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Abstract: Molecular mechanical force fields have been successfully used to model 

condensed-phase and biomolecular systems for a half century. Molecular mechanical 

force fields are analytic potential energy functions based on classical mechanical force 

constants, van der Waals potentials, electrostatics, and torsional potentials, with 

parameters fit to experiment, to quantum mechanical calculations, or to both. Accurate 

results can be obtained from simulations employing molecular mechanics for processes 

not involving bond breaking or bond forming. In this article, we describe a new approach 

to developing force fields; this approach involves the direct use of quantum mechanical 

calculations rather than using them as a training set for classical mechanical force fields. 

Computational efficiency is achieved by partitioning of the entire system into molecular 

fragments. Since the mutual electronic polarization is explicitly treated by electronic 

structural theory, we call this approach the explicit polarization (X-Pol) method. 

Strategies and examples are presented to illustrate the application of X-Pol to describe 

intermolecular interactions as a quantum chemical model and as a force field to carry out 

statistical mechanical Monte Carlo and molecular dynamics simulations. 
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1. Introduction 

Molecular mechanical force fields (MMFFs) were first proposed in the 1940s to 

study steric effects of organic molecules1,2 and were extended to model biomolecular 

systems by Lifson and coworkers in the 1960s.3-5 Since that time, significant progress has 

been made, and a number of force fields have been developed that can be used to provide 

excellent quantitative interpretation of experimental observations.6-27  

Although the widely used force fields differ in their details (for example, some of 

them include coupling between internal coordinates), the functional forms used in MMFFs 

have remained essentially unchanged over the past half century,5,28 and the functional form 

depicted in eq 1 captures the essence of a typical MMFF potential energy function: 
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In this equation, the first sum accounts for bond stretching, the second sum for valence 

angle bending, the third (double) sum for torsions, and the fourth, where the sum goes only 

over nonbonded and nongeminal atoms, for van der Waals interactions and nonbonded 

Coulomb forces. 

The importance of polarization has long been recognized, and equation (1) includes 

polarization implicitly though the choice of parameters, which are often designed to include 

not just the effect of intramolecular polarization but also the effect of polarization by the 

solvent or other surroundings in a condensed-phase medium. Major current efforts in 

improving MMFFs are being devoted to the explicit inclusion of polarization by means of 

terms  of various forms to account for inductive forces.[29-49] We will label force fields that 
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include polarization explicitly as polarized molecular mechanics force fields or PMMFFs, 

while we restrict the acronym MMFFs to force fields that include polarization only 

implicitly through the parametrization.  

Despite the successes of molecular mechanics,28,50,51 there are also a number of 

limitations: there is no general approach to treat the coupling of internal degrees freedom, 

the treatment of electronic polarization is difficult, intermolecular charge transfer is 

neglected, excited electronic states cannot be treated, and in the form usually employed the 

methods are inapplicable to chemical reactions.28  In recent years some extensions to treat 

chemically reactive systems have been presented,52-55 and one can overcome some of the 

limitations in specific applications by introducing additional empirical terms,31,32,56,57 but 

here we discuss another approach, where the whole treatment is intrinsically based on 

quantum mechanics (QM). 

Quantum mechanical electronic structure calculations can provide both reactive 

and nonreactive potential energy surfaces, including not only electrostatics and van der 

Waals forces but also polarization and charge transfer effects. However, it is a daunting 

task (essentially impossible) to solve the Schrödinger equation for a condensed-phase 

systems. Therefore, a wide range of approximate quantum chemical model chemistries 

have been developed, including both wave function theory (WFT)58 and density functional 

theory (DFT)59, as well as various linear scaling and fragment-based QM methods that 

have been proposed to reduce the computation costs.60-95 The latter represents an active 

approach to balance accuracy and efficiency in applying electronic structural methods to 

large systems. 
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The explicit polarization (X-Pol) model is a fragment-based QM method, in which 

the entire system is divided into molecular subunits,65,66,77,80 which can be individual 

molecules, ions, ligands or cofactors, and amino acid residues or a group of these entities. 

The key assumption in the X-Pol method is that the wave function of the entire system is 

approximated as a Hartree product of the wave functions of the individual fragments. 

Consequently, the optimization of the total wave function can be reduced to the 

optimization of each fragment embedded in and polarized by the rest of the system. Clearly, 

variational optimization of the mutual dependence of the fragmental wave functions is 

critical to the success of this method. As a force field, the energy of each fragment, 

corresponding to the intramolecular energy terms in an MMFF are determined by the 

electronic structure method used, whereas intermolecular interactions are modeled through 

electrostatic embedding in terms of one-electron integrals. The short-range exchange 

repulsion interactions between fragments, the long-range dispersion interactions between 

different fragments, and the interfragment correlation energy are neglected in the Hartree 

product approximation, but are modeled empirically as in molecular mechanics.65,66,77 

Alternatively, these energy contributions can be modeled by density-dependent 

functional,96,97, by Hartree-Fock (HF) exchange,98 or by making use of many-body 

expansion corrections.99 The latter also takes into account interfragment charge transfer 

effects, which are otherwise neglected, although intrafragment charge transfer is fully 

included. X-Pol92 can also be used as a general QM-QM fragment-coupling 

scheme,88,100,101 in which different levels of theory are employed to model different 

fragments; we refer to this as a multilevel method. 
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In the following sections, we summarize the theoretical formulation of the X-Pol 

model and illustrate the multilevel X-Pol92 method for studying intermolecular interactions. 

In addition, we discuss our work on using X-Pol as a quantum mechanical force field 

(QMFF)  for liquid water simulations. 

2. Theoretical Background  

In X-Pol, a macromolecular system is partitioned into molecular fragments, which 

may be called monomers. The division is flexible within the constraint that monomers do 

not overlap, (i.e., the subsystem included in one fragment does not appear in another 

monomer). For solutions with small solute molecules, a fragment can be a single solute or 

solvent molecule.65,66 For large solute molecules or biomacromolecules, (e.g. a protein or 

enzyme-substrate complex) a fragment can be a connected group of atoms (e.g., peptide 

unit, or a metal atom or ion, a cofactor, or a substrate molecule).77,102 Several peptide units 

can be combined into the same fragment, if desired, which can be useful for modeling 

systems containing disulfide bonds. The X-Pol method is derived from a standard 

electronic structure method by a nested set of three approximations, described next.  

2.1. Approximation of the total wave function and total energy  

The first approximation in X-Pol theory is that the molecular wave function of the 

entire system   is approximated as a Hartree product of the antisymmetric wave functions 

of individual fragments, },,1;{ NAA  :  



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N

A

A

1

.                                                      (2) 
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The wave function of fragment A , A  , can either be a single determinant from HF 

theory or Kohn–Sham DFT, or a multiconfiguration wave function derived from 

complete active space self-consistent field (CASSCF) or valence bond (VB) calculations.  

The effective Hamiltonian of the system is expressed as eq 3 
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1ˆˆ XDint
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 ,                        (3) 

where the first term sums over the Hamiltonians of all isolated fragments, and the second, 

double summation accounts for pairwise interactions among all the fragments. The explicit 

form of o
AĤ , which is the Hamiltonian for an isolated fragment A in the gas phase, varies 

according to the level of theory employed, for instance, post-HF correlated methods can be 

used to treat the active site of an enzyme, and HF or semiempirical molecular orbital 

methods can be used to treat solvent molecules or peptide units that are distant from the 

reactive center. The Hamiltonian ][ˆ int
BAH   represents electrostatic interactions between 

fragments A and B, and the final term XD
ABE  specifies exchange-repulsion, dispersion and 

other interfragment correlation energy contributions, and charge transfer interactions, as 

explained in more detail in the following sections. 

The total energy of the system is written as the expectation value of the effective 

Hamiltonian,  
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where AE  is the energy of fragment A that is determined using its wave function as 

polarized by all other fragments, and ],[int
BAABE   is the electrostatic interaction 
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energy between fragments A and B, again calculated using the polarized wave 

functions. The latter term is calculated from the point of view of fragment A and also 

from the point of view of fragment B, and the sum of these results is divided by two 

since the same interactions are counted twice. Therefore we have 

  A
o
AAA HE |ˆ| ,       (5) 

   BABBABAABAAB HHE |][ˆ||][ˆ|
2

1
],[ intintint  . (6) 

2.2. Approximation on the electrostatic interaction between fragments 

The second approximation in X-Pol theory is the method of treating the 

interaction between fragments. The interaction Hamiltonian between fragment A and B is 

defined as  


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where AM  and AN  are respectively the number of electrons and nuclei in fragment 

A, AZ  is the nuclear charge of atom  of fragment A, and )(E
A
x

B
r  is the electrostatic 

potential at 
xr  from fragment B. The electrostatic potential is given by 
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where  


 )'()'()'( BBB

eleB Z Rrrr  is the total charge density of fragment B, 

including electron density )'(rB
ele  and nuclear charge BZ  at B

R . The potential 

)(E
A
x

B r  can be used directly to determine the electrostatic interaction energy of eq 

7; this involves or is equivalent to evaluating the corresponding four-index two-
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electron integrals explicitly, which is time-consuming and could be ill-behaved when 

large basis sets are used. Although it yields the classical electrostatic part of the 

interaction without approximation, it does not include the exchange repulsion part of 

the interfragment interaction or the interfragment correlation energy, which will be 

discussed in subsection 2.3. To reduce the computational cost in two-electron integral 

calculation, it is desirable to an efficient approach to treat interfragment electrostatic 

interactions.65,66  

The quantity )(E
A
x

B
r  may be considered as an embedding potential of 

fragment A due to the external charge distribution of fragment B, and a number of 

well-established techniques15,21,103-107 can be used to model it. A general approach for 

the classical electrostatic potential is to use a multicenter multipole expansion,107 of 

which the simplest form is to limit the expansion to the monopole terms, so the result 

only depends on the partial atomic charges. The use of partial atomic charges to 

approximate )(E
A
x

B
r  is particularly convenient for constructing the effective 

Hamiltonian of eq 7, and this is the strategy that has been adopted for the classical 

electrostatic part in the X-Pol method.65,66  

The next issue in modeling the electrostatic interaction is the method to obtain 

the monopole charges. For these charges, one may use partial atomic charges fitted to 

the electrostatic potential (ESP)15,105,106,108-113 or one may use Mulliken population 

analysis,104 population analysis based on Löwdin orthogonalization,103 or class IV 

charges from mapping procedures114,115 in which the mapping function has been 

parametrized to yield atomic charges that reproduce experimental molecular dipole 

moments. Another method is based on optimization of atomic charges to reproduce 
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the molecular multipole moments from QM calculations, and we have recently used 

a procedure that preserves the molecular dipole moment and polarizability to generate 

dipole-preserving and polarization-consistent charges (DPPCs).116  

Using the approximation of point charges, eq 8 is simplified to  

||
)(E BA

x

B
A
x

B q





 Rr
r


  .       (9) 

2.3. Approximations to interfragment exchange-dispersion interactions  

The Hartree product wave function in eq 2 neglects the long-range interfragment 

dispersion interactions, the other interfragment correlation energy contributions, and the 

short-range interfragment exchange-repulsion interactions arising from the Pauli exclusion 

principle. Furthermore, the partition of a molecular system into fragments and the 

restriction to an integer number of electrons in each fragment precludes charge transfer 

between the fragments. But interfragment dispersion interactions, the other interfragment 

correlation energy contributions, the short-range exchange-repulsion interactions, and 

charge transfer make critical contributions to intermolecular interactions, so they must be 

added to the X-Pol energy expression. A brute force approach is to employ variational 

many-body expansion (VMB) theory to make two-body, three-body, and higher order 

corrections.99 Although the accuracy can be systematically improved by using many-body 

corrections, the number of terms involved increases rapidly with the number of fragments 

and the order of correction, rendering this approach impractical beyond two-body 

correction terms. Thus in using this approach, it is critical to define the reference state for 

the monomer energies such that the higher-order correction terms are negligible. However, 

when the X-Pol method is used as a theoretical framework to develop force fields for 
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condensed-phase and macromolecular systems, we can use a simpler approach. In 

particular, we introduce empirical terms such as Lennard-Jones or Buckingham potentials 

(as used in molecular mechanics) to estimate the exchange repulsion, dispersion, other 

interfragment correlation, and charge transfer energies. In one of the applications described 

below (in section 4.1),92 we add the following pairwise Buckingham-potential term to the 

interaction energy between fragments A and B: 


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where the parameters are determined from the atomic parameters according to combining 

rules: 

            2/1)( JIIJ AAA  ,                                                                                 (11) 

  2/)( JIIJ BBB  ,                                                                            (12)
 

    2/1)( JIIJ CCC  .                                                                                (13) 

In the other application discussed below (in section 4.2), we used pairwise Lennard-Jones 

potentials. 

2.4. Double self-consistent field (DSCF) 

As in standard electronic structure methods, the Roothaan-Hall equation on each 

fragment in X-Pol is solved iteratively. However, in X-Pol, in addition to the SCF 

convergence within each molecular fragment, the mutual polarization among all fragments 

of the whole system must be converged. A procedure is depicted in Figure 1, which may 

be described as a double self-consistent field (DSCF) iterative scheme. In practice, 

however, there is no need to fully converge the inner, intrafragment SCF before proceeding 

to the next iteration step for the outer, interfragment SCF. We found that it is often 



  11 

computationally efficient to carry out two to three iterations in the intrafragment SCF 

between the outer SCF iterations.   

There are two ways of constructing the Fock matrix for solving the DSCF equations; 

one is based on the variational optimization of the energy of eq 4,80 and the other, which 

was first used in Monte Carlo simulations where analytic forces are not required,65,66 is 

written by assuming that each monomer is embedded in the fixed electrostatic field of the 

rest of the system. The two approaches are discussed next. 

(a) Variational X-Pol. In X-Pol, the Fock operator for a fragment, A, is derived 

by taking the derivative of the total energy (eq 4) with respect to each element AP  of the 

electron density matrix: 
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Figure 1. The schematic flow chart of DSCF iterations  
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where oA,
F  is the Fock matrix element for the Hamiltonian of the isolated fragment A, B

bq  

is the point charge on atom b of fragment B, B
bI  is the matrix of the one-electron integrals 

of the embedding potential due to fragment B, Xa
A  is a vector arising from the derivative 

of the electrostatic interaction energy with respect to the point charge of atom a:  
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and A
aΛ  is the response density matrix: 
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(b) Charge-embedding X-Pol. If each fragment is considered to be embedded in 

the instantaneous static electrostatic field of the rest of the system, one can construct a 

Fock operator for fragment A simply as follows: 

 AB
b

B
b

AB Bb

oACEA q IFF  
 

 ,,
.      (14) 

In the charge-embedding approach, the mutual polarization among all fragments in the 

system is achieved by iteratively updating the partial atomic charges }{ B
bq  derived from 

the wave function for each fragment in each outer, interfragment SCF step (Figure 1). Note 

that eq 14 indicates that the wave function of each fragment, A, is fully polarized by the 

full electric field of all other fragments, but the total interaction energy will be determined 

by multiplying a factor of 0.5 since the interactions between two monomers are counted 

twice.  Similar expressions are often found in continuum self-consistent reaction field 

models for solvation. 
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 Comparison. In comparing methods a and b, we note that the variational X-Pol 

method has the advantage of allowing the computation of analytic gradients for efficient 

geometry optimization and dynamics simulations. Furthermore the total energy obtained 

from the variational procedure is necessarily lower than that from the charge-embedding 

scheme. Consequently, it is expected that the use of the variational X-Pol energy as the 

monomer energy reference state in many-body energy expansion be more efficient than 

other alternatives. Although it is possible to obtain analytic gradients for the non-

variational, charge-embedding approaches, it generally involves solution of coupled-

perturbed self-consistent field (CPSCF) equations, which is more time consuming. As a 

referee of this manuscript lucidly pointed out, “often in the fragment quantum chemistry 

literature, those response terms have simply been ignored, with numerical consequences 

that have never been investigated”. 

3. Computational Details 

The X-Pol method has been implemented in a developmental version of the 

Gaussian software package (H35).117 Although a single quantum chemical model can be 

used to represent all fragments, any of the electronic structure methods available in 

Gaussian, such as HF, DFT, MP2, CCSD, BD, etc., can be mixed to represent different 

fragments in a multilevel X-Pol calculation. We have illustrated the multilevel approach in 

a recent study92 of two hydrogen-bonded complexes, including (a) acetic acid (fragment A) 

and water (fragment B), and (b) H5O2
+ ion (fragment A) and four surrounding water 

molecules (fragments B, five fragments in total). In that work, the geometries of the 

complexes and isolated monomers were optimized using the M06 exchange-correlation 
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functional118 and the MG3S119 basis set, which was followed by single-point, multilevel X-

Pol calculations using the 6-31G(d)120 basis set. 

For condensed-phase and macromolecular simulations, we have written an X-Pol 

software package using the C++ language, which has been incorporated into NAMD121 and 

CHARMM.27 The X-Pol program can be used with the popular NDDO-based 

semiempirical Hamiltonians as well as the recently developed polarized molecular orbital 

(PMO) model.122,123 Molecular dynamics simulations of liquid water have been carried out 

using the NAMD/X-Pol interface. In addition, we have used an earlier version of the X-

Pol model in Monte Carlo simulations of liquid water. 

Statistical mechanical Monte Carlo simulations were performed on a system 

consisting of 267 water molecules in a cubic box, employing the XP3P water model, built 

upon the PMOw Hamiltonian124 and the DPPC charge model.116 Periodic boundary 

conditions were used along with the isothermal-isobaric ensemble (NPT) at 1 atm and for 

a temperature ranging from 40 to 100 
o
C. Spherical cutoffs with a switching function 

between 8.5 Å and 9.0 Å based on oxygen-oxygen separations were employed, and a 

long-range correction to the Lennard-Jones potential was included. In Monte Carlo 

simulations, new configurations were generated by randomly translating and rotating a 

randomly selected water molecule within ranges of ±0.13 Å and ±13o. In addition, the 

volume of the system was changed randomly within the limit of ±150 Å3 on every 550th 

attempted move, and the coordinates of oxygen atoms were scaled accordingly. At least 

5×106 configurations were discarded for equilibration, followed by an additional 107 to 

108 configurations for averaging. About 6×106 configurations can be executed per day on 

a 6-core Intel Xeon X7542 Westmere 2.66 GHz processor.  
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The XP3P model was further employed in molecular dynamics simulations for 500 

ps in the NVT ensemble using the Lowe-Andersen thermostat.125,126 The volume was fixed 

at the average value from the Monte Carlo simulation. The monomer geometries were 

enforced by the SHAKE/RATTLE procedure.127 The velocity Verlet integration algorithm 

was used with a 1fs time step. The Monte Carlo simulations were performed using the 

MCSOL program for X-Pol simulations,128 while molecular dynamics simulations were 

carried out using a newly developed X-Pol program129 written in C++ which has been 

interfaced both with CHARMM27 and NAMD.121 

4. Illustrative Examples  

4.1. Multilevel X-Pol as a quantum chemical model for macromolecules 

X-Pol theory can be used with a combination of different electronic structure 

methods for different fragments. This provides a general, multi-level QM/QM-type of 

treatment of a large system, where the region of interest could be modeled by a high-level 

theory, embedded in a environment modeled by a lower level representation. Some 

arbitrary combinations of different electronic models are illustrated by calculations92 of the 

 

Figure 2. Schematic illustration of the optimized configuration of acetic acid and water 

using M06/MG3S. 
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interaction energy between acetic acid and water at the minimum-energy configuration 

optimized with M06/MG3S (Figure 2). To represent the electrostatic potential in eq 9, we 

used two charge models, Mulliken population analysis (MPA) and ESP charge-fitting with 

the Merz-Kollman scheme (MK), to construct the charge-embedding Fock matrix (eq 14), 

whereas only the MPA charges were used in variational X-Pol (eq 11).   

The binding energy for a bimolecular complex is defined by 

o
B

o
AABb EEEE         (15) 

(We have not applied any correction for the basis set superposition error since the main 

purpose here is to illustrate the possibility of mixing different levels of theory in multi-

Table 1. Computed electrostatic interactions energies elecE  (kcal/mol) between acetic 

acid (A) and water (B) using multilevel X-Pol with the charge-embedding and 

variational interaction Hamiltonians. The 6-31G(d) basis set was used in all calculations 

with the M06/MG3S optimized monomer and dimer geometries. 

 

A 

 

B 

Charge-embedding  Variational  

Full QMa MK-ESP MPA MPA 

M06 M06 -7.0 -7.7  -9.0 -6.9 

M06 B3LYP -6.8 -7.3  -8.7 -6.9 

M06 HF -7.2 -7.9  -9.4 -6.9 

MP2 HF -7.1 -7.7  -8.0 -6.5 

CCSD M06 -7.2 -7.6  -8.0 -6.6b 

a. Computed for the complex using the method listed under A with the MG3S 

basis set. 
b. Determined using CCSD(T). 
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level X-Pol calculations.) In X-Pol, the binding energy is written as the sum of electrostatic 

( elecE ) and exchange-charge transfer-dispersion ( XCDE ) terms. 

XCDelec EEEb  ,       (16) 

where the electrostatic interaction energy in X-Pol is given by 

)()()]()([
2

1 intint
elec

o
BB

o
AABA EEEEAEBEE  ,   (17) 

where )(int YEX  represents the interaction of “QM” fragment X polarized by the 

electrostatic potential from fragment Y, and )( o
XX EE   is the energy difference between 

fragment X in the complex and in isolation. Table 1 summarizes the results from these 

calculations.  

  The XCDE  term can be determined by VMB expansion. For the bimolecular 

complex in Figure 2, the two-body correction energy is exact. For condensed-phase and 

macromolecular systems, it is convenient to simply approximate XCDE  by an empirical 

potential such as the Lennard-Jones potential or the Buckingham potential.  

The total binding energy between acetic acid and water were estimated to be -6.9 

and -6.6 kcal/mol from M06/MG3S and CCSD(T)/MG3S, respectively. Therefore Table 1 

shows that the approximate electrostatic components computed by the X-Pol method 

overestimate binding interactions for all combinations of methods examined except the 

combination of M06 for acetic acid and B3LYP for water. Within the charge-embedding 

scheme, the use of ESP-fitted charges resulted in somewhat weaker binding interactions 

than those from Mulliken population analysis. However, the variational approach yielded 

binging energies about 1–2 kcal/mol greater than the corresponding embedding model; at 

the M06/6-31G(d) level, the binding energy difference between the variational X-Pol result 
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and reference value is about 2 kcal/mol. An empirical correction based on the Buckingham 

potential, dominated by the first term that represent exchange repulsion, gives a correction 

of 2.1 kcal/mol, and if this is added to the electrostatic terms, the total X-Pol results 

obtained using the variational approach become more consistent with the values from fully 

delocalized calculations.  

Table 2 shows the computed electrostatic interaction energies and the empirical 

XCDE  correction term for a protonated water cluster using the multilevel X-Pol scheme. 

The protonated water cluster is a Zundel ion H5O2
+ with four water molecules; the 

optimized structure of the complex obtained by the M06/MG3S method is illustrated in 

Figure 3. Next we analyze the individual contributions from exchange-repulsion, 

dispersion and charge transfer interactions.  

Table 2. Computed electrostatic interactions energies elecE  (kcal/mol) between H5O2
+ 

(A) and (H2O)4 (B) using multilevel X-Pol with the charge-embedding and variational 

interaction Hamiltonians. The 6-31G(d) basis set was used in all calculations with 

M06/MG3S optimized monomer and dimer geometries. 

 

A 

 

B 

Charge-embedding  Variational 

MK-ESP MPA  MPA XCDE  bE  

M06 M06 -89.1 -87.5  -91.0 18.2 -72.8 

M06 B3LYP -87.7 -85.2  -88.1 18.2 -69.9 

M06 HF -92.0 -91.7  -94.5 18.2 -76.3 

MP2 HF -92.9 -92.7  -94.4 18.2 -76.2 

CCSD M06 -89.5 -88.0  -83.9 18.2 -65.7 
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As explained elsewhere,98 exchange repulsion can be obtained as the difference 

between the energy from the antisymmetrized X-Pol wave function for the two fragments, 

}{ˆ BAA  , and the X-Pol electrostatic interaction energy eleE  obtained at the SCF level. 

Using M06/6-31G(d), the charge-embedding scheme yielded an exchange repulsion energy 

of 30.0 kcal/mol with the MK charge model and 28.5 kcal/mol with the MPA charge 

scheme. This may be compared with a value of 35.8 kcal/mol from variational X-Pol using 

MPA. The difference between the non-variational charge-embedding scheme and the 

variational X-Pol result shows that there is charge penetration between the two monomer 

fragments, but the use of unscreened point-charge interactions does not account for this.130 

Note that the exchange energy described above was estimated using the X-Pol electrostatic 

energy, which is an approximation to the two-electron repulsion integrals between the two 

fragments, as explained in subsection 2.2.  

The exchange repulsion energy can be obtained more rigorously by block localized 

energy decomposition analysis,131,132 and we have carried out this analysis for the complex 

at the HF/aug-cc-pVDZ level. The computed exchange-repulsion and charge transfer 

 

 

Figure 3. Fragment partition of the H5O2
+(H2O)4 cluster optimized using M06/MG3S. 

 

 

 



  20 

energies are 38.8 kcal/mol and 13.3 kcal/mol, with a net contribution of 25.5 kcal/mol 

from the two energy terms.  

The dispersion-correlation energy can be defined as the difference between the 

interaction energy computed using an accurate post-Hartree-Fock method and that at the 

Hartree-Fock level, both corrected by basis set superposition errors. Here, we have not 

included the BSSE correction contributions, which will affect the quantitative results. 

Based on the binding energies calculated by CCSD(T)/MG3S (69.7 kcal/mol) and by 

HF/aug-cc-pVDZ (62.4 kcal/mol), we estimate a dispersion-correlation energy of 7.3 

kcal/mol. The sum of these terms, that is, 25.5 minus 7.3 kcal/mol, which includes 

exchange repulsion, charge transfer, and dispersion-correlation, gives an estimate of the 

XCDE  term, which is 18.2 kcal/mol for the interactions between the Zundel ion and four 

water molecules. Including the XCDE  energy, we find that the total X-Pol binding 

energies from various multilevel calculation range from -65 to -76 kcal/mol, which may be 

compared with the binding energy computed using CCSD(T)/MG3S (69.7 kcal/mol) for 

the full system. The discrepancy between the X-Pol results and full QM results has several 

contributing factors, chief of which include fixed geometry at a different level of theory 

and basis set, and the use of a rather small basis set in the X-Pol calcualtions. Without 

including XCDE , the binding energies for different X-Pol calculations range from  

and 92 kcal/mol, all significantly greater than the full QM value. 

4.2. The XP3P model for water as a quantum mechanical force field 

Although ab initio molecular orbital theory and density functional theory can be 

used to systematically improve the accuracy of X-Pol results for large systems, it is still 

impractical to use these methods to perform molecular dynamics simulations for an 
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extended period of time. With increased computing power, this will become feasible in 

the future; however, at present, it is desirable to use semiempirical molecular orbital 

models such as the popular approaches based on neglect of diatomic differential overlap 

(NDDO)133 or the more recent self-consistent-charge tight-binding density functional 

(SCC-DFTB)134,135 method to model condensed-phase and biomacromolecules.  

Most semiempirical molecular orbital methods are known to be inadequate to 

describe intermolecular interactions, especially on hydrogen bonding interactions, 

because molecular polarizabilities are systematically underestimated in comparison with 

experiments. Recently, we introduced a polarized molecular orbital (PMO) method,122,123 

which is based on the MNDO136-138 formalism with the addition of a set of p-orbitals on 

each hydrogen atom.139 It was found that the computed molecular polarizabilities for a 

range of compounds containing hydrogen, carbon and oxygen are very significantly 

improved.122,123 In addition to the enhancement in computed molecular polarizability, a 

damped dispersion function is included as a post-SCF correction to the electronic energy. 

In principle, the Lennard-Jones terms originally adopted in the X-Pol method could be 

used.66 Here, we added damped dispersion by following the work of, among others, Tang 

and Toennies in wave function theory140 and Grimme in density functional theory141,142, 

and we used the parameters proposed by Hillier and co-workers in the PM3-D method143-

145. The inclusion of the damped dispersion terms further improves the description of 

intermolecular interactions and the performance of PMO on small molecular clusters.  

We note one previous model similar in spirit to PMO, namely the semiempirical 

self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, 

parametrized to reproduce properties of water clusters by Chang et al.146 They obtained a 
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good polarizability of water without using p functions on hydrogen (i.e., they used the 

minimal basis set employed in most NDDO calcuations), but their model is parametrized 

only for water. Since a minimal basis set does not have the flexibility to yield an accurate 

polarizability in ab initio calcuations,139 it is not clear if the SCP-NDDO-type 

parametrization could be extended to a broader range of molecules. 

The construction of a QMFF based on the X-Pol formalism has two components. 

First, a computationally efficient quantum chemical model is needed to describe the 

electronic structure of individual molecular fragments. For liquid water, we adopted the 

PMOw Hamiltonian,124 which has been specifically parameterized for compounds 

containing oxygen and hydrogen atoms. Second, a practical and parametrizable procedure 

is desired to model interfragment electrostatic and exchange-dispersion interactions. Here, 

for the electrostatic component, we used the dipole preserving and polarization consistent 

(DPPC) charges to approximate the electrostatic potential of individual fragments. In this 

approach, the partial atomic charges are derived to exactly reproduce the instantaneous 

molecular dipole moment from the polarized electron density of each fragment. Since the 

DPPC charges are optimized by the Langrangian multiplier technique, there are no 

adjustable parameters. For the XCDE  term, we used pairwise Lennard-Jones potentials, 

which are based two parameters for each atomic number (with pairwise potentials obtained 

by combining rules). Employing this strategy, we have developed an X-Pol quantum 

chemical model for water, called the XP3P model, to be used in fluid simulations. 

The computed and experimental thermodynamic and dynamic properties of liquid 

water at 25 
o
C and 1 atm are listed in Table 3, along with the results from an MMFF, 

namely TIP3P,8, and from two PMMFFs, namely AMOEBA39 and SWM4-NDP.44 The 
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standard errors (± 1σ) were obtained from fluctuations of separate averages over blocks 

of 2-4×105 configurations. The average density of XP3P is 0.996 ± 0.001 g/cm3, which is 

within 1% of the experimental value and is similar to results obtained with other 

polarizable and non-polarizable force fields (see Table 3). The heat of vaporization was 

computed using RTlEH i  )(v , where )(lEi  is the average interaction energy per 

monomer from the Monte Carlo simulation, and R and T are the gas constant and 

temperature. The XP3P model for water yielded an average vH  of 10.42 ± 0.01 

kcal/mol using the non-variational (charge-embedding) approximation, whereas the value 

Table 3. Computed liquid properties of the XP3P model for water along with those from 

experiments, and the TIP3P, AMOEBA, and SWM4-NDP models.a 

 XP3P TIP3P AMOEBA SWM4-NDP Expt. 

Hv, kcal/mol 10.42 ± 0.01 10.41 10.48 10.51 10.51 

density, g/cm3 0.996 ± 0.001 1.002 1.000 1.000 0.997 

Cp, cal mol-1 K-1 21.8 ± 1.0 20.0 20.9  18.0 

106, atm-1 25 ± 2 60   46 

, K-1 37 ± 3 75   26 

gas, D 1.88 2.31 1.77 1.85 1.85 

liq, D 2.524 ± 0.002 2.31 2.78 2.33 2.3-2.6 

105 D, cm2/s 2.7 5.1 2.02 2.3 2.3 

 97 ± 8 92 82 79 ± 3 78 

a. Hv, heat of vaporization; Cp, heat capacity; , isothermal compressibility; , 

coefficient of thermal expansion; , dipole moment; D, diffusion constant; and , 

dielectric constant. 
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is increased to 10.58 kcal/mol using the variational Fock operator in molecular dynamics. 

The variational X-Pol approach lowers the interaction energy in the liquid by about 1.5% 

as compared to the direct charge-embedding approach. Considering the difficulty to 

achieve converged results on quantities involving fluctuations, including isothermal 

compressibility, coefficient of thermal expansion and dielectric constant, overall, the 

agreement with experiment is good, and the performance of the XP3P model is as good 

as any other empirical force fields in dynamics simulations.   

 The average molecular dipole moment of molecules in a condensed phase is not 

well defined, but it is very common for it to be calculated from partial atomic charges or 

other analysis methods. We calculated the average dipole moment of water in the liquid, 

 liq
,
 to be 2.524 ± 0.002 D, which represents an increase of 35% relative to the gas-

phase equilibrium-geometry value (1.88 D from the PMOw Hamiltonian). We found that 

water molecules in the liquid experience a wide spectrum of instantaneous electrostatic 

fields from the rest of the system, reflected in the distribution of the instantaneous 

molecular dipole moments that range from 2.1 to 2.9 D. In MMFF models, the dipole 

moment is fixed and thus has no fluctuation at all. Of the two PMMFFs in the table, the 

AMOEBA model produced a much larger dipole moment (2.78 D) than PMOw in the 

liquid, but the SWM4-NDP model yielded a somewhat small value of 2.46 D. The 

PMMFF model of Dang and Chang34 increases the dipole moment from an equilibrium 

value of 1.81 D in the gas to an average value of 2.75 D in the liquid, and a survey of 

eight PMMFFs by Chen et al.35 found average dipole moments in the liquid ranging from 

2.31 to 2.83 D. Examining two other PMMFFs, Habershon et al.147 found average dipole 

moments of 2.35 and 2.46 D. Stern and Berne,148 based on a fluctuating charge model 
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type of PMMFF, calculated an equilibrium gas-phase dipole moment of 1.86 D, an 

average gas-phase dipole moment of 1.92 D (3.6% larger than experiment), and a liquid-

phase average dipole moment of 3.01 D. With another PMMFF, Yu and van Gunsteren42 

calculated an equilibrium gas-phase dipole moment of 1.86 D and a liquid-phase average 

dipole moment of 2.57 D.  

 Murdachaew et al.149 used the SCP-NDDO semiempirical molecular orbital model 

to calculate an increase in the dipole moment from the equilibrium gas-phase value to the 

liquid-phase value from 2.16 D to 2.8 D, an increase of 30%, whereas with the older 

PM3150 and PM6151 NDDO methods, which significantly underestimate the polarizability 

of water, they found that the increase was only 9% and 11%, respectively. 

 Direct dynamics calculations152 with the BLYP exchange-correlation functional 

and electric properties computed from localized Wannier functions predicted an increase 

of the dipole moment from an equilibrium value of 1.87 D in the gas to an average value 

of 2.95 D in the liquid.  

 There is no experimental data for direct comparison, but values ranging from 2.3 

to 3.0 D have been advocated, based in part on an estimate for ice Ih.153,154 The point of 

these various comparisons of the calculated dipole moment of water in the bulk is not to 

claim that the X-Pol value is more accurate than the others, but rather to show that it is 

consistent with the range of previous estimates. Nevertheless, based on analysis of 

dielectric screening effects of water, Sprik pointed out that an average dipole moment of 

2.5–2.6 D in liquid water would most likely yield the correct dielectric constant,155 and a 

similar approach was used by Lamoureux et al.156 
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 All other thermodynamic and dynamic properties determined using the XP3P 

model in Table 3 are in reasonable accord with experiments and are of similar accuracy 

in comparison with other empirical models. We note that in contrast to the large number 

of PMMFFs in the literature that are based on parameterization using different physical 

 

Figure 4.  Computed (solid) and experimental (dashed) radial distribution functions for O-O, 

O-H and H-H pairs in liquid water at 25 oC. 
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approximations, the electronic polarization from the present XP3P model is explicitly 

described based on a quantum chemical formalism. 

 Figure 4 shows the structure of liquid water characterized by radial distribution 

functions (RDFs); )(rgxy  gives the probability of finding an atom of type y at a distance 

r from an atom of type x relative to the bulk distribution, where the type is determined by 

the atomic number. In comparison with the neutron scattering data, the computational 

results are in excellent agreement with experiments. In particular, a well-resolved 

minimum following the first peak in the O-O distribution was obtained, whereas the 

widely used TIP3P and SPC models do not show this feature.8 For the XP3P potential, 

the location of the maximum of the first peak of the O-O RDF is 2.78 ± 0.05 Å with a 

peak height of 3.0. For comparison, the corresponding experimental values are 2.73 Å 

and 2.8 from neutron diffraction.157,158 The coordination number of a water molecule in 

the first solvation layer was estimated to be 4.5, in agreement with the neutron diffraction 

result of 4.51.157,158 The oxygen–hydrogen and hydrogen–hydrogen radial distribution 

functions also agree well with experiments.  

5. Conclusions 

 Molecular mechanical force fields (MMFFs) have been successfully used to model 

condensed-phase and biological systems for a half century, and more recently polarized 

molecular mechanics force fields (PMMFFs) have been developed. Thanks to careful 

parametrization, such classical force fields can be used to provide useful interpretation of 

experimental findings. In this chapter, we presented a new strategy to construct the 

potential energy surface for macromolecular systems on the basis of quantum mechanical 

formalisms. Rather than using quantum chemical results as the target for fitting empirical 
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parameters in the force field, we employ electronic structure theory directly to model 

intermolecular interactions. As a result, we call this approach a quantum mechanical force 

field (QMFF). 

 Our strategy is based on partition of condensed-phase and macromolecular systems 

into fragments, each of which is explicitly represented by an electronic structure theory 

with an antisymmetrized wave function. To achieve efficient scaling in the computational 

cost, the overall molecular wave function of the entire system is approximated by a Hartree 

product of the individual fragment wave functions. Consequently, the self-consistent field 

optimization of each molecular wave function can be carried out separately under the 

influence of the self-consistent polarization by the electric field of the rest of the system. 

Since the electronic polarization due to interfragment interactions is treated explicitly by 

electronic structural theory, we call this method the explicit polarization (X-Pol) theory. In 

this chapter, we summarized the theoretical background of X-Pol and illustrated its 

application as a versatile electronic structure method to treat intermolecular interactions 

that can be extended to large molecular and biomolecular systems, including condensed-

phase systems. A key application is that we presented an optimized model for statistical 

mechanical Monte Carlo and molecular dynamics simulations of liquid water by using X-

Pol as a QMFF. These illustrative examples in this chapter show that the X-Pol method can 

be used as a next-generation force field to accurately model molecular complexes and 

condensed-phase systems and in other work we have also illustrated the method for 

biomolecular systems102. 
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