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Abstract. The self-consistent decay of mixing (SCDM) semiclassical trajectory method for 

electronically nonadiabatic dynamics is improved by modifying the switching probability 

that determines the instantaneous electronic state toward which the system decoheres. The 

new method is called coherent switching with decay of mixing (CSDM), and it differs from 

the previously presented SCDM method in that the electronic amplitudes controlling the 

switching of the decoherent state are treated fully coherently in the electronic equations of 

motion for each complete passage through a strong interaction region. The new method is 

tested against accurate quantum mechanical calculations for twelve atom-diatom scattering 

test cases.  Also tested are the SCDM method and the trajectory surface hopping method of 

Parlant and Gislason that requires coherent passages through each strong interaction region, 

and which we call the ECP-TSH method. The results are compared with previously presented 

results for the fewest-switches with time uncertainty and Tully’s fewest switches (TFS) 

surface hopping methods and the semiclassical Ehrenfest method. We find that the CSDM 

method is the most accurate of the semiclassical trajectory methods tested. Including 

coherent passages improves the accuracy of the SCDM method (i.e., the CSDM method is 

more accurate than the SCDM method) but not of the trajectory surface hopping method (i.e., 

the ECP-TSH method is not more accurate on average than the TFS method).
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 I.  INTRODUCTION 

 The development of semiclassical methods for non-Born-Oppenheimer trajectories 

(i.e., classical or quasiclassical molecular dynamics that involves coupled electronic states) 

requires a delicate blending of quantum mechanics for the electronic motions with classical 

(or quasiclassical) trajectories for the nuclear motions.1 The treatment of Born-Oppenheimer 

breakdown, therefore, requires an artful approach,2 and several methods have been 

developed.  We distinguish four general classes of methods, which differ in their treatment of 

electronic decoherence. Decoherence is defined in this article as the tendency of the time-

evolved density matrix to assume a form corresponding to a statistical ensemble of states 

rather than a coherent combination of state wave vectors. This is sometimes called dephasing 

or disentanglement. 

 The first general approach to non-Born-Oppenheimer trajectories is the trajectory 

surface hopping1 (TSH) approach, in which individual trajectories evolve independently on a 

single potential energy surface with occasional instantaneous hops or switches between 

surfaces.  The most successful of the well-tested versions of this approach are Tully’s fewest 

switches (TFS) method3 and the fewest switches with time uncertainty (FSTU) method.4,5   

For these methods, one can think of an accurate time-dependent wave packet as being 

modeled by a swarm of independent trajectories propagating on the different electronic 

surfaces. Each trajectory hops stochastically between the electronic surfaces according to an 

associated electronic density matrix, different for each trajectory, which is obtained by 

propagating the solution to the time-dependent electronic Schrödinger equation coherently 

along the classical trajectory. The electronic density matrices for any two trajectories in the 

ensemble may differ for two reasons: (1) the two trajectories have different initial 
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coordinates and/or momenta, and (2) they hop at different times along their trajectories. The 

ensemble averaged electronic density matrix (which may be compared with the accurate 

quantum mechanical electronic density matrix) effectively decoheres (i.e., the off-diagonal 

elements systematically tend toward zero) for the two reasons mentioned above, i.e., due to 

the initial width of the wave packet and due to the divergence of trajectories in phase space 

caused by surface hops. We stress that for each trajectory the electronic density matrix is 

fully coherent, i.e., it is only when the entire ensemble is averaged that the two sources of 

decoherence mentioned above arise. 

 The second general class of methods includes self-consistent potential (SCP) 

methods,1 in which the nuclei evolve on an effective time-dependent potential energy surface 

that depends on the current quantum mechanical electronic density matrix.  The simplest 

version of this approach is the semiclassical Ehrenfest (SE) method,6–9 and the most highly 

developed versions are the mean field with surface hopping (MF/SH) method10 and the self-

consistent decay of mixing (SCDM) algorithm.11 The SE method involves an ensemble of 

trajectories and therefore includes some decoherence due to the initial spread of the wave 

packet. The electronic density matrix for each trajectory in the ensemble is propagated with 

full coherence, as discussed above for the TSH method. Furthermore, SE trajectories evolve 

under the influence of all of the electronic states at once according to the electronic state 

density matrix (i.e., there is no hopping between states) such that each trajectory in the 

ensemble is fully coherent. During a rapid passage of a single region of strong coupling, one 

may expect fully coherent nuclear motion, and the SE approach is reasonable for that case. 

The lack of decoherence, however, leads to nonphysical behavior in the asymptotic regions 

of the simulations (i.e., as the system comes into the interaction region from reactants or goes 
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toward products) where the coupling is often small or zero; this contrasts with the TSH 

approach, which leads to physical asymptotic behavior but may be less accurate in describing 

strongly coupled motions.  

 The SCDM method introduces the physical asymptotic behavior of a TSH method 

into an SCP method. In particular, decoherence (discussed above only as an effect of 

ensemble averaging) is introduced explicitly into the equations of motion for each individual 

trajectory in an average way, while still propagating each trajectory independently. This 

modification results in an SE-like trajectory with the correct limiting behavior. 

 Alternatively one might try to improve upon TSH methods by making them more 

coherent. This leads to a class of methods that may be called coherent passages methods.  In 

coherent passage methods, a trial classical path with continuous momenta is used to 

propagate the system through an entire strong coupling region with a fully coherent treatment 

of the electronic density matrix (i.e., without surface hopping and without decay of mixing).  

Then, the electronic transition probabilities from this coherent evolution are used in some 

fashion to control the trajectory outcome, but subsequent passages through this or any other 

strong interaction region are not treated as coherent with the previous passage. The 

importance of decoherence between successive passages through a strong interaction region 

has been demonstrated most clearly by Thachuk et al.12 in a low-dimensionality problem, 

namely the evolution of a two-state diatomic molecule in a strong electromagnetic field; their 

discussion is very enlightening and makes it clear that the combination of coherent evolution 

through a strong interaction region and decoherence between such passages can also be 

important in the general case (although their algorithm is not general).  Their examples make 

it especially clear that maintaining coherence over an entire trajectory can lead to significant 
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errors.  One classical path method that was developed with this kind of consideration as a 

motivation is the surface hopping method of Parlant and Gislason,13,14 which differs from an 

earlier method of Kuntz et al.15 in the prescription for calculating the hopping probability 

and from an earlier method of Blais and Truhlar16 in its insistence on coherent evolution 

through each “complete passage”1a of a strong coupling region. This method, therefore, 

mitigates some of the decoherence that arises (in other TSH methods) from surface hops 

within strongly coupled regions as well as the inaccuracies explained by Thachuk et al.12 that 

arise from treating successive passages coherently. Parlant and Gislason13 called their 

method the “exact” surface hopping scheme because it uses the exact time-dependent 

electronic Schrödinger equation for electronic motion in each complete passage through a 

region of strong coupling.  This could be confusing because a variety of surface hopping 

methods and other semiclassical methods use the exact time-dependent electronic 

Schrödinger equation in one or another way as part of the algorithm; to emphasize the special 

character of the Parlant-Gislason method we call it “exact complete passage” trajectory 

surface hopping (ECP-TSH).  

 The methods discussed so far are independent trajectory methods. Another class of 

methods for non-Born-Oppenheimer trajectories involves coupled trajectories, where an 

entire swarm of trajectories is evolved simultaneously in such a way that the entire electronic 

state density matrix influences the motion of each trajectory. This is a very reasonable 

approach because it is the ensemble of trajectories, not the individual phase points, that 

should be interpreted when one semiclassically infers quantum mechanical transition 

probabilities from classical mechanics. The most thoroughly developed coupled-trajectory 

schemes are the quantum/classical Liouville methods of Martens and coworkers17 and 
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others18 and the full multiple spawning method.19  Like SCDM, this class of methods 

explicitly includes dynamical decoherence, but it is more complicated than the independent-

trajectory methods, and coupled-trajectory methods require considerably more computational 

effort to fully sample the extended phase space of both the nuclear coordinates and momenta 

and the electronic probability amplitudes.  Therefore, although they are very promising, we 

will not consider coupled-trajectory methods further in the present article. 

 Our recent work has involved refining both the TSH and SCP approaches, leading 

respectively to the recent developments of the FSTU4 and SCDM11 methods.  We emphasize 

that, in the context of TSH, the TFS and FSTU surface hopping schemes both allow hops 

even in the middle of a single passage of a strong coupling region, and, in the context of SCP 

calculations, the SCDM scheme allows some decay of mixing at all points along a trajectory, 

even for the equations determining the probability of switching the decoherent state, and 

therefore these methods do not conform to the coherent passage ansatz. It is not clear from 

previous work how important this might be for multi-dimensional problems since Refs. 12 

and 13 only tested the importance of coherent complete passage for low-dimensional 

problems where phases, coherence, and quantum mechanical interference effects are not 

subject to even the minimal averaging inherent in collisions of molecules when one does not 

initially select and finally analyze the angular momentum projection quantum numbers.  

Therefore in this article we consider coherent complete passage methods in more detail and 

compare their performance to that of the TFS, FSTU, SE, and SCDM methods.  In particular 

we examine two such methods, the ECP-TSH method11 discussed above and a new coherent-

passage-type method obtained by employing a coherent switching algorithm in SCDM for 

each complete passage of a strong coupling region.  We call the new method coherent 
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switches with decay of mixing or CSDM.  We also test a variant, explained below, called 

CSDM-C. 

 Section II reviews fundamental time-dependent coupled equations for the motion of 

the electrons and nuclei that are used by all of the methods tested in this paper. Section III 

reviews the ECP-TSH method and compares its equations to those for the TFS and FSTU 

methods.  Section IV presents the new CSDM method.  Section V presents the methodology 

and comparison of several semiclassical trajectory methods for five three-dimensional atom-

molecule systems.  Section VI presents the results and discussion. Section VII summarizes 

the main conclusions. 

 

II. FUNDAMENTAL TIME-DEPENDENT EQUATIONS 

 All of the methods tested in this paper employ the time-dependent electronic 

Schrödinger equation, which may be written as follows in terms of the elements 'kkρ  of the 

electronic density matrix:11 

[ ] [ ]( )∑ ⋅−−⋅−=
l

lklkklklkllkkk iUiUi '''' dRdR &h&h&h ρρρ  ,                       (1) 

where k and k’ label electronic states (k, k’ = 1, 2, ..., m, where m is the number of electronic 

states), R is an N-dimensional vector of nuclear coordinates, an overdot denotes a time 

derivative, and U  are the matrix elements of the electronic Hamiltonian  (which 

includes nuclear-nuclear repulsion): 

'kk elH

'el' kHkU kk =   .                                                          (2) 

 The diagonal elements of U  are called potential energy surfaces, and the off-diagonal 

elements couple motion in the various electronic states. The eigenvalues of U are the 

'kk
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adiabatic potential energy surfaces, calledV .  The nonadiabatic coupling vector  is an m 

× m anti-Hermitian matrix in electronic state space, and each element is a vector in R: 

k kk ′d

' =

C =

R =&

P =&

  'kkkk Rd ∇                                                          (3) 

where R∇  is the N-dimensional nuclear gradient. We solve the equations in an isoinertial, 

mass-scaled nuclear coordinate system R in which all nuclear masses are scaled to the same 

reduced mass µ. The momentum conjugate to R is called P.  In the adiabatic representation, 

U is a diagonal matrix called V; and one can define a “diabatic” representation where  is 

zero and U is not diagonal. Strictly diabatic representations do not exist,20 but 

representations in which d  is small enough to be neglected are very useful and, following 

a widespread practice in the field, will be called diabatic in the present paper. 

kk ′d

kk ′

         The semiclassical Hamiltonian that governs nuclear motion can be written  

E
2

2
VH +

µ
P                                                          (4) 

where V is an effective potential energy surface, and its form depends on the specific 

semiclassical trajectory method and how that method treats non-Born-Oppenheimer effects. 

The nuclear motion is represented by a swarm of classical trajectories, and the nuclear 

position and momentum of each trajectory evolves according to classical equations of 

motion,  

E

                                                                 (5) µ/P

  .                                                          (6) EVR−∇

 We note that the electronic Schrödinger equation may be formulated in the particle 

representation where electronic action and angle variables are transformed to particle-like 
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generalized coordinates and momenta,6 or in the density representation of Eq. (1). Although 

the two representations are equivalent in the case of two electronic states, the particle 

representation requires an adiabatic-diabatic transformation that can be ambiguous for the 

case of more than two electronic states.21 Throughout the present paper, we use the density 

representation as in Eq. (1). 

 We assume that the adiabatic and diabatic representations are the same in asymptotic 

regions, so that both U  with 'kk kk ′≠ and ′  vanish asymptotically. kkd

 In TSH methods, EV  is given by a single potential energy surface (i.e., an adiabatic 

potential energy surfaceV or a diabatic potential energy surface U  in the adiabatic and 

diabatic representations, respectively), and  may switch to some other state  at certain 

points along the trajectory according to some hopping probability , which is a function 

of the electronic state density matrix ρ  and its time derivative. Except possibly at hops (or 

frustrated hops explained below), ρ  is obtained by integrating Eq. (1) without any 

modifications.  In SCP methods, V  is more complicated, and in SCP methods that include 

decay of mixing, one also modifies Eq. (1). We will consider SCP methods further in Section 

IV. 

k kk

kkg

k k ′

′

E

 

III.  ECP-TSH METHOD  

 In trajectory surface hopping (TSH) methods, nonadiabatic transitions are treated as 

discontinuous hops (or switches) from one potential surface to another. The electronic 

coupled equations (1) are integrated along a classical trajectory and are used to determine the 

location of hops. In general, trajectory surface hopping methods involve trajectories that hop 
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back and forth between potential energy surfaces, and they differ in their prescription for 

how to do so. In Sec. I, we mentioned that the most satisfactory versions of the well-tested 

TSH approaches are the TFS method3 and the FSTU method,4,5 which is an extension of the 

TFS method that improves the treatment of frustrated hops, which are tentative hops 

forbidden by energy or momentum conservation. Both TFS and FSTU, in principle, allow a 

trajectory to hop whenever kkρ  is changing. On the other hand, the ECP-TSH method, 

developed by Parlant and Gislason,13 is defined in such that a trajectory is allowed to hop 

only where the coupling is locally maximum. For instance, in the two-state case the ECP-

TSH method uses  

( ) ( )tt 12dR ⋅=Ω &                                                        (7) 

as a measure of the strength of the coupling. Hops are allowed at positions along a trajectory 

where there is a local maximum of this coupling strength function. Furthermore, the 

electronic density is reinitialized at all local minima of Ω , i.e., kkρ  is set to unity where  is 

the currently occupied electronic state, and all other 

k

kk ′′ ′ρ are set to zero. The hopping 

probability from state  to at each maximum of k k ′ Ω  is determined by integrating along a 

trajectory between the two adjacent local minima of Ω ,  i.e., by integrating from one local 

minimum at t  to another at t , where is ith local minimum of 1−i i it ( )tΩ . In particular, before 

it is reinitialized, ( it )kkρ  determines the hopping probability at the local maximum of Ω  

between t  and t . In the ECP-TSH method, a trajectory undergoes complete coherent 

passage between two adjacent local minima of 

1−i i

Ω  before the trajectory is brought back to the 

maximum of  to allow for a hop. After the attempted hop, the coherence Ω kk ′ρ  is destroyed 
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as kk ′ρ  is reinitialized. This is different from TFS and FSTU where kk ′ρ  is never 

reinitialized and is therefore fully coherent along each entire trajectory. 

 Note that Ω  tends to zero as ∞→t after the collision (or photodissociation event). 

This is interpreted as a local minimum, and so the trajectory can hop at the final local 

maximum of . Similarly t  is defined as the start of the trajectory so that a hop can occur at 

the first local maximum for Ω . 

Ω 0

 The original ECP-TSH applications by Parlant and Gislason13 used the so-called 

“ants” sampling scheme, where at each hopping location the trajectory is split into two 

weighted branches.  Both branches are propagated independently on the two potential energy 

surfaces, and each branch may undergo additional future branching. Later, Parlant and 

Alexander14a applied a mixed anteater/ants scheme, and Sizun et al.14b used the anteater 

sampling scheme where only one branch is followed. The sampling algorithm involves a 

cutoff parameter ; only maxima with cutoffΩ Ω  greater than cutoffΩ  are recognized as 

possible hopping locations. We apply the anteater implementation of the ECP-TSH method, 

recognizing that for a large enough ensemble of trajectories both the ants and anteater 

implementations should give the same results. 

 Although the original ECP-TSH method13 was formulated in the adiabatic 

representation, there is no reason why it cannot be applied in the diabatic representation. 

Note that d  is given as a function of the matrix element of by Eq. (A9) of Ref. 22, and 

in the two-state case, the nonadiabatic coupling vector  provides an equally good measure 

of the coupling in the diabatic representation as in the adiabatic one.

12 U

12d

11 In the present paper 

we therefore extend the ECP-TSH method to the diabatic representation by using the same 
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scheme as is in the adiabatic representation based on the same reference equation (7). This 

extension will be tested for the test cases in Sec. V. 

 

IV.  SELF-CONSISTENT POTENTIAL METHODS 

 In the self-consistent decay of mixing (SCDM) method, the effective potential energy 

surface V  is  E

( )∑ ∑∑ +=
<′

′′
k kk

kkkk
k

kkkk UUV ρρ Re2E                                         (8)  

Recall that in the adiabatic representation U kkk V=  and 0' =kkU  if ' , whereas in the 

diabatic representation the second term of Eq. (8) is nonzero. In the SCDM method, the 

electronic density evolves by 

kk ≠

D
ij

C
ijij ρρρ &&& +=                                                            (9) 

in which the first part comes from fully coherent contribution in Eq. (1), and the second part 

is the decay of mixing term:11  







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
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≠−

=

≠
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D
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τ

ρ
τ
ρ

ρ&                                            (10)                         

for the diagonal elements, and  
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for the off-diagonal elements. Detailed derivations of Eqs. (10) and (11) are given in Ref. 11. 

The equations of motion for the nuclear position are given by Eq. (5), and those for the 

momentum are 

DC PPP &&& +=                                                           (12) 

where the first term is the instantaneous change in momentum due to the fully coherent 

nonadiabatic motion determined by Eqs. (1), (6), and (18): 

( ) ( )

( ) jk
j

kk
k k

kj

kk
k kk

kkkk
k

kk

U

UUt

′′
′

′
<′

′

∑ ∑ ∑+

∇∑ ∑−∑ ∇−=

d

P R

ρ

ρρ

Re2

Re2C
R&

                           (13) 

In the diabatic representation, Eq. (13) becomes 

( ) ( ) kk
k kk

kkkk
k

kk UUt ′
<′

′ ∇∑ ∑−∑ ∇−= Rρρ Re2C
RP&                              (14)  

and in the adiabatic representation, Eq. (13) becomes 

( ) ( )( ) ''
'

'
C Re kkkk

k k
kkk

k
kk VVVt d−∑ ∑+∑ ∇−= ρρ RP&                              (15)  

The second term in Eq. (12) is the decoherent force and is given by 

s
sP

P ˆ
ˆ

D
D

⋅
−=

V&& µ                                                         (16) 

with23  

( )∑ ∑+∑=
<′

′
k kk

kk
D
kk

k
kk

D
kk UUV '

D Re2 ρρ &&&   .                               (17) 

The force in Eq. (16) drives the trajectory to a pure electronic state. The unit vector s  

represents the direction into which energy is deposited and out of which energy is consumed, 

and it is considered in subsection IV. D. The decoherent state switches during the trajectory 

ˆ
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with the switches governed by a switching probability that will be discussed in Subsections 

IV.A to IV.C. 

 

IV.A.  NDM  

 The natural decay of mixing (NDM) method23 computes the switching probability by 

the most naïve application of the fewest switches3 criterion. For example, in the two-state 

case, the probability of switching from decoherent state K to some other state K ′  between 

time t and time t + dt is given by 

( )












 +
−=













−=→ 0,max0,max'

KK

D
KK

C
KK

KK

KK
KK

dtdt
P

ρ

ρρ

ρ

ρ &&&
 .                         (18) 

The multi-state generalization of Eq. (18) is given in Eq. (A1) of Appendix A. 

 

IV.B. SCDM 

 As pointed out previously,11 D
KKρ&  in Eq. (18) is always positive, and this causes a 

system modeled using the NDM method to artificially resist changing its decoherent state. 

The SCDM method makes a simple modification to Eq. (18) by dropping the decoherent part 

in the numerator, i.e., the switching probability is given by 














−=→ 0,max'

KK

C
KK

KK
dtP

ρ

ρ&      .                                                  (19) 

This is called the self-consistent switching probability and may be interpreted as “locally 

coherent”. Appendix A contains the multi-state generalization of Eq. (19). 
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IV.C. CSDM 

 The electronic density matrix elements kk ′ρ  in the decay of mixing algorithm vary 

along the trajectory and depend on the location of decoherent state switches. If one of these 

switches occurs during a traversal of a strong interaction region, the state change influences 

the dynamics of kk ′ρ  in the remainder of that region. If we define coherence as the evolution 

of the density matrix according to Eq. (1) with no external influence on the trajectory, then 

the SE method is coherent, but either decay of mixing or switches in the decoherent state 

destroy coherence. The effective decoherence in the SCDM method is less severe than that in 

the NDM method; since this has been found to improve the results,11 it is interesting to 

consider a method that fully removes the decoherence from the electronic state equations for 

each strong interaction region; this is called the CSDM method. In the CSDM method, the 

switching probability is controlled by a fully coherent solution of Eq. (1) in each complete 

passage of a strong interaction region. However, the effective potential for nuclear motions is 

treated as in the SCDM method. 

 Following Parlant and Gislason13 and Thachuk et al.,12 we modify the switching 

scheme to treat each complete passage of a strong coupling region coherently.  We define 

  ( ) ∑=
j

KjK tD
2

d , (20) 

and 

  ( ) ∑ ⋅=
j

KjK tC
2

vibRd & . (21) 
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We also define a coherent set of state populations . As opposed to , which evolves 

by the decay of mixing Eqs. (9)-(11) and which is used in Eqs. (8) and (13)-(17),  

evolves by the completely coherent equation (1).  At each local minimum of along 

trajectory, we set  for all i and j, and the probability of switching the decoherent 

state is given by 

KK ′ρ~ KK ′ρ

KK ′ρ~

( )tDK

ijij ρρ =~

  












−=′→ 0,~

~
max

KK

KK
KK

dt
P

ρ

ρ&
.    (22) 

This is called coherent switches with decay of mixing or CSDM.  In the multistate case, Eq. 

(A1) replaces Eq. (22). Alternatively, we could set  at each local minimum of CK, 

and this is called CSDM based on a component of nonadiabatic coupling or CSDM-C.  

ijij ρρ =~

We emphasize that the equations of motion governing the  elements and hence 

governing the switching probability in the CSDM method are treated in a coherent and 

uninterrupted way throughout each complete passage through a strong coupling region 

(although one does allow switches in the decoherent state), but decoherence is introduced 

into  between different strong coupling regions by setting ; the ECP-TSH method 

also integrates the electronic equations of motion in a coherent way throughout each 

complete transversal of a strong coupling region, but it handles decoherence differently in 

several respects. First of all, there are no decay of mixing terms. Second, the ECP-TSH 

method involves hops with discontinuities in the nuclear momentum, and when a hop occurs 

it requires that one goes back to a point of maximal coupling, whereas the CDSM algorithm 

never goes back to an earlier point in the trajectory. Third, and this may be very important, in 

ijρ~

ijρ=ijρ~ ijρ~
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the ECP-TSH algorithm, whether or not a hop occurs, at each local minimum of Ω , the 

electronic coefficients are reinitialized to unity or zero. The analog in CSDM would be to set 

 rather than . By setting equal to , the amount of decoherence is 

determined by the difference between the two electronic density matrices: 

( )t

iKijij δδρ =~
ijij ρρ =~

ijρ~ ijρ

ρ , which is 

propagated with decay-of-mixing terms, and ,~ρ  which is propagated coherently. Thus, in 

particular, the amount of decoherence introduced by CSDM at a local minimum of 

)(tDK depends on the size of the coupling region and other dynamical factors, whereas ECP-

TSH fully destroys the coherence between any two strong coupling regions, no matter what 

their character is. 

 The NDM, SCDM, CSDM, and CSDM-C methods differ from each other only in the 

scheme that switches the decoherent state.  The NDM method uses the decay-of-mixing 

electronic density to calculate the switching probability; the SCDM method eliminates the 

decoherent part of the electronic density locally in the switching algorithm; and the CSDM 

and CSDM-C methods, in contrast, switch off the contribution of the decoherence to the 

electronic density matrix used in the switching probability over an entire region of strong 

coupling. 

 It is also interesting to comment on the relationship of the CSDM method and the 

ECP-TSH method to the method of Kuntz,24 which he has called the classical path surface 

hopping (CPSH) method. Unlike ECP-TSH, which combines complete coherent passage with 

surface hopping, or CSDM, which combines them with a self-consistent potential scheme, 

CPSH attempts combine all three approaches. In particular Kuntz uses the semiclassical 

Ehrenfest method in a given strong interaction region, followed by decay of mixing between 

strong interaction regions, after the last strong interaction region, or when the probability in 
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closed states is too high. (Although Kuntz calls this decay of mixing “surface hopping’, it is 

achieved in practice by adding decay terms to the Ehrenfest equation. The decay time is set 

equal to 0.25 times a monitoring interval (see Eq. (14) in Ref. 14a). The monitoring interval 

is set equal to “one program unit,”24b which equals 5.4 fs, or to “a short time interval.”24d 

Because of the way that the decay terms are employed, it is not unreasonable to think of the 

decay segments as smoothed surface hops between or following Ehrenfest regions.) For a 

system with a single strong interaction region the CPSH method becomes similar to the 

semiclassical Ehrenfest method with linear smooth sampling9 (SE-LSS). Since we have 

previously shown that SCDM and NDM are more accurate than SE-LSS11,23 and that SCDM 

is more accurate than NDM,11 we have only tested adding the coherent-complete-passage 

refinement to SCDM, not to the SE or NDM methods. Furthermore we note that Kuntz 

compared the CPSH method to ECP-TSH and concluded14a that the two methods ought to 

produce very similar results since the methods both integrate Eq. (1) through the strong 

interaction region and differ only in technical aspects. Since we carry out a complete test of 

the ECP-TSH method, which has the advantage of not involving an undetermined monitoring 

interval, we do not test the later, more complicated CPSH method. 

 

IV.D. Decoherent direction 

In SCDM, the decoherent direction was originally given by11 

( ) vibvib
)(

0vibvib
)(

0 ˆˆˆˆˆ PdPds dd PPadPPad KkKkKkKkKkKk ±±=   ,                    (23) 

 where a0 is a bohr length, and  are unitless unit vectors in the direction of P (the 

local vibrational momentum22) and d , respectively,  is the magnitude of d ,  

vibP̂ Kkd̂

Kk

vib

(PKkd Kk
)d

Kk

   



 19

is the component of  in the direction of , and K is the decoherent state. The sign in 

Eq. (23) was chosen such that the summation is additive. Since both  and  are 

within the non-rotational subspace, using  as the decoherent direction conserves total 

angular momentum. There is some ambiguity is separating vibrational and rotational motion, 

i.e., in the definition of Pvib.  To eliminate this ambiguity, we replace with (i.e., 

the component of total momentum in the direction of ). This yields 

vibP̂ Kkd

( )

Kkd

(d
KkP

vibP

P ⋅

ŝ

)
Kkd̂

Kkd

( vibP̂Pvib ˆ⋅dPˆ⋅dP dKk

τ

( ) ) vib0vib0 ˆˆˆˆ dPds aPad KkKkKkKkKk ±±= .                (24)  

Equations (23) and (24) are for the two-state case; see Ref. 11 for a generalization of Eq. 

(23) to multiple states in both adiabatic and diabatic representations, and we can 

generalize Eq. (24) in the same way. 

 

IV.E. Decay-of-mixing time 

In general, the SCDM and CSDM algorithms presented above may be used with a 

variety of models for the decay-of-mixing times iK .  For example, we previously11,23 

presented simple models based primarily on phase decay and on a combination of phase 

decay and the requirement that demixing should vanish in the limit of low nuclear 

momentum.  In addition, Fiete and Heller and Turi and Rossky have presented treatments 

based on short-time25 or perturbative26 treatments of Gaussian wave packets.  These 

treatments provide general guides to the form of the physical decoherence function; 

however, we need to emphasize that physical decoherence and algorithmic demixing are 

closely related but quantitatively different.  Algorithmic demixing is the decay of the 

reduced density matrix elements (off-diagonal elements to zero and diagonal elements to 
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zero or unity) that must be added to a quantum/classical algorithm in order that a 

calculation based on an ensemble of independent trajectories of the classical subsystem 

simulates, as well as possible, the evolution of a real system in which both electronic and 

nuclear coordinates are quantum mechanical. A single SCP trajectory has a physical 

nuclear kinetic energy only if the electronic state is pure. But a quantum mechanical 

reduced density matrix generally corresponds to a mixture even when the whole system is 

in a pure state; it corresponds to a pure state only if the whole system is in an unentangled 

pure state. Thus, in order to obtain a practical semiclassical algorithm based on 

independent trajectories, we must devise an algorithmic decay of mixing that does not 

correspond precisely to quantum mechanical decoherence. 

Although future work may develop more sophisticated semiclassical justifications 

of the appropriate decay of mixing rates that should be used, the calculations presented 

here are based on the assumption that we can use the simplest treatment that satisfies the 

following two constraints:  (1) At low values of P ⋅ ŝ  , Eq. (16) requires that  

 ( ) 1,ˆ~1 0ˆ
>⋅

→⋅
nn

iK
sP

sP

τ
 (25) 

in order that demixing does not occur when the momentum in the direction that couples 

electronic and nuclear motion is insufficient to support the required accompanying 

energy transfer, and (2) the demixing time should not be shorter than the shortest 

electronic time scale in the problem, which we take to imply that 

 
  

1
τiK

≤
Vii −VKK

h
 . (26) 

Two of the simplest possible functions that satisfy these constraints are 
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τiK = h
C

Vii −VKK
+

′ C 
P ⋅ ˆ s ( )2 /2µ

 

 
 
 

 

 
 
  (27) 

and 

 
  

τiK =
h

Vii −VKK
C +

E0

P ⋅ ˆ s ( )2 /2µ

 

 
 
 

 

 
 
  (28) 

where C and ′ C  are unitless parameters greater than or equal to unity, and E0  is a 

positive parameter with units of energy.  Equation (27) is similar to the form we used in 

our previous paper,11 and equation (28) with C = 0 is similar to the form we used in our 

original23 decay-of-mixing paper.  In the present work, we have tested various forms of 

this type, with C = 1 through 5, and we have found that the results are not very sensitive 

to the particular form of τ iK  or to the values of the parameters, provided only that τiK  is 

large enough. As an example, in Appendix B we present full sets of results with three 

values of E0  which illustrate the insensitivity of the results to this parameter. The results 

are even less sensitive to C. Therefore, we simply use Eq. (28) with C = 1 and E0  equal 

to 0.1 hartree. 

All of the decay-of-mixing results given in this paper follow the formalism of Eqs. 

(8)-(22), (24), and (28) and differ only in how the switching probability is calculated. 

  

V.  THREE-DIMENSIONAL TEST CASES AND METHODOLOGY 

We apply the SCDM, CSDM, CSDM-C, and ECP-TSH methods to five fully-

dimensional model systems with various initial conditions for a total of twelve test cases, as 

discussed in Ref. 11. Descriptions of the model surfaces and details of the accurate quantum 

mechanical calculations have been previously presented for the MXH27 and YRH28 systems.  
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Briefly, each model system has two electronic states and is defined in terms of a diabatic 

potential energy matrix (PEM), which includes two diagonal potential energy surfaces and a 

coupling surface.  The electronically nonadiabatic atom-diatom collisions that comprise our 

test suite all have the form: 





′′+

′+
→+

)b29()(BCA
(29a), )(AC B

),(BC *A
int

int
E
E

jv  

where (A, B, C) = (M, H, X) and (Y, R, H) for the MXH and YRH systems, respectively, the 

asterisk indicates electronic excitation, v and  j are the initial vibrational and rotational 

quantum numbers, and the final internal (i.e., rovibrational) energy of the diatomic fragment 

is for reaction products and intE′ intE ′′ in the quenched arrangement. 

 We label the initial conditions by the total energy E given in eV and the initial 

rotational state j of the diatomic molecule [i.e., by (E /eV, j)].  For all of the cases considered 

here, the diatom is initially in its ground vibrational state (i.e., v = 0), and the total angular 

momentum of the system is zero. Electronic angular momentum is neglected. 

 The nine MXH cases are:  the SB, SL, and WL parameterizations of the MXH system 

with the masses of the M, H, and X model atoms equal to 6.04695, 1.00783, and 2.01565 

amu, respectively, and with (1.10, 0), (1.10, 1), and (1.10, 2) initial conditions. Details of the 

MXH parameterizations and initial conditions are given in Ref. 27. 

The three YRH cases are:  the YRH(0.1) parameterization with the (1.10, 0) initial 

conditions, and the YRH(0.2) parameterization with the (1.02, 0) and (1.10, 6) initial 

conditions. The masses of the Y, R, and H atoms are 10, 6, and 1.00783 amu, respectively. 

Details of the YRH parameterizations and initial conditions are given in Ref. 28. 
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 Since we do not expect the semiclassical methods to reproduce quantum mechanical 

oscillations in most cases, and since these oscillations usually wash out in experimental 

observables, our goal is to learn how well the semiclassical results can reproduce the quantal 

ones when any oscillations in the quantal results are averaged out. Therefore, the results from 

quantum mechanical calculations at several energies at and around the nominal scattering 

energy were calculated and averaged (full details are given elsewhere11,27,28).  In almost all 

cases, the values obtained by averaging are very similar to the values obtained at the nominal 

energy. 

 For the methods involving trajectories, the coordinates and momenta of the nuclei and 

the electronic state populations were integrated using an adaptive integration algorithm that 

was designed for use with semiclassical trajectory calculations.22 The algorithm uses a 

Bulirsch-Stoer integrator with polynomial extrapolation29,30 modified such that the integrator 

is prohibited from stepping over local peaks and minima in the electronic probabilities.  For 

the present calculations, the integration parameters27 were given the following values:  εBS = 

10–12 Eh (1 Eh  =  27.211 eV) and hmin = 10–4 a.u. (1 a.u. = 2.4189 x 10–2 fs), which give 

converged results for the YRH and MXH systems.  The trajectories begin the simulation with 

the lone atom (Y in the case of YRH and M in the case of MXH) separated from the center-

of-mass of the diatom by 35 a0 (1 a0 = 0.52918 Å) for the MXH cases and by 20 a0 for the 

YRH cases, and the simulation was ended when the product fragments were separated by at 

least 30 a0 for both systems.  We have verified that the results of the semiclassical 

simulations do not change when these distances are increased.  

For the methods involving trajectories, the final state internal energies orintE′ intE ′′ , 

were determined without quantization. In particular, in all trajectory methods, the relative 

   



 24

translational energy and the electronic energy become constant after the collision, and the 

internal energy is computed as total energy minus final relative translational energy minus 

final electronic energy. (Note that, for the problems considered here, U  

asymptotically, and the final electronic energy isV  or V  in TSH and DM trajectories 

whereas it is some value between V  and V  in Ehrenfest trajectories.) In the Ehrenfest 

calculations, the quenching probability was computed by the histogram method. 

kkk V=

1 2

1 2

ε α

int′

quantal
α

traj −α

 

VI.  RESULTS AND DISCUSSION 

 The semiclassical trajectory calculations and the accurate quantum mechanical results 

are compared for the following six quantities (i = 1, 2, …, 6): 

 PR the probability of reaction, which is the outcome in Eq. (29a) 

 PQ the probability of quenching, which is the outcome in Eq. (29b) 

 PN the total probability of a nonadiabatic event, which is the sum of PR and PQ , 

 FR the reactive branching fraction, which is defined as PR/PN 

 intE ′  the average internal energy of the diatomic fragment in Eq. (29a) 

 intE ′′  the average internal energy of the diatomic fragment in Eq. (29b). 

For the three probabilities the error αi  for quantity and test case i  (nine cases for MXH 

and three case for YRH) is reported as the logarithmically averaged percentage error 

described elsewhere,31 and for the remaining three quantities, FR, E , and intE ′′ , αεi  

the error is defined as the unsigned relative percentage error given by 

  100quantal ×=
α

αε
i

ii
i

Q

QQ
 , (30) 
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For caseα , the average error in probabilities is 

  ∑=
=

3

13
1)Prob(

i
ia αεε , (31) 

and for the next three quantities,  FR, intE ′ , and intE ′′  (which represent how the energy of 

the system is fractionated into various nuclear coordinates), the average error is 

  ∑=
=

6

43
1)Fract(

i
iαα εε . (32) 

These were then averaged over the nine MXH cases to give the MXH percentage error 

  )(
9

100)MXH;(PE
9

1
XX α

α
ε∑=

=
, (33) 

and similarly for the three YRH cases to give YRH percentage error 

  )(
3

100)YRH;(PE
12

10
XX α

α
ε∑

=
= ,  (34) 

where X = 1 = “Prob” and X = 2 = “Fract”.  Finally we averaged the two types of errors and 

two types of systems to obtain “average” mean unsigned percentage errors: 

  
2

)YRH,(PE)MXH,(PE)average(PE
2

12
1 XX

X

+
∑=
=

.     (35) 

We report numerical results for five quantities in Tables I and III: PE(Prob;MXH), 

PE(Fract;MXH), PE(Prob;YRH), PE(Fract;YRH) and PE(average). Semiclassical 

calculations were performed in the adiabatic (A), diabatic (D), and Calaveras County (CC) 

representations.1d The Calaveras County representation is defined as the representation with 

the fewest hopping attempts in a trajectory surface hopping calculation, and previous work 

has shown1d that this representation is, on average, the most accurate representation for 

trajectory surface hopping. 
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 Results for the SCDM, CSDM, and CSDM-C methods are presented in Table I for 

E0  = 0.1 Eh and C = 1 and using Eq. (28). The more coherent CSDM and CSDM-C methods 

are more accurate than the SCDM method for the probabilities in the YRH test cases when 

using the diabatic representation. For the rest of the test cases, the errors are similar for these 

three methods.  This result indicates that for many systems the local coherence in the SCDM 

may be enough to obtain good results, but for certain cases a more coherent approach is 

necessary.  In no case are the more coherent methods significantly less accurate than less 

coherent SCDM method. 

A key reason for the greater success of the CSDM and CSDM-C methods appears to 

be that they are a little more coherent than SCDM. The MXH system has a diabatic crossing 

of the Landau-Zener-Teller (LZT) type so that in the strong interaction region, the decay-of-

mixing time in the diabatic representation is greater than the decay-of-mixing time in the 

adiabatic representation, and thus the SCDM method in the diabatic representation works as 

well as the two new methods. On the other hand, the YRH system has a Rosen-Zener-

Demkov (RZD) type of interaction so that in the strong interaction region both 

representations have similar decay-of-mixings, and this is apparently why the SCDM method 

does not work as well in the diabatic representation as the two new methods. The reason why 

the SCDM in the adiabatic representation is about as accurate as the CSDM and CSDM-C 

methods for both the MXH and YRH systems is apparently that the distribution of 

nonadiabatic coupling is much more localized than the diabatic coupling so that the DM 

trajectory on average has less deviation from the SE trajectory in the adiabatic representation 

than in the diabatic representation. In the other words, for a given system, the DM trajectory 

is more coherent in the adiabatic representation than in the diabatic representation.  
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 We used the anteater scheme to carry out ECP-TSH calculations and tested it for 

the nine MXH and three YRH cases mentioned above. The calculations were performed 

at various values of  until convergence was reached. Two example cases in the 

adiabatic representation are presented in Table II where convergence with respect to 

 is demonstrated. Table II shows that converged results are obtained for MXH SL 

(1.1/eV,0) with a relatively large 

cutoffΩ

cutoffΩ

cutoffΩ , but a relatively small cutoffΩ  is required for 

YRH(0.1) (1.1/eV,0). Using the anteater scheme, one can simply set cutoffΩ  to zero.  

However, since previous workers did not always set 0cutoff =Ω , Table II is included to 

demonstrate that for some cases, results may be sensitive to this parameter. 

 In Table III, errors are presented for the TFS- (where - denotes that the 

trajectory is reflected at frustrated hops33,34 ), TFS+ (where + denotes that the trajectory 

is left unchanged at frustrated hops3,35), FSTU∇V (where ∇V denotes that the choice of 

whether to reflect or not at a frustrated hop is based on the gradient of the potential as 

discussed previously5), and SE6,9 methods.  First, we will discuss the surface hopping 

methods (ECP-TSH, TFS+, TFS–, and FSTU∇V).  Table III shows that ECP-TSH 

method is less accurate on average than the TFS method for both the adiabatic and 

diabatic representations, in particular the branching probabilities are much worse in the 

ECP-TSH method than in the TFS method. This may be partly because some of frustrated 

hops in the ECP-TSH method are not frustrated in the TFS method as the TFS method 

allows hops to occur all along the trajectory. Note that for the YRH test cases, surface 

hopping methods in general give very different results in the adiabatic and diabatic 

representations. The FSTU∇V method (which does not incorporate any explicit treatment 
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of decoherence) is the most accurate surface hopping method, and it is the least 

dependent on the choice of electronic representation. It is possible that one could obtain 

better a surface hopping method by including an explicit treatment of decoherence in 

surface hopping using some but not all features of the ECP-TSH method, but we did not 

pursue this here. 

Next we discuss the SCP methods (SE, SCDM, CSDM-C, and CSDM).  The SE 

method is not accurate for real multidimensional systems. Table III shows that the 

CSDM, CSDM-C, and the SCDM methods are the most accurate with errors comparable 

to those32 for single-surface quasiclassical trajectory calculations. The CSDM and 

CSDM-C methods are less sensitive to the choice of electronic representation than the 

SCDM method.  The CSDM method provides a simple and accurate solution to the 

problem of combining decay-of-mixing trajectories and coherent electronic state densities 

in non-Born-Oppenheimer dynamics. 

 To gain insight into the decay-of-mixing process incorporated into the successful 

decay-of-mixing algorithms, we computed the time average of the decay-of-mixing rates 

defined by Eq. (28). As the decay-of-mixing time is not meaningful in the initial and final 

legs of the trajectories where the coupling is essentially zero, we average only over the 

portions of the trajectories where 98.002.0 ≤≤ kkρ . Recall that 12τ  is the reciprocal of a 

first-order rate constant, and we should average rates, not their reciprocals. Therefore, to 

average the rates, we calculate the time average of 1 12/τ  for this portion of each 

trajectory and then average these values over the ensemble of trajectories. Then, the 

result is re-expressed in terms of time units by taking a reciprocal:  
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12/1
1
τ

τ ≡                                                            (35) 

The results for the three successful decay-of-mixing methods are shown in Table IV. We 

notice that the average decay-of-mixing is shorter in the adiabatic representation than in 

the diabatic representation for MXH (SB) with j = 2 and YRH (0.2) with j = 0, but the 

average decay-of-mixing is longer in the adiabatic representation than in the diabatic 

representation for MXH (WL) with j = 1. The fact that CSDM does not require long 

algorithmic decay times to mimic quantum mechanics may be very important for 

understanding the physical origin of decoherence because requiring a large algorithmic 

component in the decay-of-mixing could mask the physical origin of decoherence. 

            We know for MXH (SB) with j = 2 and YRH (0.2) with j = 0 that the Calaveras 

County representation is the adiabatic representation, while for MXH (WL) with j = 1, 

the Calaveras County representation is the diabatic representation. The examples in Table 

IV show that the representation with shorter average decay-of-mixing corresponds to the 

Calaveras County representation. This coincidence is also true for the other decay of 

mixing methods shown in Table II of Ref. 11. Thus it may be unnecessary to run surface 

hopping calculations to determine the Calaveras County representation; one can simply 

use the representation in which τ  is shorter. 

            Table IV also shows the average number of local minima per trajectory of Eq.  (20) 

for the CSDM method and of Eq. (21) for the CSDM-C method.  These statistics are 

important because it is at such local minima where the electronic density matrix for 

computing the switching probability is set equal to the decay of mixing electronic density 

matrix. Some readers might be surprised at how large these numbers are since one often 

thinks of polyatomic collisions as similar to atomic collisions, where this number might often 
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be only 2. For the present cases the number of local minima in the CSDM-C method is 

roughly equal to 2.5 times the number of local minima in the CSDM method.  This is 

because the CSDM-C method often has a local minimum at a vibrational turning point, 

which is not a local minimum for the CSDM method.    

The present study illustrates the importance of properly balancing coherence and 

decoherence, and the formulation in Eq. (28) is reasonable for studying collisions and 

photochemical processes in small as well as big molecules. Nevertheless a deeper 

understanding of the best ways to incorporate coherence and decoherence into semiclassical 

theory would be worthwhile. 

 Although the present article only involves two-state applications, the new methods 

(FSTU and decay of mixing) that we have presented are all defined for the general multi-

state case. 

 

VII.  CONCLUDING REMARKS 

Recent interest in quantum measurement theory has led to increased interest in 

decoherence and its relation to the classical limit of quantum mechanics.36-38 In a more 

specific context, Thachuk et al.12 illuminated the key roles of coherence and decoherence for 

two-state one-dimensional system interacting with an oscillatory time-dependent electric 

field, and Rossky and coworkers10 emphasized the importance of decoherence in the 

simulation of electronically nonadiabatic processes in the condensed phases. Hack and one of 

the authors23 developed a formalism, called natural decay of mixing, for adding decoherence 

to the semiclassical Ehrenfest method and showed that the resulting treatment were the most 

accurate of all available semiclassical trajectory methods for non-Born-Oppenheimer 
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collisions. We showed in a previous paper11 that we obtain more accurate results for 

electronically nonadiabatic collisions by adding more coherence to the natural decay of 

mixing algorithm; the resulting algorithm was called self-consistent decay of mixing 

(SCDM).  In the present paper, by using a coherent complete passage of each strong 

interaction region to compute the local switching probability of the SCDM method, we have 

further improved the decay of mixing method for nonadiabatic dynamics, resulting in a new 

algorithm called coherent switches with decay of mixing (CSDM). We also consider the 

exact complete passage (ECP) algorithm of Parlant and Gislason14 for adding coherence to 

trajectory surface hopping (TSH) calculations. Although the ECP-TSH method does not 

improve the TFS method on average, the key feature of this method is borrowed for the 

SCDM method, where it leads to the CSDM method. 

It is important to emphasize that the new decay-of-mixing method, CSDM, 

performs almost equally well in the adiabatic and diabatic representations. The reasons 

why this is important can be summarized as follows: First, it is not always possible to 

predict (when the accurate quantal results are unavailable) which representation is 

preferred.  Second and even more significant, for complex systems there can be regions 

of configuration space in which the adiabatic representation is preferred, but, for the same 

system with the same initial conditions, there can be other regions of configuration space 

where the diabatic representation is more natural. In particular, in real molecular 

dynamics simulations, one may encounter systems with several qualitatively different 

kinds of coupling regions. A good example would be a system with a conical intersection 

where close to the cone, one has an LZT-type of avoided crossing like MXH, but in 

regions far from the cone one has RZD-type interactions as in YRH. Another example 
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would be a three-state system where the coupling between states 1 and 2 is most naturally 

treated in the adiabatic representation but the couplings between states 1 and 3 or 2 and 3 

are more diabatic. For such a system, one needs a method that works equally well in both 

representations.  CSDM is especially well suited to satisfy this need for multi-

dimensional dynamics. 

One will be much safer to treat general complex systems if one has method that yields 

accurate results in both representations, and CSDM can fill this need. 

The key results of this paper are in Table III. This table shows that for twelve test 

cases involving five different atom-diatom systems, the CSDM method is the most accurate 

self-consistent potential (SCP) method, and it is also more accurate than the FSTU“V 

method, which we have found to be is the most accurate TSH method. As compared to 

surface hopping methods, the CSDM method has the advantage that coordinates and 

momenta are continuous with continuous derivatives along each trajectory; and there are no 

frustrated hops. As compared to the semiclassical Ehrenfest method, it contains a better 

treatment of decoherence. The computational effort for practical problems is nearly the same 

as for TSH and semiclassical Ehrenfest methods.  The CSDM method is suited for general 

polyatomic applications. 
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APPENDIX A:  SWITCHING PROBABILITY FOR MULTISTATE CASES 

 We can formulate the switching probability for the mulitstate case by following 

Tully’s fewest switching method,3 and the switching probability from the current 

decoherent state K to another decoherent state  is given by  K ′

  
( )













 −
= ′

′→ 0,max
KK

D
KKKK

KK
dtb

P
ρ

ρ&
 (A1) 

where we have 

  ( )KKKKKK Ub ′′
−

′ −= ρIm2 1h  (A2) 

for the diabatic representation where KKKK U ′′U = , and 

  ( )KKKKKKb ′′′ ⋅= dR&ρRe2  (A3) 

for the adiabatic representation where KKKK ′′ −= dd . (Recall that ∗
′′ = KKKK ρρ .) The 

NDM method requires that both KKρ  and KK ′ρ  in Eq. (A1) –(A3) are calculated from 

the decay of mixing electronic density of Eq. (9). The SCDM and CSDM methods 

require omitting D
KKρ& in Eq. (A1); furthermore in the CSDM method both KKρ  and 

KK ′ρ  should also be replaced by KKρ~  and KK ′ρ~  defined in Sec. IV. C.  

  It is useful to point out the relationship to the coherent term in Eq. (9), i.e.,    

∑=
≠′

′
KK

KK
C
KK bρ&                                                      (A4) 

 

APPENDIX B:  RESULTS WITH SELECTED E0 VALUES  

 In Table B-I results for = 0.05, 0.1, and 0.2 Eh are presented for the MXH system 

using the SCDM, CSDM, and CSDM-C methods. The overall percentage errors in the last 

0E
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column of the table show that the results are relatively insensitive to the value of  and are 

slightly more accurate for  = 0.1 Eh.  A similar conclusion is drawn from the results in 

Table B-II for the YRH system.

0E

0E
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Table I.  Average percentage errors in the probabilities and internal energy distributions for 

nine MXH and three YRH test cases 

MXH YRH 
Method Rep.  

Prob Fract Prob Fract 
 Average 

CSDMa A  26 21 21 18  21 
 D  29 20 41 22  28 
         

CSDM-Ca A  26 20 20 17  21 
 D  28 20 49 22  30 
         

SCDMa A  27 22 20 17  21 
 D  28 20 69 22  35 
         

 
aObtained using E0= 0.1 Eh and C = 1 in Eq. (28). 
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Table II.  Convergence of mean unsigned percentage errors (%) in the branching probabilities 

and final internal energies for the ECP-TSH method in the adiabatic representation. 

 

Ωcutoff (eV) RP  QP  NP  RF  intE ′  intE ′′  Prob Fract All 
MXH SL (E = 1.1 eV, j = 0) 

6 µ 10-1 100 516 44 188 2 12 220 67 144 
6 µ 10-2 240 141 28 165 2 4 136 57 97 
6 µ 10-3 230 120 28 158 2 5 126 55 90 
6 µ 10-4 220 102 28 150 2 3 117 52 84 

          
YRH(0.1) (E = 1.1 eV, j = 0) 

6 µ 10-5 273 282 281 2 3 4 279 3 141 
6 µ 10-7 264 279 276 3 2 4 273 3 138 
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Table III. Mean unsigned relative errors (%) in the branching probabilities and internal 

energy distributions for nine MXH and three YRH test cases 

MXH YRH  Method Rep. 
Prob Fract Prob Fract  

Average

Trajectory surface hopping methods 
ECP-TSH A 90 47 377 4  130 

 D 123 47 1016 30  304 
 CC 118 48 377 4  137 
        

TFS+ A 57 34 53 18  41 
 D 54 26 723 49  213 
 CC 59 32 53 18  41 
        

TFS– A 54 29 43 15  35 
 D 47 22 548 29  161 
 CC 50 28 43 15  34 
        

FSTU∇V A 52 30 31 19  33 
 D 45 20 230 26  80 
 CC 45 28 31 19  33 

Self-consistent potential methods 
SE all 132 40 a a  - 

        
SCDM  A 27 22 20 17  21 

 D 28 20 69 22  35 
 CC 30 21 20 17  22 
        

CSDM-C A 26 20 20 17  21 
 D 28 20 49 22  30 
 CC 28 20 20 17  21 
        

CSDM A 26 21 21 18  21 
 D 29 20 41 22  28 
 CC 28 21 21 18  22 

aNone of the trajectories finished in product arrangements.
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Table IV.  Mean decay-of-mixings (fs) for SCDM, CSDM and CSDM-C 

Method Rep. 
MXH  SB 

j = 2 

MXH  WL  

j = 1 

YRH 0.2          

1.02 eV, j = 0 

SCDM A 5.6 5.3 33. 

 D 6.6 4.9 36. 

     

CSDM-C A 5.7(231)a 6.0(118) 33(195) 

 D 6.5(237)  4.9(117) 36(195) 

     

CSDM A 7.8(99) 8.6(59) 36(78) 

 D 9.7(98) 7.6(58) 37(78) 
 

aNumbers in parentheses are the average number of minima per trajectory of Eq. (25) for the 

CSDM method and of Eq. (26) for the CSDM-C method. As in Table I and III, we used C=1 

and E0= 0.1 Eh in Eq. (28). 
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Table B-I. A detailed comparison of results for selected  values using CSDM, CSDM-C, 

and SCDM methods for the MXH system.  

0E

 

Method 0E  Rep. RP  QP  NP  RF  intE′  intE ′′  Prob Fract All 
CSDM 0.05 A 38 34 24 20 23 25 32 23 27 

  D 23 46 21 21 16 20 30 19 24 
  CC 36 43 25 22 22 24 35 22 29 
            
 0.1 A 24 35 18 17 23 21 26 21 23 
  D 29 43 15 25 18 18 29 20 25 
  CC 24 42 18 19 23 21 28 21 24 
            
 0.2 A 43 38 14 31 27 18 32 25 28 
  D 60 42 12 36 20 15 38 24 31 
  CC 43 41 14 32 26 17 33 25 29 
            

CSDM-C 0.05 A 36 35 24 19 23 24 32 22 27 
  D 23 46 22 21 16 20 30 19 24 
  CC 35 42 25 20 22 24 34 22 28 
            
 0.1 A 25 34 18 17 23 21 26 20 23 
  D 27 43 16 24 20 18 28 20 24 
  CC 25 41 19 18 23 21 28 20 24 
            
 0.2 A 37 37 14 28 26 18 29 24 27 
  D 63 43 11 37 21 15 39 24 32 
  CC 38 42 14 29 25 18 31 24 28 
            

SCDM 0.05 A 40 35 23 22 22 25 33 23 28 
  D 24 44 22 19 18 20 30 19 25 
  CC 36 44 25 21 22 24 35 22 29 
            
 0.1 A 26 38 18 20 23 22 27 22 25 
  D 24 44 17 23 20 18 28 20 24 
  CC 26 45 19 21 23 21 30 21 26 
            
 0.2 A 39 34 15 28 27 19 30 24 27 
  D 62 45 12 37 22 14 40 25 32 
    CC 40 43 15 30 27 17 33 25 29 
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Table B-II. A detailed comparison of results for selected  values using CSDM, CSDM-C, 

and SCDM methods for the YRH system. 

0E

 
Method 0E  Rep. RP  QP  NP  RF  intE ′  intE ′′  Prob Fract All 
CSDM 0.05 A 31 26 23 28 9 22 27 20 23 

  D 30 74 66 28 6 20 57 18 37 
  CC 31 26 23 28 9 22 27 20 23 
            
 0.1 A 16 28 19 28 7 20 21 18 20 
  D 41 47 36 39 5 22 41 22 32 
  CC 16 28 19 28 7 20 21 18 20 
            
 0.2 A 35 30 20 36 7 19 28 20 24 
  D 76 28 21 47 6 23 42 25 34 
  CC 35 30 20 36 7 19 28 20 24 
            

CSDM-C 0.05 A 31 26 23 28 9 22 27 20 23 
  D 60 82 75 35 6 20 72 20 46 
  CC 31 26 23 28 9 22 27 20 23 
            
 0.1 A 16 26 18 23 6 20 20 17 18 
  D 47 56 44 39 6 22 49 22 36 
  CC 16 26 18 23 6 20 20 17 18 
            
 0.2 A 34 28 19 36 6 19 27 20 24 
  D 68 34 22 48 7 23 41 26 34 
  CC 34 28 19 36 6 19 27 20 24 
            

SCDM 0.05 A 33 26 23 27 9 21 28 19 23 
  D 94 121 113 36 7 21 109 21 65 
  CC 33 26 23 27 9 21 28 19 23 
            
 0.1 A 18 26 18 24 7 19 20 17 19 
  D 51 83 72 36 7 23 69 22 45 
  CC 18 26 18 24 7 19 20 17 19 
            
 0.2 A 30 27 18 35 7 18 25 20 22 
  D 49 50 36 48 6 24 45 26 36 
  CC 30 27 18 35 7 18 25 20 22 
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