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Abstract.   

This paper presents two new multi-coefficient correlation and density functional methods 

based on mixing scaling-all-correlation (SAC) theory and hybrid density functional theory 

(HDFT) with empirical parameters.  Both methods were optimized against a database of 109 

atomization energies and 42 barrier heights.  The resulting methods, called MC3BB and 

MC3MPW, were tested against a database of saddle point geometries, and scaling factors were 

optimized for calculating vibrational frequencies.  The two new methods were compared to 

the methods that we have previously determined to be most efficient for thermochemistry and 

thermochemical kinetics, where the criterion is the average of the mean unsigned errors for 

bond energies and barrier heights.  These comparisons show that MC3BB is more accurate 

than any other method that has comparable cost.  Both new methods are well suited for direct 

dynamics calculations that require Hessians.  The new approach is called doubly hybrid 

density functional theory (DHDFT). 
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1. Introduction 

Multi-coefficient correlation methods1-8 (MCCMs) use empirical parameters to combine a 

set of low-cost single-level electronic structure calculations.  The multi-level energy obtained 

by a linear combination of single-level calculations corresponds to extrapolating to a complete 

one-electron basis and an infinite-order treatment of electron correlation.1  The final 

prediction is much less expensive than comparably accurate single-level calculations, which 

are often not affordable.  For example, the coupled cluster method with single and double 

excitations and quasiperturbative connected triples9 (CCSD(T)) and an augmented correlation-

consistent polarized triple zeta basis set is eight times less accurate for bond energies than 

multi-coefficient Gaussian-3 (MCG3) but about two orders of magnitude more expensive.8  

MCCMs have been shown to be affordable and robust for predicting accurate atomization 

energies,1-6,8 reaction barrier heights,7,8 potential energy surfaces,10-13 ionization 

potentials,8,14,15 electron affinities,8,14,15 proton affinities,16 and vibrational frequencies17   

Several MCCMs such as scaled Gaussian-3 (G3S and G3SX),14,15,18 scaled G3 methods 

with reduced-order Møller-Plesset perturbation theory14,15,18 (G3S(MP3), G3S(MP2), 

G3SX(MP3) and G3SX(MP2)), and multi-coefficient Gaussian-3 (MCG3)4,8 have proven to be 

very accurate for predicting thermochemical properties.  Unfortunately, the computational 

costs of these methods formally scale as N7, where N is the number of atoms.  If one wants to 

calculate consistent gradients or Hessians (for example, in dynamics calculations or geometry 

optimizations), these methods are very expensive, and sometimes prohibitively so.  In a 

previous paper,8 our group developed a suite of MCCMs of varying accuracy and cost, namely 

the MCCM/3 suite, that is suitable for a variety of problems with different sizes of molecules 

and different accuracy requirements.  The recommended methods in the MCCM/3 suite are 

MC-CO/3, MC-UT/3, MC-QCISD/3, and MCG3/3.  These methods are constructed by taking 

linear combinations of wave-function-based single-level methods such as Hartree-Fock (HF) 

theory, Møller-Plesset perturbation theory (MP2,19 MP4SDQ,20 and MP420), quadratic 
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configuration interaction with single and double excitations (QCISD),9 and QCISD with 

quasiperturbative connected triples9 (QCISD(T)).  A particularly powerful version of the MC 

method is the MC-QCISD method,6,8 which scales as N6.  In the limit of only a single 

coefficient, the MCCM methods reduce to the older scaling-all-correlation (SAC) method.21  

When we say SAC without any further explanation, it means SAC based on MP2 theory, also 

called SAC-MP2, which scales as N5. 

Hybrid density functional theory22-30 (HDFT), which involves taking a linear combination 

of HF theory and density functional theory (DFT) at the Fock-Kohn-Sham operator level, has 

been widely applied to many problems due to its excellent cost-to-performance ratio. Its 

computational cost scales as N4.  Recently we optimized a Becke88–Becke95 1-parameter 

model for kinetics;30  the method was called BB1K.  BB1K and the previously optimized 

MPW1K model27 give very good performance for kinetics as measured against a database of 

barrier heights.30,31 MPW1K is an example of HDFT, and BB1K is an example of hybrid meta 

DFT (HMDFT), where meta denotes that kinetic energy density is included in the functional. 

Both HDFT and HMDFT include gradient corrections in the density functionals. 

The goal of the project reported here was to generalize the multi-coefficient methods to 

allow mixing of the wave-function-based methods with hybrid density functional methods.  In 

particular, we use a multi-coefficient approach to mix the SAC method1,5,8,21,32 with HDFT or 

HMDFT.  The new resulting methods are called the multi-coefficient three-parameter 

Becke88-Becke95 (MC3BB) method and multi-coefficient three-parameter modified Perdew-

Wang (MC3MPW) method (both methods are further discussed in Section 3).  We optimize 

both methods against a set of atomization energies and chemical reaction barrier heights.  The 

training set is designed to yield parameters that are suitable for thermochemistry and 

thermochemical kinetics. 

Section 2 presents our training and test sets.  Section 3 discusses the theory and 

parametrization of the new methods.  Section 4 presents results and discussion.      
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2. Databases 

2.1. Training Set.  The training set used in the present paper consists of 109 atomization 

energies (AEs) and 42 barrier heights (BHs).  The AE training set contains a diverse set of 

molecules including organic and inorganic molecules and radicals, but there are very few 

metallic species.  The barrier height set consists primarily of open-shell reactions (as opposed 

to, say, closed-shell SN2 reactions or closed-shell proton transfer reactions), and there are no 

metallic species involved in the 21 reactions that define the 42 barrier heights.   

All 151 data are pure electronic energies, i.e, zero-point energies and thermal vibrational-

rotational energies have been removed.  The 109 zero-point-exclusive atomization energies 

are part of Database/3 and are identical to those used previously;8,29 for convenience they are 

listed in the supporting information.  This database will be called AE109/3.  The barrier 

height database has also been published previously,30 and it comprises what is called the 

BH42/03 database.  The best estimates for the barrier heights were obtained, as explained 

elsewhere,7,8,27,30,33 from a combination of experimental and theoretical kinetics data, and for 

completeness they are listed in the supporting information as well.  

2.2. Saddle Point Geometries.  After optimization against atomization energies and 

barrier heights, we test the MC3BB and MC3MPW methods against a database of saddle point 

geometries.  The database of saddle point geometries comes from previous work.7,33  The 

test set consists of five reactions where very high-level calculations34-37 of saddle point 

geometries are available.  These data for saddle point geometries are listed in supporting 

information, and this data set is called the SPG15/01 database. In testing various methods 

against saddle point geometries, we compare calculated values of these quantities to results 

from the accurate calculations; these three quantities are the length of the forming bond, the 

length of the breaking bond, and the perpendicular looseness.  The perpendicular looseness 

has been defined7,30,33 as the sum of the forming and breaking bond distances; this is a measure 
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of the looseness of the saddle point structure in the direction perpendicular to the reaction 

coordinate. 

2.3. Vibrational Zero Point Energies Database.  A database of thirteen anharmonic 

vibrational zero point energies (ZPEs) has been presented in a previous paper;1 it is based on 

the work of Martin.38  This is called the ZPE13/99 database. We will employ this vibrational 

ZPE database to develop scale factors for vibrational frequencies calculated both by MC3BB 

and MC3MPW.  The scale factors are optimized to minimize the root-mean-square errors in 

the calculated ZPEs for these 13 molecules. 

2.4. Geometries and Spin-Orbit Energy.  All calculations of the 42 barrier heights and 

109 atomization energies in section 2.1 are single-point calculations at QCISD/MG3 

geometries, where MG3 is the modified4,39 G3Large40 basis set.  The MG3 basis set,4 also 

called G3LargeMP2,39 is the same as 6-311++G(3d2f, 2df, 2p)41 for H-Si, but improved40 for 

P-Ar.  The QCISD/MG3 geometries needed to calculate the 109 atomization energies and 42 

barrier heights can be obtained from the Truhlar group database website.42   

The calculations in sections 2.2 and 2.3 involve geometry optimization with each level of 

theory tested. 

In all of the calculations presented in this paper, the spin-orbit stabilization energy was 

added to all atoms and to selected open-shell molecules, as described previously.4  All 

calculations were performed with the GAUSSIAN0343 and MULTILEVEL 3.144 programs.  

3. Theory and Parametrization 

3.1. SAC.  SAC1,5,8,21,32 is a very simple approach for extrapolating correlated electronic 

structure calculations to the limit of full dynamical correlation of the valence electrons and a 

complete one-electron basis set for the valence electrons.  In particular, Gordon and Truhlar21 

defined the SAC energy by: 

 AC
SAC HF

SAC

EE E
F

= +  (1) 
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where EAC is the calculated valence correlation energy, EHF is the Hartree-Fock (HF) energy, 

and FSAC is a parameter for scaling correlation energy.   

The methods described here use the “pipe” notation for the level (L) and basis set (B); this 

was introduced elsewhere2 with the definition needed here being: 

 ∆E(L2|L1/B) ≡ E(L2/B) - E(L1/B) (2) 

Using this notation, SAC /6-31+G(d,p) can be expressed as: 

 E(SAC/DIDZ) = E(HF/DIDZ) +c1∆E(MP2|HF/DIDZ) (3) 

where DIDZ is a shorthand (used in equations) for the 6-31+G(d,p) basis set, and c1 = 1/ FSAC 

may be parametrized by using experimental data.  Note that the extrapolation to full CI is 

explicit in equation (1), whereas the extrapolation to a complete one-electron basis set is 

implicit.  Nevertheless, because c1 is determined from experiment, both extrapolations are 

included.  

3.2. HDFT and HMDFT.  The one-parameter hybrid Fock-Kohn-Sham operator can be 

written as follows:24,27 

F = FH + (X/100) FHFE + [1 – (X/100)] (FSE + FGCE) + FC      (4) 

where FH is the Hartree operator (i.e., the nonexchange part of the Hartree-Fock operator), 

FHFE is the Hartree-Fock exchange operator, X is the percentage of Hartree-Fock exchange, 

FSE is the Dirac-Slater local density functional for exchange,45,46 FGCE is the gradient 

correction for the exchange functional, and FC is the total correlation functional including both 

local and gradient-corrected parts.  In the BB1K model, we used the Becke8847 functional for 

FGCE and the Becke9524 functional for FC, and we set X = 42,30 whereas in the original B1B95 

method, X = 28.  In the MPW1K model, Adamo and Barone’s modified Perdew-Wang 1991 

exchange functional25,48 (MPW) is used for FGCE, Perdew and Wang’s 1991 correlation 

functional48 (PW91) is used for FC, and X = 42.8.  

3.3. Parametrization of MC3BB and MC3MPW.  Because SAC calculations scale as 

N5, while HDFT methods scale as N4, in order to lower the cost of the new methods we use a 
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smaller basis set for the SAC part than for the HDFT part.  In particular we use a  

recommended29,33 augmented polarized valence double zeta set, 6-31+G(d,p),20,49 for the SAC 

method, and a recommended augmented polarized triple zeta set, MG3S, for the HDFT 

methods.  The MG3S basis set29 is the same as MG3 (explained above) except that it omits 

diffuse functions on hydrogens.   

We use a multi-coefficient approach to combine the SAC and HMDFT and HDFT methods. 

The MC3BB method is defined in eq. (5):  

E(MC3BB) = c2 [E(HF/DIDZ) +c1∆E( MP2|HF/DIDZ)]  

 + (1–c2) E(BBX/MG3S) (5) 

where BBX is same as BB1K except that the percentage, X, of HF exchange will be 

determined by parametrization.  

The MC3MPW method is defined in eq. (6): 

E(MC3MPW) = c2 [E(HF/DIDZ) +c1∆E( MP2|HF/DIDZ)]  

 + (1–c2) E(MPWX/MG3S) (6) 

where MPWX is same as MPW1K except that the percentage, X, of HF exchange will be 

determined by parametrization. 

The three parameters in eq. (5) and eq. (6), namely, c1, c2, and X, were adjusted to 

minimize the average mean unsigned error defined by: 

AMUE = 0.5[MUEPB(AE109/3) + MUE(BH42/03)] (7) 

where MUEPB denotes the mean unsigned error (MUE, also called mean absolute error) per 

bond. MUEPB is equal to MUE(AE109/3)/4.71, where 4.71 is the average number of bonds for 

the 109 species in the atomization energy database.  Therefore the first term in eq. (7), 

MUEPB(AE109/3), is a measure of the mean error on a per bond basis, and it is a measurement 

of the performance for calculating bond energies.  Equation (7) equally weights the errors in 

bond energies and in barrier heights (BH).  The motivation for this target function is that we 
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want the optimized methods to give good results for both bond energies (thermochemistry) and 

barrier heights (kinetics).  

The optimized parameters c1, c2, and X for MC3BB and MC3MPW are listed in Table 1.  

If we were to rewrite c1 as 1/ FSAC, as in eq. (1), we would obtain FSAC ≈ 0.75 for both 

methods, which is quite reasonable for a basis the size of DIDZ.  Furthermore the values of c2 

and X are both in the reasonable range we have come to expect based on past experience (0.2 – 

0.5 for c2 and 20 – 50 for X). 

4. Results and Discussion 

4.1. Bond Energies.  Table 2 gives the errors for MC3BB and MC3MPW as well as for 

some other methods.  Note that the error in atomization energy is given on a per bond basis, 

which means that the errors for atomization energy are divided by 4.71, the average number of 

bonds for the 109 species in the atomization energy database. In all tables in this paper, MSE 

denotes mean signed error, and RMSE denotes root mean square error.   

The cost function used in Table 2 is the same as the one described in a previous paper.8  

The cost function used here is the cost to calculate a single energy, gradient, or Hessian (as 

stated in the column heading) for phosphinomethanol divided by the computer time for an 

HF/6-31G(d) energy calculation on the same molecule with the same computer program and 

same computer.  Most of the costs are taken from a previous paper8 except that the costs of 

BB1K and MC3BB are determined by using GAUSSIAN03 program with a single 1.7 GHz 

Power4 processor on a IBM p690 (Regatta) supercomputer.  The effects of the difference in 

software and platform are estimate so that the costs tabulated for BB1K and MC3BB are on the 

scale used in Ref. 8.  

From the mean errors in Table 2 we can see that the new MC3BB method reduces 

MUEPB(AE) and RMSEPB(AE) by ~45% and ~50%, respectively, as compared to 

BB1K/MG3S, although the Hessian cost of MC3BB is only ~20% higher than BB1K.  The 

other new method, MC3MPW, reduces MUEPB(AE) and RMSEPB(AE) by ~65% and ~60%, 
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respectively, as compared to MPW1K/MG3S, and the Hessian cost of MC3MPW is only ~25% 

higher than MPW1K.   

The mean unsigned errors per bond in the atomization energies for MC3BB and MC3MPW 

are 0.6 and 0.8 kcal/mol, respectively, which qualifies both methods as having “chemical 

accuracy” (usually defined as 1 kcal/mol for a bond energy).  

4.2. Barrier Heights.  Table 2 shows that MC3BB reduces MUE(BH) and RMSE(BH) by 

~35% and ~40%, respectively, as compared to BB1K/MG3S.  MC3MPW reduces MUE(BH) 

and RMSE(BH) by ~40%, as compared to MPW1K/MG3S. 

4.3. Average Mean Unsigned Errors. If we examine the value of the error function 

AMUE defined in eq. (7), we see that MC3BB reduces AMUE by 46% as compared to 

BB1K/MG3S, and MC3MPW reduces AMUE by 56% as compared to MPW1K/MG3S.   

Although the MUEPB(AE)s of MC3BB and MC3MPW are greater than MC-QCISD, 

CBS-Q, G3S, and MCG3, both new MCCMs exceed or rival the expensive methods in terms 

of MUE(BH) or RMSE(BH).  Note (see Table 2) that MC-QCISD, CBS-Q, G3S and MCG3 

have much more expensive Hessian calculations as compared to MC3BB and MC3MPW.   

If we use the AMUE criterion to classify the methods listed in Table 2, we conclude that 

CBS-Q, G3S, and MCG3 are the most accurate methods. The AMUEs are ~0.5 kcal/mol for 

these three methods, but they are very expensive.  The AMUEs for MC-QCISD, MC3BB, and 

MC3MPW are ~0.7-0.8 kcal/mol.  These three MCCMs have very good cost-to-performance 

ratios.  BB1K and MPW1K are the most efficient single-level methods for thermochemical 

kinetics, and AMUE is 1.25 kcal/mol for BB1K and 1.84 kcal/mol for MPW1K.  B1B95 is a 

new-generation HDFT method, and it outperforms B3LYP for both atomization energy 

calculations and barrier height calculations.  As shown by its low MUEPB(AE), B1B95 is the 

most accurate single-level method for thermochemistry, but it has unsatisfactory performance 

on barrier height calculations as compared to BB1K and MPW1K, and AMUE is 1.68 kcal/mol 

for B1B95.  
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From Table 2, we also can see that the expensive ab initio method CCSD(T)/cc-pVTZ 

gives disappointing results for atomization energy calculations, and the most popular HDFT 

method B3LYP suffers from a large error for barrier height calculations. 

4.4. Saddle Point Geometries.  We tested our new methods for the prediction of 

transition state geometries and compared both methods with some other methods.  The bond 

lengths and angles calculated by MC3BB, and MC3MPW are listed in the supporting 

information.  Table 3 summarizes the error in R≠
forming bond and R≠

breaking bond and in 

perpendicular looseness for the five reactions (four for B3LYP, B1B95) in Table 3.  The fifth 

reaction F + H2 → HF + H was left out for B3LYP and B1B95 because B3LYP and B1B95 

predict that there is a monotonically downhill reaction path for this reaction; thus they predict 

that the highest-energy point on the reaction path is at reactants where the forming bond length 

is ∞.  Table 3 shows that MC3BB outperforms MC-QCISD and MCG3, and it gives the best 

results for calculating the bond length and perpendicular looseness for the five saddle points.  

The performance of MC3MPW is comparable to MC-QCISD and MCG3.  Table 3 also shows 

that B3LYP has high RMS errors, and it predict looser saddle points in the perpendicular 

direction (i.e., B3LYP tends to overestimate the sum of the bond lengths of the forming bonds 

and breaking bonds at the saddle point).  The performance of QCISD is slightly worse than 

MC3BB and MC3MPW, although it is a much more expensive method.  

Although the saddle point geometry database consists of only five transition state structures, 

and all of them are for hydrogen transfer reactions, the conclusions we drew in this section are 

consistent with the results for energetics in Table 2.  Table 2 shows that B3LYP and B1B95 

systematically underestimate the barrier heights as indicated by their high negative MSE.  As 

a consequence one expect that the barrier are too early for exothermic reactions, and this is 

consistent with their positive MSE for the perpendicular looseness.  Testing DFT methods for 

more general classes of reactions is an ongoing research project in our group.  

4.5. Vibrational Frequencies Scale Factor.  We employed the database1,38 of thirteen 

anharmonic vibrational zero point energies to determine the vibrational frequency scale factor 
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for MC3BB and MC3MPW.  These scale factors are listed with scale factors for MC-QCISD 

and some other methods in Table 4.  Use of the scale factor reduces the RMS error calculated 

by MCSABB from 0.46 kcal/mol to 0.07 kcal/mol, and the scale factor reduces RMS error 

calculated by MC3MPW from 0.45 kcal/mol to 0.07 kcal/mol.  Table 4 also shows that the 

scale factor for the new method is not too far from unity, which is a serious problem for 

Hartree-Fock theory.  Using MP2 instead of HF to mix with DFT leads to scale factors closer 

to unity (compare, for example, MC3BB to BB1K/MG3S).   

The scale factors will be useful for applying the MC3BB and MC3MPW methods to 

theoretical kinetics calculations. 

4.6. AE6 and BH6 Benchmarks.  Table 5 summarizes the mean errors for the benchmark 

AE6 and BH6 representative databases50 for the MC3BB and MC3MPW methods.  The AE6 

set of atomization energies consists of SiH4, S2, SiO, C3H4 (propyne), C2H2O2 (glyoxal) and 

C4H8 (cyclobutane).  This set of atomization energies is a representative subset of the 109 

atomization energies training set, and it was developed50 such that performance on this 

database is indicative of performance on the much larger 109 atomization energies database.  

Note that the MSEs and MUEs for AE6 are given on a per bond basis as described in our 

previous paper.30,31  The BH6 set consists of the forward and reverse barrier heights of the 

three reactions, namely, OH + CH4 → CH3 + H2O, H + OH → O + H2, and H + H2S → HS + 

H2.  The BH6 database is a representative subset of the 42 barrier heights training set, and 

was developed50 such that performance on this database is indicative of performance on the 42 

barrier heights database.  Recently we have developed the BB1K30 model by using the BH6 

representative database.   

If we compare the MSEs per bond and MUEs per bond of MC3BB and MC3MPW in Table 

5 to these errors for the entire 109 atomization energies and 42 barrier heights in Table 2, we 

see that the errors for AE6 and BH6 correlate fairly well with the errors for the much larger 

databases.  This is important because the mean error with respect to the small AE6 and BH6 

database have been calculated for a large number of methods than for the large database (see 
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Ref. 42), and it is encouraging that tests like this confirm the representative character of the 

small database. 

5. Concluding Remarks 

This paper developed two new MCCMs by mixing the SAC method with HMDFT AND 

HDFT methods by using empirical parameters.  The resulting methods, MC3BB and 

MC3MPW, were assessed against databases of atomization energies, barrier heights, saddle 

point geometries, and zero point energies.  In addition, scaling factors were determined for 

calculating improved vibrational frequencies with the new methods. 

Although we motivated the methods as an extension of the successful multi-coefficient 

correlation methods to including hybrid DFT or hybrid meta DFT, the methods may also be 

considered from another point of view, namely as a generalization of hybrid DFT.  Although 

hybrid DFT has been much more successful than pure DFT, it suffers from the deficiencies of 

HF theory because 20 – 50% of the Fock-Kohn-Sham operator is based on HF theory, which 

has no electron correlation.  One is therefore motivated to replace the HF part by MP2, or – 

even better – by SAC theory.  Such a replacement yields the present multi-coefficient three- 

parameter HDFT methods, which may more simply be called doubly hybrid DFT (DHDFT) 

because the new methods are a “hybrid” of the SAC method and hybrid DFT methods. 

Similarly, we obtain DHMDFT by combining SAC and HMDFT. 

Conventional HDFT has a well defined theoretical basis, namely the adiabatic connection 

theory,51 and hence they are sometimes called adiabatic connection methods. The theoretical 

foundation of MC3BB and MC3MPW is the empirical multi-coefficient correlation approach. 

It was pointed out in a previous paper8 that “it seems foolhardy for all but the most 

fundamental studies to eschew the use of semiempirical parameters even with explicitly 

correlated wave functions”. The DHDFT methods developed in the present paper are an 

empirical “hybrid” of the SAC method and HDFT. We believe that the MC3BB and 
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MC3MPW methods represent a very good compromise of accuracy, cost, and ease of use for 

practical calculations. 

The key results in this paper are the average mean unsigned errors (AMUEs) in Table 2.  

These results and the other results in the present paper demonstrate that the multi-coefficient 

procedure used in doubly hybrid DFT is a successful way to combine wave-function-based 

methods with HDFT and HMDFT methods.  The three parameters (c1, c2, and X ) in the new 

methods turn out to have quite reasonable values, and they effectively provide basis set 

extrapolation and scaling of correlation energies. We believe that the multi-coefficient 

approach to improving HDFT provide a robust way to improve the accuracy of currently 

available density functional methods methods.   
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Table 1. Parameters for MC3BB and MC3MPW 
_____________________________________________________________________ 
 
Methods c1 c2 X 
_____________________________________________________________________ 
MC3BB 1.332 0.205 39 

MC3MPW 1.339 0.266 38 
_____________________________________________________________________ 
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Table 2. Mean Errors (kcal/mol for Barriers and kcal/mol per Bond for Atomization Energies) and Costs a  
____________________________________________________________________________________________________________ 
  AE (per bond) BH  Costsb 
Methods __________________________ ________________________ AMUE ________________________ 
 MSEPB MUEPB RMSEPB MSE MUE RMSE  Energy Gradient Hessian 
____________________________________________________________________________________________________________ 

MC3MPW -0.40 0.83 1.08 -0.28 0.78 0.98 0.80 50 74 483 

MC3BB -0.14 0.62 0.80 -0.21 0.75 0.92 0.68 59 84 592 

MP2/DIDZ -5.20 5.20 5.89 5.42 5.66 6.07 5.43 2.2 6.7 81 

SAC-MP2/DIDZc -0.69 1.85 2.21 4.16 4.76 5.52 3.30 2.2 8.5 91 

B3LYP/MG3S -0.68 0.89 1.32 -4.40 4.31 4.89 2.60 48 64 390 

MPW1K/MG3S -2.33 2.34 2.75 -0.69 1.34 1.66 1.84 48 64 390 

BB1K/MG3S -1.32 1.34 1.61 -0.61 1.16 1.52 1.25 56 74 501 

B1B95/MG3S -0.23 0.56 0.74 -2.80 2.80 3.12 1.68 56 74 501 

MC-QCISD/3 0.00 0.37 0.48 1.05 1.24 1.43 0.80 56 180 2800 

MCG3/3 -0.02 0.22 0.30 0.58 0.92 1.16 0.57 88 810 32000 

CBS-Q -0.01 0.30 0.43 -0.11 0.78 1.05 0.54 110 1500 57000 

G3S -0.15 0.27 0.35 0.41 0.75 0.91 0.51 240 6400 290000 

CCSD(T)/cc-pVTZ -3.30 3.30 3.73 0.85 1.32 1.53 2.31 860 41000 2.0×106 
____________________________________________________________________________________________________________ 
a QCISD/MG3 geometries are used. AMUE is defined by eq. (7).  MUEPB denotes mean unsigned error (MUE) per bond. MSE 
denotes mean signed error. RMSE denotes root mean square error. 
b The cost function is the same as described in a previous paper.8  It is the time to calculate an energy, gradient, or Hessian for 
phosphinomethanol normalized by the time for a HF/6-31G(d) energy calculation. Costs are either determined on a Silicon Graphics 
Origin 3800 computer directly or determined on an IBM Power4 supercomputer and corrected to the original scale. 
c DIDZ denotes 6-31+G(d,p) basis.  The SAC parameter, c1 = 1.1707, is taken from Ref. 8.
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Table 3.  Mean errors (angstroms) in Internuclear Distances at Saddle Point of the Five 

Reactions in the Saddle Point Geometry Database. a 
____________________________________________________________________________ 
 bond distance perpendicular looseness 
 ______________________ ______________________ 
Method MSE MUE RMSE MSE MUE RMSE Ref. 
____________________________________________________________________________ 
MC3MPW -0.01 0.01 0.01 -0.02 0.02 0.02 This work 

MC3BB -0.00 0.01 0.01 -0.01 0.01 0.01 This work 

MP2/DIDZ -0.03 0.03 0.05 -0.05 0.05 0.07 33 

SAC/DIDZ -0.02 0.03 0.04 -0.05 0.05 0.06 This work 

MC-QCISD/3 -0.00 0.01 0.02 -0.00 0.01 0.02 This work 

MCG3/3 0.00 0.01 0.02 0.00 0.02 0.02 This work 

B3LYP/MG3b 0.01 0.05 0.09 0.03 0.06 0.09 33 

BB1K/MG3S 0.00 0.02 0.02 0.00 0.01 0.01 30 

B1B95/MG3S 0.01 0.03 0.04 0.01 0.02 0.03 30 

MPW1K/MG3S -0.01 0.01 0.02 -0.02 0.02 0.02 30 

QCISD/MG3 -0.01 0.02 0.03 -0.01 0.02 0.03 33 

MC-QCISD/2 -0.01 0.02 0.02 -0.01 0.01 0.02 7 

MCG3/2 0.00 0.01 0.01 0.00 0.01 0.02 7 
____________________________________________________________________________ 
a The methods are listed in the same order as in Table 2. MUE denotes mean unsigned error. 
MSE denotes mean signed error. RMSE denotes root mean square error. 
b The results for B3LYP and B1B95 are calculated only for four reactions, because B3LYP 
and B1B95 do not yield a finite-distance saddle point for F + H2 → HF + H. 



 19

Table 4. Root-Mean-Square Error and Scale Factor for Calculating Zero Point Energies 
____________________________________________________________________________ 
 RMS error in ZPE(kcal/mol)     
           ______________________ 
Method unscaled scaled scale factor Ref. 
____________________________________________________________________________ 

MC3MPW 0.45 0.07 0.9675 This work 

MC3BB 0.46 0.07 0.9669 This work 

MC-QCISD 0.10 0.03 0.9940 This work 

MP2/DIDZ 0.50 0.30 0.9700 This work 

HF/DIDZ 1.21 0.25 0.9173 30 

MPW1K/MG3S 0.60 0.18 0.9581 30 

BB1K/MG3S 0.59 0.18 0.9590 30 

B1B95/MG3S a 0.35 0.14 0.9758 28 
____________________________________________________________________________ 
a Note that GAUSSIAN03 has a bug for B1B95; it used 25% Hartree-Fock exchange.  The 
results presented in the present paper were calculated with the correct value24 of 28% Hartree-
Fock exchange. 
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Table 5. Mean Errors (kcal/mol for Barriers and kcal/mol per Bond for Atomization Energies) 
for BH6 and AE6 Benchmarks 
___________________________________________________________________ 
 AE6 BH6 
 ________________________ ______________________ 
Method MSEPB MUEPB RMSEPB MSE MUE RMSE  
___________________________________________________________________ 

MC3MPW -0.39 0.71 0.91 -0.53 0.72 0.81  

MC3BB -0.02 0.47 0.53 -0.51 0.72 0.87  
___________________________________________________________________ 
a MUEPB denotes mean unsigned error (MUE) per bond. MSE denotes mean signed error. 
RMSE denotes root mean square error.  


