400	-1.1186300	-0.8182100
Н	-2.3188500	-2.0268800	-0.7218700
Н	1.3059300	0.6508900	-2.5817000

Н	-0.2470800	-0.1282700	-2.2354300
Н	0.0007300	1.5503600	-1.7791500
Н	2.5252500	2.0641200	-1.5503800
Н	3.8951900	0.9391300	-1.3932700
Н	3.5941300	2.1400100	-0.1371000
Н	2.9276600	-1.1660500	1.2144300
Н	4.0276200	0.2140200	1.1226300
Н	2.5591800	0.3188400	2.1005300
Н	1.1842300	-2.5801100	-0.2784700
Н	-0.5197900	-2.9575700	0.0605000
Н	-0.0667500	-2.2039400	-1.4875700
Н	1.0795100	-1.6207100	2.0098000
Н	0.2637000	-0.0632500	2.2925100
Н	-0.6811200	-1.5548600	2.1544700

10-product

0, 1			
С	-1.5103100	0.6260600	0.2649700
С	-2.6479900	0.7065000	1.0899500
С	-3.8460500	0.1109600	0.6998600
С	-3.9359900	-0.5786600	-0.5165800
С	-2.8059400	-0.6583100	-1.3331900
С	-1.5959400	-0.0633000	-0.9565200
0	-0.3981200	1.2421000	0.7697400
С	0.8929000	1.2400900	0.0720600
С	1.3965100	-0.1741400	-0.2887800
С	1.2212400	-1.2519700	0.5055600
С	0.5552900	-1.2431300	1.8652900
С	1.6565600	-2.6529300	0.1165200
С	2.1630800	-0.2369800	-1.5937000
С	0.7546700	2.1959600	-1.1324900
С	1.8563800	1.8776500	1.0858200
Н	-2.5671000	1.2397600	2.0344200
Н	-4.7146600	0.1848100	1.3520200
Н	-4.8705700	-1.0450300	-0.8199700
Н	-2.8557100	-1.1911800	-2.2813900
Н	-0.7319800	-0.1586800	-1.6012100
Н	-0.4606200	-1.6599200	1.7872600
Н	0.4704600	-0.2540000	2.3136500
Н	1.1175900	-1.8987800	2.5468200
Н	1.7857000	-2.7979800	-0.9598800
Н	2.6006600	-2.9222900	0.6165900
Н	0.9025600	-3.3754600	0.4595800

Н	2.6811900	-1.1875500	-1.7345900
Н	2.9261100	0.5537800	-1.6245900
Н	1.5088900	-0.0682800	-2.4628500
Н	0.0973900	1.7959300	-1.9089100
Н	1.7323800	2.4089400	-1.5766100
Н	0.3275400	3.1356000	-0.7658800
Н	1.9322800	1.2626900	1.9870800
Н	1.5100100	2.8827000	1.3582700
Н	2.8515900	1.9550400	0.6317000
13-educt			
0, 1			
С	-1.4762800	-1.1531600	-0.2928000
С	-2.8689200	-1.1588100	-0.2946900
С	-3.5922600	0.0018500	0.0382400
С	-2.8682400	1.1615900	0.3732800
С	-1.4756900	1.1545000	0.3734000
С	-0.7393100	0.0002300	0.0410600
С	1.4762800	1.1531600	-0.2928000
С	0.7393100	-0.0002300	0.0410600
С	1.4756900	-1.1545000	0.3734000
С	2.8682400	-1.1615900	0.3732800
С	3.5922600	-0.0018500	0.0382400
С	2.8689200	1.1588100	-0.2946900
Ν	4.9909600	0.0138500	0.0923700
Ν	-4.9909600	-0.0138500	0.0923700
Н	-0.9455800	-2.0578500	-0.5825900
Н	-3.4077600	-2.0666000	-0.5655400
Н	-3.4066700	2.0680500	0.6490400
Н	-0.9444300	2.0599200	0.6597400
Н	0.9455800	2.0578500	-0.5825900
Н	0.9444300	-2.0599200	0.6597400
Н	3.4066700	-2.0680500	0.6490400
Н	3.4077600	2.0666000	-0.5655400
Н	5.4353400	-0.8878400	-0.0246400
Н	5.4345400	0.7312700	-0.4668800
Н	-5.4345400	-0.7312700	-0.4668800
Н	-5.4353400	0.8878400	-0.0246400
13-product			

13	3-product
Δ	1

0, 1			
С	-4.1262200	-0.7529900	0.2299600
С	-4.3421600	0.3006800	-0.6664900

С	-3.2616300	1.1094400	-1.0359100
С	-1.9811300	0.8770400	-0.528900
С	-1.7679300	-0.1822300	0.3704800
С	-2.8543900	-0.9939100	0.7496100
Ν	-0.4884100	-0.4923700	0.8579100
Ν	0.4884100	0.4923700	0.8579100
С	1.7679300	0.1822300	0.3704800
С	2.8543900	0.9939100	0.7496100
С	4.1262200	0.7529900	0.2299600
С	4.3421600	-0.3006800	-0.6664900
С	3.2616300	-1.1094400	-1.0359100
С	1.9811300	-0.8770400	-0.5289000
Н	-0.4691500	-1.1191800	1.6584400
Н	0.4691500	1.1191800	1.6584400
Н	-4.9548300	-1.3903500	0.5336400
Н	-5.3356900	0.4891800	-1.0666100
Н	-3.4123400	1.9327500	-1.7321500
Н	-1.1415400	1.5016200	-0.8197700
Н	-2.6940900	-1.8138900	1.4498000
Н	2.6940900	1.8138900	1.4498000
Н	4.9548300	1.3903500	0.5336400
Н	5.3356900	-0.4891800	-1.0666100
Н	3.4123400	-1.9327500	-1.7321500
Н	1.1415400	-1.5016200	-0.8197700
14-educt			
0, 1			
С	-3.2493600	-0.2121800	0.1908800
С	-3.0180100	-0.0802600	1.5531100
С	-1.7187000	0.1430800	2.0465000
С	-0.6589000	0.2373800	1.1580500
С	-0.8503600	0.1108100	-0.2400800
С	-2.1808600	-0.1271900	-0.7220400
С	0.2573700	0.1928900	-1.2009100
0	-2.4617900	-0.2774000	-2.0266500
0	0.0637500	0.0215200	-2.4210600
С	1.6870000	0.5139100	-0.7364000
С	1.8296500	1.9616500	-0.2365800
С	2.2643100	-0.5377300	0.2414000
0	2.8380100	-0.2185100	1.2650300
С	2.0956200	-1.9843500	-0.1848100
Н	-4.2473000	-0.3900700	-0.2016900
Н	-3.8548500	-0.1517400	2.2455300

Н	-1.5451900	0.2414400	3.1150000
Н	0.3377000	0.4112900	1.5486000
Н	-1.5891000	-0.2042600	-2.5089900
Н	2.2866900	0.3979800	-1.6510100
Н	1.2305300	2.1423500	0.6600400
Н	1.5072800	2.6582500	-1.0195000
Н	2.8780100	2.1597800	0.0111800
Н	2.3814800	-2.1134300	-1.2371200
Н	1.0319400	-2.2538900	-0.1095600
Н	2.6851000	-2.6413300	0.4610700

14-product

0, 1			
С	-1.3563800	2.1276300	-0.6540100
С	-2.6522200	1.7556300	-0.2927700
С	-2.9054900	0.4540500	0.1530600
С	-1.8607200	-0.4674800	0.2205000
С	-0.5396600	-0.1112600	-0.1120000
С	-0.3060700	1.2116900	-0.5480600
Н	-1.1387100	3.1250000	-1.0287700
Н	-3.4620700	2.4783900	-0.3672800
Н	-3.9125000	0.1554500	0.4350800
Н	-2.0661000	-1.4803800	0.5567600
С	0.5731100	-1.1202200	-0.0010100
0	0.9385000	1.6089000	-1.0131200
С	1.9281700	2.1110300	-0.1534000
0	2.9882900	2.3977500	-0.6350700
С	1.5342900	2.2745500	1.2971100
0	1.6896300	-0.797400	0.3747500
С	0.2394400	-2.5602300	-0.3912300
С	1.4619600	-3.4802100	-0.4296100
Н	0.6192500	2.8726200	1.3887000
Н	2.3579400	2.7588000	1.8262900
Н	1.3409500	1.2863300	1.7279900
Н	-0.2786800	-2.5355500	-1.3614000
Н	-0.5058800	-2.9397200	0.3254400
Н	2.1958300	-3.1167400	-1.1580500
Н	1.1612500	-4.4977400	-0.7078100
Н	1.9558600	-3.5108900	0.5479000

20-educt

0, 1			
С	-0.3221800	2.3985500	0.0027900

С	-0.1277700	0.9875700	0.5860100
С	-1.2755100	0.0545200	0.2098100
С	-1.2507900	-0.7026400	-0.9688200
С	-2.3284500	-1.5264700	-1.3037700
С	-3.4432500	-1.6059500	-0.4621800
С	-3.4742800	-0.8546000	0.7167700
С	-2.3957100	-0.0296200	1.0483300
Н	-0.3823000	-0.6524600	-1.6200300
Н	-2.2957300	-2.1100300	-2.2219900
Н	-4.2800500	-2.2515800	-0.7217900
Н	-4.3360800	-0.9111500	1.3791700
Н	-2.4227300	0.5612800	1.9622400
С	1.2532500	0.4161300	0.2925900
С	1.8853800	-0.3395900	1.2925500
С	3.1350500	-0.9223100	1.0721600
С	3.7775300	-0.7551100	-0.1596300
С	3.1587700	-0.0036400	-1.1622100
С	1.9041800	0.5757900	-0.9408500
Н	1.3855000	-0.4737600	2.2510400
Н	3.6077100	-1.5042300	1.8611600
Н	4.7524600	-1.2057100	-0.3347000
Н	3.6504400	0.1330400	-2.1235800
Н	1.4344900	1.1499300	-1.7339800
Н	-0.1815800	1.1501700	1.6709600
Н	0.5510600	3.0438400	0.1719100
F	-0.5642300	2.3747200	-1.3571900
F	-1.4151900	3.0033200	0.5932400

20-product

0, 1			
С	0.6193700	-0.4719800	-1.9508600
С	-0.6193700	0.4719800	-1.9508600
С	-1.4764000	0.3631100	-0.7195800
С	1.4764000	-0.3631100	-0.7195800
С	-1.1971400	1.1168700	0.4288400
С	-1.9664200	0.9458800	1.5817800
С	-3.0076300	0.0110000	1.6019700
С	-3.2848600	-0.7468900	0.4591400
С	-2.5249000	-0.5659800	-0.6999000
Н	-0.3806000	1.8328800	0.4113500
Н	-1.7479600	1.5379400	2.4683600
Н	-3.6032300	-0.1232400	2.5029500
Н	-4.0965700	-1.4716700	0.4670600

Н	-2.7371100	-1.1532800	-1.5913500
С	1.1971400	-1.1168700	0.4288400
С	1.9664200	-0.9458800	1.5817800
С	3.0076300	-0.0110000	1.6019700
С	3.2848600	0.7468900	0.4591400
С	2.5249000	0.5659800	-0.6999000
Н	0.3806000	-1.8328800	0.4113500
Н	1.7479600	-1.5379400	2.4683600
Н	3.6032300	0.1232400	2.5029500
Н	4.0965700	1.4716700	0.4670600
Н	2.7371100	1.1532800	-1.5913500
Н	-1.2060300	0.2360500	-2.8489800
F	-0.1149900	1.7812300	-2.1107800
F	0.1149900	-1.7812300	-2.1107800
Н	1.2060300	-0.2360500	-2.8489800
3-educt			
0, 1			
Ċ	1.2327000	-0.3352000	1.2550400
С	-0.1570000	0.1589600	1.7053800
С	-1.2109500	-0.2386000	0.6753000
С	-0.7951300	0.2548000	-0.7101300
С	0.6195500	-0.2519600	-1.0505800
0	1.5378700	0.1955200	-0.0337700
0	-0.5423000	-0.4136600	2.9572600
0	-2.4976600	0.3243200	0.9626100
0	-1.7031900	-0.2076900	-1.7197500
С	1.1370600	0.2874000	-2.3926100
0	0.5160900	-0.3393100	-3.5096000
Н	0.1846900	-0.2551400	3.5776500
Н	-2.7502300	0.0142400	1.8438900
Н	-0.4420500	-0.2643300	-3.3733500
Н	-2.5929800	0.0469600	-1.4344000
0	2.2363900	0.0574600	2.1564300
Н	2.3186800	1.0222600	2.0868800
Н	1.2515400	-1.4369100	1.2393400
Н	-0.1174200	1.2613400	1.7703000
Н	-1.2747800	-1.3396600	0.6501900
Н	-0.7694500	1.3573500	-0.6972000
Н	0.6083100	-1.3544000	-1.0903300
Н	1.0011600	1.3839800	-2.4076200
Н	2.2091200	0.0722600	-2.4609200

3-product			
0, 1			
С	3.0719700	0.2664900	-1.0660100
0	4.0164900	-0.4802300	-1.1145500
С	2.1498200	0.4694700	0.1350800
0	2.6047200	-0.2762200	1.2483200
С	0.7072700	0.0550700	-0.2707700
Н	0.4746200	0.4932400	-1.2519100
С	-0.3436100	0.5816200	0.7320300
0	-0.0051300	0.2319600	2.0897800
С	-1.7778800	0.0975400	0.4212800
Н	-2.4668400	0.6255600	1.0916100
С	-2.2210400	0.3467100	-1.0242500
0	-3.6040500	0.0557000	-1.2037900
Н	2.7653800	0.8916200	-1.9444900
Н	2.1337700	1.5585500	0.3375100
Н	1.9252200	-0.1331600	1.9358900
0	0.6359100	-1.3744500	-0.4243300
Н	-0.3244600	1.6793400	0.6786400
Н	-0.4828400	-0.5949100	2.2773000
0	-1.9209800	-1.2984400	0.7615900
Н	-1.5981100	-0.2606900	-1.7040400
Н	-2.0867600	1.4056300	-1.2827200
Н	-3.7422700	-0.8361100	-0.8495200
Н	1.3086900	-1.7495900	0.1708000
Н	-1.2199000	-1.7546700	0.2565500
9-educt			
0, 1			
C	0.0000000	-1.2609500	-1.2883200
C	0.0000000	0.0000000	-2.1791800
C	0.0000000	1.2609500	-1.2883200
C	-1.2582200	1.2557400	-0.3954300
С	-1.2792000	0.0000000	0.5078700
С	-1.2582200	-1.2557400	-0.3954300
С	1.2582200	-1.2557400	-0.3954300
С	1.2582200	1.2557400	-0.3954300
С	1.2792000	0.0000000	0.5078700
С	0.0000000	0.0000000	1.3758600
С	-2.5252200	0.0000000	1.3959700
Н	0.0000000	-2.1605500	-1.9193800
Н	0.8883700	0.0000000	-2.8276000
Н	-0.8883700	0.0000000	-2.8276000

Н	0.0000000	2.1605500	-1.9193800
Н	-1.2766200	2.1567100	0.2363400
Н	-2.1644100	1.2684100	-1.0196100
Н	-1.2766200	-2.1567100	0.2363400
Н	-2.1644100	-1.2684100	-1.0196100
Н	1.2766200	-2.1567100	0.2363400
Н	2.1644100	-1.2684100	-1.0196100
Н	1.2766200	2.1567100	0.2363400
Н	2.1644100	1.2684100	-1.0196100
С	2.5252200	0.0000000	1.3959700
Н	0.0000000	0.8877800	2.0270600
Н	0.0000000	-0.8877800	2.0270600
Н	-3.4382800	0.0000000	0.7836800
Н	-2.5422300	-0.8908400	2.0398800
Н	-2.5422300	0.8908400	2.0398800
Н	3.4382800	0.0000000	0.7836800
Н	2.5422300	0.8908400	2.0398800
Н	2.5422300	-0.8908400	2.0398800
9-product			
0, 1			
С	-2.9560100	-0.5899700	-0.5483100
С	-1.8200800	0.3447100	-1.0324900
С	-0.4710600	-0.4076900	-0.9015600
С	-0.2546000	-0.4641700	0.6649400
С	-1.5028800	0.2736200	1.2124400
С	-2.7395800	-0.6351800	1.0062700
С	-1.7353300	1.3569400	0.1340800
С	0.6895700	0.2981500	-1.6146000
С	2.0514800	-0.3100000	-1.2344700
С	2.2583400	-0.4388900	0.3115500
С	1.0763700	0.1708400	1.0856100
С	3.5906400	0.1784800	0.7566300
Н	-2.8871200	-1.5828000	-1.0105000
Н	-3.9386100	-0.1695000	-0.7965900
Н	-1.9858900	0.7676800	-2.0303100
Н	-0.5615200	-1.4244400	-1.3088600
Н	-0.2541500	-1.5086200	1.0070900
Н	-1.3794400	0.6321400	2.2411400
Н	-2.5603800	-1.6527100	1.3758700
Н	-3.6115200	-0.2315200	1.5360900
Н	-0.9009400	2.0614500	0.0395100
Н	-2.6654700	1.9207900	0.2833700

Н	0.5443600	0.2434400	-2.7022500
Н	0.6805400	1.3644300	-1.3495700
Н	2.8526800	0.3065400	-1.6663600
Н	2.1394500	-1.3032200	-1.6967600
Н	2.2800600	-1.5100800	0.5629700
Н	1.2295100	0.0289700	2.1646800
Н	1.0469400	1.2565000	0.9102500
Н	3.5997900	1.2564500	0.5378900
Н	4.4362600	-0.2804500	0.2260000
Н	3.7485600	0.0481100	1.8362700

IP23			
SH 0, 2			
S	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.3402000
Cl ₂ 0, 1 Cl	0.0000000	0.0000000	0.0000000
C1	0.0000000	0.0000000	2.0070500
OH 0, 2 O H	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.9689000
O ₂ 0, 3			
0	0.0000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1.2013200
PH 0, 3			
Р	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.4220200
PH ₂ 0, 2			
Р	0.0000000	0.0000000	-0.1156600
H	1.0201300	0.0000000	0.8674300
Н	-1.0201300	0.0000000	0.86/4300
G			

S₂ 0, 3

S S	$0.0000000 \\ 0.0000000$	0.0000000 0.0000000	0.0000000 1.8925900
FeC			
0, 3			
Fe	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.5960000
Co	0, 4	Co^+	1, 3
C	0.2	с ⁺	1 2
Sc	0, 2	Sc	1, 3

EA13/03			
SH 0, 2 S H	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 1.3402000
Cl ₂ 0, 1 Cl Cl	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 2.0078300
OH 0, 2 O H	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 0.9689000
O ₂ 0, 3 O O	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 1.2013200
PH 0, 3 P H	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 1.4220200
PH ₂ 0, 2 P H H	0.0000000 1.0201300 -1.0201300	0.0000000 0.0000000 0.0000000	-0.1156600 0.8674300 0.8674300

 S_2

0, 3			
S	0.0000000	0.0000000	0.0000000
S	0.0000000	0.0000000	1.8925900
DAQ			
T AO			
NП3 0 1			
0, 1 N	0 000000	0.000000	0 1164900
H	0.0000000	0.9397300	-0 2718100
H	0.8138300	-0 4698600	-0 2718100
H	-0.8138300	-0 4698600	-0 2718100
	0.0100000	0.1020000	0.2 / 10100
H ₂ O			
0, 1			
0	0.0000000	0.0000000	0.1192600
Н	0.0000000	0.7632400	-0.4770500
Н	0.0000000	-0.7632400	-0.4770500
C_2H_2			
0, 1			
С	0.0000000	0.0000000	0.6080800
С	0.0000000	0.0000000	-0.6080800
Н	0.0000000	0.0000000	-1.6739900
Н	0.0000000	0.0000000	1.6739900
0.11			
S1H4			
0, 1 C	0.000000	0.0000000	0.000000
51	0.0000000	0.0000000	0.0000000
	0.8301300	0.8561500	0.8561300
П U	-0.8301300	-0.8301300	0.8301300
п Ц	-0.8561300	0.8561300	-0.8301300
11	0.0501500	-0.0501500	-0.0501500
PH ₂			
0 1			
о, 1 Р	0.000000	0 0000000	0 1246200
H	0.0000000	1.2006500	-0.6230900
H	1.0397900	-0.6003200	-0.6230900
Н	-1.0397900	-0.6003200	-0.6230900
H_2S			
0, 1			
S	0.0000000	0.0000000	0.1021400
Н	0.0000000	0.9742700	-0.8170800
Н	0.0000000	-0.9742700	-0.8170800
HC1 0, 1 Cl	0.0000000	0.0000000	0.0711100
-----------------------------	-----------	-----------	------------
Н	0.0000000	0.0000000	-1.2088700
H ₂ 0, 1 H	0.0000000	0.0000000	0.3685800
Н	0.0000000	0.0000000	-0.3683800

-TC12			
$\pi 1C13$			
E2-E1			
π1			
0, 1			
С	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.3154600
С	0.0000000	0.0000000	-1.3154600
Н	0.0000000	0.9270900	1.8729500
Н	0.0000000	-0.9270900	1.8729500
Н	0.9270900	0.0000000	-1.8729500
Н	-0.9270900	0.0000000	-1.8729500
π2			
0, 1			
С	0.0000000	0.0000000	0.2137600
С	0.0000000	0.0000000	1.4361600
С	0.0000000	0.0000000	-1.2496500
Н	0.0000000	0.0000000	2.4997000
Н	0.0000000	1.0192400	-1.6337700
Н	0.8826900	-0.5096200	-1.6337700
Н	-0.8826900	-0.5096200	-1.6337700
E4-E3			
π3			
0, 1			
Ċ	-2.6092400	0.0002900	0.0001900
С	-1.2853700	-0.0000800	0.0000200
С	0.0000000	-0.0005700	-0.0001600
С	1.2853700	-0.0002300	-0.0008500
С	2.6092400	0.0003100	0.0004000
Н	-3.1676500	-0.6809900	-0.6295600
Н	-3.1671000	0.6818200	0.6301600
Н	3.1678400	0.6303100	-0.6804800
Н	3.1669000	-0.6294800	0.6822700

π4			
0, 1			
С	2.7552700	-0.0000200	0.0000000
С	1.5271600	0.0000100	0.0000000
С	0.1534700	0.0000400	0.0000000
С	-1.0756000	0.0000200	0.0000100
С	-2.5367900	-0.0000200	-0.0000100
Н	3.8194600	-0.0000600	-0.0000100
Н	-2.9201900	1.0193900	-0.0373100
Н	-2.9201300	-0.5420500	-0.8642100
Н	-2.9201500	-0.4774500	0.9014900
E6-E5			
$\frac{10}{\pi5}$			
0, 1			
С	3.8996200	-0.0019000	-0.0004000
С	2.5720800	0.0030400	0.0009400
С	1.2896200	0.0418900	0.0083800
С	0.0001700	-0.0163500	-0.0016400
С	-1.2895800	0.0161300	0.0020000
С	-2.5723100	-0.0213200	-0.0041700
С	-3.8995500	-0.0055500	-0.0015100
Н	4.4580500	-0.1791500	0.9108300
Н	4.4575600	0.1595600	-0.9148500
Н	-4.4453600	0.9146500	0.1699000
Н	-4.4697300	-0.9109000	-0.1701200
π6			
0, 1			
Ć	-4.0619400	0.0000500	-0.0000300
С	-2.8316300	0.0000100	-0.0000100
С	-1.4656600	-0.0000300	0.0000200
С	-0.2274100	-0.0000600	0.0000500
С	1.1369900	-0.0000500	0.0000300
С	2.3687400	-0.0000400	0.0000300
C	3.8292000	0.0000600	-0.0000400
H	-5.1265100	0.0000900	-0.0000600
Н	4.2122800	-0.8071700	-0.6241800
Н	4 2121600	0 9442300	-0 3871000
Н	4.2123100	-0.1367800	1.0111100
P-2			
0, 1			
С	0.0000000	0.6695200	-0.0000200
С	0.0000000	-0.6695200	-0.0000200
Н	-0.9224900	1.2337800	0.0000400

Н	0.9224900	1.2337800	0.0000800
Н	0.9224900	-1.2337800	0.0000400
Н	-0.9224900	-1.2337800	0.0000800
Р-2Н			
1, 1			
C	-0.6916100	0.0000000	-0.0627800
С	0.6916100	-0.0000100	-0.0628200
Н	-1.2413800	0.9338700	-0.0717200
Н	0.0003000	-0.0002800	1.0403400
Н	-1.2419000	-0.9335500	-0.0715700
Н	1.2415500	-0.9337800	-0.0719500
Н	1.2414700	0.9338200	-0.0714700
P-4			
0, 1			
С	1.8497400	0.1106700	0.0000200
С	0.6057800	-0.4054000	-0.0000500
С	-0.6057500	0.4054100	-0.0000100
С	-1.8497600	-0.1106800	0.0000200
Н	2.7242600	-0.5244100	0.0000800
Н	2.0128900	1.1811800	0.0000100
Н	0.4744200	-1.4836100	0.0000400
Н	-0.4743900	1.4836200	0.0000100
Н	-2.7242800	0.5244000	0.0000200
Н	-2.0129300	-1.1811900	0.0000200
P-4H			
1, 1			
С	1.8467200	0.0819700	-0.0001900
С	0.4606700	-0.3731200	-0.0000700
С	-0.6643400	0.4580000	0.0001200
С	-1.9055700	-0.1304300	-0.0000400
Н	2.3571400	-0.3606800	-0.8642400
Н	2.3545000	-0.3557100	0.8681300
Н	1.9532400	1.1616300	-0.0027100
Н	0.2873800	-1.4478500	0.0001300
Н	-0.5525500	1.5343000	0.0000400
Н	-2.8136700	0.4591900	-0.0002300
Н	-2.0109400	-1.2093500	-0.0000500
P-6			
0, 1			
С	-3.0752600	0.1707900	-0.0000300
С	-1.8654500	-0.4259200	0.0000500
С	-0.6084300	0.2994200	-0.0000200

С	0.6084300	-0.2994200	-0.0000500
С	1.8654500	0.4259200	0.0000700
С	3.0752600	-0.1707900	-0.0000400
Н	-3.9886700	-0.4070100	0.0001700
Н	-3.1688100	1.2496500	-0.0000700
Н	-1.8079000	-1.5107600	0.0001600
Н	-0.6621600	1.3858100	-0.0002200
Н	0 6621600	-1 3858100	-0.0003800
Н	1 8079000	1 5107600	0.0003100
Н	3 9886700	0 4070100	-0.0001400
Н	3.1688100	-1.2496500	0.0002600
Р-6Н			
1, 1			
С	-3.0690100	0.0960000	0.0000300
С	-1.6867800	-0.4118100	-0.0001400
С	-0.5536600	0.3737900	0.0003400
С	0.7051800	-0.2364900	-0.0001500
С	1.9369200	0.4630000	-0.0005000
С	3.1078800	-0.2361000	0.0002700
Н	-3.5974200	-0.3012800	0.8717500
Н	-3.5978400	-0.3014000	-0.8713600
Н	-3.1196800	1.1810200	0.0000400
Н	-1.5540900	-1.4918300	-0.0004700
Н	-0.6346100	1.4545100	0.0005700
Н	0.7446000	-1.3242300	-0.0001200
Н	1.9374500	1.5458500	-0.0005700
Н	4.0655700	0.2665200	0.0005500
Н	3.1129200	-1.3195200	0.0004300
P-8			
0, 1			
С	-4.3079200	-0.2022100	0.0000200
С	-3.1093200	0.4185600	-0.0000100
С	-1.8394300	-0.2799200	-0.0000200
С	-0.6330600	0.3462800	-0.0000200
С	0.6330600	-0.3462800	-0.0000300
С	1.8394300	0.2799200	0.0000500
С	3.1093200	-0.4185600	0.0000500
С	4.3079200	0.2022000	-0.0000400
Н	-5.2324500	0.3576900	0.0000600
Н	-4.3801200	-1.2827600	0.0000300
Н	-3.0741100	1.5045000	0.0000100
Н	-1.8693000	-1.3673400	-0.0000600
Н	-0.6066200	1.4339200	0.0000200
Н	0.6066200	-1.4339200	-0.0000900

Н	1.8693100	1.3673400	0.0001100
Н	3.0741100	-1.5045000	0.0001200
Н	5.2324500	-0.3576900	-0.0000500
Н	4.3801200	1.2827500	-0.0001200
P-8H			
1, 1			
Ċ	-4.2964900	0.0728400	0.0007400
С	-2.9082100	-0.4374000	0.0001800
С	-1.7832200	0.3463500	-0.0002800
С	-0.5041700	-0.2477200	-0.0010100
С	0.6980200	0.4625100	-0.0011000
С	1.9069000	-0.2154300	-0.0000700
С	3.1836800	0.4167900	0.0007100
С	4.3214700	-0.3275700	0.0004900
Н	-4.8288300	-0.3125000	-0.8725500
Н	-4.3379500	1.1590400	0.0003400
Н	-4.8279400	-0.3117700	0.8749000
Н	-2.7760000	-1.5172400	-0.0000300
Н	-1.8707900	1.4272100	-0.0000600
Н	-0.4527800	-1.3350200	-0.0012000
Н	0.6841600	1.5468400	-0.0012400
Н	1.8865900	-1.3036300	0.0000300
Н	3.2347900	1.4990600	0.0010800
Н	5.2982700	0.1357900	0.0006500
Н	4.2826000	-1.4100300	0.0001700
P-10			
0, 1			
С	-5.5415400	-0.2215900	0.0068000
С	-4.3478400	0.4093900	0.0045400
С	-3.0725700	-0.2773200	0.0026200
С	-1.8711100	0.3601400	-0.0287400
С	-0.6010300	-0.3193400	-0.0305000
С	0.6009700	0.3195800	0.0308900
С	1.8710600	-0.3599500	0.0290600
С	3.0726100	0.2773600	-0.0027300
С	4.3478200	-0.4095100	-0.0046800
С	5.5416100	0.2213100	-0.0071900
Н	-6.4707500	0.3305200	0.0057800
Н	-5.6044500	-1.3027400	0.0082500
Н	-4.3222200	1.4956500	0.0010000
Н	-3.0920400	-1.3649500	0.0141600
Н	-1.8554800	1.4481000	-0.0349500
Н	-0.6153200	-1.4069000	-0.0598300
Н	0.6152800	1.4071400	0.0601900

Н	1.8553500	-1.4479000	0.0356200
Н	3.0922200	1.3649800	-0.0146300
Н	4.3220600	-1.4957700	-0.0009600
Н	6.4707400	-0.3309300	-0.0061900
Н	5.6046700	1.3024500	-0.0088400
P-10H			
1, 1			
Ċ	-5.5244500	0.0285700	0.0040700
С	-4.1290800	-0.4732900	0.0039000
С	-3.0139700	0.3169200	0.0164800
С	-1.7179000	-0.2561900	0.0092800
С	-0.5371200	0.4729700	-0.0102500
С	0.6989400	-0.1754700	-0.0352700
С	1.9402400	0.4820600	-0.0233600
С	3.1188300	-0.2357900	0.0002300
С	4.4210100	0.3542900	0.0147600
С	5.5386200	-0.4159300	0.0165500
Н	-6.0568700	-0.3517700	-0.8706000
Н	-5.5682500	1.1151800	0.0059700
Н	-6.0552200	-0.3542000	0.8789300
Н	-3.9898100	-1.5520800	-0.0037700
Н	-3.1137600	1.3972200	0.0226200
Н	-1.6482000	-1.3424400	0.0058100
Н	-0.5739000	1.5572400	-0.0032200
Н	0.7025100	-1.2640100	-0.0453800
Н	1.9689000	1.5666800	-0.0193100
Н	3.0618300	-1.3225800	-0.0003600
Н	4.5021800	1.4351800	0.0184900
Н	6.5260100	0.0238500	0.0205800
Н	5.4738800	-1.4970100	0.0118900
SB-2			
0, 1			
Ń	0.6767500	-0.1536300	0.0000100
С	-0.5943800	0.0276300	-0.0000300
Н	1.1530200	0.7508400	-0.0000200
Н	-1.2405900	-0.8433500	0.0000500
Н	-1.0833900	1.0021000	0.0000800
SB-2H			
1, 1			
Ń	0.6034300	-0.0000100	-0.0000300
С	-0.6792500	0.0000100	0.0000100
Н	1.1352400	0.8679800	0.0002000
Н	1.1351900	-0.8680300	-0.0000700

Н	-1.2095500	-0.9421600	0.0001200
Н	-1.2094000	0.9422200	-0.0001300
SB-4			
0, 1			
N	1.7937000	-0.2281200	0.0000700
С	0.6419100	0.3556000	-0.0001300
С	-0.5891500	-0.4306900	-0.0000700
С	-1.8054000	0.1439000	0.0000600
Н	2.5375500	0.4725900	0.0000500
Н	0.5208500	1.4440400	0.0003200
Н	-0.4714700	-1.5080100	-0.0001000
Н	-2.7108200	-0.4460000	0.0003500
Н	-1.9161700	1.2213600	-0.0002700
SB 1H			
1 1			
I, I N	1 7424300	0.0805100	0.0001100
C C	0 5256200	0.0805100	0.0001200
C	-0.5250200	-0.3807300	0.0001200
C	1 8586800	0.1364700	0.0000700
ч	2 5425200	-0.1304700	-0.0002000
и П	-2.3423200	-0.3423700	-0.0000100
II U	-1.9347800	1.0774000	-0.0002800
П П	-0.4191700	-1.4003400	0.0000700
п u	0.3202800	0.4550000	0.0004300
п u	2.7023100	0.4339900	0.0003800
Π	1.9700000	-1.2130300	-0.0003400
SB-6			
0, 1			
N	3.0094000	-0.2532800	0.0000700
С	1.8804700	0.3782200	0.0000200
С	0.6234300	-0.3527100	-0.0000800
С	-0.5790300	0.2713200	-0.0001300
С	-1.8538900	-0.4233400	-0.0000400
С	-3.0432700	0.2119700	0.0000900
Н	3.7807600	0.4172200	0.0001400
Н	1.8070700	1.4710700	0.0000500
Н	0.6920200	-1.4357800	-0.0000800
Н	-0.6093800	1.3589600	-0.0000600
Н	-1.8257300	-1.5086500	0.0000900
Н	-3.9749000	-0.3358800	0.0002800
Н	-3.1019200	1.2933100	-0.0000100

SB-6H

1, 1

Ν	-2.9541800	0.0845700	0.0000300
C	-1.7360700	-0.4017400	0.0000900
C	-0.5641600	0.3847900	-0.0002000
C	0.6576800	-0.2370800	-0.0001300
C	1.9166700	0.4491600	0.0001100
C	3.0814000	-0.2418800	0.0000200
H	-3.7624100	-0.5242900	0.0003000
Н	-3.1288200	1.0827300	-0.0002900
Н	-1.6584600	-1.4840000	0.0004000
Н	-0.6405900	1.4661000	0.0000300
Н	0.6881100	-1.3248000	-0.0003500
Н	1.9193600	1.5326600	0.0002700
Н	4.0359400	0.2650300	0.0002300
Н	3.0930000	-1.3248600	-0.0001900
SB-8			
0, 1			
Ń	-4.3373400	0.1686100	0.0020300
С	-3.2018600	-0.4527700	-0.0018500
С	-1.9524600	0.2875000	0.0023100
С	-0.7428400	-0.3290200	-0.0017700
С	0.5209300	0.3688800	0.0021500
С	1.7245900	-0.2614900	-0.0021200
С	2.9979800	0.4310100	0.0017400
С	4.1906100	-0.2005100	-0.0025000
Н	-5.1022100	-0.5093400	-0.0018000
Н	-3.1190800	-1.5450800	-0.0083300
Н	-2.0285400	1.3701400	0.0089400
Н	-0.7085300	-1.4167700	-0.0084300
Н	0.4926400	1.4557300	0.0088500
Н	1.7501900	-1.3490500	-0.0088300
Н	2.9700600	1.5168100	0.0084300
Н	5.1201700	0.3508800	0.0006200
Н	4.2529400	-1.2816400	-0.0091500
SB-8H			
1, 1			
Ν	-4.1775300	0.0456300	-0.0000200
С	-2.9445500	-0.4218100	-0.0000500
С	-1.7894100	0.3733200	-0.0000600
С	-0.5498300	-0.2329800	0.0000300
С	0.6858500	0.4583900	0.0002100
С	1.8756100	-0.2243400	0.0000300
С	3.1680900	0.4016700	-0.0001300
С	4.3071400	-0.3303400	-0.0000100
Н	-4.9736400	-0.5766700	-0.0000300

Н	-4.3685700	1.0394600	0.0000300
Н	-2.8529000	-1.5029100	-0.0000900
Н	-1.8776300	1.4539300	0.0000100
Н	-0.5104100	-1.3208000	0.0000500
Н	0.6839900	1.5433200	0.0003500
Н	1 8508000	-1 3123400	0 0000000
Н	3 2158300	1 4847700	-0.0003600
Н	5 2795200	0 1412900	-0.0001400
H	4.2784300	-1.4129100	0.0002200
SB-10			
0, 1			
Ν	-5.4710900	-0.2510500	0.0030100
С	-4.3452700	0.3884300	0.0027000
С	-3.0846700	-0.3309500	0.0049900
С	-1.8845200	0.3058900	-0.0196700
С	-0.6109900	-0.3684400	-0.0256300
С	0.5831000	0.2850900	0.0243500
С	1.8624200	-0.3773200	0.0247800
С	3.0525200	0.2808400	-0.0025000
С	4.3399600	-0.3830300	-0.0035700
С	5.5203400	0.2721300	-0.0074100
Н	-6.2465300	0.4148500	0.0009400
Н	-4.2801000	1.4820000	-0.0000800
Н	-3.1424100	-1.4147600	0.0122600
Н	-1.8694800	1.3942300	-0.0232800
Н	-0.6181700	-1.4554500	-0.0508500
Н	0.5838500	1.3729200	0.0492200
Н	1.8631900	-1.4650500	0.0317200
Н	3.0529600	1.3686600	-0.0139600
Н	4.3350700	-1.4693800	0.0016100
Н	6.4605800	-0.2609000	-0.0059800
Н	5.5611900	1.3543200	-0.0109200
SB-10H			
1, 1			
N	5.4029600	-0.0149400	-0.0051400
С	4.1553100	-0.4578600	-0.0022000
С	3.0191200	0.3541800	-0.0007400
С	1.7613300	-0.2274800	-0.0035300
С	0.5465300	0.4833600	-0.0062400
С	-0.6648200	-0.1768000	0.0204400
С	-1.9298000	0.4659000	0.0201900
С	-3.0982100	-0.2505600	-0.0004700
С	-4.4089400	0.3410600	-0.0083900
С	-5.5332600	-0.4123500	-0.0108400

Н	6.1847200	-0.6535500	-0.0039600
Н	5.6142400	0.9738500	-0.0071900
Н	4.0438700	-1.5370500	-0.0002100
Н	3.1264800	1.4332500	-0.0029300
Н	1.7019400	-1.3146000	0.0025100
Н	0.5678700	1.5683100	-0.0187400
Н	-0.6566900	-1.2653700	0.0314600
Н	-1.9652100	1.5509500	0.0219300
Н	-3.0423100	-1.3373000	-0.0053100
Н	-4.4812000	1.4232400	-0.0082500
Н	-6.5145400	0.0403900	-0.0126000
Н	-5.4833700	-1.4941200	-0.0100600

HTBH38/08	8		
Reaction 1:	$H + HCl \rightarrow H_2 + 0$	Cl	
HC1			
0, 1			
Cl	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.2744500
TS1			
0, 2			
Н	0.0004800	-1.3406300	0.0000000
Cl	0.0000000	0.2032500	0.0000000
Н	-0.0004800	-2.1146600	0.0000000
H_2			
0, 1			
Н	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	0.7418800
Reaction 2:	$OH + H_2 \rightarrow H_2O$	+ H	
OH			
0, 2			
0	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	0.9689000
TS2			
0, 2			
0	-0.3010600	-0.1080500	-0.0000100
Н	-0.4279500	0.8515700	0.0000200
Н	1.0154900	-0.1003700	0.0001200
TT	1 0000700	0 1 1 2 1 0 0 0	0 0000700

 ${\rm H}_2{\rm O}$

0.1			
0, 1	0 000000	0 0000000	0 0000000
H	0.0000000	0.0000000	0.9569100
Н	0.9263600	0.0000000	-0.2398700
Reaction 3	$B: CH_3 + H_2 \rightarrow CH_4$	+ H	
CH ₃			
0, 2			
С	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.0773200
Н	0.9329800	0.0000000	-0.5386600
Н	-0.9329800	0.0000000	-0.5386600
TS3			
0, 2			
С	0.0000000	0.2648100	0.0000000
Н	1.0534300	0.5166700	0.0000000
Н	-0.5266300	0.5170200	0.9122500
Н	-0.5266300	0.5170200	-0.9122500
Н	-0.0002600	-1.1177700	0.0000000
Н	0.0000800	-2.0218300	0.0000000
CH ₄			
0, 1			
С	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.0874400
Н	1.0252500	0.0000000	-0.3624800
Н	-0.5126300	0.8878900	-0.3624800
Н	-0.5126300	-0.8878900	-0.3624800
Reaction 4	$4: OH + CH_4 \rightarrow H_2O$	$O + CH_3$	
TS4			
0, 2 C	1 211/000	0 0079700	0.000/100
	-1.2114900	0.00/9/00	0.0004100
U U	1.2939700	-0.1080900	0.0001300
п u	0.0094600	-0.1180200	1.0100700
П П	-1.3233300	-0.2332300	0.2780800
П П	-1.4300700	0.7101100	-0.2780800
п u	-1.332/100	-0./101100	-0.7377000
п	1.4100400	0.8498900	-0.0003900
Reaction 5	$5: \mathrm{H} + \mathrm{H}_2 \to \mathrm{H}_2 + \mathrm{H}_2$		
TS5			
0, 2	0 0 0 0 0 0 0 0 0 0	0.0000000	
H	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	0.9294700

Н	0.0000000	0.0000000	-0.9294700
Reaction 6	$5: OH + NH_3 \rightarrow H_2O$	$O + NH_2$	
NH ₃			
0, 1			
N	0.0000000	0.0000000	0.1128900
Н	0.0000000	0.9380200	-0.2634100
Н	0.8123500	-0.4690100	-0.2634100
Н	-0.81235	-0.4690100	-0.2634100
TS6			
0, 2			
Ň	-1.1508200	-0.0439300	-0.1025600
0	1.1791900	-0.0927000	-0.0102900
Н	-1.3031900	-0.5476400	0.7665700
Н	-1.3389100	0.9358100	0.0918500
Н	-0.0306900	-0.1538300	-0.3531800
Н	1.2950100	0.8147500	0.2949900
NH2			
0.2			
N	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.0240500
Н	0.9971600	0.0000000	-0.2331400
Reaction 7	7: HCl + CH ₃ \rightarrow CH	$I_4 + Cl$	
TS7			
0, 2			
Ċ	0.2441200	0.5999200	1.7024200
Н	-0.6756000	0.2784800	2.1729400
Н	0.3519100	1.6637900	1.5376700
Н	1.1406900	0.0657900	1.9878200
Н	0.0571600	0.1399700	0.3971100
Cl	-0.1375800	-0.3380900	-0.9594200
Reaction 8	$3: OH + C_2H_6 \rightarrow H_2$	$O + C_2H_5$	
C ₂ H ₆			
0, 1			
С	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.5261800
Н	1.0160700	0.0000000	1.9214000
Н	0.5096000	-0.8790400	-0.3952200
Н	-0.5080300	-0.8799400	1.9214000
Н	-0.5080400	0.8799400	1.9214000
Н	-1.0160700	-0.0018000	-0.3952200
Н	0.5064700	0.8808400	-0.3952200

TS8			
0, 2			
С	1.4583300	-0.4463700	0.0254800
С	0.4694200	0.6974200	-0.0274900
0	-1.8530400	-0.3146600	-0.0530500
Н	1.3017600	-1.0610800	0.9107400
Н	1.3665800	-1.0861900	-0.8511200
Н	2.4822400	-0.0668800	0.0571500
Н	0.4710700	1.3254400	0.8610400
Н	0.5335200	1.3035000	-0.9285600
Н	-0.6302300	0.2078200	-0.0784600
Н	-2.2672100	0.3883200	0.4657500
C ₂ H ₅			
0, 2 C	0.0000000	0.0000000	0.0000000
С	0.0000000	0.0000000	1.4901400
Н	1.0137700	0.0000000	1.8911400
Н	-0.8485500	0.3741300	-0.5528700
Н	-0.5010600	-0.8876800	1.8958500
Н	-0.5250100	0.8674800	1.8910500
Н	0.7721800	-0.5127000	-0.5535700
Reaction 9:	$F + H_2 \rightarrow HF + H$	[
TS9			
0, 2	0 1465700	1 1202000	0.000000
H F	0.1465/00	-1.1283900	0.0000000
F	0.0000000	0.3304200	0.0000000
Н	-0.1465/00	-1.8454100	0.0000000
HF			
0, 1			
F	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	0.9153800
Reaction 10	$: O + CH_4 \rightarrow OH$	$+ CH_3$	
1510			
0, 5 C	0.0002900	-1.1422900	0.0000000
Н	-1.0559600	-1.3847400	0.0000000
Н	0.5201700	-1.4073900	0.9124500
Н	0.5201700	-1.4073900	-0.9124500
Н	0.0115600	0.1601000	0.0000000
\cap	0.0002000	1 3616400	0.000000

Reaction 11:	$H + PH_3 \rightarrow H_2 +$	· PH ₂	
PH ₃			
0, 1			
Р	0.0000000	0.0000000	0.1264100
Н	1.1913400	0.0000000	-0.6320600
Н	-0.5956700	-1.0317300	-0.6320600
Н	-0.5956700	1.0317300	-0.6320600
TS11			
0, 2			
P	0.2174300	0.0000900	-0.1112500
Н	0.2466100	1.0346700	0.8521600
Н	0 2626600	-1 0250600	0.8616200
Н	-1 2664200	-0.0109500	-0.1506300
Н	-2 5042900	0.0000300	0.1055800
11	2.3042700	0.0000500	0.1055000
PH			
0.2			
0, 2 P	0 000000	0.000000	-0.1156600
I Ц	1.0201200	0.0000000	-0.1150000
	1.0201300	0.0000000	0.8074300
П	-1.0201300	0.0000000	0.8074300
Reaction 12.	$H + HO \rightarrow H_2 +$	0	
TS12		0	
0.3			
0, 5 Н	0.000000	0 0000000	-0.8602900
$\hat{0}$	0.000000	0.0000000	0.3200200
U Ц	0.000000	0.0000000	1 7710100
11	0.000000	0.0000000	-1.//19100
Reaction 13.	$H + H_2 S \rightarrow H_2 +$	HS	
H ₂ S	<u> </u>	115	
0 1			
0, 1 S	0.000000	0 000000	0 1025200
5 Ц	0.0000000	0.0000000	0.1023200
П	0.0000000	0.9002300	-0.8201300
П	0.0000000	-0.9002300	-0.8201500
TC12			
1513			
0, 2	1.0/01000	0.0001000	0.0000000
H	1.2621000	-0.2201000	0.0000000
S	0.0000000	0.2231500	0.0000000
H	-0.5005800	-1.1154500	0.0000000
Н	-0.7615200	-2.2349100	0.0000000
HS			
0, 2			
S	0.0000000	0.0000000	0.0000000

Н	0.0000000	0.0000000	1.3402000
Reaction 1	4: $O + HCl \rightarrow OH$	+ Cl	
TS14			
0, 3			
Cl	0.0188200	-0.8173000	0.0000000
Н	-0.4704900	0.5694800	0.0000000
0	0.0188200	1.6655800	0.0000000
Reaction 1	5: $CH_3 + NH_2 \rightarrow C$	$H_4 + NH$	
TS15			
0, 5 C	-1 1995800	-0.0111300	-0.0000300
N	1 4007100	0.1298600	0.0000200
H	-1 4266600	-0 5129300	0.9330600
Н	-1 4199100	-0.5913800	-0 8881400
Н	-1.5202400	1.0228100	-0.0457800
Н	0.1889300	0.1269000	0.0010000
Н	1.5703400	-0.8876700	-0.0000500
NH			
0.3			
N N	0 000000	0.0000000	0.000000
Н	0.0000000	0.0000000	1 036730
Reaction 1 TS16	$6: C_2H_5 + NH_2 \rightarrow 0$	$C_2H_6 + NH$	
0, 3			
С	-1.3949800	-0.4496600	0.000700
С	-0.4357500	0.7140600	0.002030
N	1.9275700	-0.3783500	0.003040
Н	-1.2000900	-1.1209500	-0.835690
Н	-1.3221000	-1.0278800	0.921770
Н	-2.4287100	-0.1053500	-0.089330
Н	-0.4176900	1.3084800	-0.907200
Н	-0.4411300	1.3290900	0.897470
Н	0.8285000	0.1805900	-0.028560
Н	2.4725900	0.4980700	0.003910
Reaction 1	7: $NH_2 + C_2H_6 \rightarrow 1$	$NH_3 + C_2H_5$	
TS17			
0, 2 C	_1 /857000	-0 //81600	
C	-1.403/000	0.4401000	
U N	-0.3030400	-0 3/01/400	
ти П	1.0031000	-0.3401/00	0.000000
11	-1.5541900	-1.0/03100	-0.000300

Н	-1.3541600	-1.0766100	0.8803800
Н	-2.5170200	-0.0861700	0.0000300
Н	-0.5222200	1.3161200	-0.8972200
Н	-0.5222100	1.3160300	0.8973400
Н	0.6650500	0.1479600	-0.0000300
Н	2.2466400	0.1597200	-0.8048100
Н	2.2464400	0.1591300	0.8051500
Reaction 18	$NH_2 + CH_4 \rightarrow N$	$H_3 + CH_3$	
TS18			
0, 2			
С	-1.2607500	-0.0000100	0.0122900
Ν	1.3132600	-0.0000100	-0.1367800
Н	-1.5839900	0.9085400	-0.4847400
Н	-1.4636700	-0.0045700	1.0773000
Н	-1.5847500	-0.9038800	-0.4927000
Н	0.0431100	-0.0000600	-0.1516900
Н	1.4804600	0.8055800	0.4677500
Н	1.4805600	-0.8055200	0.4678100
Reaction 19:	<i>s-trans cis</i> -C ₅ H ₈	\rightarrow s-trans cis-	C_5H_8
C_5H_8			
0, 1 ~			
C	-2.0556400	-0.6122700	0.0000100
C	-1.2311000	0.6404500	0.0000500
C	0.1056300	0.7342700	0.0000300
C	1.0575600	-0.3744100	-0.0000400
С	2.3835800	-0.1989400	-0.0000400
Н	-2.7050800	-0.6416000	0.8771300
Н	-2.7051300	-0.6415100	-0.8770900
Н	-1.4513300	-1.5160800	-0.0000600
Н	-1.7936700	1.5675900	0.0001000
Н	0.5457600	1.7256400	0.0000600
Н	0.6652600	-1.3832400	-0.0001100
Н	3.0646900	-1.0377200	-0.0000900
Н	2.8192800	0.7922900	0.0000200
TC10			
1519			
0, 1 C	1 200(200	0.0040500	0.0201500
C C	-1.2996200	-0.9048500	-0.0201500
C	-1.2059500	0.5058200	-0.0134100
C	0.0000000	1.1833600	0.1533000
C	1.2059500	0.5058100	-0.0134200
C	1.2996300	-0.9048500	-0.0201500
H	2.1688000	-1.32/5500	-0.515/000
Н	1.0320400	-1.4543900	0.8731700

Η	2.0371300	1.0855800	-0.3985000
Η	0.0000000	2.2629100	0.0859000
Η	-2.0371300	1.0855900	-0.3984800
Η	-2.1688000	-1.3275400	-0.5157200
Η	-0.0000100	-1.1819400	-0.5208100
Н	-1.0320600	-1.4543900	0.8731600

NHTBH38/08				
Reaction 1: $H + N$	$V_2O \rightarrow OH + 2$	N_2		
N_2O				
0, 1				
N	0.0000000	0.0000000	0.0000000	
N	0.0000000	0.0000000	1.1205600	
0	0.0000000	0.0000000	2.3076100	
ОН				
0.2				
0, 2	0.0000000	0 0000000	0.0000000	
H	0.0000000	0.0000000	0.9689000	
11	0.00000000	0.0000000	0.9009000	
TS1				
0, 2				
Н	-0.3032900	-1.9307100	0.0000000	
0	-0.8610100	-0.6215300	0.0000000	
Ν	0.0000000	0.2570300	0.0000000	
Ν	1.0273300	0.7291000	0.0000000	
N ₂				
0, 1	0.000000	0.000000	0.000000	
N	0.0000000	0.0000000	0.0000000	
Ν	0.0000000	0.0000000	1.09/1100	
Reaction 2: H + F	$FH \rightarrow HF + H$			
HF				
0, 1				
F	0.0000000	0.0000000	0.0000000	
Н	0.0000000	0.0000000	0.9153800	
TS2				
0, 2				
Н	0.0000000	0.0000000	1.1372200	
F	0.0000000	0.0000000	0.0000000	
Н	0.0000000	0.0000000	-1.1372200	

Reaction 3: $H + ClH \rightarrow HCl + H$

HCl			
0.1			
Cl	0 0000000	0 0000000	0 0000000
Н	0.0000000	0.0000000	1 2744500
11	0.0000000	0.0000000	1.2777500
TS3			
0, 2			
Н	0.0000000	0.0000000	1.4858000
Cl	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	-1.4858000
Reaction 4: H +	$FCH_3 \rightarrow HF +$	· CH ₃	
CH ₃ F	- 5	- 5	
0.1			
Ć	-0.6320700	0.0000000	0.0000000
F	0 7491200	0 0000000	0 0000000
Н	-0.9831800	-0 3384900	0.9726200
Н	-0.9832200	1 0115500	-0 1931700
и П	0.0832000	0.6720800	-0.1751700
11	-0.9852000	-0.0750800	-0.7794400
TS4			
0, 2			
Н	-0.0397600	0.0000000	0.0441100
F	-0.0493200	0.0000000	1.2825500
С	-0.0615400	0.0000000	2.9511600
Н	0.9905000	0.0000000	3.1942800
Н	-0.5900700	0.9123600	3.1834800
Н	-0.5900700	-0.9123600	3.1834800
CH_{2}			
0.2			
с, <u>-</u> С	0 0000000	0 0000000	0 0000000
н	0.0000000	0.0000000	1 0773000
Ч	0.0000000	0.0000000	-0 5386600
и И	-0.9329800	0.0000000	-0.5386600
11	-0.9329800	0.0000000	-0.5580000
Reaction 5: H +	$F_2 \rightarrow HF + F$		
F_2			
0, 1			
F	0.0000000	0.0000000	0.0000000
F	0.0000000	0.0000000	1.3952000
TS5			
0, 2			
0, 2 H	0.0000000	0.0000000	-2.2312700

F	0.0000000	0.0000000	0.8641400
Reaction 6: CH	$H_3 + FCl \rightarrow CH_3$	F + Cl	
FC1			
0, 1			
F	0.0000000	0.0000000	0.0000000
Cl	0.0000000	0.0000000	1.6303300
TS6			
0, 2			
Cl	1.4547500	-0.0012400	-0.0000400
F	-0.3235900	0.0046300	0.0001200
С	-2.3874200	-0.0021500	-0.0000700
Н	-2.4950900	-0.8553600	-0.6494000
Н	-2.4973100	-0.1386700	1.0631400
Н	-2.5015400	0.9862700	-0.4137300
Reaction 7: F ⁻	$+ CH_3F \rightarrow FCH$	$[_3 + F^-]$	
TS7			
-1, 1			
F	0.0031000	-0.0188900	-0.0154600
С	-0.0001500	-0.0001400	1.8078600
Н	1.0694500	0.0017100	1.8097600
Н	-0.5366100	0.9251300	1.7969300
Н	-0.5326000	-0.9277800	1.8170600
F	-0.0031900	0.0199700	3.6318500
Reaction 8: F ⁻	\cdots CH ₃ F \rightarrow FCH ₃	3F_	
FCH3F (comp	lex)		
-1, 1			
F	0.0000000	0.0000000	-1.8476300
a			
C	0.0000000	0.0000000	-0.4218700
C H	$0.0000000 \\ 0.0000000$	0.0000000 1.0235800	-0.4218700
C H H	0.0000000 0.0000000 -0.8864500	0.0000000 1.0235800 -0.5117900	-0.4218700 -0.0738400 -0.0738400
C H H H	0.0000000 0.0000000 -0.8864500 0.8864500	0.0000000 1.0235800 -0.5117900 -0.5117900	-0.4218700 -0.0738400 -0.0738400 -0.0738400
C H H F	$\begin{array}{c} 0.0000000\\ 0.0000000\\ -0.8864500\\ 0.8864500\\ 0.0000000\end{array}$	0.000000 1.0235800 -0.5117900 -0.5117900 0.0000000	-0.4218700 -0.0738400 -0.0738400 -0.0738400 2.1534900
C H H F Reaction 9: Cl [*]	$\begin{array}{c} 0.000000\\ 0.000000\\ -0.8864500\\ 0.8864500\\ 0.0000000\\ \end{array}$	0.000000 1.0235800 -0.5117900 -0.5117900 0.0000000 CH ₃ + Cl ⁻	-0.4218700 -0.0738400 -0.0738400 -0.0738400 2.1534900
C H H F Reaction 9: Cl [*] CH ₃ Cl	$\begin{array}{c} 0.0000000\\ 0.0000000\\ -0.8864500\\ 0.8864500\\ 0.0000000\\ \hline + \mathrm{CH}_3\mathrm{Cl} \to \mathrm{Cle} \end{array}$	0.000000 1.0235800 -0.5117900 -0.5117900 0.0000000 CH ₃ + Cl ⁻	-0.4218700 -0.0738400 -0.0738400 -0.0738400 2.1534900
C H H F <u>Reaction 9: Cl</u> CH ₃ Cl 0, 1	$\begin{array}{c} 0.0000000\\ 0.0000000\\ -0.8864500\\ 0.8864500\\ 0.0000000\\ \hline + \mathrm{CH}_3\mathrm{Cl} \to \mathrm{Cl}_4 \end{array}$	$\begin{array}{c} 0.0000000\\ 1.0235800\\ -0.5117900\\ -0.5117900\\ 0.0000000\\\\\hline\\\hline\\\hline\\CH_3 + Cl^-\end{array}$	-0.4218700 -0.0738400 -0.0738400 -0.0738400 2.1534900
C H H F <u>Reaction 9: Cl</u> CH ₃ Cl 0, 1 C	$\begin{array}{c} 0.000000\\ 0.000000\\ -0.8864500\\ 0.8864500\\ 0.0000000\\ \hline + CH_3Cl \rightarrow Cle \\ 0.0000000 \end{array}$	$0.000000 \\ 1.0235800 \\ -0.5117900 \\ -0.5117900 \\ 0.0000000 \\ \hline CH_3 + CI^- \\ 0.0000000 \\ \hline$	-0.4218700 -0.0738400 -0.0738400 2.1534900 -1.1258900
C H H F Reaction 9: Cl [*] CH ₃ Cl 0, 1 C Cl	$\begin{array}{c} 0.0000000\\ 0.0000000\\ -0.8864500\\ 0.8864500\\ 0.0000000\\\hline\\ + \ CH_3Cl \rightarrow Cle\\ 0.0000000\\ 0.0000000\\ \end{array}$	$\begin{array}{c} 0.000000\\ 1.0235800\\ -0.5117900\\ -0.5117900\\ 0.0000000\\ \hline \\ \hline \\$	-0.4218700 -0.0738400 -0.0738400 2.1534900 -1.1258900 0.6568300
C H H F <u>Reaction 9: Cl</u> CH ₃ Cl 0, 1 C Cl H	$\begin{array}{c} 0.0000000\\ 0.0000000\\ -0.8864500\\ 0.8864500\\ 0.0000000\\ \hline + CH_3Cl \rightarrow Cl^4\\ 0.0000000\\ 0.0000000\\ 0.0000000\\ 0.0000000\\ 0.0000000\end{array}$	$\begin{array}{c} 0.000000\\ 1.0235800\\ -0.5117900\\ -0.5117900\\ 0.0000000\\ \hline \\ \hline \\$	-0.4218700 -0.0738400 -0.0738400 2.1534900 -1.1258900 0.6568300 -1.4702600
C H H F F CH ₃ Cl 0, 1 C Cl H H	$\begin{array}{c} 0.000000\\ 0.000000\\ -0.8864500\\ 0.8864500\\ 0.0000000\\ \hline + CH_3C1 \rightarrow Clain \\ 0.0000000\\ 0.0000000\\ 0.0000000\\ 0.8902700 \end{array}$	$\begin{array}{c} 0.000000\\ 1.0235800\\ -0.5117900\\ -0.5117900\\ 0.0000000\\ \hline \\ \hline \\$	-0.4218700 -0.0738400 -0.0738400 2.1534900 -1.1258900 0.6568300 -1.4702600 -1.4702600

TS9			
-1, 1			
Cĺ	2.3225800	-0.0001300	0.0001400
С	-0.0000900	0.0004900	-0.0005100
Н	0.0000800	-0.7442900	-0.7676000
Н	-0.0003200	-0.2914400	1.0280200
Н	0.0000800	1.0372200	-0.2619600
Cl	-2.3225400	-0.0001300	0.0001300
Reaction 10: 0	$\frac{\text{Cl}^{-}\cdots\text{CH}_{3}\text{Cl}\rightarrow\text{Cl}}{1}$	CH ₃ …Cl ⁻	
$CICH_3CI$ (cor	nplex)		
-1, 1	0.000000	0.0000000	-2 3847400
C	0.0000000	0.0000000	-0 5663300
н	0.0000000	1.0250700	-0 2243800
H	-0.8877300	-0 5125300	-0 2243800
н	0.8877300	-0.5125300	-0.2243800
Γ	0.0077500	-0.3123300	2 6242100
CI	0.0000000	0.0000000	2.0242100
Reaction 11:	$F^- + CH_3Cl \rightarrow FC$	$CH_3 + Cl^-$	
TS11			
-1, 1			
F	0.0000000	0.0000000	-2.5379300
С	0.0000000	0.0000000	-0.4883700
Н	0.0000000	1.0620900	-0.6149700
Н	-0.9198000	-0.5310400	-0.6149700
Н	0.9198000	-0.5310400	-0.6149700
Cl	0.0000000	0.0000000	1.6245000
Reaction 12:	$F^- \dots CH_* C1 \longrightarrow FC$	HCl ⁻	
FCH ₃ Cl (com	$\frac{1}{\text{plex 1}}$		
-1, 1	r ·)		
Cl	0.0000000	0.0000000	1.6231400
С	0.0000000	0.0000000	-0.2273600
Н	0.0000000	1.0263200	-0.5551400
Н	0.8888200	-0.5131600	-0.5551400
Н	-0.8888200	-0.5131600	-0.5551400
F	0.0000000	0.0000000	-2.7293100
	1 2		
FCH ₃ Cl (com	piex 2)		
т, т F	0 000000	0.0000000	-2 6485400
r C		0.0000000	-2.0+03+00 _1 2/01700
с н		1 02/7200	-1.2401/00
н Ц	_0.887/200	-0 5122600	-0.0004100
и П	-0.00/4300	-0.3123000	-0.0004100
п	0.00/4300	-0.3123000	-0.0004100

Cl	0.0000000	0.0000000	1.9963000
Reaction 13: C	$H^- + CH_3F \rightarrow H_3$	$HOCH_3 + F^-$	
OH_			
-1, 1			
0	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	0.9620400
TS13			
-1, 1			
F	0.0225400	-0.0074500	0.0055300
С	-0.0184200	0.0050400	1.7649300
Н	1.0480500	0.0052400	1.8541500
Н	-0.5478200	0.9347100	1.7922200
Н	-0.5489500	-0.9234300	1.8057600
0	0.0012700	0.0192000	3.7506000
Н	-0.9267600	0.0316100	3.9975800
CH ₃ OH			
0 1			
C C	-0.0464200	0.6630700	0.0000000
0	-0.0464200	-0.7550600	0.0000000
Н	-1.0869600	0.9759400	0.0000000
Н	0.8605900	-1.0570400	0.0000000
Н	0.4381500	1.0715900	0.8895400
Н	0.4381500	1.0715900	-0.8895400
Reaction 14: ($\overline{H^-}\cdots \overline{H_3F} \to \overline{H}$	OCH ₃ …F ⁻	
HOCH ₃ F (con	nplex 1)		
-1, 1			
С	-1.2980000	-0.3895200	-0.0000300
0	-0.4772200	0.7280200	0.0000500
Н	-2.3519200	-0.0802300	-0.0086400
H	-1.1408500	-1.0358200	-0.8781000
H	-1.1531800	-1.02/5100	0.8863600
H	0.5105800	0.3/11600	0.0002400
F	1.7490200	-0.1905200	-0.0000100
HOCH ₃ F (con	nplex 2)		
-1, 1			
F	0.0003700	-2.4683400	0.0213900
C	-0.2766400	-1.0744200	-0.0026900
H	0.6492900	-0.5165000	-0.0090200
H	-0.8419900	-0.8471200	-0.8970700
Н	-0.8510300	-0.8265900	0.8814200
U	-0.3017/100	1.5825200	-0.2065400

Н	-0.6051100	2.4924300	-0.1643100
Reaction 15: H	$+ N_2 \rightarrow HN_2$		
TS15			
0, 2			
Ň	0.0000000	0.0000000	0.0000000
Ν	0.0000000	0.0000000	1.1228100
Н	1.2684500	0.0000000	1.7843300
IDI			
HN_2			
0, 2			
Ν	0.0000000	0.0000000	0.0000000
Ν	0.0000000	0.0000000	1.1782000
Н	0.9366400	0.0000000	1.6449700
Reaction 16: H	$+ CO \rightarrow HCO$		
СО			
0, 1			
0	0 0000000	0 0000000	0 0000000
Č	0.0000000	0.0000000	1 1296100
C	0.0000000	0.0000000	1.1290100
TS16			
0, 2			
Н	-1.5208600	1.3888300	0.0000000
С	0.1086300	0.5493300	0.0000000
0	0.1086300	-0.5856000	0.0000000
НСО			
0.2			
0, 2 H	-0.0000600	0 0000000	_0 0070900
II C	-0.0070300	0.0000000	1 1006800
C	-0.00/0300	0.0000000	1.1090600
0	0.9360400	0.0000000	1./830000
Reaction 17: H	$+ C_2H_4 \rightarrow CH_3$	CH ₂	
C_2H_4			
0, 1			
С	0.0000000	0.0000000	0.6655900
С	0.0000000	0.0000000	-0.6655900
Н	0.0000000	0.9214900	1.2316700
Н	0.0000000	-0.9214900	1.2316700
Н	0.0000000	0.9214900	-1.2316700
Н	0.0000000	-0.9214900	-1.2316700
TS17			
$\begin{array}{c} 1 \\ 0 \\ \end{array}$			
С, 2 С	-0.5678800	0.0000500	-0 2189600
\sim	0.2010000	0.000000000	0.210/000

С	0.7511400	-0.0000400	0.0419300
Н	-1.4938800	-0.0004900	1.5317700
Н	-1.1016900	0.9206500	-0.4086300
Н	-1.1020200	-0.9202300	-0.4091100
Н	1.2991300	-0.9223400	0.1737600
Н	1.2989000	0.9223200	0.1743600
CH ₃ CH ₂			
0, 2			
C	-0.2587200	-0.8168300	0.0000000
С	-0.2509900	0.6741900	0.0000000
Н	0.7588300	-1.2259400	0.0000000
Н	-0.7588300	-1.2138700	0.8834200
Н	-0.7588300	-1.2138700	-0.8834200
Н	-0.1700200	1.2259400	-0.9243200
Н	-0.1700200	1.2259400	0.9243200
Reaction 18: CH	$I_3 + C_2H_4 \rightarrow C$	H ₃ CH ₂ CH ₂	
TS18			
0, 2			
С	-0.4721300	0.6459300	-0.0000400
С	-1.3826200	-0.3638900	0.0000000
Н	-0.2320400	1.1645700	-0.9172600
Н	-0.2323400	1.1647600	0.9171700
Н	-1.7271300	-0.8098100	0.9225200
Н	-1.7269400	-0.8101300	-0.9224400
С	1.6120100	-0.2421900	0.0000300
Н	2.1951800	0.6686700	-0.0012700
Н	1.5894200	-0.8096200	-0.9186300
Н	1.5902400	-0.8076000	0.9199700
$CH_3CH_2CH_2$			
0, 2			
С	1.2084400	-0.2871900	0.0000600
С	-0.0653600	0.5761300	-0.0000600
С	-1.3147900	-0.2395200	-0.0000100
H	1.2413700	-0.9283900	0.8812300
H	1.2413900	-0.9285900	-0.8809800
Н	2.1018700	0.3387300	0.0000000
H	-0.0482200	1.2268500	-0.8770900
H	-0.0482700	1.2270400	0.8768300
Н	-1.7291500	-0.6157700	0.9244400
Н	-1.7287600	-0.6164200	-0.9243700
Reaction 19. HC	$N \rightarrow HNC$		

0, 1			
С	0.0000000	0.0000000	-0.5003600
Ν	0.0000000	0.0000000	0.6526400
Н	0.0000000	0.0000000	-1.5662900
TC10			
1819			
0, 1			
С	0.0803200	0.6202600	0.0000000
Ν	0.0803200	-0.5681000	0.0000000
Н	-1.0441500	0.2551200	0.0000000
HNC			
0, 1			
С	0.0000000	0.0000000	-0.7372500
Ν	0.0000000	0.0000000	0.4320900
Н	0.0000000	0.0000000	1.4269600

NCCE30			
parallel-dis	placed $(CO_2)_2$		
0, 1			
Ċ	0.5683590	1.6604200	0.0000000
С	-0.5683590	-1.6604200	0.0000000
0	1.7008450	1.9115690	0.0000000
0	-1.7008450	-1.9115690	0.0000000
0	-0.5683590	1.4145690	0.0000000
0	0.5683590	-1.4145690	0.0000000
CO_2			
0 1			
C, I	0.000000	0.0000000	0.0000000
0	0.0000000	0.0000000	1 1601000
0	0.0000000	0.0000000	-1.1601000
Ar CO.			
$AI = CO_2$			
Δr	0.000000	0.0000000	1 8832290
C	0.0000000	0.0000000	-1 5409710
\mathbf{C}	0.0000000	1 1617000	-1.5407680
0	0.0000000	1.1617000	1 5407680
0	0.0000000	-1.101/000	-1.3407080
sandwich ($C_5H_5N)_2$		
0, 1	/-		
Ň	1.3980380	0.0000000	0.0000000
С	0.6985370	1.1401300	0.0000000

С	-0.6941820	1.1953400	0.0000000
С	-1.4067470	0.0000000	0.0000000
С	-0.6941820	-1.1953400	0.0000000
С	0.6985370	-1.1401300	0.0000000
Н	1.2816690	2.0568850	0.0000000
Н	-1.1999250	2.1525480	0.0000000
Н	-2.4885470	0.0000000	0.0000000
Н	-1.1999250	-2.1525480	0.0000000
Н	1.2816690	-2.0568850	0.0000000
Ν	-1.3980380	0.0000000	3.7000000
С	-0.6985370	1.1401300	3.7000000
С	0.6941820	1.1953400	3.7000000
С	1.4067470	0.0000000	3.7000000
С	0.6941820	-1.1953400	3.7000000
С	-0.6985370	-1.1401300	3.7000000
Н	-1.2816690	2.0568850	3.7000000
Н	1.1999250	2.1525480	3.7000000
Н	2.4885470	0.0000000	3.7000000
Н	1.1999250	-2.1525480	3.7000000
Н	-1.2816690	-2.0568850	3.7000000
C ₅ H ₅ N			
0, 1			
N	0.0000000	0.0000000	1.4201100
С	0.0000000	1.1401300	0.7206090
С	0.0000000	1.1953400	-0.6721100
С	0.0000000	0.0000000	-1.3846750
С	0.0000000	-1.1953400	-0.6721100
С	0.0000000	-1.1401300	0.7206090
Н	0.0000000	2.0568850	1.3037410
Н	0.0000000	2.1525480	-1.1778530
Н	0.0000000	0.0000000	-2.4664750
Н	0.0000000	-2.1525480	-1.1778530
Н	0.0000000	-2.0568850	1.3037410
$(NH_3)_2$			
0, 1			
N	1.5752300	0.0000900	-0.0426100
H	2.1311100	0.8139500	-0.2866100
H	1.4964500	-0.0029400	0.9702600
H	2.1317200	-0.8118900	-0.2914500
N	-1.6882400	0.0000800	0.1048500
H	-2.1264000	-0.8126800	-0.31/3100
H	-2.1274400	0.8118400	-0.3181600
Н	-0.7143000	0.0005400	-0.1924100
NH ₃			

0 1			
N N	0.0000000	0.0000000	0.1150100
Н	0.0000000	0.9397500	-0.2683600
Н	0.8138500	-0.4698800	-0.2683600
Н	-0.8138500	-0.4698800	-0.2683600
	0.0120200	00900000	0.2002000
$(HF)_2$			
0, 1	1 2027400	0.0002200	0.0000100
F II	1.3237400	-0.0902300	-0.0000100
H	1.7404400	0.7333900	0.0000100
	-1.45/2000	0.0192600	-0.0000100
H	-0.5393100	-0.0946600	0.0001500
HF			
0, 1			
F	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	0.9207400
(\mathbf{U}, \mathbf{O})			
$(H_2O)_2$			
0, 1	1 5217500	0.0050200	0 1200000
U	1.331/300	0.0039200	-0.1208800
П	0.3/39/00	-0.0032300	0.0249700
П	1.9062300	-0.03/3000	0.7032200
U U	-1.3902300	-0.0049900	0.1007700
п	-1.7893700	-0.7422800	-0.3/10100
Π	-1.///0400	0.7770400	-0.3042000
H_2O			
0, 1			
0	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	0.9618300
Н	0.9335800	0.0000000	-0.2314100
NH2····H2O			
0 1			
N N	-1 3955900	-0.0215600	0 0000400
H	-1 6298100	0.9611000	-0 1062200
Н	-1 8627700	-0 5125400	-0 7559700
Н	-1 8335500	-0 3307700	0.8623100
0	1 5685000	0 1058900	0.0000100
Ĥ	0.6067400	-0.0339600	-0.0006300
Н	1.9405200	-0.7800000	0.0002200
$(\text{HCONH}_2)_2$			
0, 1	1 1 / 1 0 0 0 0	1 4450100	0.0000000
0	-1.1410900	1.4452100	0.0000000
U U	-0.061/500	2.0309500	0.0000000
H	-0.0136900	5.1501/00	0.0000000
1 N	1.1410900	1.4338800	0.0000000

Н	1.2176900	0.4165300	0.0000000
Н	1.9714500	2.0021000	0.0000000
0	1.1410900	-1.4452100	0.0000000
С	0.0617500	-2.0309500	0.0000000
Н	0.0136900	-3.1301700	0.0000000
Ν	-1.1410900	-1.4358800	0.0000000
Н	-1.2176900	-0.4165300	0.0000000
Н	-1.9714500	-2.0021000	0.0000000
HCONH ₂			
0, 1			
С	-0.1606800	0.3884000	-0.0005400
0	-1.1957100	-0.2463900	0.0001900
Ν	1.0833000	-0.1584200	-0.0002900
Н	-0.1399200	1.4903500	0.0013900
Н	1.1822600	-1.1604100	0.0011200
Н	1.9043200	0.4197400	0.0012500
(HCOOH) ₂			
0, 1			
C	-0.1202300	1.9140700	0.0000000
Н	-0.1672900	3.0070200	0.0000000
0	-1.1218600	1.2209800	0.0000000
0	1.1218600	1.4804900	0.0000000
Н	1.1275800	0.4890200	0.0000000
0	1.1218600	-1.2209800	0.0000000
С	0.1202300	-1.9140700	0.0000000
0	-1.1218600	-1.4804900	0.0000000
Н	-1.1275800	-0.4890200	0.0000000
Н	0.1672900	-3.0070200	0.0000000
НСООН			
0, 1			
С	-0.1347000	0.4012500	-0.0002500
0	-1.1342600	-0.2645800	0.0000700
0	1.1186800	-0.0910800	0.0000600
Н	-0.1076200	1.4954700	0.0005100
Н	1.0404800	-1.0577100	-0.0000200
$C_2H_4\cdots F_2$			
0, 1			
C	0.0000000	-2.1928500	-0.6683900
C	0.0000000	-2.1928600	0.6683900
H	-0.9251900	-2.1923200	-1.2339800
Н	0.9251900	-2.1923200	-1.2339800
Н	-0.9251900	-2.1923200	1.2339800
Н	0.9251900	-2.1923100	1.2339800
F	0.0000000	0.7856900	0.0000000

F	0.0000000	2.2056500	0.0000000
C_2H_4			
0, 1			
С	0.0000000	0.0000000	0.6680800
С	0.0000000	0.0000000	-0.6680800
Н	0.0000000	0.9245300	1.2349200
Н	0.0000000	-0.9245300	1.2349200
Н	0.0000000	0.9245300	-1.2349200
Н	0.0000000	-0.9245300	-1.2349200
F ₂			
0, 1			
F	0.0000000	0.0000000	1.4142300
F	0.0000000	0.0000000	0.0000000
$NH_3 \cdots F_2$			
0, 1			
N	0.0000000	0.0000000	-2.1499900
H	0.0000000	0.9396500	-2.5344000
Н	0.8137600	-0.4698300	-2.5344000
Н	-0.8137600	-0.4698300	-2.5344000
F	0.0000000	0.0000000	0.5457700
F	0.0000000	0.0000000	1.9712400
$C_2H_2\cdots ClF$			
0, 1	0.000000	1 (710000	2 2125 (00
H	0.0000000	1.6/18900	-2.2125600
C	0.0000000	0.6052900	-2.1995600
C	0.0000000	-0.6052900	-2.1995600
H	0.0000000	-1.6/18900	-2.2125600
	0.0000000	0.0000000	0.6118800
F	0.0000000	0.0000000	2.2686500
C_2H_2			
0, 1			
C	0.0000000	-0.6042000	0.0000000
С	0.0000000	0.6042000	0.0000000
Н	0.0067900	-1.6701300	0.0000000
Н	-0.0068400	1.6701600	0.0000000
ClF			
0, 1			
F	0.0000000	0.0000000	-1.0740000
Cl	0.0000000	0.0000000	0.5685900
HCN-CIF			
0, 1			
F	0.0000000	0.0000000	2.4259200
Cl	0.0000000	0.0000000	0.7695700

Ν	0.0000000	0.0000000	-1.8395200
С	0.0000000	0.0000000	-2.9957300
Н	0.0000000	0.0000000	-4.0650300
HCN			
0, 1			
С	0.0000000	0.0000000	-0.5010300
N	0.0000000	0.0000000	0.6570700
Н	0.0000000	0.0000000	-1.5700500
NH ₃ …Cl ₂			
0, 1			
Ν	0.0000000	0.0000000	-2.8384500
Н	0.0000000	0.9426900	-3.2153800
Н	0.8163900	-0.4713400	-3.2153800
Н	-0.8163900	-0.4713400	-3.2153800
Cl	0.0000000	0.0000000	-0.1500400
Cl	0.0000000	0.0000000	1.8862400
Cl_2			
0, 1			
Cl	0.0000000	0.0000000	1.0056600
Cl	0.0000000	0.0000000	-1.0056600
H ₂ O…ClF			
0, 1			
0	2.2398200	0.0000300	-0.0882300
Н	2.6008900	0.7619600	0.3770500
Н	2.6010900	-0.7617300	0.3771900
Cl	-0.3158700	-0.0000700	-0.0169100
F	-1.9723100	0.0000700	0.0265700
NH ₃ …ClF			
0, 1			
N	0.0000000	0.0000000	-2.0579000
H	0.0000000	0.9496100	-2.4144900
H	0.8223800	-0.4748000	-2.4144900
Н	-0.8223800	-0.4748000	-2.4144900
Cl	0.0000000	0.0000000	0.2438500
F	0.0000000	0.0000000	1.9448000
$(H_2S)_2$			
U, I S	2 0210000	0 1022200	0.0007000
о П	-2.0310000	0.1032300	
п u	-1.9340200	-0.8184000	0.9090800
П С	-1.9404300	-0.8300200	-0.9343000
5 11	2.0/98400	-0.0831100	0.0001800
П	2.3391500	1.2310200	-0.0022100
Н	0./538500	0.1341200	-0.0035400

H_2S			
0, 1			
S	0.0000000	0.0000000	0.1038900
Н	0.0000000	0.9611600	-0.8311500
Н	0.0000000	-0.9611600	-0.8311500
(HCl) ₂			
0, 1			
Cl	1.8608200	-0.0654100	-0.0000700
Н	1.7539400	1.2109800	0.0003400
Cl	-1.9252700	0.0055700	-0.0001000
Н	-0.6584300	-0.1937000	0.0024800
HCl			
0, 1			
Ċl	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.2790700
HCl····H ₂ S			
0, 1			
S	1.8425300	0.0000100	-0.1015400
Н	1.8227800	-0.9618100	0.8346500
Н	1.8218800	0.9618600	0.8346200
Cl	-1.9116400	-0.0000100	0.0035000
H	-0.6273200	-0.0000600	-0.1040500
CH ₃ Cl…HCl			
0, 1			
C	-1.4951300	1.1258000	0.0000000
Cl	-1.4024800	-0.6625400	0.0001400
Н	-0.4810700	1.5183600	-0.0012200
Н	-2.0271800	1.4351600	0.8953100
Н	-2 0292400	1 4349200	-0 8941700
Cl	2 1396100	0.0373000	-0 0001400
H	0.9770000	-0.5140500	0.0000700
CH ₂ Cl			
0 1			
C C	0 0000000	0.0000000	-1 1262700
Cl	0.0000000	0.0000000	0.6582100
Ч	0.0000000	1 0309700	-1 4706000
и П	0.8028500	0.5154800	-1.4706000
H	-0.8928500	-0.5154800	-1.4706000
HCN…CH2SH			
0 1			
C.	1 9964400	0.0571800	-0.0064800
Ň	2 9802200	0.6583400	0 1094500
H	1 0723400	-0 4851900	-0 1064200
**	1.0/20400	0.1021700	0.100 1200

S	-1.5144000	-0.7999900	-0.1169800
С	-1.5701400	1.0129700	0.0116100
Н	-1.5545800	-1.0526000	1.2004900
Н	-1.5455600	1.3923800	-1.0102000
Н	-0.7086600	1.4025500	0.5531000
Н	-2.4931500	1.3399200	0.4866500
CH ₃ SH			
0, 1			
Ć	-0.0478800	1.1515100	0.0000000
S	-0.0478800	-0.6649600	0.0000000
Н	1.2843400	-0.8210500	0.0000000
Н	-1.0947100	1.4566200	0.0000000
Н	0.4318900	1.5473700	0.8937100
Н	0.4318900	1.5473700	-0.8937100
CH4Ne			
0, 1			
Ne	0.0007100	-0.0350500	-1.7426000
С	-0.0007100	0.0350500	1.7425800
Н	-0.0011600	0.0575200	2.8318600
Н	-0.0212100	1.0543100	1.3583700
Н	-0.8796100	-0.5037100	1.3901600
Н	0.8991600	-0.4679200	1.3901600
CH ₄			
0, 1			
C	0.0000000	0.0000000	0.0000000
Н	0.0000000	0.0000000	1.0894700
Н	1.0271600	0.0000000	-0.3631600
Н	-0.5135800	0.8895500	-0.3631600
Н	-0.5135800	-0.8895500	-0.3631600
C ₆ H ₆ …Ne			
0, 1			
Ne	0.0000000	0.0000000	2.6001900
С	0.0000000	1.3956600	-0.6193500
С	-1.2086800	0.6978300	-0.6193500
С	-1.2086800	-0.6978300	-0.6193500
С	0.0000000	-1.3956600	-0.6193500
С	1.2086800	-0.6978300	-0.6193500
С	1.2086800	0.6978300	-0.6193500
Н	0.0000000	2.4800400	-0.6175500
Н	-2.1477800	1.2400200	-0.6175500
Н	-2.1477800	-1.2400200	-0.6175500
Н	0.0000000	-2.4800400	-0.6175500
Н	2.1477800	-1.2400200	-0.6175500
Н	2.1477800	1.2400200	-0.6175500

C_6H_6			
0, 1	0.000000	1 205(700	0 (171(00
C	0.0000000	1.3956/00	-0.61/1600
C	-1.2086900	0.69/8300	-0.61/1600
C	-1.2086900	-0.69/8300	-0.6171600
C	0.0000000	-1.3956700	-0.6171600
C	1.2086900	-0.6978300	-0.6171600
C	1.2086900	0.69/8300	-0.6171600
H	0.0000000	2.4798800	-0.6170000
H	-2.1476400	1.2399400	-0.6170000
Н	-2.1476400	-1.2399400	-0.6170000
Н	0.0000000	-2.4798800	-0.6170000
Н	2.1476400	-1.2399400	-0.6170000
Н	2.1476400	1.2399400	-0.6170000
$(CH_4)_2$			
0, 1			1
C	0.0000000	0.0000000	1.8072800
H	0.0000000	1.0266400	1.4424000
Н	-0.8891000	-0.5133200	1.4424000
Н	0.0000000	0.0000000	2.8968400
Н	0.8891000	-0.5133200	1.4424000
C	0.0000000	0.0000000	-1.8072800
Н	0.8891000	0.5133200	-1.4424000
Н	0.0000000	0.0000000	-2.8968400
Н	-0.8891000	0.5133200	-1.4424000
Н	0.0000000	-1.0266400	-1.4424000
$(C_2H_2)_2$			
0, 1			
C	-0.4125500	1.6781700	0.0000000
C	0.4125500	2.5616300	0.0000000
Н	-1.1320300	0.8908100	0.0000000
Н	1.1346500	3.3457700	0.0000000
C	0.4125500	-1.6781700	0.0000000
C	-0.4125500	-2.5616300	0.0000000
Н	1.1320300	-0.8908100	0.0000000
Н	-1.1346500	-3.3457700	0.0000000
C_2H_2			
0, 1 C	0.000000	0 6042000	0.000000
C		-0.0042000	0.0000000
	0.0000000	0.0042000	0.0000000
П	0.006/900	-1.0/01300	0.0000000
Н	-0.0068400	1.6/01600	0.0000000
$(C_2H_4)_2$			

0, 1

С	1.8577700	0.4728000	0.4724200
С	1.8577700	-0.4728000	-0.4724200
Н	0.9337700	0.8746900	0.8740600
Н	2.7838200	0.8717100	0.8715600
Н	2.7838200	-0.8717100	-0.8715600
Н	0.9337700	-0.8746900	-0.8740600
С	-1.8577700	0.4728000	-0.4724200
С	-1.8577700	-0.4728000	0.4724200
Н	-2.7838200	0.8717100	-0.8715600
Н	-0.9337700	0.8746900	-0.8740600
Н	-0.9337700	-0.8746900	0.8740600
Н	-2.7838200	-0.8717100	0.8715600
sandwich (Co	$_{5}H_{6})_{2}$		
0, 1			
С	0.0000000	1.9500000	1.3915000
Н	0.0000000	1.9500000	2.4715000
С	1.2050700	1.9500000	0.6957500
Н	2.1403800	1.9500000	1.2357500
С	1.2050700	1.9500000	-0.6957500
Н	2.1403800	1.9500000	-1.2357500
С	0.0000000	1.9500000	-1.3915000
Н	0.0000000	1.9500000	-2.4715000
С	-1.2050700	1.9500000	-0.6957500
Н	-2.1403800	1.9500000	-1.2357500
С	-1.2050700	1.9500000	0.6957500
Н	-2.1403800	1.9500000	1.2357500
С	-1.2050700	-1.9500000	-0.6957500
Н	-2.1403800	-1.9500000	-1.2357500
С	0.0000000	-1.9500000	-1.3915000
Н	0.0000000	-1.9500000	-2.4715000
С	1.2050700	-1.9500000	-0.6957500
Н	2.1403800	-1.9500000	-1.2357500
С	1.2050700	-1.9500000	0.6957500
Н	2.1403800	-1.9500000	1.2357500
С	0.0000000	-1.9500000	1.3915000
Н	0.0000000	-1.9500000	2.4715000
С	-1.2050700	-1.9500000	0.6957500
Н	-2.1403800	-1.9500000	1.2357500
T-shaped (Ce	5H ₆) ₂		
0, 1			
С	1.3915000	0.0000000	2.4957500
Н	2.4715000	0.0000000	2.4957500
С	0.6957500	1.2050700	2.4957500
Н	1.2357500	2.1403800	2.4957500
С	0.6957500	-1.2050700	2.4957500

Н	1.2357500	-2.1403800	2.4957500
С	-0.6957500	1.2050700	2.4957500
Н	-1.2357500	2.1403800	2.4957500
С	-0.6957500	-1.2050700	2.4957500
Н	-1.2357500	-2.1403800	2.4957500
С	-1.3915000	0.0000000	2.4957500
Η	-2.4715000	0.0000000	2.4957500
С	0.0000000	0.0000000	-1.1042500
С	0.0000000	-1.2050700	-1.8000000
Η	0.0000000	-2.1403800	-1.2600000
Η	0.0000000	0.0000000	-0.0242500
С	0.0000000	-1.2050700	-3.1915000
Η	0.0000000	-2.1403800	-3.7315000
С	0.0000000	0.0000000	-3.8872500
Η	0.0000000	0.0000000	-4.9672500
С	0.0000000	1.2050700	-3.1915000
Η	0.0000000	2.1403800	-3.7315000
С	0.0000000	1.2050700	-1.8000000
Н	0.0000000	2.1403800	-1.2600000
parallel-dis	placed (C ₆ H ₆) ₂		
0, 1 C	0 800000	1 2000000	1 2015000
С U	-0.8000000	1.8000000	2 4715000
П	-0.8000000	1.8000000	2.4/13000
С U	1 24030700	1.8000000	1 2257500
II C	2 0050700	1.8000000	0.6957500
С И	2.0030700	1.8000000	1 2357500
II C	-2.9403800	1.8000000	0.6057500
С И	1 3/03800	1.8000000	1 2357500
II C	-2 0050700	1.8000000	-0.6957500
Ч	-2.0030700	1.8000000	-0.0757500 -1.2357500
II C		1.8000000	-1 3915000
н	-0.8000000	1.8000000	-2 4715000
C II	0.8000000	-1 8000000	-1 3915000
C C	2 0050700	-1.8000000	-0.6957500
н	2.0050700	-1.8000000	-1 2357500
Н	0.8000000	-1 8000000	-2 4715000
C C	2 0050700	-1 8000000	0.6957500
н	2.0050700	-1 8000000	1 2357500
C C	0.8000000	-1 8000000	1 3915000
н	0.8000000	-1 8000000	2 4715000
C	-0 4050700	-1 8000000	0.6957500
H	-1 3403800	-1 8000000	1 2357500
C	-0 4050700	-1 8000000	-0 6957500
Ĥ	-1.3403800	-1.8000000	-1.2357500

NGDWI21			
He ₂ 0, 1 He He	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 2.9740000
Ne ₂ 0, 1 Ne Ne	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 3.0910000
Ar ₂ 0, 1 Ar Ar	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 3.7570000
Kr ₂ 0, 1 Kr Kr	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 4.0110000
HeNe 0, 1 He Ne	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 3.0310000
HeAr 0, 1 He Ar	0.0000000	0.0000000	0.0000000 3.4800000
NeAr 0, 1 Ne Ar	0.0000000	0.0000000	0.0000000
HeHe_L_0.3A 0, 1 He He	0.0000000 0.0000000	0.0000000 0.0000000	0.0000000 2.6740000

0 0000000
3.2740000
0.0000000
2.7910000
0.0000000
3.3910000
0 000000
0.0000000
5.45/0000
0.0000000
4.0570000
0 000000
0.0000000 3 7110000
5./110000
0.0000000
4.3110000
0 0000000
2.7310000
HeNe_R_ $0.3A$

0,1
He
Ne
HeAr_L_0.3A
0, 1
He
Ar
HeAr R 0.3A
0 1
He
Ar
NeAr L 0.3A
0 1
Ne
Ar
Nedr R 034
0.1
U, I No
Ar

HC7/11			
22			
0, 1			
С	-0.2167300	1.3921000	0.4447800
С	0.3372000	-0.0023100	0.7598000
С	-1.6101200	1.4687100	-0.1196700
С	-2.5817900	0.5184600	-0.1900100
С	-0.0932300	-1.0261000	-0.3235400
С	-2.5160700	-0.9122500	0.1153100
С	-1.3929400	-1.6663700	0.0314000
С	0.8693400	1.9551600	-0.4583100
С	1.8768700	0.0798000	0.5974700
Н	-1.9044500	2.4719300	-0.4354700
С	1.1348800	-1.8833700	-0.4918000
Н	-3.5554200	0.8673200	-0.5362100
Н	-3.4601900	-1.3991400	0.3545300
Н	-1.4333900	-2.7332600	0.2483400
Н	0.7278700	2.8377000	-1.0784500
Н	1.1349100	-2.8361700	-1.0161800
С	2.0172400	1.2561900	-0.3520400

С	2.2301600	-1.2618200	-0.0111600
Н	2.9413500	1.4951300	-0.8727100
Н	3.2464600	-1.6418600	-0.0781700
Н	0.0386700	-0.3738800	1.7455700
Н	-0.2259600	1.9914500	1.3727900
Н	2.4090900	0.2657100	1.5410000
Н	-0.2477600	-0.4540400	-1.2584700
1			
0, 1			
C	0.0000000	0.8784500	1.7965200
C	-0.7607600	-0.4392200	1.7965200
H	-1.3320600	-0.7690500	2.6584500
C	0.7607600	-0.4392200	1.7965200
C	-1.1998100	-0.6927100	0.3538900
H	0.0000100	1.5381200	2.6584500
C	1.1998100	-0.6927100	0.3538900
H	1.3320500	-0.7690700	2.6584500
H	0.0000000	2.4746500	0.2476400
C	-0.7607600	0.4392200	-1.7965200
H	-2.1431100	-1.2373300	0.2476400
C	1.1998100	0.6927100	-0.3538900
C	0.0000000	-1.3854200	-0.3538900
C	0.7607600	0.4392200	-1.7965200
Н	2.1431100	-1.2373300	0.2476400
C	0.0000000	1.3854200	0.3538900
C	-1.1998100	0.6927100	-0.3538900
C	0.0000000	-0.8784500	-1.7965200
Н	-2.1431100	1.2373300	-0.2476400
Н	0.0000000	-2.4746500	-0.2476400
Н	2.1431100	1.2373300	-0.2476400
Н	-0.0000100	-1.5381200	-2.6584500
Н	-1.3320500	0.7690700	-2.6584500
Н	1.3320600	0.7690500	-2.6584500
31			
0, 1 C	0.0046100	0.0847100	0.000000
C C	1.0635/100	-0.0847100	1 2024000
C C	1.0635400	-0.9851100	1.2024000
C C	0.0025000	-0.9831100	-1.2024000
C C	0.0925000	-1.8911100	-1.5210500
C	1 010923000	-1.0711100 2 2876000	0.689/200
C		-2.2070000	-0.0004300
с H	1 8600600	-2.2870000	0.0004300
Н	1.0099000	-0.8784500	1 8733200
и П	1.7133400	-0.0/04300	1.0733200
11	1.9133400	-0.0/04300	-1.0/33200

Н	0.1707800	-2.3893100	2.4877600
Н	0.1707800	-2.3893100	-2.4877600
Н	-1.8575700	-2.7614700	-1.1832100
Н	-1.8575700	-2.7614700	1.1832100
С	-0.2510000	0.8397900	0.0000000
С	-0.2682000	3.0571100	0.7335000
С	-0.2682000	3.0571100	-0.7335000
Ċ	-0.2586100	1.7706700	1.1781100
Ċ	-0.2586100	1.7706700	-1.1781100
H	-0.2710700	3.9474100	1.3543600
Н	-0.2710700	3.9474100	-1.3543600
Н	-0 2567900	1 4391100	2 2108000
Н	-0 2567900	1 4391100	-2 2108000
Н	-1.1544700	0.2125100	0.0000000
octane-a			
0, 1			
С	0.0000000	0.0000000	0.7849100
С	0.0000000	0.0000000	-0.7849100
С	-0.8668700	1.1412000	1.3419100
С	1.4217500	0.1801300	1.3419100
С	-0.5548700	-1.3213300	1.3419100
С	0.8668700	1.1412000	-1.3419100
С	-1.4217500	0.1801300	-1.3419100
С	0.5548700	-1.3213300	-1.3419100
Н	-0.5963400	2.1109100	0.9109100
Н	-1.9314600	0.9668300	1.1578600
Н	-0.7248400	1.2096000	2.4268700
Н	1.8030300	1.1892800	1.1578600
Н	1.4099700	0.0229300	2.4268700
Н	2.1262700	-0.5390100	0.9109100
Н	-1.5299300	-1.5719000	0.9109100
Н	0.1284300	-2.1561000	1.1578600
Н	-0.6851300	-1.2325300	2.4268700
Н	0.5963400	2.1109100	-0.9109100
Н	1.9314600	0.9668300	-1.1578600
Н	0.7248400	1.2096000	-2.4268700
Н	-1.8030300	1.1892800	-1.1578600
Н	-1.4099700	0.0229300	-2.4268700
Н	-2.1262700	-0.5390100	-0.9109100
Н	1.5299300	-1.5719000	-0.9109100
Н	-0.1284300	-2.1561000	-1.1578600
Н	0.6851300	-1.2325300	-2.4268700
octane-b			
0, 1			
С	-0.1614600	4.4786700	0.0000000

С	-0.8406200	3.1086600	0.0000000
С	0.1614600	1.9538000	0.0000000
С	-0.5020900	0.5765400	0.0000000
С	0.5020900	-0.5765400	0.0000000
С	-0.1614600	-1.9538000	0.0000000
С	0.8406200	-3.1086600	0.0000000
С	0.1614600	-4.4786700	0.0000000
Н	-0.8949200	5.2907700	0.0000000
Н	0.4727800	4.5960200	0.8848800
Н	0.4727800	4.5960200	-0.8848800
Н	-1.4900900	3.0181000	-0.8799500
Н	-1.4900900	3.0181000	0.8799500
Н	0.8128500	2.0408900	-0.8807500
Н	0.8128500	2.0408900	0.8807500
Н	-1.1529600	0.4886800	-0.8809200
Н	-1.1529600	0.4886800	0.8809200
Н	1.1529600	-0.4886800	-0.8809200
Н	1.1529600	-0.4886800	0.8809200
Н	-0.8128500	-2.0408900	-0.8807500
Н	-0.8128500	-2.0408900	0.8807500
Н	1.4900900	-3.0181000	-0.8799500
Н	1.4900900	-3.0181000	0.8799500
Н	-0.4727800	-4.5960200	-0.8848800
Н	0.8949200	-5.2907700	0.0000000
Н	-0.4727800	-4.5960200	0.8848800
methane			
0, 1			
С	0.0000000	0.0000000	0.0000000
Н	0.6294000	0.6294000	0.6294000
Н	-0.6294000	-0.6294000	0.6294000
Н	-0.6294000	0.6294000	-0.6294000
Н	0.6294000	-0.6294000	-0.6294000
ethane			
0, 1	0.000000	0.000000	0.7644500
C	0.0000000	0.0000000	0.7644500
C	0.0000000	0.0000000	-0.7644500
H	0.0000000	1.019/100	1.1590300
H	-0.8830900	-0.5098500	1.1590300
H	0.8830900	-0.5098500	1.1590300
H	0.0000000	-1.019/100	-1.1590300
H	-0.8830900	0.5098500	-1.1590300
п	0.8830900	0.3098300	-1.1390300
hexane			
0, 1			0.000000
C	1.4178600	2.8843800	0.0000000

С	-1.4178600	-2.8843800	0.0000000
С	0.0080600	0.7641400	0.0000000
С	-0.0080600	-0.7641400	0.0000000
С	-1.4178600	-1.3553700	0.0000000
С	1.4178600	1.3553700	0.0000000
Н	-2.4357200	-3.2861500	0.0000000
Н	2.4357200	3.2861500	0.0000000
Н	0.9018100	3.2713400	0.8847500
Н	0.9018100	3.2713400	-0.8847500
Н	-0.9018100	-3.2713400	-0.8847500
Н	-0.9018100	-3.2713400	0.8847500
Н	1.9599000	0.9862400	-0.8798300
Н	1.9599000	0.9862400	0.8798300
Н	-1.9599000	-0.9862400	-0.8798300
Н	-1.9599000	-0.9862400	0.8798300
Н	-0.5370300	1.1311500	0.8806500
Н	-0.5370300	1.1311500	-0.8806500
Н	0.5370300	-1.1311500	-0.8806500
Н	0.5370300	-1.1311500	0.8806500
atheriana			
C	0.000000	0.000000	-0 0093200
C C	0.0000000	0.0000000	1 3297800
Н	0.9263100	0.0000000	-0 5749100
Н	-0.9263100	0.0000000	-0 5749100
Н	0.9263100	0.0000000	1.8953700
Н	-0.9263100	0.0000000	1.8953700
41			
etnyne			
0, 1 C	0.000000	0.000000	0 6001100
C C	0.0000000	0.0000000	0.6081100
	0.0000000	0.0000000	-0.0081100
П	0.0000000	0.0000000	-1.0/31000
п	0.0000000	0.0000000	1.0/31000
adamantane			
0, 1			
С	0.8883000	0.8883000	0.8883000
С	-0.8883000	-0.8883000	0.8883000
С	-0.8883000	0.8883000	-0.8883000
С	0.8883000	-0.8883000	-0.8883000
С	0.0000000	0.0000000	1.7730000
С	0.0000000	0.0000000	-1.7730000
С	0.0000000	1.7730000	0.0000000
С	0.0000000	-1.7730000	0.0000000
С	1.7730000	0.0000000	0.0000000
С	-1.7730000	0.0000000	0.0000000

Н	1.5222000	1.5222000	1.5222000
Н	-1.5222000	-1.5222000	1.5222000
Н	-1.5222000	1.5222000	-1.5222000
Н	1.5222000	-1.5222000	-1.5222000
Н	2.4231000	-0.6263000	0.6263000
Н	2.4231000	0.6263000	-0.6263000
Н	-2.4231000	-0.6263000	-0.6263000
Н	-2.4231000	0.6263000	0.6263000
Н	-0.6263000	2.4231000	0.6263000
Н	0.6263000	2.4231000	-0.6263000
Н	0.6263000	-2.4231000	0.6263000
Н	-0.6263000	-2.4231000	-0.6263000
Н	-0.6263000	0.6263000	2.4231000
Н	0.6263000	-0.6263000	2.4231000
Н	0.6263000	0.6263000	-2.4231000
Н	-0.6263000	-0.6263000	-2.4231000
bicycoct			
0, 1			
С	0.0000000	0.0000000	1.2955700
С	0.1332400	1.4353800	0.7641300
С	-0.1332400	1.4353800	-0.7641300
С	0.0000000	0.0000000	-1.2955700
С	1.1764600	-0.8330800	0.7641300
С	1.3097000	-0.6023000	-0.7641300
С	-1.3097000	-0.6023000	0.7641300
С	-1.1764600	-0.8330800	-0.7641300
Н	0.0000000	0.0000000	2.3919200
Н	-0.5697600	2.0999400	1.2795200
Н	1.1431500	1.8070900	0.9786900
Н	0.5697600	2.0999400	-1.2795200
Н	-1.1431500	1.8070900	-0.9786900
Н	0.0000000	0.0000000	-2.3919200
Н	0.9934100	-1.8935400	0.9786900
Н	2.1034800	-0.5565500	1.2795200
Н	2.1365600	0.0864500	-0.9786900
Н	1.5337300	-1.5434000	-1.2795200
Н	-2.1365600	0.0864500	0.9786900
Н	-1.5337300	-1.5434000	1.2795200
Н	-0.9934100	-1.8935400	-0.9786900
Н	-2.1034800	-0.5565500	-1.2795200

3dAEE7	Ground State	Excited State
Sc	0, 4	0, 2
Mn^+	1, 7	1, 5
Fe	0, 5	0, 3
Ni ⁺	1, 2	1, 4
Zn	0, 1	0, 3
Ca^+	1, 2 4s	1, 2 3d
V	0, 4	0, 6
4dAEE5	Ground State	Excited State

HUMLL3	Olouliu State	Litericu State
Mo^+	1,6	1,4
Ru^+	1, 4	1, 6
Rh^+	1, 3	1, 1
Pd	0, 1	0, 3
Y^+	1, 1	1, 3

pEE5	Ground State	Excited State
F	0, 2	0, 4
Ar	0, 1	0, 3
C^+	0, 2	0, 4
Al	0, 2	0, 4
Si ⁺	1, 2	1, 4

DC9/12			
HCN···BF ₃	\rightarrow HCN + BF ₃		
HCN···BF ₃			
0, 1			
В	0.0000000	0.0000000	-0.8945200
F	0.0000000	1.3221800	-0.9740700
F	-1.1450400	-0.6610900	-0.9740700
F	1.1450400	-0.6610900	-0.9740700
Ν	0.0000000	0.0000000	1.5374400
С	0.0000000	0.0000000	2.7060100
Н	0.0000000	0.0000000	3.7743100
HCN			
0.1			
Ċ	0.0000000	0.0000000	-0.5093900
Ν	0.0000000	0.0000000	0.6619500
Н	0.0000000	0.0000000	-1.5773100
DE			
DF3			
U, I D	0.000000	0.000000	0.000000
В	0.0000000	0.0000000	0.0000000

F	0.0000000	1.3183400	0.0000000
F	1.1417200	-0.6591700	0.0000000
F	-1.1417200	-0.6591700	0.0000000
$C_{6}Cl_{6} + 6$	$HCl \rightarrow 6Cl_2 + C_6I$	46	
C_6Cl_6			
0, 1			
С	0.0000000	1.4068700	0.0000000
С	1.2183900	0.7034400	0.0000000
С	1.2183900	-0.7034400	0.0000000
С	0.0000000	-1.4068700	0.0000000
С	-1.2183900	-0.7034400	0.0000000
С	-1.2183900	0.7034400	0.0000000
Cl	2.7054600	1.5620000	0.0000000
Cl	2.7054600	-1.5620000	0.0000000
Cl	0.0000000	-3.1239900	0.0000000
Cl	-2.7054600	-1.5620000	0.0000000
Cl	-2.7054600	1.5620000	0.0000000
Cl	0.0000000	3.1239900	0.0000000
HCI 0 1			
C_1	0.000000	0 0000000	0.0707200
Ч	0.0000000	0.0000000	_1 2023300
11	0.0000000	0.0000000	-1.2025500
Cl ₂			
0, 1	0.000000	0 000000	1 0122600
Cl	0.0000000	0.0000000	1.0122000
CI	0.0000000	0.0000000	-1.0122000
C_6H_6			
0, 1 C	0.000000	1 2007000	0 000000
C	0.0000000	1.398/000	0.0000000
C	1.2113000	0.6994000	0.0000000
C	1.2113000	-0.0994000	0.0000000
C	0.0000000	-1.398/000	0.0000000
C	-1.2113000	-0.6994000	0.0000000
C	-1.2113000	0.6994000	0.0000000
H	0.0000000	2.4820000	0.0000000
Н	2.1494000	1.2410000	0.0000000
тт	2 1494000	-1.2410000	0.0000000
Н	2.1191000	0 4000000	0 0000000
H H	0.0000000	-2.4820000	0.0000000
H H H	0.0000000 -2.1494000	-2.4820000	0.0000000

P ₄			
0, 1			
P	-0.7805400	0.7805400	-0.7805400
Р	0.7805400	-0.7805400	-0.7805400
Р	0.7805400	0.7805400	0.7805400
Р	-0.7805400	-0.7805400	0.7805400
$SF_6 \rightarrow S$	+ 6F		
SF ₆			
0, 1			
S	0.0000000	0.0000000	0.0000000
F	0.0000000	0.0000000	1.5898900
F	0.0000000	1.5898900	0.0000000
F	0.0000000	0.0000000	-1.5898900
F	-1.5898900	0.0000000	0.0000000
F	1.5898900	0.0000000	0.0000000
F	0.0000000	-1.5898900	0.0000000
$PF_5 \rightarrow P$	+ 5F		
PF ₅			
0, 1			
Р	0.0000000	0.0000000	0.0000000
F	0.0000000	1.5608600	0.0000000
F	1.3517500	-0.7804300	0.0000000
F	-1.3517500	-0.7804300	0.0000000
F	0.0000000	0.0000000	1.5970500
F	0.0000000	0.0000000	-1.5970500
$P_4O_{10} \rightarrow$	$P_4 + 5O_2$		
P_4O_{10} 0. 1			
P	1.0197600	-1.0197600	1.0197600
0	0.0000000	0.0000000	1.7770100
Р	-1.0197600	1.0197600	1.0197600
0	0.0000000	1.7770100	0.0000000
Р	1.0197600	1.0197600	-1.0197600
0	1.7770100	0.0000000	0.0000000
0	-1.7770100	0.0000000	0.0000000
P	-1.0197600	-1.0197600	-1.0197600
0	0.0000000	0.0000000	-1.7770100
0	0.0000000	-1.7770100	0.0000000
0	-1.8564400	-1.8564400	-1.8564400
ŏ	1.8564400	-1.8564400	1.8564400
Õ	-1 8564400	1 8564400	1 8564400
õ	1 8564400	1 8564400	-1 8564400
\sim	1.0207700	1.0204400	1.0204400

O_2			
0, 3			
0	0.0000000	0.0000000	0.6118300
0	0.0000000	0.0000000	-0.6118300
$C_6F_6 \rightarrow 6$	C + 6F		
C_6F_6			
0, 1			
С	0.0000000	1.3949100	0.0000000
С	1.2080300	0.6974600	0.0000000
С	1.2080300	-0.6974600	0.0000000
С	0.0000000	-1.3949100	0.0000000
С	-1.2080300	-0.6974600	0.0000000
С	-1.2080300	0.6974600	0.0000000
F	2.3604400	1.3628000	0.0000000
F	2.3604400	-1.3628000	0.0000000
F	0.0000000	-2.7256000	0.0000000
F	-2.3604400	-1.3628000	0.0000000
F	-2.3604400	1.3628000	0.0000000
F	0.0000000	2.7256000	0.0000000
Si(OCH ₃)	$4 \rightarrow Si + 4C + 4C$) + 12H	
Si(OCH ₃)	4		
0.1	т		
Si	0.0000000	0.0000000	0.0000000
0	0.0000000	1.3838100	0.8829800
0	-1.3838100	0.0000000	-0.8829800
0	0.0000000	-1.3838100	0.8829800
0	1.3838100	0.0000000	-0.8829800
C	-1.1313800	1.8377700	1.6222500
C	-1.8377700	-1.1313800	-1.6222500
С	1.1313800	-1.8377700	1.6222500
C	1.8377700	1.1313800	-1.6222500
Н	-0.8746000	2.8067500	2.0528900
Н	-2.0029400	1.9493300	0.9707200
Н	-1.3749400	1.1420200	2.4323500
Н	-2.8067500	-0.8746000	-2.0528900
Н	-1 1420200	-1 3749400	-2 4323500
Н	-1 9493300	-2.0029400	-0 9707200
H	0 8746000	-2 8067500	2 0528900
Н	2,0029400	-1 9493300	0 9707200
H	1 3749400	-1 1420200	2 4323500
H	2 8067500	0 8746000	-2.0528900
H	1 1420200	1 3749400	-2 4323500
H	1 9493300	2 0029400	-0 9707200
11	1.7775500	2.0027400	0.7707200

urotropin	
0, 1	
N -0.8672500 -0.8672500 -0.86	572500
C 0.0000000 0.0000000 -1.68	802700
N 0.8672500 0.8672500 -0.86	572500
C 0.0000000 1.6802700 0.00	000000
N -0.8672500 0.8672500 0.86	572500
C -1.6802700 0.0000000 0.00	000000
C 0.0000000 -1.6802700 0.00	000000
C 1.6802700 0.0000000 0.00	000000
C 0.0000000 0.0000000 1.68	802700
N 0.8672500 -0.8672500 0.80	572500
Н 0.6305700 -0.6305700 -2.3	170700
Н -0.6305700 0.6305700 -2.3	170700
Н 0.6305700 2.3170700 0.63	305700
Н -0.6305700 2.3170700 -0.63	305700
Н -2.3170700 0.6305700 -0.63	305700
Н -2.3170700 -0.6305700 0.63	305700
Н 0.6305700 -2.3170700 -0.6.	305700
Н -0.6305700 -2.3170700 0.6.	305700
Н 2.3170700 -0.6305700 -0.63	305700
Н 2.3170700 0.6305700 0.63	305700
Н -0.6305700 -0.6305700 2.3	170700
Н 0.6305700 0.6305700 2.3	170700

2pIsoE4			
C isomer 1			
0, 1			
C	0.8814440	0.8814440	0.8814440
Н	0.2748330	1.5244710	1.5244710
Н	1.5244710	0.2748330	1.5244710
Н	1.5244710	1.5244710	0.2748330
С	-0.8814440	-0.8814440	0.8814440
Н	-1.5244710	-0.2748330	1.5244710
Н	-1.5244710	-1.5244710	0.2748330
Н	-0.2748330	-1.5244710	1.5244710
С	0.8814440	-0.8814440	-0.8814440
Н	0.2748330	-1.5244710	-1.5244710
Н	1.5244710	-0.2748330	-1.5244710
Н	1.5244710	-1.5244710	-0.2748330
С	-0.8814440	0.8814440	-0.8814440
Н	-0.2748330	1.5244710	-1.5244710
Н	-1.5244710	0.2748330	-1.5244710
Н	-1.5244710	1.5244710	-0.2748330
С	0.0000000	0.0000000	0.0000000
0.5			
C isomer 2			
0, 1 C	-2 5347970	-0 3233130	-0.0000750
C C	-1 2718400	0 5212990	0.0001220
н	-3 4346680	0.2949300	-0.0011990
Н	-2 5746110	-0.9697140	-0.8806780
Н	-2.5758640	-0.9683280	0.8814800
C	-0.0000610	-0 3113780	0.0000420
H	-1.2694200	1.1812980	-0.8743930
Н	-1.2695020	1.1809150	0.8749290
C	1.2718570	0.5212550	-0.0001220
H	-0.0000730	-0.9728020	0.8751810
Н	-0.0002640	-0.9728850	-0.8750320
Н	1.2693680	1.1809840	-0.8748480
Н	1.2693840	1.1813260	0.8743460
С	2.5348710	-0.3232740	0.0000320
Н	2.5753550	-0.9693640	-0.8811750
Н	3.4347120	0.2950700	-0.0001300
Н	2.5754020	-0.9689680	0.8815230

N isomer 1			
0, 1			
С	1.1643200	-1.1946710	0.0034020
С	-0.2201670	-1.2001830	-0.0049420
С	-0.9344020	-0.0001110	-0.0086530
С	-0.2201200	1.2001960	-0.0049480
С	1.1641540	1.1947710	0.0034090
С	1.8704490	-0.0000260	0.0076640
Н	1.6966260	-2.1388940	0.0074990
Н	-0.7591750	-2.1417840	-0.0128110
Н	-0.7594450	2.1416130	-0.0131950
Н	1.6966690	2.1388760	0.0077400
Н	2.9529460	0.0001660	0.0149150
Н	-2.7673020	-0.8347840	0.2655590
Н	-2.7671540	0.8347660	0.2659250
Ν	-2.3197960	0.0000270	-0.0730320
N isomer 2			
0, 1			
С	-1.1086170	0.7518350	0.6622030
С	0.2538470	0.1821170	1.0771000
С	0.2538470	0.1821170	-1.0771000
С	-1.1086170	0.7518350	-0.6622030
Н	-1.8944760	1.0360010	1.3455810
Н	-1.8944760	1.0360010	-1.3455810
С	0.2538470	-1.3055870	0.6635420
Н	0.1775950	-2.1446220	1.3401070
С	0.2538470	-1.3055870	-0.6635420
Н	0.1775950	-2.1446220	-1.3401070
Н	0 5006060	0/110760	2 0852970
	0.3900000	0.4119700	2.0052770
Н	0.3906060	0.4119760	-2.0852970
H H	0.5906060 0.5906060 1.9796300	0.4119760 0.3343420	-2.0852970 0.0000000

Database 2015

O isomer 1			
0, 1			
С	1.1228560	0.4660910	0.1556750
С	-1.1208000	0.4688070	0.1590000
С	-0.7723860	-1.0068490	-0.0523610
С	0.7689970	-1.0099100	-0.0479560
Н	1.9928640	0.7958470	-0.4124690
Н	1.3031980	0.6770990	1.2203450
Н	-1.2947860	0.6762500	1.2255010
Н	-1.9926390	0.8036420	-0.4033340
Н	-1.1977310	-1.6390890	0.7276010
Н	-1.1568330	-1.3595170	-1.0096840
Н	1.1867110	-1.6378140	0.7396040
Н	1.1578740	-1.3721080	-0.9998800
0	0.0011670	1.1933570	-0.2967290
O isomer 2			
0.1			
Ċ	1.5564450	0.0072220	-0.0149120
C	0.4495970	1.0769970	-0.1042910
С	-0.5391330	-0.0002920	0.3812740
С	0.4530940	-1.0686070	-0.0775670
Н	2.3154780	-0.0012320	-0.7958720
Н	2.0548970	0.0201420	0.9556360
Н	0.2287160	1.3293700	-1.1433430
Н	0.5543270	1.9929710	0.4788930
Н	-0.6119940	0.0115690	1.4769130
Н	0.2305030	-1.3447990	-1.1100680
Н	0.5564250	-1.9719810	0.5233090
Н	-2.3731770	0.5909260	0.1632250
0	-1.8093990	-0.0898610	-0.2069650
F isomer 1			
0.1			
C	0 3713630	0 2464360	0 0000000
C	-1.1319490	0.2578520	0.0000000
Н	-1.4404780	0.8247680	-0.8802270
Н	-1.4404780	0.8247680	0.8802270
С	-1.7303620	-1.1371490	0.0000000
Н	-1.4213700	-1.6968280	-0.8832920
Н	-1.4213700	-1.6968280	0.8832920
Н	-2.8188080	-1.0796950	0.0000000
F	0.8699330	-0.3779630	-1.0784030
F	0.8699330	1.4915900	0.0000000

F

0.8699330 -0.3779630

1.0784030

Database 2015

F isomer 2			
0,1			
С	-0.2741240	0.6174750	1.2486760
С	-0.0749060	-0.2024820	0.0000000
Н	0.5366340	1.3434040	1.3596040
Н	-1.2332120	1.1427920	1.2103110
С	-0.2741240	0.6174750	-1.2486760
Н	-0.7709470	-1.0480990	0.0000000
Н	-1.2332120	1.1427920	-1.2103110
Н	0.5366340	1.3434040	-1.3596040
F	1.2041390	-0.7221480	0.0000000
F	-0.2741240	-0.2010980	-2.3535770
F	-0.2741240	-0.2010980	2.3535770

Database 2015

4pIsoE4			
As isomer 1			
0, 1			
С	-2.2234030	1.1951000	0.0029320
С	-0.8365430	1.2104430	-0.0000780
С	-0.1179830	0.0174320	-0.0027290
С	-0.8128030	-1.1886830	-0.0099370
С	-2.2009650	-1.2044450	0.0023930
С	-2.9083740	-0.0122200	0.0076030
Н	-2.7712220	2.1302660	0.0032780
Н	-0.3122750	2.1589870	0.0018980
Н	-0.2685690	-2.1269480	-0.0286920
Н	-2.7289590	-2.1507930	0.0007860
Н	-3.9917820	-0.0223720	0.0111520
As	1.8366410	-0.0551020	-0.0279900
Н	2.0317630	0.3435680	1.4312930
Н	2.0323330	1.3799120	-0.4971350

As isomer 2			
0, 1			
С	1.5777640	-0.4687930	0.6664430
С	0.3687710	0.2691700	1.2153390
С	0.3687710	0.2691700	-1.2153390
С	1.5777640	-0.4687930	-0.6664430
Н	2.3337610	-0.9096860	1.3020780
Н	2.3337610	-0.9096860	-1.3020780
С	0.3687710	1.6790510	0.6645770
Н	0.4129830	2.5518670	1.3023110
С	0.3687710	1.6790510	-0.6645770
Н	0.4129830	2.5518670	-1.3023110
Н	0.2041640	0.1695680	2.2842240
Н	0.2041640	0.1695680	-2.2842240
As	-0.9584790	-0.6604360	0.0000000
Н	-2.0556700	0.4177480	0.0000000
Br isomer 1			
0, 1			
Ć	0.0388090	0.3025440	0.0000000
С	0.6039320	1.7125140	0.0000000
Н	0.1878090	2.2107550	0.8792760
Н	0.1878090	2.2107550	-0.8792760
С	2.1173570	1.8122710	0.0000000
Н	2.5476410	1.3418800	0.8842040
Н	2.5476410	1.3418800	-0.8842040
Н	2.4069750	2.8639050	0.0000000
Br	0.6039320	-0.6744830	-1.5859990
Br	0.6039320	-0.6744830	1.5859990
Br	-1.9061060	0.4080200	0.0000000
Br isomer 2			
0, 1			
С	-0.5833050	1.0035800	1.2339360
С	-0.3112130	0.1693880	0.0000000
Н	0.1575890	1.7908290	1.3568690
Н	-1.5776660	1.4451230	1.1671690
С	-0.5833050	1.0035800	-1.2339360
Н	-0.9295610	-0.7267740	0.0000000
Н	-1.5776660	1.4451230	-1.1671690
Н	0.1575890	1.7908290	-1.3568690
Br	-0.5833050	-0.0315530	2.8696410
Br	1.5276570	-0.4741640	0.0000000
Br	-0.5833050	-0.0315530	-2.8696410

Ge isomer 1			
0, 1			
С	1.1309840	1.1309840	1.1309840
Н	0.5189590	1.7699440	1.7699440
Н	1.7699440	0.5189590	1.7699440
Н	1.7699440	1.7699440	0.5189590
С	-1.1309840	-1.1309840	1.1309840
Н	-1.7699440	-0.5189590	1.7699440
Н	-1.7699440	-1.7699440	0.5189590
Н	-0.5189590	-1.7699440	1.7699440
С	1.1309840	-1.1309840	-1.1309840
Н	0.5189590	-1.7699440	-1.7699440
Н	1.7699440	-0.5189590	-1.7699440
Н	1.7699440	-1.7699440	-0.5189590
С	-1.1309840	1.1309840	-1.1309840
Н	-0.5189590	1.7699440	-1.7699440
Н	-1.7699440	0.5189590	-1.7699440
Н	-1.7699440	1.7699440	-0.5189590
Ge	0.0000000	0.0000000	0.0000000
Ge isomer 2			
0, 1			
Ċ	-3.6771430	-0.4668290	0.0000370
С	-2.5075710	0.5028780	-0.0000310
Н	-4.6348280	0.0571770	0.0000530
Н	-3.6519360	-1.1130250	-0.8812030
Н	-3.6518720	-1.1129680	0.8813170
С	-1.1563550	-0.1987100	-0.0000530
Н	-2.5693700	1.1590410	-0.8750410
Н	-2.5693050	1.1590890	0.8749510
С	0.0197400	0.7688280	0.0000280
Н	-1.0975300	-0.8573630	0.8743670
Н	-1.0974890	-0.8572540	-0.8745530
Н	-0.0238530	1.4220730	-0.8764720
Н	-0.0238820	1.4219570	0.8766140
Ge	1.7664250	-0.1190060	0.0000030
Н	1.9071590	-1.0101980	-1.2481050
Н	2.9081410	0.9129380	0.0000480
Н	1.9071410	-1.0102910	1.2480460

Se isomer 1			
0, 1 C	0 2821770	1 2825610	0 1270460
C C	0.3631770	1.3823010	-0.13/9400
C C	0.3651600	-1.3824430	0.13/41/0
C C	1.0734380	-0.7040920	-0.2803330
	0.4204120	0.7048330	0.2607030
П	0.4294120	1.7234920	-1.1/15640
П	0.1129800	2.22010/0	0.302/300
H U	0.4296070	-1.7203000	1.1/00020
П	0.1134420	-2.2198//0	-0.503/800
H	2.5426380	-1.2///480	0.0534/10
H	1.7223390	-0.6538040	-1.3783930
H	1.7212430	0.653/410	1.3786980
Н	2.5426850	1.2779830	-0.0522710
Se	-1.0092890	-0.0000390	0.0000620
a			
Se isomer 2			
0, 1			
С	2.5483130	-0.0284000	-0.1110060
С	1.4719940	1.0755330	-0.1381750
С	0.5054690	0.0615380	0.4942920
С	1.4157480	-1.0706620	-0.0067920
Н	3.2204540	-0.0990460	-0.9659410
Н	3.1436280	0.0085870	0.8026200
Н	1.1715570	1.3160530	-1.1589540
Н	1.6573320	2.0013920	0.4067490
Н	0.5204080	0.1187240	1.5823120
Н	1.1123360	-1.4189560	-0.9968550
Н	1.5507900	-1.9333940	0.6447740
Se	-1.3589340	-0.0388880	-0.0727750
Н	-1 8218940	1 1007600	0 7297340

REFERENCES

- ¹ Peverati, R.; Truhlar, D. G. Phil. Trans. R. Soc. A 2014, 372, 20120476.
- ² Peverati, R.; Truhlar, D. G. J. Chem. Phys. 2011, 135, 191102.
- ³ Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 2, 364-382.
- ⁴ Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2012, 3, 117-124.
- ⁵Yu, H.; Truhlar, D. G. to be published.
- ⁶ Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A. **2003**, 107, 8996–8999. Erratum: **2003**, 108, 1460.
- ⁷ Zheng, J.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 569–582.
- ⁸ Cotton, D. H.; Jenkins, D. R. Trans. Faraday Soc. 1969, 65, 1537–1543.
- ⁹ https://www.webelements.com/sodium/bond enthalpies.html, accessed on April 24, 2014.
- ¹⁰ Zhang, W.; Truhlar, D. G.; Tang, M. J. Chem. Theory Comput. 2013, 9, 3965–3977.
- ¹¹ Izgorodina, E. I., Coote M. L., Radom, L. J. Phys. Chem. A 2005, 109, 7558–7566.
- ¹² Averkiev, B. B.; Zhao, Y.; Truhlar, D. G. J. Mol. Cata A: Chem. 2010, 80-88.
- ¹³ Schultz, N. E.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A. 2005, 109, 11127–11143.
- ¹⁴Yu, H.; Truhlar, D. G. J. Chem. Theory Comput. 2014, 10, 2291–2305.
- ¹⁵ Vasiliu, M.; Feller, D.; Gole, J. L.; Dixon, D. A. J. Phys. Chem. A 2010, 114, 9349–9358.
- ¹⁶ Pedley, J. B.; Marshall, E. M. J. Phys. Chem. Ref. Data. 1983, 12, 967–1031.
- ¹⁷ Lide, D. R. In *Handbook of Chemistry and Physics*, 87th edition; Lide, D. R., Ed.; CRC Press: Boca Raton, 2006; p. 9-89.
- ¹⁸ Lide, D. R. In *Handbook of Chemistry and Physics*, 87th edition; Lide, D. R., Ed.; CRC Press: Boca Raton, 2006; p. 9-69.
- ¹⁹ Peverati, R.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2012, 14, 13171-13174.
- ²⁰ Li, R.; Peverati, R.; Isegawa, M.; Truhlar, D. G. J. Phys. Chem. A 2012, 117, 169-173.
- ²¹ Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 1384-1388.
- ²² Luo, S.; Averkiev, B. B.; Yang, K. R.; Xu, X.; Truhlar, D. G. J. Chem. Theory Comput. 2014, 10, 102–121.
- ²³ Vydrov, O. A.; Voorhis, T. V. J. Chem. Theory Comput. 2012, 8, 1929–1934.

- ²⁴ Lange, K. M.; Lane, J. R. J. Chem. Phys. 2011, 134, 034301.
- ²⁵ McMahon, J. D.; Lane, J. R. J. Chem. Phys. **2011**, 135, 154309.
- ²⁶ Marshall, M. S.; Burns, L. A.; Sherrill, C. D. J. Chem. Phys. 2011, 135, 194102.
- ²⁷ Tang, K. T.; Toennies, J. P. J. Chem. Phys. 2003, 118, 4976–4983.
- ²⁸ Luo, S.; Truhlar, D. G. J. Chem. Theory Comput. 2012, 8, 4112–4126.
- ²⁹ Yang, K.; Peverati, R.; Truhlar, D. G.; Valero, R. J. Chem. Phys. 2011, 135, 044188.
- ³⁰ Schwabe, T. Phys. Chem. Chem. Phys. 2014, 16, 14559–14567.
- ³¹ Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2008, 128, 184109.
- ³² http://cccbdb.nist.gov/expbondlengths1.asp, accessed on Oct. 29, 2014.
- ³³ Posada-Borbón, A.; Posada-Amarillas, A. Chem. Phys. Lett. 2015, 618, 66–71.
- ³⁴ Fast, P. L.; Corchado, J.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. A **1999**, 103, 3139– 3143.
- ³⁵ Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 1643–1649.
- ³⁶ Chakravorty, S.; Gwaltney, S.; Davidson, E. R.; Parpia, F.; Fischer, C. *Phys. Rev. A* 1993, 47, 3649–3670.
- ³⁷ Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241.
- ³⁸ Karton, A.; Tarnopolsky, A.; Lamere, J.-F.; Schatz, G. C.; Martin, J. M. L. J. Phys. Chem. A 2007, 112, 12868-12886.
- ³⁹ Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. **1987**, 87, 5968–5975.
- ⁴⁰ http://cccbdb.nist.gov/ accessed on April 24, 2014.
- ⁴¹ Bach, R. D.; Shobe, D. S.; Schlegel, H. B.; Nagel, C. J. J. Phys. Chem. **1996**, 100, 8770–8776.
- ⁴² Harrison, J. F. Chem. Rev. 2000, 100, 679–716.
- ⁴³ Jensen, K. P.; Roos, B. O.; Ryde, U. J. Chem. Phys. 2007, 126, 014103.
- ⁴⁴ Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 5656-5667.
- ⁴⁵ Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 415–432.
- ⁴⁶ Luo, S.; Zhao, Y.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2011, 13, 13683-13689.
- ⁴⁷ Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 10478-10486.

- ⁴⁸ Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Phys. **2005**, 123, 161103.
- ⁴⁹ Zhao, Y.; Truhlar, D. G. J. Chem. Phys. **2006**, 125, 194101.
- ⁵⁰ Peverati, R.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. Lett. 2011, 2, 1991-1997.
- ⁵¹ Peverati, R.; Truhlar, D. G. J. Chem. Theory Comput. 2012, 8, 2310-2319.
- ⁵² Amin, E. A.; Truhlar, D. G. J. Chem. Theory Comput. 2008, 4, 75-85.