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Publishing Abstract. We have employed extended multi-configuration quasidegenerate perturbation

theory, fourfold-way diabatic molecular orbitals, and configurational uniformity to develop a
global three-state diabatic representation of the potential energy surfaces and their couplings
for the electronically nonadiabatic reaction OH* + H2 — H20 + H, where * denotes
electronic excitation to the A 2Z* state. To achieve sign consistency O@:ﬂed diabatic
couplings, we developed a GPU-accelerated algorithm called the glustet-growing algorithm.
Having obtained consistent signs of the diabatic couplings, we ;&\Tbatic matrix
elements (which consist of the diabatic potentials and the diabatie couplings) to analytic
representations. Adiabatic potential energy surfaces arefgeneratéd by diagonalizing the 3 x3
DPEM. The comparisons between the fitted and computed diabatic matrix elements and
between the originally computed adiabatic pote ti@erga surfaces and those generated from
the fits indicate that the current fit is accurate enou f(ﬁ"dynamical studies, and it may be

used for quantal or semiclassical dynamics&\ ions.
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INTRODUCTION
The reactions
OH(A 2" + H2 - H20 + H (1)

and

OH(A X% + H2 — OH(X °IT) + H2
provide enticing targets for theoretical study because of the detail e?aerimn‘al data

available, dating back to the pioneering experimental studies in‘the Lester!>*4, Crosley,>%’

and Heard® laboratories. These experiments were motivat iﬁ}rt by‘the necessity to know
the rates and mechanisms of the collisional quenching gf electr :;ﬁy excited OH radicals
because the quenching affects the laser-induced fluorescengce (l)F ) measurements of their
ground state populations, since LIF on the well ch cter'ayd A 2X*—X 21 band system has
often been used®® to detect the hydroxyl radicals, irﬂ'portant species in atmospheric!%!!
and combustion!? environments. Upon thegz\XQQ excitation of isolated OH, only
radiative decay is conceivable, but collisi Nmh-other molecules open nonradiative de-
excitation pathways,!® such as reacti }Q]).a‘n (2). The evolution of the electronic states
along the reaction path may be se \GQ re 1 (the details of this figure will be explained
later, in section I11.B.3). Unde \nch-ng these competitive pathways is necessary to fully
interpret the LIF measuf ts. In addition, the OH3 system has established itself as the four-
ide emx

body system most tudied by quantum mechanical dynamics calculations. (OH3 is a

prototype for fotir- quntum dynamics in a similar way to how Hs is a prototype for

three-body gua ana ics.)

ersectlons have been shown to be ubiquitous!#!3:16,17.18,19.20

on polyatomic

rfaces (PESs). Theoretical studies of the OH3 system have been largely
fdcused on cating and characterizing the conical intersections that enable nonradiative
“dyn. ica)pathways by coupling the ground and excited states. Neglecting spin-orbit

coupling, we expect the system to show conical intersections in a four-dimensional subspace,

S Hoffman and Yarkony found conical intersections in Cwv, Cav, and Cs symmetries.?!

Including spin-orbit coupling lowers the dimensionality of the intersection,”? and Matsika
and Yarkony characterized a portion of the seam including spin-orbit coupling.?

In an experiment that would be very interesting to simulate, Ortiz-Sudrez et al.>* studied
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Publishing the reactive quenching of OH (A 2Z*, v = 0) by D2 and found that the product D atoms are

primarily forward scattered relative to the incident D2 and with ~88% of the available energy
appearing in HOD internal excitation. Pollack et al.>> also studied the collisional quenching
of OH (A 2Z") by D, and they found nonstatistical OH product distributions. Dempsey et
al.?%?7 reported a combined experimental and theoretical study of thefioureactive quenching

of OH (A 2£*) by Ha, and they found high rotational excitation of 2;’[% theoretical analysis
probe

was limited to nonreactive scattering. Related experimental worke® d the partitioning

between reactive and nonreactive pathways. Wheeler et al. ’30‘311(116 ode-selective
dynamics of reactions starting from the entrance-arrangément ¢ ‘hl;;es. Kamarchik et
al.?"2333% fitted potential energy surfaces (PESs) to adiabatic botential energy surfaces
calculated by multi-reference configuration interaction sirlgles and doubles method plus a

quadruples correction (MRCISD+Q), and ﬂ@%“d fhe post-quenching dynamics with
ati

electronically adiabatic trajectories with adi diabatic choices of initial momenta;
this was described as preliminary to coup MG dynamics which are required for a
complete treatment because the syste ho&es closely coupled states, but the study was
prompted by the interesting expe '\% ata and the lack at that time of coupled PESs.
The coupled potential en \m‘.ﬂaces and their couplings required for a more complete
theoretical treatment enerated in either the adiabatic or diabatic representation.
Zhang et al.>>3¢ reporte Yb:%st quantum mechanical dynamics study of the electronically

nonadiabatic ?ém

coupled PESs; a bagk propagation neural network was utilized to fit the diabatic PESs and

l/reagtion. The calculations were performed on a set of MRCISD

couplings, a-le details of the diabatization, the fits, and the PESs were described only

briefly.in the supplementary material. Dillon and Yarkony®’3# studied the conical intersection

s¢am with CISD calculations, and on the basis of these studies suggested a new
“muechanism for the quenching. Full-dimensional global diabatic PESs for the three lowest

electh)nic states of the OH + Hz system have been constructed by Collins and coworkers’’

S by an interpolation and new kind of diabatization of MRCI ab initio data; good agreement

with the experiment®* in the distributions of kinetic energy and scattering angle to HOD + H

1‘40

products was obtained. Ma et al.*” studied the nature of the interaction PESs for fixed values

of the OH and Hz bond distances. A 2014 review by Lehman and Lester'® concluded that
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Publishin g “still needed are quantum scattering and/or classical dynamics calculations to evaluate

™ Uy =(®

quenching cross sections, branching between multiple reactive and nonreactive channels, and
the quantum state and kinetic energy distributions of the products.”

The objective of present work is to calculate full-dimensional global diabatic PESs and
couplings for the three lowest electronic states for reactions (1) and ({ d their
representation in a new form that is convenient for dynamics sim atfo‘fy by either quantal or

semiclassical methods.

D
II. BACKGROUND AND NOTATION “'&

In this section, we provide background on dith_\tiza ion alh introduce the language and

=)

We define an electronically diabatic repil;lon“as one for which the coupling due to

notation that we use in the rest of the article.

nuclear momentum and nuclear kinetic ene}gg\o ting on the wave functions representing

the states is assumed to be negligible as ¢ %d—to coupling due to the electronic

Hamiltonian.*'*> The electronic wav %cuqn of state 7 in an adiabatic representation is
t

called Wi, and the electronic wave ion of state i in a diabatic representation is called ®;.

We assume all wave functior&\ef\cak this is always possible when one neglects spin-orbit

coupling. When using s-sdiatic representation, the potential energies for nuclear motion

in electronic stated are expectation values of the electronic Hamiltonian H ol

£

(including, asfis co ntfi{)nal, the nuclear repulsion). These are the diagonal elements

of a matri w elements
Vij =

) (9| \Pj> 3)
where, forei £ j, Vij =0. Hence, we will simply use Vi to represent Vii. When using

“the diabatic representation, the nuclear motion is governed by a nondiagonal matrix U

with the elements

‘Hl

€

o) @
The diagonal elements of this diabatic potential energy matrix (DPEM) are the diabatic

potential energy surfaces, and the off-diagonal elements are called diabatic couplings. In our
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Publishing work, we consider diabatic states that span the same space as the directly calculated adiabatic

states of interest; we label diabatic bases with this property as adiabatic-equivalent. For such
a basis, diagonalizing U by an orthogonal transformation yields the adiabatic potential energy
surfaces. Because our final diabatic potentials are obtained by fitting the adiabatic equivalent
ones, the adiabatic potentials obtained by diagonalizing the fitted U a@,/ t identical to the
original adiabatic surfaces, and they are called transformed adiabatic %faces. ut if the fit is

good, the transformed adiabatic energies will be good approximﬁ(o{ the originally

calculated adiabatic ones.

In discussing the wave functions, potentials, and céuplings;it will be convenient to
distinguish three regions of configuration space, in particular tlb reactant-like region (the
region corresponding OH + Hz and OH* + H>), th icoo‘rﬂinate region (with ammonia-like
geometries), and the product-like region (H20 + ié'rr). In some parts of the presentation

H

we will label the three hydrogen atoms as h\B, Hc based on the O-H distances ()

such that #(OHa) < #(OHs) < r(OHc). i\
%
n

We will discuss permutational try, in terms of elementary transpositions and

cyclic permutations. An element&iﬂx

spesition is a pairwise permutation of the coordinates
of two nuclei. A cyclic permu M be written as the product of two elementary

transpositions.

The concept of an bc PES arises from the Born—Oppenheimer separation of

electronic and nlic mot/lpn. Adiabatic PESs are associated with adiabatic electronic states,
which are ei %i/t s of the electronic Hamiltonian for a given set of nuclear coordinates, i.e.,

a given geometry. Adiabatic PESs are obtained by performing electronic structure

calculation$ to obtain approximations to the adiabatic electronic wave functions and energies.
The electrohi¢ states are coupled by nuclear momentum and nuclear kinetic energy operators;
“ane en)‘nakes the semiclassical approximation that only the former are considered,** and

thesehare called nonadiabatic coupling vectors or nonadiabatic couplings (NACs). For small

S systems one can also employ direct dynamics in which adiabatic energies, gradients, and

NAC:s are generated by electronic structure calculations whenever they are needed by the
dynamics algorithm, but the high expense of reliable electronic structure methods usually

leads users of adiabatic representations to using lower levels of theory, less exploration of
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Publishing initial-state space, and short-time simulations. These shortcomings can be overcome by

4546 or interpolation.*”#8493% Fitting and interpolation

employing analytically fitted surfaces
are essentially impossible in the adiabatic representation because of cuspidal behavior of the
PESs and singular behavior of the NACs at multidimensional conical intersection seams; this

motivates the use of diabatic representations, for which the DPEMs (%}sﬁm{iof diabatic
wil

PESs and diabatic couplings) are smooth scalars. In the present w kW’ lculate and fit

DPEM:s. \

Diabatic states are not uniquely defined,*'*? and ther a@een ny schemes
proposed to construct diabatic states.5!:52-53,545556,57,58,596061,62, 4;;?6.:67,68,69,70,71,72,73 In the
present work, we applied the fourfold-way,*>%* which baseb on the principle of
configurational uniformity.>” The fourfold-way hasibeén pijzviously applied to several
systems, including bromoacetyl chloride,” ammottia,”>* phenol,””’37 thioanisole,®* and
thiophenol.3! A difference of the present w M ese calculations is that they provided at
most semiglobal DPEM, for example the Mr a range of geometries centered on the
lowest-energy dissociation path, whe Me,present calculations provide a fully global
potential energy surface that desc N ossible geometries reasonably well (at least that is
the goal). After the DPEM is OMdynamics calculations can be performed in either the
diabatic or the adiabatj esentation because the generation of the adiabatic surfaces and

NACs corresponding to diabatic approximation is straightforward.?

y.
Y
II1. ADIABA w TIABATIC ELECTRONIC WAVE FUNCTIONS OF OH3

11 diabatic Electronic Wave Functions. In the present work, our goal is to obtain

a diabatic Basis equivalent to the three lowest-energy adiabatic states of the OH3 system. At

tHe reactan ymptote these states correspond to the doubly degenerate X °I1 state and the A

22" state of the OH molecule. The energies and wave functions of these states are calculated

by e)bended multi-configuration quasidegenerate perturbation theory (XMC-QDPT).8384.85.86

S The XMC-QDPT calculations are based on state-averaged complete-active-space self-

consistent field (SA-CASSCF)®” wave functions as the reference states. The one-electron
basis set on the O atom is the cc-pVTZ basis®® with two additional evenly tempered diffuse s

and p subshells, and the basis set on the H atom is unaugmented cc-pVTZ.
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The SA-CASSCF wave function is obtained as a state average of the three lowest
adiabatic doublet states of the OH3 system, and the energies of these states are averaged with
equal weights. The active space consists of 9 electrons in 11 orbitals. This is based mainly on
the extended correlated participating orbitals (ext-CPO) scheme.?® While the three original
CPO schemes® work well for generating smooth semiglobal PESs, f(/ ample, from one
asymptote to another along a particular reaction path, further suppleme hf the ext-CPO
active space with an extra orbital is needed here to both accoun D%Ng{etry along the Cay
pathways connecting the tricoordinate region to the produ (Hj%’h(egion and to provide
a more balanced treatment across the global PESs that ifictude hi ‘Tg;lergy asymptotes.
Therefore we added another orbital to the exz-CPO choi Thu§ the active space used is
comprised of the 10 orbitals of the ext-CPO sche lus ‘Oﬁe 3d orbital on the O atom. The
eleven active orbitals are as follows: (i) in the OH zﬁ'egion, they are the ¢ and ¢* orbitals
describing the OH bond, ¢ and o* orbitals;b%iqg e HH bond, the 2s, 3s, 2py, 2p-, 3py,
and 3p: orbitals of the oxygen atom (whe ~t%‘i'entations of the x, y, and z axes are
discussed below), and the 3d orbital m exygen,; (ii) in the tricoordinate region, they are
the 2s, 3s, 2p-, and 3p: orbitals on \% m, an orbital resulting from an anti-bonding
combination of the oxygen 3s Mhree hydrogen 1s orbitals (a totally symmetric orbital

in D3z), and the three cstpairs of orbitals that become €, , at Dsn geometries; (iii) in the
H20 + H region, they ye Vb2, 2a1, 1b1, 3a1, 2b2, 4a1, 2b1, Sa1, and 6a1 orbitals of the
water molecul;/one geﬁ d orbital, and a 1s orbital on the separated H; and (iv) in the limit
of four se raﬁ%\(s they are the 2s, 3s, 2py, 2p-, 3py, 3pz, 2px, 3px orbitals on the O atom

and thefls orbitals on each of the three H atoms. This active space, which we call ext-CPO",

to l}e adequate to provide realistic PESs globally.

All a&ec ons except the oxygen 1s orbital are correlated in the XMC-QDPT perturbation
Tﬁeory atment. To avoid artifacts due to the possibility of intruder states in the XMC-QDPT
ve' function, the intruder state avoidance method (ISA)*® was consistently applied at all
molecular configurations; the level shift parameter b of the ISA method was set to 0.02 En,

where En denotes a hartree atomic unit of energy.

Calculations were performed for more than 70000 molecular geometries that consisted
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\

adiabatic PES starting from conical intersections in previous work,3!3%3334 (ii) a wide variety
of regular grids of nuclear configurations generated, for example, along vibrational normal

modes at geometries relevant to the experiments, (iii) geometries added by running classical

trajectories on individual diabatic PESs analogously to the Grow algo@josed by
co

Collins and coworkers*7-48:4

until the fits are considered to be we ena)gh
(iv) additional points near the ground-state reaction path and inﬁ{ nt van der Waals

region to obtain higher accuracy in those important region ‘)

erged, and

T~
I11.B. Diabatization. The first step in the fourfoldéway is the determination of diabatic

molecular orbitals (DMOs). We do this using SA-CASS anéfurther details of this process
are given below in Subsection II1.B.2. The SA-CASSCF w)ave functions are originally
obtained in terms of adiabatic configuration state tions (CSFs) expressed in terms of
adiabatic canonical molecular orbitals. The\a@% SF basis is then transformed to basis

of diabatic state functions (DSFs, denote \;{a‘ constructed in terms of the DMOs. Each

SA-CASSCEF adiabatic state is t?x?s&!‘ as a linear combination of the N orthonormal

DSFs: \
N
=2.Couly (5)

three lowest a(h/abati taté Y1, W2, and Ws:
3
3 (Dk = Z Tnk\Pn (6)
n=1

is ;rﬁ element of adiabatic-to-diabatic rotation matrix.

Aftebthe diabatic states at the SA-CASSCF level are obtained, the model-space
diab%ization algorithm®! is used to obtain the diabatic states at the XMC-QDPT level. In
icular, Ref. 91 shows that the XMC-QDPT diabatic wave functions obtained from
configurational uniformity are equivalent within the CAS-CI space to the SA-CASSCF
diabatic wave functions. Therefore, the XMC-QDPT adiabatic-to-diabatic transformation for

the three states of interest can be obtained by first transforming the XMC-QDPT model states


http://dx.doi.org/10.1063/1.5111547

AllP

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. | 10

Publishing back to the SA-CASSCF adiabatic states, and then transforming the SA-CASSCF adiabatic

states to the SA-CASSCEF diabatic states. The XMC-QDPT adiabatic-to-diabatic
transformation is then used to convert the XMC-QDPT adiabatic energies to the diabatic

potential matrix. Details were given previously.’!

IT1.B.1. Standard orientation. All calculations of the diabatizati l%xare performed
S:

t
in a standard orientation of the molecule, which is defined as foll @ the Oxygen atom is

placed at the origin; (ii) the positive direction of the x-axis coincides a vector from the

origin to the closest hydrogen atom; (iii) the plane containidg ‘E@ oxygen, the closest
—
hydrogen (referred to as A) to the oxygen, and the nextlosest hydrogen (referred to as B) is

assigned as the xy-plane; (iv) rotation-reflection operations are b\en applied so that the y-

coordinate of B is always positive and the z-coordinaté oﬁjw third closest hydrogen (C) is
always positive. This standard orientation is e%cﬁnse it aligns the molecule in a
n

uniquely defined way with respect to the refeie rbital defined in the next subsection.
II1.B.2. Diabatic molecular orbita MOS are obtained by a transformation of

the canonical molecular orbitals. In g };lﬁthe transformation involves a threefold density

criterion and a fourth criterion of imum overlap with one or more reference orbitals, and
it is completely described pre M“ with the exception of the system-dependent choice

of reference orbital or rbiﬁSThe reference orbitals are needed to avoid a rapid change of

DMOs in the strong interaction region. Unfortunately there is no systematic way to find

suitable referende f{alsyso we use a trial-and-error approach that selects the reference
orbital to restrairm\w@\orbl al switching that we see in its absence. In previous work we have
found tha re}erence orbital is usually needed to sort out two nonbonding p orbitals on the
same‘atomic center, and consistent with that experience, we found for the present problem
tiat we could obtain smooth DMOs with only one reference orbital, and that this reference

“arbi ba)lcally serves to keep a py-like orbital on oxygen from mixing in an uncontrolled

fashion with the other DMOs. The rest of this subsection defines this reference orbital, which

S is complicated by the necessity to preserve invariance to permutations of the three identical

hydrogen atoms because we are developing a fully global DPEM.
The reference orbital is called us, and it is defined by rotating and combining two

simplified in-plane p,-like DMOs — one obtained by the threefold density criterion at a
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geometry. The simplified p,-like DMOs are defined as follows:

The first simplified py-like DMO is prepared as follows. The SA-CASSCF optimized p,-
like DMO at reactants (obtained by the threefold density criterion) is simplified to a pure
atomic p orbital on the O atom by zeroing the coefficients of the basi@r: on other
atoms and of the s, d, and f'basis functions on the oxygen. (The z oea“)oefﬁ tents are all
very small.) Since we use a valence triple zeta basis set, this lea‘?W\ e nonzero LCAO
coefficients in the simplified orbital. This vector is denotedéas v3i".

The simplified py-like DMO at products is obtained in+a si ':;?ashion at the product
geometry. In particular we remove the coefficients of the'asis b,lnctions other than s and p
functions on the oxygen and remove all basis CCLns

ijn the three hydrogen atoms. This

vector is denoted v3?,

-
At each molecular geometry R where\fbéPEM 1s to be evaluated, the following steps
\

(1) A vector ng,P) that is i Vawiﬂhrespect to the exchange of the identical nuclei
is defined by &\
v3 - Z fij Vbisec;or ’ (7)

are performed:

i=1,2,3;j<i

2)H.OH .

where Vg)is)ecior T{1s %2) placed on each of the three HOH bisectors, and the weights fij
4
are defined a/ OWS:
2
5 e_(rOHl _ron )/d
. Jy= 2 fg, @®)
- - ld= v
- y. T . Com, "ou ;)

S i=1,2,3; j<i
ﬁ

whef‘s d=0.2 A, and the functions £ are used to eliminate the contributions of ng) at
ij

w geometries with at least one 180° bond angle. These functions are constructed as:

F,o= 11 (1—2e_A"f'/(1+e_2A"f)) 9)

Vim0 <i
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(2) The vector Vgl’P) is defined as:

(31P)= (1 S) ()AOB SV(Ll),AOC (10)

AOB

1 1),AOC 1
where VS_)’ and Vg_)’ are generated by placing v<3) normal/o OA bond in the

AOB and AOC planes respectively, and S is a function that gradu afts between them as

a function ofthe 7yp and 7~ distance as they switch, _)\

~
S:%(tanh[2(r03—rocﬂ+l o (11)

Vector vl P is thus invariant with respect to the p@utaﬁons of the nuclear coordinates of

the second and the third farthest from the oxygen'tl atoms? While the closest A hydrogen

doesmot switch with either B or C in the

atom is not included in the definition of v3&: ©)5

region (reactant channel) where v3(\:?) s to the final reference orbital.

The final reference DMO is th

11?‘ 2,P
uFW’ )+va(3’ ) (12)

where \

and where d / 0.3

With thi efer e orbital, we computed the final DMOs by the fourfold-way, and their

charactérs a ummarlzed in Table I. In this table, the reference orbital is orbital 3.

3. I‘)/i'abatic states. Each diabatic state is identified by a diabatic prototype list,
ich cotstai s its dominant DSFs. Each DSF is a spin-adapted linear combination of Slater

’a‘eter

nts expressed in terms of the DMOs of Table I. The diabatic prototype lists are

'Ve\> in Table II; note that no DSF appears in more than one list, and only DSFs needed to
distinguish the diabatic states are included in any of the lists. Figure 1 schematically shows
the dominant configurations of the diabatic states in the reactant-like region, in the

tricoordinate region, and in the product-like region.
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corresponds to the A" component of the doubly degenerate X I1 state of the OH with the

singly occupied molecular orbital (SOMO) localized in an oxygen py orbital as expressed by

DSF

%, . At products, diabatic state 1 corresponds to the A 'Bi(1b1 — 38/4a) state of water

and the ground state of H as expressed by DSF %, . In the tricoordi asbglba‘it corresponds
D i

to the px component of the ?E excited state of OH3 as prototypeé\\

The diabatic prototype list for diabatic state 2 1s ( x4, ¥5» } TnCs symmetry this state
_—

corresponds to the A" component of the doubly degencrate X 2‘5[ state of the OH radical, with

the SOMO localized oxygen at p: orbital as expre%by.l%SF X4 Atthe H2O + H

asymptote, it corresponds to the A 3B1 (151 - 3s/ state of water and the ground state of H
Xebn,

as expressed by DSF ;. In the tricoor: inwl it corresponds to the py component of

the 2E excited state of OH3 as expr:

F .

~
The diabatic prototype list fﬁ?’a&'c state 3 is ( ¥;, ¥g )- This state corresponds to the A

25" state of OH at the OH +§%’p&ote where it is dominated by the DSF y, witha

(212220000) configurtion describing a state with the SOMO localized corresponding to gon.

At the product as ptyte,

atic state 3 corresponds to the ground state of products H20 (X

TA1) + H(®S) z/ re it déﬁlinated by the DSF y, with a (222210000) configuration. In the

tricoordi e&ion, this state corresponds to OHs (A1;3s) where it is also dominated by ;.
%ﬁjo state 3, if prototyped only by DSF y, would have correlated to the high
-
energy Hs§)* B 2B2) + H(!S) asymptote at the product side, as shown in Fig. 1. Diabatic

—
states and 2, if prototyped only by their dominant CSFs at reactants, y, and g,
re

ctively, would diabatically correlate to the states H2O" (X ?B1) + H('S) and H2O" (A

.y
\ 2A1) + H('S) at the product side. This implies that diabatic states 2 and 3 change their

dominant characters along paths beginning in the OH + Hz region, passing through the

tricoordinate region, and ending in the H20 + H region; this is required if the diabatic states
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diabatic state 3 has little effect on the dynamics since it occurs in a high-energy region where
the third state is unimportant at the energies of the experimental work reviewed in the

introduction. The change in character of the second diabatic state is a more significant

approximation of the present treatment; limiting the treatment to thre sf@:jotentlally
one of the most serious approximations of the present treatment, especially in

tricoordinate region. In our experience it often happens that if one usesw adiabatic-equivalent
diabatic states, the nth diabatic state may acquire some non§moo hnes ecause of a conical
intersection or locally avoided crossing of adiabatic sugfaces n + 1; if this occurs in a

dynamically important region, one should add ano&gﬂr state. Fo)tunately, in the present case it

does not. ‘)
f -
IV. ANALYTICAL FIT OF THE DIABA’ BVLA~ IX ELEMENTS

Our minimal criteria for a useful dial Mpresentation of potential energy surfaces are:
(a) The DPEM should be as smooth a \o)is' le within the constraint of maintaining adiabatic
equivalence. (b) It should be single-valued. (c) The transformed adiabatic surfaces should
agree reasonably well with the \@‘mally calculated adiabatic surfaces for those energies that
are low enough to be cc:sj%e during the planned simulation. We next present a fit designed

to satisfy these criteria.

IV.A. Diabati otelyial Energy Surfaces. The six-dimensional diabatic potential

energy surf; CGSMO he following functional form

6
4 V(rlarz7’"3a”4’r5’r6):VO+ZVPA(@)+VMB (14)
i
ﬂ g .
ere VOSa nstant that sets the zero of energy at the equilibrium OH+H> asymptote, VP A

isa %vo— ody term in a pairwise additive sum, and VMB is a many-body term.

S For the U11 and U2: diabatic surfaces and for the HH interaction in Uss, the pairwise
-

potentials for H2 and OH are written as a sum of short- and long-range potentials

VPA(V):VSR(V)+VLR(V) (15)

The short-range potentials are given by an even-tempered Gaussian fitting function®?,
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k=0

The long-range term is a damped dispersion term based on Grimme’s D3 formalism with the

Becke-Johnson (BJ) damping function.??*

s c4B /
V()= T —E N
n=68 ;M +(a1r23 +a2) 3

where 0y =\/CAB /CAB | S =1, S;=2, a;=0.5299

CHH =7.5916E,a,°, CH =91.76991786E,a,°, CE™ =10.8496Ea,°,

)

sum is obtained by fitting

G =169.45918093E;,a,” . With ¥, p, given, th@)rt-ra

VP AT VLR as described below. To account for the'spin-oibit effect, the short-range term in
%ru

U2 is multiplied by a scaling factor of (De&&
of the pairwise potential of OH in the ori MThe scaling factor equals

YIDe, where De is the dissociation energy

0.9960924723525706. This value is @1&2 that the nearly degenerate components of the

11 reactant have the correct sph%xu d by the spin-orbit coupling.

The pairwise potential fo Nthe Uss diabatic potential energy surface, is written as

two even-tempered unctlons smoothly connected by a switching function,
OH* OH*
5(")\ AR ()11, (1) R 1 (18)
VSCI){H* ha te

has three terms, and the switching function is given by

fs() 2[1 tanh(}/(r—ro))} (19)

th™y = A and 7, =1.577 A

Il three pairwise potentials (Hz2, OH, and OH*), the linear coefficients a ¢ are

ﬁ
te)nined by linear regression, and the non-linear parameters a and £ are determined by

nonlinear minimization using the constrained optimization by linear approximations
algorithm® implemented on the NLOpt library.’® The root-mean-square deviations (RMSDs)

of the fitted pairwise potentials are 5 x 10™* eV (30 points), 3 x 1073 eV (56 points), and
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The many-body interaction in the diabatic potential energy surface fitting function is
given by

M
— My y 3y yhisy e
VMB_ Z Dn1n2n3n4n5n6S{Y1 YZ Y3 Y4 YS f (20)
gty tistng=2,

connected

where S[YI"IY2"2Y3"3Y 4n4Y5n5Y6n6} are the symmetrized permu tN
Q
—
¢ )

in mixed exponential-Gaussian (MEGs) variables®,

7. ) (r. —r
Y.(r.)=exp —(l o] 1 fRLE 21
(%) - ; 1)
-
The combination of egs. (14) and (20) follov&%l; oach!® of adding pairwise terms to
invariant polynomials obtained by mongmial Syunmeétrization®”-*® with the removal of

——

disconnected terms'% that can give gpuriouSinteractions in asymptotic regions.

For U1 and U», the nonlingar parandeters of the MEG variables used in the present fit
&

are a=08A, b=1.0A*, & Q{orHHdistancesand a=10A, b=15A%,

n%.F or Uss, the nonlinear parameters of the MEG variables are

=12 A for HH distances and a=1.0A, b=1.5A2,

r,=14A r&
independeént cogfficients Dy pn,n.n,nen, thatare determined by generalized least squares

fittingwsing a }v ighting function on the square of the deviation given by
ﬁ

) I if AU, <V

B W, = : 22

kS [EJ it AU, >, 22
AU,

\

where AU, is the energy relative to H2 + OH in the ground state and in their equilibrium

geometries, and the threshold energy for decreasing the weights is 7, =5.5¢eV . In addition,
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them in the data set.
The parameters of the potential energy surfaces are given in Fortran program that is

included as a text file in the supplementary material.

IV.B. Diabatic Couplings. The diabatic couplings must be singl{ lued, which
requires that they satisfy the following two conditions: (1) If we ¢ nsfa)r%
indistinguishable geometries (i.e., geometries that differ only b %ﬁion of identical
particles, in this case that would be permutation of hydrog a@s), | U] must be

~
permutationally invariant. (2) We must be able to determine the'sign of U by assuming a
particular symmetry under elementary transpositions andu Verbons. (Note that the adiabatic
energies are independent of the sign of U2 whe has‘bjlly two states, but they do depend
on the signs of the couplings when one has three o or%'coupled states, as we have here.)
Furthermore, the problem is nuanced by th;ib%t e adiabatic wave functions can have
arbitrary signs as long as one is consisten Mency at a single geometry is trivial, but
consistency of the signs from one ge \efyy.tq another is trickier. In this subsection we
discuss the practical scheme we W for fitting the diabatic couplings to analytic
functions satisfying these requ'm. The problem of determining the signs of diabatic
couplings is a general nr(w%jestrlcted to the fourfold-way, but occurring in any

diabatization schemie) —sq the algorithm developed here may be more widely useful.

Althoughyth 1ab29i'c wave functions delivered by electronic structure programs and
the diabatic wa\b&ictio s delivered by the fourfold-way have arbitrary signs, the signs of
diabatic Qelements are only semi-arbitrary. To explain this, we first note that since U is
symmetricland we are treating the case of three states, there are only three unique signs to
cénsider, n ely the signs of Uiz, Ui3, and U23. Changing the sign of U1z corresponds to

~ehanging the sign of @1 or ®2, but not both. Hence if we change the sign of Uiz, we must also

chanbe the sign of U13 or U2s. For the present 3-state problem, we can summarize this

S tequirement by saying that there must be an even number of sign changes of the three unique

matrix elements, i.e., the product of the three sign changes must be +1.
IV.B.1. Cluster Growing Algorithm to Achieve Sign Consistency. As we have said,

the signs of the diabatic couplings produced by the fourfold-way diabatization scheme are
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example, the diabatic couplings along an OH stretching path should be a smooth function of
the OH internuclear distance; arbitrary phases can cause an oscillatory behavior and thereby
degrade the accuracy of fitting. Here, we propose an algorithm called cluster growing to
automatically achieve sign consistency. The idea of cluster growing algetithm is to start with
an initial cluster of points where are confident of the sign assign ntsﬂﬁhple, because
none of the couplings passes through zero or close to zero in thiswegion) and use this cluster
to determine the phases of nearby points. The newly deter méa))oint re then added into
the cluster, and another iteration is performed. At each iferation, ::Iuster Srows.

At each iteration, the choice of “nearby” points.is based oba distance criterion. The
distances between the points are computed as the clideaﬁ distance in the six-dimensional
internuclear-distance space of the OHs system. Fi 2'(31') shows the pseudocode of the
cluster growing algorithm. We start with arh%&mster, and for each point in the initial

cluster, the nearby points are found base ~%ﬂ‘t@ff. Here, for each iteration, we use 0.001A

as an initial cutoff, and we increase t h@i‘f incrementally until we have at least 50 new
points. Notice that a small cutoff N the computational cost as well as the accuracy.
Due to the large size of the da M cluster growing part is vectorized with graphics
processing units (GPUs). calculations were performed with Nvidia Tesla K40m GPUs
installed on K40 GPU ¢ ‘F:Sf Minnesota Supercomputing Institute. Each K40m GPU has
2880 CUDA cores. / y.

At the start\o&*qh iteration, the diabatic couplings of the points already in the cluster

are fitted wi Qermutationally invariant polynomials as discussed in detail in the next

subséetion{ The total order of the permutationally invariant polynomials adaptively increases

ad the size ofithe cluster grows to achieve better accuracy of the fitting. The fit is used to
th? diabatic couplings of the new points and compare them with the computed values

fromﬁhe fourfold-way and model space diabatization. Based on the comparison, two signs

S age changed if a smaller difference of the values predicted values can be achieved with the

even sign change product constraint. For example, computed and fitted diabatic couplings are
1.3 eV and -1.1 eV, the penalties of preserving and changing the phase are 2.4 eV and -0.2 eV,

and hence a phase change would be preferred; but because all three diabatic couplings (Uiz,
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make the sum of the three penalties as small as possible. Figure 2(b) graphically shows the
process of cluster growing. For the initial cluster of the iteration, as shown in the top panel,
the diabatic couplings change smoothly from negative (red color) to positive (blue color)
along a geometrical path. Such sign consistency is represented by the grey arrow. This initial
cluster grows by finding the nearby points, but these new points na):,%&rily have the
correct signs as shown in the middle panel. The last panel showstthe signs of new points after
they are tailored by the algorithm such that a consistent se of%ns is‘achieved.
~

As an example, Fig. 3 shows the phase of the Ui3 ¢ghanges before and after the cluster
growing algorithm. Figure 3(a) introduces the labeling and the éeometrical path. The O-H1 is
fixed at 0.986 A, and the H2-H3 distance is fixed 0.8003&. The center of the H2-H3
diatomic is labeled D. (Throughout the wholg artic Dla'tways denotes either the center of
Hs and Hc or the center of H2 and H3, del%a e context.) The angle of H2-O-H1 and
the H3-O-H1 keeps the same and represe m angle of D-O-H1. The two directions
considered here are the O-H2 distanc \nQ the D-O-H1 angle. Figure 3(b) shows the Uiz as a
function of the two directions plo ' . Within each grid, the O-H2 distances are the
same and D-O-H1 angle chan \ﬂ‘on;90 to 180 degrees. One can see that Ui3 has different
phase for a path with -H»c%ance équals 1.1 A (emphasized with light grey color) as

compared with the 6ther'paths./Figures 3(c) and 3(d) show the dependence of Ui3 on the two

coordinates as gom éd d)'xectly from the electronic structure theory and as tailored by the
cluster growing?@&ith . The portion with the wrong phase is emphasized by the light grey
color in Q). The signed U3 is smooth after tailoring by the cluster growing algorithm.

The dehieyed sign consistency of the diabatic couplings makes accurate analytical fitting

) ssible.

V.B:2. Symmetries of Diabatic Couplings, Choice of Analytical Functions, and

Fittibg. Diabatic wave functions do not necessarily satisfy point group symmetry. For

S example, valence bond functions are often reasonable choices for diabatic functions, but

valence bond functions do not necessarily have point-group symmetry. We wish to take
advantage of the nonuniqueness of diabatic representations to define our diabatic states to

have certain symmetry properties — not point group symmetry but rather the molecular
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Publishing symmetry group C2/(M), where we use the notation of Bunker.'®! This group has is a

\ <

subgroup of the D3x(M) group, and it has three kinds of operations: identity, elementary
transposition of two particles, and transposition—inversion, where we use the language of

Rutherford.!?? All its irreducible representations are nondegenerate. Let A and B denote

symmetry under elementary transposition P, and let 1 and 2 denote sy{(methder P*,
so we have

which is the combination of an elementary transposition and an i er%n,

symmetries A1, A2, Bi, and B2.!°11% We emphasize that we areﬂingveducible

representation labels here for symmetries in the molecular m}try up Cov(M) with
T—
operations P and P*, not for symmetries in Czv. (When these symbols are used for Cay, there is

always a left superscript 25+1; thus 2A1 is a C2y label, whereas 21 is a C2(M) label.) Table III

£

shows the symmetry properties, where “A” and “1% denotb)even, and “B” and “2” denote
odd. We want our diabatic state functions to grans asa definite irreducible

representations of C2,(M) because this will be veryueconvenient for fitting the Uy to functional

&

forms for use in dynamics.. The diabatic % do not necessarily have A1 symmetry,
however, the product of the diabatic }pﬁn.g@ 12U13U23, must transform as A1.
Table IV provides analytic gi\ms at transform according to the four irreducible

representations, where R deno \t%\suclear geometry, ¢/l is a linear coefficient to be

m

determined by fitting;“7’ s i1s'an elementary transposition of hydrogen atom A with hydrogen

A

atom B, TAB?.C a(,(ycli}

Ioc arev Lg%s rom oxygen to each of the three hydrogen atoms labeled as in Subsection

permutation obtained as AB followed by AC, Toa» Yoo and

III.B.1fand (R) is a monomial that is a product of exponentials of the magnitudes of the

£

infernucle d/stances, and therefore P, (R) must be even under inversion. The inclusion of
“tan o(ry xr, )] ensures the function is odd and smooth under the inversion operation,

is a fitting parameter.. Note that ‘rl o(r, x r3)‘ is equal to the volume of a

parallelepiped with sides given by the three vectors; hence the magnitude of the argument of

the tanh[ Proa * (Top XToe )} function does not change under any permutation, but its sign

changes under an elementary transposition as well as changing sign under an inversion.
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By examining the behavior of the Uj for paths that interchange the hydrogen atoms by
inversion, by elementary transposition, or both, we found that U3 has A1 symmetry, and U2
and Uz3 have B1 symmetry.

The analytical function for fitting the A1 coupling including permutational symmetry can

be written as, /
" | \
Dk s(rfa

fit - "4y sy e
Ujk(ﬁ 1213574575575 ) = 2 s Y Y Y (23)
n1+n2+n3+n4+n5+n6:3,
connected .)
where Dr{ 1; - is a coefficient determined by least- quar 1t?iﬁg and the definitions of

1772773774757 76

the other quantities are given above. Notice some important dit%rences from functions used
for the diabatic potential energy surfaces, namely che‘ls is no constant term and no
pairwise additive term, and the summation starts w the sum of the powers equal to three. In
order to make the diabatic couplings Vanis%mptote regions, all the disconnected
terms are removed. The disconnected ter mm}e all terms with the sum of the powers
equal to 2 and some terms with the s }thq powers equal to 3. Hence, the total order starts
with 3. \\

The U13 matrix element 1 M fitted with a 12th order polynomial (M = 12) by using
the A1 function as sho n‘im% (23)."Although the MEG function of eq. (23) is defined in eq.

(21), we use differefit a, b, and/ri. parameters for the fitting of Uiz, U3, and Uzs. These

parameters wet€ o 1ze§;by fitting the diabatic couplings with various values of the
parameters and Bﬁu{the mean unsigned deviations (MUDs) versus the values of parameters

T c}n‘m to find optimized values. (We define unsigned deviation as the absolute

defof the'difference between the value from the fit and the original electronic
sfucture yatie.) The values used for the diabatic couplings are summarized in Table V, and
~the other ?arameters of the fits to the diabatic couplings are given in the Fortran program in

the sbpplementary material. The MUD for the final fit to Ui3 is 0.097 eV.

S «. The fittings of U12 and U23 are achieved by fits including only the nonplanar geometries

since these functions vanish for planar geometries. In particular, we chose a value for p, and

we fit U,-k(R) / tanhL DYy, o (g, X T )J for nonplanar geometries to eq. (23). Notice |tanh x|
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Publishing s between 0 and 1, hence ‘Ujk(R) /tanh[prOA o (og xroc)]‘ is always larger than ‘Ujk(R) ‘

Figure S13 shows an example of mean unsigned deviation (MUD) as a function of p for Uiz
and Uzs. (Figures with a prefix s are in Supplementary Material.) In this work, we use p =

15.4 A3 as the MUD is well converged with this value. Figure S14 shog's the value of

tanh[ pr,, - (ry, xToe)] as a function of the signed volume [Io, « (; B}l‘b;\of a

parallelepiped spanned by the three OH vectors with the curren%m;ted p value. To further
nct

validate that the chosen p value can provide a smooth and odd under the inversion

operation, we have investigated how the diabatic couplings c g?mrder the inversion.

Figure S15 shows how the diabatic couplings change along tw%pat s that cross the planar
geometry. Figures S15(a) and (c) show the geome@ of the two paths, named the H-out-of-
plane path and the H2-out-of-plane path, corresp%n%@le motion of the H atom or Hz

molecule normal to the plane of original p:N

the H-out-of-plane path, the OH bond
distances (O-Ha and O-Hg) of water ar 0.966 A and the HAOHBs angle is fixed at

104.5 degrees, and at the planar geo e{-s;sthe -Hc distance is 2.304 A. For the Hz-out-of-

™

'S{ are fixed at 0.984 A and 0.74 A respectively, and
tw

plane path, the O-Ha and HB-HC\g
at the planar geometry the d&%

2.00 A. Figures S15(b) and (d) show the diabatic coupling in planes containing the two paths.

en the O and the center of Hgs and Hc is fixed at

One can see that fit n%Uzs are odd and smooth under the inversion motion, although

the originally comiputed Uiz and Uzs were even because we employed the standard

orientation. have'sgmoved the planar geometries from the database, to avoid over
fitting, w ﬁt@vjh/zz with a lower value of M, in particular with a 10th order polynomial
(M =10); )ve d MEG and Morse functions for U2 and Uas respectively. The MUDs for
Ujz-and apg 0.087 and 0.069 eV respectively.

“‘w . Transformed adiabatic surfaces. The transformed adiabatic surfaces are
obtaiged by diagonalizing the diabatic potential energy matrix at each nuclear configuration.

S igenvectors form the rotation matrix T between the adiabatic and diabatic wave
-

functions. With the implemented analytical gradients for all 6 unique matrix elements (Uli,

U2, Uss, Uiz, U1z and Uzs), at nuclear geometry R, the analytical gradients of the adiabatic

surfaces V V; and the nonadiabatic couplings F, between adiabatic states are computed
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Publishing based on the following relations,*

*
AASR AN 24)
ik

1 . ..
V- ;];ijlVRUkl (l #* J)
=V Tk

U 0 (i=) <\ (25)

where T has been introduced in eq. (5). Hence, the current CO\mle\faces can be used in

both adiabatic and diabatic representations. ‘)
—

—
V.ACCURACY OF THE CURRENT PES g KS

In order to assess the quality of the fit, it is,es ntial‘tj specify the range over which it is
intended to be used. In the key experiment of Tod af:“ the OH is excited to V3 with a
photon of energy 4.0 eV. Adding the zero ;%ﬁgy of 0.4 eV and a possible thermal
energy of 0.1 eV, gives 4.5 eV relative to M) + Ha(re) asymptote, where re is the
equilibrium bond length. (Fu et al.32&§:@t@ the experiment with trajectories at 4.46 eV.)
By considering all the geometries&iﬁ% tabase with V3 below 4.50 eV, the MUDs for V1,
V>, and V3 are 0.053, 0.031, a MeV respectively. This is a check of the fits of both the

diabatic potentials and#hediabatic couplings, since the transformed adiabats are obtained by
diagonalizing the fitted DPE
£

In a fit it igfim rtant)o ensure that the fitted potential remains high at higher-energy
data points so t%ically inaccessible regions on the accurate surfaces are also

che fitted surfaces. By considering all the geometries in the database with V3

naccessi

UDs for V1, V2, and V3 are 0.075, 0.047 and 0.114 eV respectively.
~ We coniefude that the fit is successful on average. Next we consider important
“geo trig in more detail.
yA. Ground and excited states of reactants and products. The ground-state
S equilibrium geometries for reactant and product are shown in Table VI. We compare to two

32,104 and to experiment.!% Cuts through the ground-

previous fits to the ground-state surface
state PES corresponding to OH and HH stretching in the reactant region are shown in Fig.

S16, and those corresponding to the three water vibrational modes are shown in Fig. S17.
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Publishin g These comparisons show that, although higher accuracy could be attained if one were fitting

only the ground-state surface rather than three coupled surfaces, the current ground-state
surface is accurate enough in the asymptotic regions for studies of nonadiabatic collisions.

The potential energy level of the product relative to the reactant is —0.70 eV, which
compares well to our best estimate'% of —0.71 eV. /

V.B. van der Waals wells in reactant valley. We also investi ata) the geometry at the
ground and excited state van der Waals (vdW) minima close to %&Qt region. For this
discussion, we consider five geometrical parameters, nam t}‘@O—HA istance (Romn), the

~
Hg-Hc distance (Run), the distance between O and the génter of ' HzHc (Rop), the HAOD angle
(61), and the ODHg angle (62). We will compare these g etri)al parameters from the
current PES with those from SA-MCSCF/CI/pQZ lcula‘l"’)ns by Hoffman and Yarkony.?!
The results are shown in Table VIL Both thegroun@and excited states vdW minima show a
T-shaped structure with Ha of the OH mole&@ed toward HesHc. (Notice these
optimized structures are not exactly T-sha % 0 deg and 62 = 90 deg), but they are very
close to it.) For the ground-state yd \1§m1{m, the fragment structures are very close to the
optimized reactant structure, with'Q*l) disStance at 3.736 A. For the excited state vdW
minimum, the structure correc \s'hws a much smaller O-D distance at 2.219 A with longer
O-Ha and He-Hc bondde s at 1.055 and 0.774 A respectively. From the comparisons, one
can see the current/PES “ga‘cﬁjtably accurate for the van der Waals minima.
V.C. Ground- 4e lgi'nimum-energy reaction path. Next we investigate the energy

along an approximate minimum-energy path for the ground-state hydrogen transfer reaction.

The compasisons between computed and fitted diabatic states and diabatic couplings along

the MEP are shown in Figs. 4(a) and (b) respectively. Figure 4(c) shows the comparisons
bétween th riginal and transformed adiabatic surfaces. Three representative geometries
“alo he}\/IEP corresponding to the reactant, transition state, and product regions are shown

as ingarts in Fig. 4(a). Figure 4 shows a clear crossing of the reactant and product diabatic

es, similar to what is seen in a valence bond treatmen of the 2 reaction; this
t lar to what | bond treatment'”’ of the H + H tion; th

behavior was expected from the electronic structure considerations summarized in Fig. 1.
Although U1 and Uss cross along the MEP, the large value of the Uis coupling near the

crossing geometries makes the V1 and V3 have a large separation all along the MEP.
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Because the reaction path geometries are planar, Ui2 and Uas are zero along the reaction
path, which is properly reflected in our fit. The MUDs of the transformed V1, V2, and V3
along the reaction path (at a total of 31 geometries) are 0.053, 0.030, and 0.064 eV

respectively. This confirms the accuracy of the fitted diabatic potentials and the fitted U3

results for two especially interesting two-dimensional cuts. Fig esponds to the Hz

along the reaction path. /
V.D. From reactant to the tricoordinate region. The suppl eﬁymrial presents
h
rotational motion of Fig. 3(b) and is denoted as the HH rot iom‘h}\'gures S2, S3, and S4
Vio

H. . .
ublication®? and is denoted

are for an OH rotational motion illustrated in Fig. 5 of apre
as the OH rotation path. These figures show that the res for}lese geometries are accurate
enough for realistic simulations. 3

V.E. Vibrational modes at transition state g m@'rry. Figure 5 shows some cuts along
x

the vibrational modes at the ground-electromi sdddle point for the chemical reaction.

Representative geometries along the path ~e\sﬁti'Wn as inserts. We see most of transformed

A

adiabatic surfaces agree very well wi % eriginally computed ones. A large deviation is

observed for /3 in Fig. 5(d), how hi

ot

egion is at high energy (higher than 4.5 eV) and

hence should have less releva \.F‘xgu_res S18 and S19 show the fitted and computed diabatic
states and diabatic couplings. The Ds for transformed V1, V2, and V3 for the four
vibrational modes 0@6& (a total of 190 geometries) are 0.072, 0.022, and 0.119 eV.

The transformed a

c’c’)ml}uted V1, V2, and V3 along the six normal modes computed from

previous gr un%dl batic PES by Chen et al.!® is shown in Fig. S20. Again, these

accuracie Qood enough for realistic simulations.

and adiabatic excitation energies of OH radical. The O-H distance at the

optimized ex¢ited-state minimum of the reactant radical is 1.011 A. At this excited-state

and 3)098 eV respectively (energies in this article are relative to OH(7<) + Ha(re)). This

(in umy the transformed adiabatic energy levels of the ground and excited states are 0.035

S

indicates the classical-equilibrium-to-classical-equilibrium adiabatic excitation energy of the
OH radical is 4.098 eV. Experiments yield a zero-point-level-to-zero-point-level adiabatic
excitation energy of OH equal to 4.052 eV (32682.5 cm™)!%°, which is in reasonable

agreement. The vertical excitation of the OH radical on our transformed adiabatic surfaces is
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Publishin g 4.129 eV. By using the experimental adiabatic excitation energy of 4.052 eV) and the

experimental fundamental vibrational frequency (3180.56 cm!) for the excited state, here we
approximate the experimental vertical excitation energy should be 4.083 eV. Both
comparisons show an energy difference of only 0.046 ¢V between the current PES and the
corresponding experimental value. /

V.G. PESs near conical intersections. An advantage of fittin& the diabatic potential

energy matrix elements is that the fitted surfaces should have qualitati correct shapes near

conical intersections. Unlike adiabatic PESs, the diabatic s fa% are Smooth, and hence the
—
fitting the PESs does not encounter additional difficulti€s niear the conical intersections. In

this subsection, we will report the comparisons between nsf()med and originally computed

adiabatic surfaces at geometries near a conical int ectio‘n)A detailed analysis of conical

intersection seams will be given in section Vi. -
The geometries considered in this regard are Cl-optimized conical intersections

reported in Refs. 21 and 37; because they mnputed with MRCI, which is different from
the XMC-QDPT method used here, t 3‘&1&0 conical intersections of the present surfaces;
however, the conical intersection \On{t' s should be similar for the two treatments, and
hence these geometries provi Ms‘[ geometries for considering regions near a conical
intersection. To enrichthe“diyersity of our database, we have included our calculated results
at these geometrie rzog:ztbg. We show in this subsection and in the supplementary
information th;l th {rreryPES is robust at these near-conical-intersection geometries.

The first nwcal-intersection geometry considered here is near a two-state

intersectionyvith Cz2y symmetry (point #4 of Table III of Ref. 21); we will denote it as

geonfetry P in thefollowing text). The results near this conical intersection geometry are

discussed 1 upplementary material in conjunction with Figures S7, S8, and S9.
— igure S21 shows two one-dimensional plots of the originally computed and

trans%rmed adiabatic surfaces as a function of the geometrical index for geometries in the

S branching plane of two C2v and Cwy conical intersection geometries. The Cay conical

intersection is the P geometry mentioned above and discussed in supplementary information,
while the Cwy conical intersection is a representative conical intersection with Cewy symmetry

(point #1 of Table IV in Ref. 21; the branching plane is discussed in the Ref. 36 as well).
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Publishin g These comparisons provide further confirmation that that current PES is accurate.

In addition, we have compared the energy levels of four high-symmetry points found to
be minimal energy conical intersections (MECIs) within their symmetry at the MRCI
theoretical level by Dillon and Yarkony?®’. The energy levels computed from the current PES

and by XMC-QDPT are summarized in Table VIII. Again, we remin: reader that these

geometries do not represent the MECIs on the XMC-QDPT PESs o@qree ofithe four
symmetries the XMC-QDPT and MRCI calculations agree Welﬂ% er deviations for
CEX)V.

D
—
VI. ANALYSIS OF CURRENT PES = &3

In this section, we will investigate the behavior of cmjent PESs in various regions.

Because this section only considers the fitted diabati sﬂl'faces, fitted diabatic couplings, and

transformed adiabatic surfaces, we will sin}&Kc hém diabatic surfaces Ui, diabatic
couplings Uy, and adiabatic surfaces Vi. Mer the following discussion from lower to

higher symmetries. Specifically, we hwtlgate how the PESs change from nonplanar to
planar geometries (Cs symmetryw PESs change along a path in Cs symmetry that

connects the Cxv and Cay syv&\}e\s,.@nd how the PESs change along coordinates that

preserves Cav, Coov, C3yf@ 3, Symmetries.
The total number ofuclear internal degrees of freedom is denoted as /' (which equals

3N — 6, where MV is

’;mtpber of atoms). For the present problem F = 6. The number of
nuclear de eeshﬁfqdo for a subspace with a given symmetry is denoted as £ and is 5, 3,

3,2, an r Cs, Cay, Cov, C3v, and D3n symmetries, respectively. The dimension of a zero

surfate of the diabatic coupling in an £ -dimensional subspace is typically either 1 or £,
ere the [atter implies that the diabatic coupling vanishes in the whole subspace due to an
“en d symmetry. In the former case, the conical intersection seam has symmetry 7 — 2; in

the lafter it has dimension F — 1.

S «. Itis not required that diabatic wave functions transform according to an irrep of the

relevant symmetry group, but in our analytic DPEM we do enforce some symmetries. If we

enforced symmetry in all cases, we would find the following:
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Ull UIZ U13 Ull 0 Ul3 11 0 0
v, v, U, |—»| 0 U, 0 |»>| 0 U, O (26)
Ul 3 U23 U33 Ul 3 0 U33 0 0 U33
C Cs Coy or Coov

The behavior shown for Cs is built into our analytical functions. T re.gre, lagonalizing the
DPEM in Cs symmetry is equivalent to diagonalize a 2 x2 matrix thatinvolves Uii, Uiz, and
n@f%\tates; hence we label

A’ ¢onical intersection. In

Uss. The resulting two transformed adiabatic states are 12A’
the conical intersection seam within Cs symmetry as the 23é

-2 i54; in the Cs space it has

the whole space this conical intersection has dimension

dimension 7 — 2 = 3; that is a three-dimensional s@am of the four-dimensional seam lies in

S

\:
fg\j}/ etry to C2y and Cwy symmetries, eq.

(26) shows all three diabatic couplingsﬁﬁ\‘l 0; however, such symmetry is not present in
our diabatization. Because all C2y an 'Gw7geo etries are planar, we do have Uiz = U3 =0,

.

Cs.

If one further changes the geometry

but we do not force U3 to be ze&q‘r\ and Cwxy symmetries in the current fit. However, this
has the consequence that ou Ws tes also have broken symmetry for these
symmetries. The two states with A“symmetry when OH3 is in Cs symmetry become 1211 and

12Z* states when OH3 ' the C%, subspaces and 1Bz and 1?A states when OH3 in a Cay

subspace. Next wediséuss the 1°I1-Z* conical intersection seam and the diabatic crossing

seam for Ceoy nd also the 12B2-12A1 conical intersection seam and the diabatic

cometrie
crossing anﬁjC\zvymmetries. The transformed surfaces corresponding to these two
adiabatic s}ate e obtained by diagonalizing a 2 x2 matrix that contains U1, U13, and Uss.
Thetwo dit{ons for a conical intersection are U1 = Us3 and Uiz = 0. Because we do not
enforce U§3 = 0, our fit has a conical intersection of dimensionality £ -2 =1, but the

—
dimdgsionality of the conical intersections in the Cav and Cwv subspaces should be F -1 =2.

S lleviated this problem by including many C2v and Cwv geometries in our database in the
-

hope of obtaining U3 as close to zero as possible. As a result, the fitted U3 are very close to
zero, and conical intersection is approximately two-dimensional in these subspaces.

VIL.A. From nonplanar to planar geometry. First we investigate how the PES changes
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Publishing when one changes the OH3 from nonplanar geometry to planar geometry. We start with a Cs
geometry having O-Ha , Hs-Hc, and O-D distances of 1.0 A, 1.2 A, and 1.5 A respectively,
where O is at the origin, Ha has positive x coordinates, and D has negative x coordinate. Both
Ha and D are on x-axis; Hs and Hc have positive and negative y-axis respectively, with Hs-
D-O angle equals 60 degrees. In the following text, we will label this/) etry as Q. We will
investigate the following processes: (1) the HsHc out-of-plane mqgtion eQa%!&lves vertically
moving HeHc out of the plane of the four atoms at geometry Q, (2) théunotion that changes
the O-D distance, and (3) the motion that changes the O-H di;%me.

—~

The three adiabatic surfaces V1, V2, and V3 are shoyvnas a function of the out-of-plane
coordinate of Hp-Hc, O-D distance, and O-Ha distance 1 igs.}(a), (c), and (e) respectively.
The Ui, Uz, Uss, Uiz, Uiz, and Uz3 along the thre oord'i'jates are shown in Figs. 6(b), (d),
and (f) respectively. Notice the geometries conside iﬁ"Figs. 6(c), (d), (e), and (f) have Cs
symmetry. Hence only U3 is shown in F ig%g ¢) because for planar geometries, U2
and U»3 are exactly zero by symmetry. The,adiabatic PESs and DPEM elements change
smoothly for both in-plane and out-o he@otions. One can see that Ui2 and Uzs change
sign smoothly when HsHc moves ong side of the plane formed at Q to the other side as
shown in in Fig. 6(b). In addit \we.fmd Un and U2 has in general qualitatively similar

behavior along differe

eaq%nates and are close in energy. Such behavior is consistent with

that has been schendatically illustrated for the global PESs as shown in Fig. 1.

An exang% 0 /A —/VA’ conical intersection is shown in Fig. 6(c) where it is labeled
as geome IN, the O-D distance is 1.58 A, and the rest of geometrical parameters
are the sa Qfor Q. The U1, Ux, Uss, and U1z matrix elements are 2.400, 2.379, 2.415, and

0.003%¢V péspectively at Q1. The three transformed adiabatic surfaces are V1 =2.379, V2=

2 9‘9-: and V5, =2.415 eV at Q1. Notice that V1 = U2z at Q1 because Uz is decoupled from
.U&% 3. Hence, for the geometry Q1, the 22A" -12A" conical intersection can be classified
as a bz—Va conical intersection. Figures S22(a) and (b) zoom into Figs. 6(c) and (d) in the
S range of O-D distance from 1.5 to 1.65 A. These cuts clearly show the correct behavior of the
PESs near the conical intersection. The cuspidal behavior at conical intersection cannot be
achieved by a direct fit of the adiabatic surfaces, and hence this region of the surface shows

the power of employing the DPEM as the fitting target. The PES along the O-Ha distance is
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Publishing shown in Figs. 6(e) and (f).

Further discussing of the nonplanar-to-planar geometries is given in supplementary
material.
VIL.B. Connection among Cay, , and C., subspaces. Here we consider a motion that

corresponds connections among Cav, Cs, and Coy symmetries. The geQ{ ry labels are
defined in Fig. 7(a), with O-H1 fixed at 1.0 A. We are considerin 1@;%@&@ with
two coordinates corresponding to the H2H3 rotation around the eenter'ef H2H3, with the
rotation angle changing from 0 to 90 degrees, and the H2- (@ance anging from 0.6 to
1.4 A. When the H2H3 rotation angle equals 0 and 90 dégrees, ;;Bmetw has Czv and Coov
symmetry respectively. Hence, if one considers a change'ef the§i2H3 rotation angle from 0
to 90 degrees, the path involves a Cowv geometry,c ing‘tj) Cs and then to C2y symmetry.
The quantitiesUs3, Uss - Ut1, and V(22A" ) — K(1°A notice that at 0 degrees, the two states
are 1211 and 12" states, while at 90 degree%states are 1°B2 and 1?A) are shown as
functions of the H2H3 rotation angle an ~e\HZTHS distance in Figs. 7(b), (c), and (d)
respectively. We can see from Fig. 7 \tiat.l(m is close to zero as a function of the H2-H3
distance for both Coyv and C2v geo w ne can see that Us3— U1l changes from negative

values for long H2-H3 distanc Mall rotation angle to positive values with short H2-H3

distance and large rotati gle. We have shown the two contour lines with values

correspond to —0.3 53\{0}523 eV in Fig. 7(¢c), and hence between these two contours,
£

there must exi?/a

crossing seam in Csgy

atic frossing seam. This shows an example of how the diabatic

etry connects the diabatic crossing seams in Cwoy and Cay

symmetri QZA' -12A’ conical intersection seam can be found in Fig. 7(d), where it is

and with 22A" -12A" below 0.2 eV. This gives an example of how such a
2%A” -12A " tenical intersection seam in Cs symmetry connects a 12[1-12Z* conical intersection
th> Coov subspaces to a 12B2-12A1 conical intersection within the Cay subspace.

yI.C. Conical intersections and diabatic crossing seams in C,, symmetry. Now we

S will discuss paths (cuts) that pass near (within about 0.2 €V) to the planar C2y portions of the

conical intersection seams and diabatic crossing seams. We consider 1?Bz and 1°A; states for
Ca2v symmetry which corresponds to the transformed adiabatic surfaces by diagonalizing the

2 x 2 matrix involves U1, Uss and Ui3. We will show that in the current fit, U13 is very close
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Publishing to zero for Cav geometries, and 12B2-12A1 conical intersection seam and diabatic crossing

seam form an approximately 2-dimensional surface in the 3-dimensional C>, subspace.
Here we use O-Ha , He-Hc, and O-D distances as the coordinates in Cay (recall from
section [V.B.1 that in the present context D in as the center of the Hs-Hc diatomic). The

geometries considered here are shown in Fig. 8(a), where the O-D dis{ ¢ is fixed at 1.5 A.
The U3, Uss— Un, and |F(1?B2) — V(°A1)| contours are shown in Fj s.—g;:),},sand (d)

respectively. In panels (b) and (c), the contours on either side of'0.are Tabeled. One can see

that U13 is very close to zero for the geometries shown by the plats; it ranges from -0.09 to
0.08 eV. A diabatic crossing seam is found in the region‘where :I?is near 1.1 A for
shorter O-Ha distance and 1.3 to 1.4 A for longer O-Ha di tanc), as can be seen from Fig.
8(b). Not surprisingly, due to the small values o (‘q..con'%al intersection seam is located in a
similar region. This can be observed from the blac andas shown in Fig. 8(d).

We further consider two additional cuNr ofiding to O-Ha fixed at 1.0 A and Hs-Hc
fixed at 1.2 A. Figures 9(a), (b), and (cNWUw — U, Ui, and |[V(1°B2) - V(A1)
change as functions of the O-D dista %ﬁdJ;IB—Hc distance. One can observe a clear change

from negative to positive for Uss when the O-D distance increases. A diabatic crossing

seam (green band in Fig. 9(a) \n‘be.(ound for region where O-D is near 1.5 A. The U3

matrix element is closef o except for the region corresponding to an O-D distance around

1.0 A and an H-Hé dis G-Zaound 1.0 to 1.3 A, with the largest U3 equal to 0.279 eV. We

can see from Fig. Sthy Uis is close to zero as a function of the H2—-H3 distance for both

Cwv and C2y.geometries at short H2—H3 distances. Therefore, one sees a conical intersection
»

seam in ) in the same region as the diabatic crossing seam, with the O-D distance near

1.5 ASThis conical intersection seam is shown as a thick black line in Fig. 9(c). Figure 9(d),
(e), and (D) show how Uss — Ui, Ui, and |V(12B2) — V(>A1)| change as functions of the O-D
~distance and the O-Ha distance. Panels (d)—(f) are similar to panels (a)—(c) except that we fix

HA-Ihs instead of O-Ha.

\ «. The geometries with |Us3 — Un1| < 0.2 eV and [F(17B2)— V(*A1)| < 0.2 eV are plotted in

Fig. 10 as a 3-dimensional scatter plot as a function of the O-Ha , He-Hc, and O-D distances
with the O-Ha distance in the range 0.9 to 1.4 A, the Hg-Hc distance in the range 0.6 to 1.4 A,
and the O-D from 1.0 to 3.0 A with a step size of 0.05 A. Panels (a) and (b) show scatter plots


http://dx.doi.org/10.1063/1.5111547

AllP

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. | 32

Publishing with two different perspectives, with black dots represent the geometries with |Us3-Uni| < 0.2

eV and the red dots representing geometries with |V(1°B2)— V(?A1)| < 0.2 eV. The yellow
surface shown in the figure represents the 2-dimensional surface of the diabatic crossing and
conical intersection seam in the 3-dimensional space. One can see that most of the geometries
indicated in the scatter plot are on both diabatic crossing and conical @t/ section seam (with
black and red color on the same dot). This illustrates our previous nzﬂ?};hthe diabatic
crossing and conical intersection seam will be both 2-dimensio %@tion, panels (c) and
(d) show the distribution of U3 for geometries satisfying t Oﬂ.ze\/ criteria. We see that U3
is very close to zero for these geometries. -~ -

VLD. Conical intersections and diabatic crossin eambin C.v symmetry. In this
section, we consider the 12T1-2X" conical intersecti seam)and diabatic crossing seam in the
Cwv subspace. Based on the previous discussion, w 5w that the conical intersection and
diabatic crossing seams are 2-dimensioanlh§l&t 1s section, we will show that U3 is
fitted close to zero. . =

We use the three O-H distances hres\entative coordinates, as shown in Fig. 11(a).
Figures 11 (b), (c), and (d) shows w 33— U1, and |V(12I1) — V(1?Z")| as functions of the
O-H2 and O-H3 distances wit \e@¢ll distance at 1.0 A. In addition, we are considering
the situation where OH8"is<at least 0.5 A longer than OH2 to avoid a strong H2-H3 repulsive
potential. Figure 11{b) s ﬂba‘[ Uis ranges from -0.10 to 0.10 eV, with most of the region

close to zero,;)d

the diagonal of Nhe oordinate space considered here. A contour line marked with 0.044

ic fif by }he green color. One can observe a green band in Fig. 11(c) near

Qw diabatic crossing seam is located nearby. A black band shown in Fig. 11(d)

diabatic stateg cross. Figure 12 shows a similar scenario for the Caov subspace with O-H2 at

1.5 Aand/changing the O-H1 distance from 0.9 to 1.4 A and the O-H3 distances from 2.0 to

S «. Similar to the procedure we employed for C2y subspace, Fig. 13 shows an analysis of the

conical intersection seam in the region with O-H1 from 0.9 to 1.4 A, O-H2 from 0.9 to 1.9 A,
and O-H3 from 1.4 to 4.4 A with the O-H3 distance at least 0.5 A bigger than the O-H2

distance. We again used a step size of 0.05 A. Black and red dots indicate the geometries with
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Publishing less than 0.2 eV for |Uss-Un| and |V(12I1) - V(12Z")| respectively. One can see that black and

red dots are almost on top of each other, as they should be.
VL.E. D3 region and a path from D3j, to Csy. In the D3;, subspace, we only have one

independent degree of freedom, namely the O-H distance. Figure 14(a) shows the three
adiabatic surfaces as a function of OH distance ranging from 0.9 to 1@/1%:1, V2, and V3
e

surfaces are shown as red, blue, and yellow curves respectively; d@h{ degeneracy

between V2 and V3, blue and yellow curves are on top of each ofh\ degeneracy is

required by D3» symmetry. The two nearly degenerate stat h@ single,occupancies of one
T

or another of the two 2e SOMOs shown as DMO7 and DPMO9 inJable I. The dominant DSFs

for the associated states Uni and U22 are y1 and ys respectiyely. hlthough we don’t enforce the

D3, symmetry in the construction of diabatic st teg.iig. l‘#a) shows the current fit is very
accurate in the D3, subspace in that the two di‘zﬂ)\aﬁﬁté‘res are nearly degenerate. Figure
14(b) shows the U1, Uz, Uss, and Uis of tw onding region in D3 symmetry. The
fitted U1 and U2z preserves such degene ~\faf'}_@sh configurations.

Now we start with each geomet m;«symmetry considered in Fig. 14, and we
consider the out-of-plane motion thyee H atoms to see how the PESs behave when one

changes from D3 to Csv. At th Wﬁguration, the four atoms are in the xy-plane, and we
change the symmetry oﬁegion to C3y region by moving the O atom vertically in the z
1.0

direction between A.0 a . The adiabatic surfaces V1, V2, and V3 as functions of the O-

H distance an?dut— —{)laly coordinate are shown in Figs. 15(a), (b), and (c) respectively. It is
shown that J/2 an are nearly degenerate (notice the color bars are the same for Figs. 15 (b)

and (c)) 'Qindicates the current fit is robust for C3, symmetries.

.F./Diabatic state crossing along a reaction path. Here we consider the diabatic

sthte crossi along a reaction path. This path involves the O-H2 and O-H3 distances

The hl, H2, and H3 labels are defined in Fig. 16(a), and D is the center of H2 and H3. Notice

Q in )vith a fixed O-H1 distance of 0.962 A and a fixed D-O-H1 angle of 103.7 degrees.

S

Q, H2, and H3 are collinear with O-H3 at least 0.6 A longer than O-H2. We are considering
the O-H2 distance from 0.8 to 2.6 A and the O-H2 distance from 1.4 to 3.2 A. Figure 16(b)
shows the diabatic state ordering along the path. The Ui1-Uz2 diabatic state crossing is also

shown in Fig. 16(c). Figures 16(d) and (e) show the U11-Uss and Uz2-Uss diabatic state
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Publishing crossings. One can see that Figs. 16(d) and (e) are very similar. Along the path, Uss crosses

both Ui and U2z once. This is consistent with what has been illustrated in schematic Fig. 1.
The reaction of H2 with OH to form H20 + H can be approximately understood by following
a path starting from the upper right corner of Fig. 16(b) and following the diagonal boundary

to a shorter O-H2 distance, then vertically going up to a longer O-H3 {(mq:long such a
tem

path, one would observe Uss cross both Ui and Uaz one time and ghe s intain the Uss

120 degrees. ‘)

VI.G. Nonadiabatic coupling vectors. We considéran example of the NACs as a

< U2z < U1 diabatic state ordering. Figure S23 is a similar ﬁgu&%e D-O-H1 angle at
T—

function the HeHc out-of-plane motion described insec VI)‘. The transformed adiabatic
states and DPEM elements along the HsHc out—osmgne m?tion are shown in Fig. 6(a) and
(b). The magnitudes of the NACs between the t@d}aﬂsformed adiabatic states, |F12|, |[F13,
and |F23|, are shown in Fig. 17. One can se@?&\wq 23| are much larger than |F12| along the
path. This can be understood from Fig. 6 NVﬁ'i'ch shows that along the HsHc out-of-plane
motion, U1 and Uz cross with U33,§\§Q;3.akn U»s deviate significantly from zero. One also
sees that |Fi2| can be small evenw energy gap between the transformed adiabatic

states V1 and V2 is small, for%@,\where the HsHc out-of-plane coordinate ranges from -

1.0 to 0.5 A. This is because the two states are weakly coupled, and Fig. 6(b) shows that U2

is close to zero along th

y.
{ y.
VII. CONCL %{

We h Qerformed three-state XMC-QDPT calculations for more than 70000

geonfetries'to explore the global coupled potential energy surfaces of the OHs system and to

d VéT‘Op analytic fits that can be used for investigating the quenching reactions of excited
“hy 1)adica1 with Hz. The diabatic states and diabatic couplings are obtained by

emplbying the fourfold-way and model space diabatization at each geometry. Each matrix

\ element in the diabatic matrix (U1, Uz, Uss, Utz, U1z and Uss3) is fitted with a suitable

analytical function that takes account of the invariance with respect to permuting the H
atoms, and a new algorithm is used for determining the phases of the off-diagonal diabatic

matrix elements. The adiabatic surfaces are subsequently obtained by diagonalizing the
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Publishing diabatic potential energy matrix at each nuclear geometry; the adiabatic energies obtained in

this way from the fits are called the transformed adiabatic energies. With the implemented
analytical derivative of diabatic states and diabatic couplings, the gradients of the adiabatic
surfaces and nonadiabatic couplings can also be computed.

By comparing the originally computed adiabatic energies and thqt/ sformed adiabatic
energies, the mean unsigned deviations of V1, V2, and V3 are 0.05 OIBT,J;}‘O.OW eV
respectively for geometries with 73 below 4.5 eV. In addition, meared the
transformed adiabatic energies to the originally computed ‘(})DP diabatic surfaces

~
along various cuts and at some critical geometries, for gkample negar conical intersections and
at ground-state and excited-state van der Waals minima. These bomparisons show high
accuracy for the analytic fit. Due to the smoothness,of thajiabatic states and diabatic
couplings, the current fit can correctly predigt the s'ftear the conical intersection
geometries. g\\

Further analysis investigated variou %f the PESs in greater detail. Specifically,
we have shown how the PESs behav %‘n{)pe changes the OH3 molecule from nonplanar to
planar geometry, when one chang 3 molecule within the Cs symmetry along a path
that connects the Coy and Cay Mes, and when one changes the molecule along paths
that preserve Cav, Coov, ’m“%DM symmetries. We have also mapped out the 12B2-12A1

n

conical intersection/sea d diabatic crossing seam within the C2, symmetry, the 12[1-2Z"

conical 1nters(e;(’10 am ?ad diabatic crossing seams within the Cv symmetry, and diabatic
crossing s among &1, U2z, and Uss along an approximate reaction path. These results have
shown Qnt PES is reasonably accurate near conical intersections. Hence, we believe

—
w NTIAL ENERGY MATRIX: SURFACES AND COUPLINGS

\ Egrtran subroutines containing the fits to the potential energy surfaces and couplings are

included in the supplementary material. These files can also be obtained from the Potlib

library at https://comp.chem.umn.edu/potlib. A manual for the PES subroutines is also

included in the supplementary material.


http://dx.doi.org/10.1063/1.5111547

AllP

Publishing

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. | 36

SUPPLEMENTARY MATERIAL
See supplementary material for Fortran routines containing the fitted surfaces and
additional figures containing mean unsigned deviations, the hyperbohc tangent inversion

function, diabatic potential energy matrix elements, and adiabatic pot ial energy surfaces.
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Table 1. Point-group symmetries of the DMOs

Character in Local ,  Character in Local Character in Local .

DMO OH+H, Symmelry®  yicoordinate — Symmetry H.O+H symmetry

region — region _ / regionb _
Cs Cw Cs Coy \ Cs Cw
, — 5 S ,
1 2s a a, 2s a a, 2s a a,
2 oOHa a  a le, a’ ‘b) 16, H O a b
—~—
3 2p,0 o b, le, (“\21 2a,H,0 d  a
4 szO a ” b1 lbl " a 1 2sz20(HOMO) a ” b1

o*OH ‘)
5 oHeHc a’ a a*Q%;:i—\ ‘71" a, 1sH a’ a,

0*0\
6 3p,0 a b, \3&\ a a a,/3p a’ a,
7 3d .0 da N\ P a« b 3d, a b
8  3pOW*OHA X\ 3e a b, ¢*OHa+¢*OHs  a b
9 o*HeHc a’ X 2e a a,  3s/4aH,O(LUMO) 4 a,
10 3sz Q bl 3sz a bl 3sz a”’ bl
£
11 2s/0 / a 3s0 a a, 6a, a’ a,
N

“For OH Q%ﬁe the symmetry as follows for this table: all four atoms lie in the xy

planehe 9 atem is at the origin, the x-axis coincides with the OH bond, and HH is
orthogonal to Q’H forming a T-shape structure
b Rer HzO§+ H we define the symmetry as follows for this table: H20 is in the xy plane, the O

ﬁ
atorrsis at the origin, the x-axis is on the HOH bisector, and the separated H is on this bisector

<
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Publishing Table II. Orbital occupancies and point-group symmetries” of prototype configurations of the

diabatic states

Local symmetry?
State DSF Occupancies” Reactants Tricoozdinate Products
1 A4 222200100 2A1 % \ B>
1 X2 221220000 B .N 2A1
1 A3 222110001,S 2 -.,\5131 ’Bi
2 X4 222120000 2B 5 ’Bi B,
2 Zs 222200001 Xa 2A 27
2 Xs 2221 10001,‘\\ 2 B, B,
3 b2 2122 oo&\ A ’B, ’B,
3 A3 2 & o 2A1 2A1 2A1

% The local symmetry el ent%?actant—like and product-like regions are defined in

Table 1. The tricoordinate co
symmetry in the Cay
is broken in dyna
states; symmetry4s notimpoged in actual calculations.

is for Ds3x structures, but classified according to the
up so that one can see how the states evolve when the symmetry

0
ngSNnetry information is presented here only to characterize the

b These are g cupancies of the first nine DMOs of Table I; DMOs 10 and 11have zero

occupancy id _all ofithedprototype configurations. S and T denote the spin coupling by
denoting whethex the state dissociates to singlet water or triplet water in the product region.
£
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Table III. Symmetry properties” of the C2(M) group

irrep Identity Transposition (P) Inversion (*)  Transposition-Inversion (P*)
Al even even even even
A2 even even

Bi1 even odd

B2 even odd c<\&
)

cven

“adapted from Serre (ref.103)

Table IV. Symmetry-adapted functions for the sz

irrep 4\\§unct10n
4

+7, +TBAC+TBBC)P ( )

Al

A, , ol ch"](l—fAB—T" ~T 4o +T 1540+ Ta5.50)Pu(R)
B: TAB+TBC+fAC+fABAC+TBBC)P (R)
B fAC fABAC+TBBC)P( )

Table V. The M;Q%& used for fitting diabatic coupling

Diabatic \? a/A b/A? rie/ A
CouplliQ) H OH HH OH HH OH

12 £ \ 0.800 0.610 1.300 1.300 0.702 0.802
Uiz / 1.1028022 1.2561573 1.61 1.75 0.9333333 1.196078

Q Uz33 1.09 1.323343 1.633190 1.823343 1.001178 1.113545

NI
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Publishing Table VI. The equilibrium geometries, harmonic vibrational frequencies, and energies of the
optimized ground state minima at reactant and product regions

Property  Present PES FKB? YZCL¢ Ref.

OH e 0.972 0.967 0.97 0.970¢
© 3759 3737 43764 37384

Ho e 0.745 0.740 { 0.742 0.7414
© 4378 4401 4 .\M 44014

H20 7 0.965 0.962 1} 0.959 0.9594
6. 103.7 103. 104.2 104.3¢

wi 3694 3 5)\ 859 38254

w2 1809 3/ 1649 16544

w3 3850 “387 3961 39364

OH+Hz— HO+H/ AV -0.70 ( -0.64y -0.68 0.718

-

“Bond lengths (r) are in A, bond angles (6) are in egrees)i‘bfational frequencies are in cm™,
energy of reaction is in eV. The vibrational frequeneies 5@ w; for the symmetric stretch, w:
for the bend, and w3 for the asymmetric stretch. -

bFu, Kamarchik, and Bowman, fir to MRCI%\aug—c -pVTZ calculations, Ref. 32

ture\Qf

“Yang, Zhang, Collins, and Lee, fit to a mi D(T)/ 6-311++G(3df,2pd), IC-
MRCISD+Q/aug-cc-pVTZ, and UCCSD(®)/atig=ee=pVQZ calculations, Ref. 102
YExperiment, Refs. 103 and 107 nzﬁ\
JEnergy of H2O(re, 6.) + H relatiye to Wf’e’* Ha(re)
¢Best estimate, Ref. 104 \\
\

Table VII. The geometries.and energies of the optimized ground and excited state van der
Waals minima close, t{the redgtant region.

PESs / ‘\} this work DY*
25w o
Staii *\\tHz( X's:) +H,(X's;) +H,(X'}) +H,(X's;)

Ro )| 0.970 1.055 0.977 1.059

vn /A 0.743 0.774 0.744 0.778

fA y 3.736 2.219 3.310 2.175

01/ 6.25 1.36 0.55 0.04

02 / deg 90.52 89.08 90.42 89.92

C V) 0.039 0.375 0.027 0.312
Py V¥/ev? -3.805 0.000 -3.860 0.000

S <Diffon and Yarkony, SA-MCSCF/CI Ref. 21.
bTo compare with Ref. 21, we provide the energy relative to V'*, which is the energy of the
excited-state van der Waals minimum of the corresponding PES.
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Publishing Table VIII. The energy levels of four high-symmetry minimal energy conical intersections
optimized at MRCI method?, all energies are relative to the OH(AZZ+ ) +H, (X ‘Z;) state at

the reactant geometry.

Co/eV Cov/ eV Csv/eV Dsn/ eV
States C b
urrent PES ~
141 2.612 2.066 0.408~. 0.593
V2 2.771 2.291 2.590 2.628
V3 2.957 2.317 44 2.690
XMC-QDPT ca}cu-]z%\
4 2.626 2.087 0374 0.592
Va2 2.772 2.281 — 70 2.680
Vs 2.826 2.281 &J,S 0 2.680
MRCk-calculation®
141 2.622 2.265k ‘) 0.421 0.654
|1Z) 2.870 2.2 & 2.613 2.722
Vs 2.870 ‘ &2\ 2.613 2.722
NG

h-symmetry minimal energy conical
iscrepancy can be seen from the results

aNotice that these geometries are not o
intersections at XMC-QDPT method, a clea
between XMC-QDPT and MRCI cal %ﬂong

Energy relative to the OH(X : 12;) state at OH(re¢)+Ha(r¢) in eV, the reference

energy is -76.801536106857%
‘Ref. 37.

N
&
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Fig. 1. Diabatic states and their dominant configurations at the reactant, tricoordinate, and
product regions. The orbitals are labeled in standard orientation and their characters are given
in Table I. The vertical direction is potential energy (but only in a schematic sense, not in a
quantitative way), and horizontal direction is a schematic reaction coordinate that passes
through the three regions. The solid curves represent the diabatic stat?,/and dotted curves
represent the diabatic prototype states.

Fig. 2. (a) Pseudocode of the cluster growing algorithm. (b) Theltop, middle, and bottom
panels are graphical representations of the phases of the initi l,fﬁus of the iteration, the
. The

cluster growing intermediate, and the final cluster of the itétatio lor bar from red to

blue indicates the values of diabatic couplings changes from e negative side to more
positive side. The grey arrow in top and bottom panels tepresent the phase consistency, where
the arrow points from the direction of negative to @tiv lues of the diabatic coupling

under consideration.

Fig. 3 (a) The definition of labels and the two,direc s‘?onsidered. (b) A comparison of
computed and fitted U3 as a function of th%% irections plotted in 1D. Within each
segment (segments are separated by thifl vertical lines in the plot), the O-H2 distance is
constant and D-O-H1 angle changes fro;n?\@o degrees, where D in the figure is the
center of the H2-H3 fragment. Then the }2 istance is increased for the next segment. The
original matrix elements producédyvith'the wrong phases are shown in a red on a grey
background. (c¢) and (d) two-dimensional plot of computed and fitted U3, respectively, as
functions of the two directio rey color highlights the part with wrong signs in part c.
Fig. 4 (a) Comparisons between computed and fitted (a) diabatic states and (b) diabatic

couplings along theaeaction path. (c) Comparisons between computed and transformed
adiabatic surfaces(along MER, The inserted pictures in (a) are representative geometries along

the MEP; ox?én and hydrégen atoms are shown with red and white colors respectively. The
reaction path ta\%
e

ometry in the reactant region (where the equilibrium values of the

geometri@;ters re O-Ha = 0.969 A, O-Hg=2.049 A, ZH,OH, =94.47°, Hc-

Hp=0£743 ,A), preceeds to the transition state region (where the geometry of the transition
stficture O/-HA =0.968 A, O-Hs=1.343 A, /H,OH, =98.70°, and Hc-Hz= 0.814 A),

.andifinally goes to the product region (where the equilibrium structure of the product has O-

Qi 0.954 A, O-Hg=10.956 A, /H,OH, =105.21°, and O-Hc= 2.630 A).

\ | o .
\ Fig. 5. Comparisons between computed and transformed adiabatic surfaces along vibrational

modes at the transition state geometry. The inserted pictures indicate representative
geometries along the paths.
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Publi shing Fig. 6. (a), (b) The adiabatic surfaces (V1, V2, and V3) and the DPEM elements (U1, Uz, Uss,

Uiz, U3, and U23) along the out-of-plane coordinate of HsHc. (¢), (d) The adiabatic surfaces
(71, V2, and V3) and DPEM elements (U1, U2z, Uss, and Uls) as functions of the O-D
distance. (e), (f) The adiabatic surfaces (1, V2, and V'3) and DPEM elements (U1, U2z, Uss,
and U13) as functions of the O-Ha distance.

shows U3, Uss-Ut1, and V(22A") — V(12A’) as functions of the H2H3 rotation,angle and the
H2-H3 distance in (b), (¢), and (d) respectively. Notice in (d) that4dt 0@
are 1711 and 1°Z* states, while at 90 degrees, the two states are 1€

Fig. 7. (a) Illustration of the H2H3 rotation angle and the H1, H2, H3 ‘gi.iThe figure
grees,

he two states
» and 124 states

Fig. 8. (a) Notation used in this figure, corresponding to C: sy‘anetry ith the O-D distance
fixed at 1.5 A. (Note that D is the center of the Ha—Hg diatomie.) (b) U3, (¢) Ui — Uss, and
(d) |12B2-1241] as functions of the O-Ha and He-Hc distances. 3

Fig. 9. Contour maps as functions of the O-D dist(}s[e and another distance, where D is the
center of Hs—Hc. (a) U11-Uss, (b) Uis, and (c) |1%82-1°4 M a two-dimensional cut with the
O-Ha distance fixed at 1.0 A, where the O-Didistance,changes from 1.0 to 3.0 A, and the Ha-
Hg changes distance from 0.6 to 1.4 A. (d%% Ui, and (f) |12B2-1241] for a two-
dimensional cut with the Ha-Hg distaneg fi 1.2 A, where the O-D distance changes
from 1.0 to 3.0 A, and the O-Ha distance changes from 0.9 to 1.4 A.

Fig. 10. Conical intersection an ';B%rgs‘sing seams shown as a scatter plot in the 3-
dimensional space of O-Ha , d O-D distances. The black and red dots represent
geometries with |Us3-Un| <0 d |12B2-1241] < 0.2 eV respectively. A 2-dimensional
surface with yellow color represents the conical intersection and diabatic crossing seam in the
Cay symmetry subspa ¢ two seams are shown with (a) top-down and (b) bottom-up

perspectives. The distribution of Us3 for the geometries with [12B2-1241| < 0.2 eV and |Uss3-
Un| <0.2 eV areghown in (e) and (d) respectively.

B-

(§

V.

Fig. 11. (a) ]\]4{ ten used in this figure, corresponding to Cewov symmetry with the O-H1
distance ea?l 1.0 A (b) Uts, (¢) Uss-Uli, and (d) [1°T1-12Z*| as functions of the O-H2 and
O-H3 di

UpfUss, (b) Uts, and (c) | V(12IT) — V(12£")| for a two-dimensional cut with the O-
distance fixed at 1.5 A, where the O-H1 distance changes from 0.9 to 1.4 A, and the O-H3
cellianges from 2.0 to 4.0 A. (d) Un1-Uss, (e) Uis, and (f) |1?I1-12Z] for a two-
dimensional cut with the O-H3 distance fixed at 2.5 A, where the O-H1 distance changes
rom.9 to 1.4 A, and the OH2 distance changes from 0.9 to 1.9 A.

\ <
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Publishing Fig. 13. Conical intersection and diabatic crossing seams shown as a scatter plot in the 3-

dimensional space of O-H1, O-H2, and O-H3 distances. The black and red dots represent
geometries with |U33-Un| < 0.2 eV and |12I1-12Z* < 0.2 eV respectively. A 2-dimensional
surface with yellow color represents the conical intersection and diabatic crossing seam in the
Cav symmetry subspace. These two seams are shown with (a) top down and (b) bottom up
perspectives. The distribution of Ui for the geometries with [1°T1-122*| < 0.2 eV and |Us3-Uhi|
< 0.2 eV are shown in (c) and (d) respectively. /

Fig. 14. (a) V1, V2, and V3, (b) U1, Uz, Uss, and U3 as functions t@—H distance for D3
symmetry. In panel (a), the yellow and blue curves are on top ofigach*ether. In panel (b), the

Fig. 15. (a) V1, (b) V2, and (c) V3 as functions of O-H distance d‘gu\t-of-plane coordinate for
C3y symmetry 3

red and blue curves are on top of each other.

-

Fig. 16. (a) The labeling of H1, H2, and H3. (b) D%ﬁcﬁate orders along the O-H2 and O-
H3 distances. The Ui1-Uz2, Ur1-Uss, and Uz2-Us iabatt
and (e) respectively.

ate crossings are shown in (c), (d)

Fig. 17. The magnitudes |F12|, |F13|, an F\ﬁio\‘(he nonadiabatic coupling vectors in units of
A-! as functions of the HsHc out-of-plane tgtion.

<
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