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Abstract. We have employed extended multi-configuration quasidegenerate perturbation 

theory, fourfold-way diabatic molecular orbitals, and configurational uniformity to develop a 

global three-state diabatic representation of the potential energy surfaces and their couplings 

for the electronically nonadiabatic reaction OH* + H2 H2O + H, where * denotes 

electronic excitation to the A 2Σ+ state. To achieve sign consistency of the computed diabatic 

couplings, we developed a GPU-accelerated algorithm called the cluster-growing algorithm. 

Having obtained consistent signs of the diabatic couplings, we fit the diabatic matrix 

elements (which consist of the diabatic potentials and the diabatic couplings) to analytic 

representations. Adiabatic potential energy surfaces are generated by diagonalizing the 3  3 

DPEM. The comparisons between the fitted and computed diabatic matrix elements and 

between the originally computed adiabatic potential energy surfaces and those generated from 

the fits indicate that the current fit is accurate enough for dynamical studies, and it may be 

used for quantal or semiclassical dynamics calculations. 
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I. INTRODUCTION 

The reactions 

 OH(A 2Σ+) + H2 → H2O + H  (1) 

and 

 OH(A 2Σ+) + H2 → OH(X 2Π) + H2   (2) 

provide enticing targets for theoretical study because of the detailed experimental data 

available, dating back to the pioneering experimental studies in the Lester1,2,3,4, Crosley,5,6,7 

and Heard8 laboratories. These experiments were motivated in part by the necessity to know 

the rates and mechanisms of the collisional quenching of electronically excited OH radicals 

because the quenching affects the laser-induced fluorescence (LIF) measurements of their 

ground state populations, since LIF on the well characterized A 2Σ+−X 2Π band system has 

often been used6,9 to detect the hydroxyl radicals, an important species in atmospheric10,11 

and combustion12 environments. Upon the A 2Σ+−X 2Π excitation of isolated OH, only 

radiative decay is conceivable, but collisions with other molecules open nonradiative de-

excitation pathways,13 such as reactions (1) and (2). The evolution of the electronic states 

along the reaction path may be seen in Figure 1 (the details of this figure will be explained 

later, in section III.B.3). Understanding these competitive pathways is necessary to fully 

interpret the LIF measurements. In addition, the OH3 system has established itself as the four-

body system most widely studied by quantum mechanical dynamics calculations. (OH3 is a 

prototype for four-body quantum dynamics in a similar way to how H3 is a prototype for 

three-body quantum dynamics.)  

Conical intersections have been shown to be ubiquitous14,15,16,17,18,19,20 on polyatomic 

potential energy surfaces (PESs). Theoretical studies of the OH3 system have been largely 

focused on locating and characterizing the conical intersections that enable nonradiative 

dynamical pathways by coupling the ground and excited states. Neglecting spin-orbit 

coupling, we expect the system to show conical intersections in a four-dimensional subspace, 

Hoffman and Yarkony found conical intersections in C∞v, C2v, and Cs symmetries.21 

Including spin-orbit coupling lowers the dimensionality of the intersection,22 and Matsika 

and Yarkony characterized a portion of the seam including spin-orbit coupling.23  

In an experiment that would be very interesting to simulate, Ortiz-Suárez et al.24 studied 
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the reactive quenching of OH (A 2Σ+, v = 0) by D2 and found that the product D atoms are 

primarily forward scattered relative to the incident D2 and with ∼88% of the available energy 

appearing in HOD internal excitation. Pollack et al.25 also studied the collisional quenching 

of OH (A 2Σ+) by D2, and they found nonstatistical OH product distributions. Dempsey et 

al.26,27 reported a combined experimental and theoretical study of the nonreactive quenching 

of OH (A 2Σ+) by H2, and they found high rotational excitation of H2; the theoretical analysis 

was limited to nonreactive scattering. Related experimental work28 probed the partitioning 

between reactive and nonreactive pathways. Wheeler et al.29,30 studied mode-selective 

dynamics of reactions starting from the entrance-arrangement complexes. Kamarchik et 

al.31,32,33,34 fitted potential energy surfaces (PESs) to adiabatic potential energy surfaces 

calculated by multi-reference configuration interaction singles and doubles method plus a 

quadruples correction (MRCISD+Q), and they studied the post-quenching dynamics with 

electronically adiabatic trajectories with adiabatic and diabatic choices of initial momenta; 

this was described as preliminary to coupled-surface dynamics which are required for a 

complete treatment because the system involves closely coupled states, but the study was 

prompted by the interesting experimental data and the lack at that time of coupled PESs.  

The coupled potential energy surfaces and their couplings required for a more complete 

theoretical treatment may be generated in either the adiabatic or diabatic representation. 

Zhang et al.35,36 reported the first quantum mechanical dynamics study of the electronically 

nonadiabatic chemical reaction. The calculations were performed on a set of MRCISD 

coupled PESs; a back propagation neural network was utilized to fit the diabatic PESs and 

couplings, but the details of the diabatization, the fits, and the PESs were described only 

briefly in the supplementary material. Dillon and Yarkony37,38 studied the conical intersection 

seam with MRCISD calculations, and on the basis of these studies suggested a new 

mechanism for the quenching. Full-dimensional global diabatic PESs for the three lowest 

electronic states of the OH + H2 system have been constructed by Collins and coworkers39 

by an interpolation and new kind of diabatization of MRCI ab initio data; good agreement 

with the experiment24 in the distributions of kinetic energy and scattering angle to HOD + H 

products was obtained. Ma et al.40 studied the nature of the interaction PESs for fixed values 

of the OH and H2 bond distances. A 2014 review by Lehman and Lester13 concluded that 

http://dx.doi.org/10.1063/1.5111547


  5

“still needed are quantum scattering and/or classical dynamics calculations to evaluate 

quenching cross sections, branching between multiple reactive and nonreactive channels, and 

the quantum state and kinetic energy distributions of the products.” 

The objective of present work is to calculate full-dimensional global diabatic PESs and 

couplings for the three lowest electronic states for reactions (1) and (2) and their 

representation in a new form that is convenient for dynamics simulations by either quantal or 

semiclassical methods. 

 

II. BACKGROUND AND NOTATION  

In this section, we provide background on diabatization and introduce the language and 

notation that we use in the rest of the article.  

We define an electronically diabatic representation as one for which the coupling due to 

nuclear momentum and nuclear kinetic energy operating on the wave functions representing 

the states is assumed to be negligible as compared to coupling due to the electronic 

Hamiltonian.41,42 The electronic wave function of state i in an adiabatic representation is 

called Ψi, and the electronic wave function of state i in a diabatic representation is called Φi. 

We assume all wave functions are real; this is always possible when one neglects spin-orbit 

coupling. When using the adiabatic representation, the potential energies for nuclear motion 

in electronic state i are the expectation values of the electronic Hamiltonian Hel  

(including, as is conventional, the nuclear repulsion). These are the diagonal elements 

of a matrix V with the elements 

 
Vij  i Hel  j  (3) 

where, for i j , Vij  0 . Hence, we will simply use Vi to represent Vii. When using 

the diabatic representation, the nuclear motion is governed by a nondiagonal matrix U 

with the elements 

 
Uij  i Hel  j  (4) 

The diagonal elements of this diabatic potential energy matrix (DPEM) are the diabatic 

potential energy surfaces, and the off-diagonal elements are called diabatic couplings. In our 
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work, we consider diabatic states that span the same space as the directly calculated adiabatic 

states of interest; we label diabatic bases with this property as adiabatic-equivalent. For such 

a basis, diagonalizing U by an orthogonal transformation yields the adiabatic potential energy 

surfaces. Because our final diabatic potentials are obtained by fitting the adiabatic equivalent 

ones, the adiabatic potentials obtained by diagonalizing the fitted U are not identical to the 

original adiabatic surfaces, and they are called transformed adiabatic surfaces. But if the fit is 

good, the transformed adiabatic energies will be good approximations to the originally 

calculated adiabatic ones. 

In discussing the wave functions, potentials, and couplings, it will be convenient to 

distinguish three regions of configuration space, in particular the reactant-like region (the 

region corresponding OH + H2 and OH* + H2), the tricoordinate region (with ammonia-like 

geometries), and the product-like region (H2O + H region). In some parts of the presentation 

we will label the three hydrogen atoms as HA, HB, and HC based on the O-H distances (r) 

such that r(OHA) ≤ r(OHB) ≤ r(OHC).  

We will discuss permutational symmetry in terms of elementary transpositions and 

cyclic permutations. An elementary transposition is a pairwise permutation of the coordinates 

of two nuclei. A cyclic permutation can be written as the product of two elementary 

transpositions. 

The concept of an adiabatic PES arises from the Born–Oppenheimer separation of 

electronic and nuclear motion. Adiabatic PESs are associated with adiabatic electronic states, 

which are eigenstates of the electronic Hamiltonian for a given set of nuclear coordinates, i.e., 

a given geometry. Adiabatic PESs are obtained by performing electronic structure 

calculations to obtain approximations to the adiabatic electronic wave functions and energies. 

The electronic states are coupled by nuclear momentum and nuclear kinetic energy operators; 

one often makes the semiclassical approximation that only the former are considered,43,44 and 

these are called nonadiabatic coupling vectors or nonadiabatic couplings (NACs). For small 

systems one can also employ direct dynamics in which adiabatic energies, gradients, and 

NACs are generated by electronic structure calculations whenever they are needed by the 

dynamics algorithm, but the high expense of reliable electronic structure methods usually 

leads users of adiabatic representations to using lower levels of theory, less exploration of 

http://dx.doi.org/10.1063/1.5111547


  7

initial-state space, and short-time simulations. These shortcomings can be overcome by 

employing analytically fitted surfaces45,46 or interpolation.47,48,49,50 Fitting and interpolation 

are essentially impossible in the adiabatic representation because of cuspidal behavior of the 

PESs and singular behavior of the NACs at multidimensional conical intersection seams; this 

motivates the use of diabatic representations, for which the DPEMs (consisting of diabatic 

PESs and diabatic couplings) are smooth scalars. In the present work we will calculate and fit 

DPEMs. 

Diabatic states are not uniquely defined,41,42 and there have been many schemes 

proposed to construct diabatic states.51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73 In the 

present work, we applied the fourfold-way,60,63,64 which is based on the principle of 

configurational uniformity.57 The fourfold-way has been previously applied to several 

systems, including bromoacetyl chloride,74 ammonia,75,76 phenol,77,78,79 thioanisole,80 and 

thiophenol.81 A difference of the present work from these calculations is that they provided at 

most semiglobal DPEM, for example the DPEM for a range of geometries centered on the 

lowest-energy dissociation path, whereas the present calculations provide a fully global 

potential energy surface that describes all possible geometries reasonably well (at least that is 

the goal). After the DPEM is obtained, dynamics calculations can be performed in either the 

diabatic or the adiabatic representation because the generation of the adiabatic surfaces and 

NACs corresponding to a given diabatic approximation is straightforward.82 

 

III. ADIABATIC AND DIABATIC ELECTRONIC WAVE FUNCTIONS OF OH3  

III.A. Adiabatic Electronic Wave Functions. In the present work, our goal is to obtain 

a diabatic basis equivalent to the three lowest-energy adiabatic states of the OH3 system. At 

the reactant asymptote these states correspond to the doubly degenerate X 2Π state and the A 

2Σ+ state of the OH molecule. The energies and wave functions of these states are calculated 

by extended multi-configuration quasidegenerate perturbation theory (XMC-QDPT).83,84,85,86 

The XMC-QDPT calculations are based on state-averaged complete-active-space self-

consistent field (SA-CASSCF)87 wave functions as the reference states. The one-electron 

basis set on the O atom is the cc-pVTZ basis88 with two additional evenly tempered diffuse s 

and p subshells, and the basis set on the H atom is unaugmented cc-pVTZ.  
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The SA-CASSCF wave function is obtained as a state average of the three lowest 

adiabatic doublet states of the OH3 system, and the energies of these states are averaged with 

equal weights. The active space consists of 9 electrons in 11 orbitals. This is based mainly on 

the extended correlated participating orbitals (ext-CPO) scheme.89 While the three original 

CPO schemes89 work well for generating smooth semiglobal PESs, for example, from one 

asymptote to another along a particular reaction path, further supplementation of the ext-CPO 

active space with an extra orbital is needed here to both account for symmetry along the C2v 

pathways connecting the tricoordinate region to the product (H2O + H) region and to provide 

a more balanced treatment across the global PESs that include high-energy asymptotes. 

Therefore we added another orbital to the ext-CPO choice. Thus the active space used is 

comprised of the 10 orbitals of the ext-CPO scheme plus one 3d orbital on the O atom. The 

eleven active orbitals are as follows: (i) in the OH + H2 region, they are the σ and σ* orbitals 

describing the OH bond, σ and σ* orbitals describing the HH bond, the 2s, 3s, 2py, 2pz , 3py , 

and 3pz orbitals of the oxygen atom (where the orientations of the x, y, and z axes are 

discussed below), and the 3d orbital on the oxygen; (ii) in the tricoordinate region, they are 

the 2s, 3s, 2pz, and 3pz orbitals on the O atom, an orbital resulting from an anti-bonding 

combination of the oxygen 3s and the three hydrogen 1s orbitals (a totally symmetric orbital 

in D3h), and the three lowest pairs of orbitals that become epx,y
 at D3h geometries; (iii) in the 

H2O + H region, they are the 1b2, 2a1, 1b1, 3a1, 2b2, 4a1, 2b1, 5a1, and 6a1 orbitals of the 

water molecule, one oxygen d orbital, and a 1s orbital on the separated H; and (iv) in the limit 

of four separated atoms they are the 2s, 3s, 2py, 2pz, 3py, 3pz, 2px, 3px orbitals on the O atom 

and the 1s orbitals on each of the three H atoms. This active space, which we call ext-CPO+, 

was found to be adequate to provide realistic PESs globally. 

All electrons except the oxygen 1s orbital are correlated in the XMC-QDPT perturbation 

theory treatment. To avoid artifacts due to the possibility of intruder states in the XMC-QDPT 

wave function, the intruder state avoidance method (ISA)90 was consistently applied at all 

molecular configurations; the level shift parameter b of the ISA method was set to 0.02 Eh, 

where Eh denotes a hartree atomic unit of energy. 

Calculations were performed for more than 70000 molecular geometries that consisted 
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of (i) a set of nuclear configurations generated by trajectory calculations on the lowest 

adiabatic PES starting from conical intersections in previous work,31,32,33,34 (ii) a wide variety 

of regular grids of nuclear configurations generated, for example, along vibrational normal 

modes at geometries relevant to the experiments, (iii) geometries added by running classical 

trajectories on individual diabatic PESs analogously to the Grow algorithm proposed by 

Collins and coworkers47,48,49 until the fits are considered to be well enough converged, and 

(iv) additional points near the ground-state reaction path and in the reactant van der Waals 

region to obtain higher accuracy in those important regions. 

III.B. Diabatization. The first step in the fourfold-way is the determination of diabatic 

molecular orbitals (DMOs). We do this using SA-CASSCF, and further details of this process 

are given below in Subsection III.B.2. The SA-CASSCF wave functions are originally 

obtained in terms of adiabatic configuration state functions (CSFs) expressed in terms of 

adiabatic canonical molecular orbitals. The adiabatic CSF basis is then transformed to basis 

of diabatic state functions (DSFs, denoted by  ) constructed in terms of the DMOs. Each 

SA-CASSCF adiabatic state is then expressed as a linear combination of the N orthonormal 

DSFs: 

 n  Cn
1

N

  (5) 

and three diabatic states, Φ1, Φ2, and Φ3, are obtained by orthogonal transformation of the 

three lowest adiabatic states Ψ1, Ψ2, and Ψ3: 

 k  Tnkn
n1

3

  (6) 

where Tnk   is an element of adiabatic-to-diabatic rotation matrix. 

After the diabatic states at the SA-CASSCF level are obtained, the model-space 

diabatization algorithm91 is used to obtain the diabatic states at the XMC-QDPT level. In 

particular, Ref. 91 shows that the XMC-QDPT diabatic wave functions obtained from 

configurational uniformity are equivalent within the CAS-CI space to the SA-CASSCF 

diabatic wave functions. Therefore, the XMC-QDPT adiabatic-to-diabatic transformation for 

the three states of interest can be obtained by first transforming the XMC-QDPT model states 
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back to the SA-CASSCF adiabatic states, and then transforming the SA-CASSCF adiabatic 

states to the SA-CASSCF diabatic states. The XMC-QDPT adiabatic-to-diabatic 

transformation is then used to convert the XMC-QDPT adiabatic energies to the diabatic 

potential matrix. Details were given previously.91  

III.B.1. Standard orientation. All calculations of the diabatization steps are performed 

in a standard orientation of the molecule, which is defined as follows: (i) the oxygen atom is 

placed at the origin; (ii) the positive direction of the x-axis coincides with a vector from the 

origin to the closest hydrogen atom; (iii) the plane containing the oxygen, the closest 

hydrogen (referred to as A) to the oxygen, and the next closest hydrogen (referred to as B) is 

assigned as the xy-plane; (iv) rotation-reflection operations are then applied so that the y-

coordinate of B is always positive and the z-coordinate of the third closest hydrogen (C) is 

always positive. This standard orientation is needed because it aligns the molecule in a 

uniquely defined way with respect to the reference orbital defined in the next subsection. 

III.B.2. Diabatic molecular orbitals. The DMOs are obtained by a transformation of 

the canonical molecular orbitals. In general, the transformation involves a threefold density 

criterion and a fourth criterion of maximum overlap with one or more reference orbitals, and 

it is completely described previously60,63 with the exception of the system-dependent choice 

of reference orbital or orbitals. The reference orbitals are needed to avoid a rapid change of 

DMOs in the strong interaction region. Unfortunately there is no systematic way to find 

suitable reference orbitals, so we use a trial-and-error approach that selects the reference 

orbital to restrain the orbital switching that we see in its absence. In previous work we have 

found that a reference orbital is usually needed to sort out two nonbonding p orbitals on the 

same atomic center, and consistent with that experience, we found for the present problem 

that we could obtain smooth DMOs with only one reference orbital, and that this reference 

orbital basically serves to keep a py-like orbital on oxygen from mixing in an uncontrolled 

fashion with the other DMOs. The rest of this subsection defines this reference orbital, which 

is complicated by the necessity to preserve invariance to permutations of the three identical 

hydrogen atoms because we are developing a fully global DPEM. 

The reference orbital is called u3, and it is defined by rotating and combining two 

simplified in-plane py-like DMOs – one obtained by the threefold density criterion at a 
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reactant-like geometry, and one obtained by the threefold density criterion at a product-like 

geometry. The simplified py-like DMOs are defined as follows:  

The first simplified py-like DMO is prepared as follows. The SA-CASSCF optimized py-

like DMO at reactants (obtained by the threefold density criterion) is simplified to a pure 

atomic p orbital on the O atom by zeroing the coefficients of the basis functions on other 

atoms and of the s, d, and f basis functions on the oxygen. (The zeroed coefficients are all 

very small.) Since we use a valence triple zeta basis set, this leaves twelve nonzero LCAO 

coefficients in the simplified orbital. This vector is denoted as v3
(1).  

The simplified py-like DMO at products is obtained in a similar fashion at the product 

geometry. In particular we remove the coefficients of the basis functions other than s and p 

functions on the oxygen and remove all basis functions from the three hydrogen atoms. This 

vector is denoted v3
(2).  

At each molecular geometry R where the DPEM is to be evaluated, the following steps 

are performed: 

(1) A vector v3
(2,P)

 that is invariant with respect to the exchange of the identical nuclei 

is defined by 

 v3
(2,P)  fij vbisector

(2)HiOHj

i1,2,3; ji
  (7) 

where vbisector
(2)HiOH j

 is v3
(2)

 placed on each of the three HOH bisectors, and the weights fij  

are defined as follows: 

 fij 
e
(rOHi

rOH j
)/d 2

e
(rOHi

rOH j
)/d2

i1,2,3; ji


Fdij
 (8) 

where d = 0.2 Å, and the functions Fdij
 are used to eliminate the contributions of v3

(2)
 at 

geometries with at least one 180° bond angle. These functions are constructed as: 

 Fdij
 (1 2e

ij / (1 e
2ij ))

i1,2,3; ji
  (9) 
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where ij  is the deviation in radians of the HiOHj angle from π. 

(2) The vector v3
(1,P)

 is defined as: 

 v3
1,P   1 S v

1 ,AOB
 Sv

1 ,AOC
 (10) 

where v
1 ,AOB

 and v
1 ,AOC

 are generated by placing v3
1 

 normal to the OA bond in the 

AOB and AOC planes respectively, and S is a function that gradually shifts between them as 

a function of the rOB and rOC distance as they switch, 

 S  1

2
tanh 2 rOB  rOC 



1   (11) 

Vector v3
(1, P) is thus invariant with respect to the permutations of the nuclear coordinates of 

the second and the third farthest from the oxygen H atoms. While the closest A hydrogen 

atom is not included in the definition of v3
(1, P), it does not switch with either B or C in the 

region (reactant channel) where v3
(1, P) contributes to the final reference orbital.  

The final reference DMO is then given by  

      1, 2,
3 3 31

P P
p pF F  u v v  (12) 

where  

  (13) 

and where . 

With this reference orbital, we computed the final DMOs by the fourfold-way, and their 

characters are summarized in Table I. In this table, the reference orbital is orbital 3. 

III.B.3. Diabatic states. Each diabatic state is identified by a diabatic prototype list, 

which contains its dominant DSFs. Each DSF is a spin-adapted linear combination of Slater 

determinants expressed in terms of the DMOs of Table I. The diabatic prototype lists are 

given in Table II; note that no DSF appears in more than one list, and only DSFs needed to 

distinguish the diabatic states are included in any of the lists. Figure 1 schematically shows 

the dominant configurations of the diabatic states in the reactant-like region, in the 

tricoordinate region, and in the product-like region.  
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The diabatic prototype list for diabatic state 1 is ( 1 2 3, ,   ). In Cs symmetry this state 

corresponds to the A´ component of the doubly degenerate X 2Π state of the OH with the 

singly occupied molecular orbital (SOMO) localized in an oxygen py orbital as expressed by 

DSF 2 . At products, diabatic state 1 corresponds to the A 1B1(1b1 → 3s/4a1) state of water 

and the ground state of H as expressed by DSF 3 . In the tricoordinate region, it corresponds 

to the px component of the 2E excited state of OH3 as prototyped by DSF 1 .  

The diabatic prototype list for diabatic state 2 is ( 4 5 6, ,   ). In Cs symmetry this state 

corresponds to the A´´ component of the doubly degenerate X 2Π state of the OH radical, with 

the SOMO localized oxygen at pz orbital as expressed by DSF 4 . At the H2O + H 

asymptote, it corresponds to the A 3B1 (1b1 → 3s/4a1) state of water and the ground state of H 

as expressed by DSF 6 . In the tricoordinate region, it corresponds to the py component of 

the 2E excited state of OH3 as expressed by DSF 5 .  

The diabatic prototype list for diabatic state 3 is ( 7 8,  ). This state corresponds to the A 

2Σ+ state of OH at the OH + H2 asymptote where it is dominated by the DSF 7  with a 

(212220000) configuration describing a state with the SOMO localized corresponding to σOH. 

At the product asymptote, diabatic state 3 corresponds to the ground state of products H2O (X 

1A1) + H(2S) where it is dominated by the DSF 8  with a (222210000) configuration. In the 

tricoordinate region, this state corresponds to OH3 (2A1;3s) where it is also dominated by 8 .  

The diabatic state 3, if prototyped only by DSF 7  
would have correlated to the high 

energy H2O+ (B 2B2) + H-(1S) asymptote at the product side, as shown in Fig. 1. Diabatic 

states 1 and 2, if prototyped only by their dominant CSFs at reactants, 2  and 4

respectively, would diabatically correlate to the states H2O+ (X 2B1) + H-(1S) and H2O+ (A 

2A1) + H-(1S) at the product side. This implies that diabatic states 2 and 3 change their 

dominant characters along paths beginning in the OH + H2 region, passing through the 

tricoordinate region, and ending in the H2O + H region; this is required if the diabatic states 
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are to span the same space as the three lowest adiabatic states. The change in character of 

diabatic state 3 has little effect on the dynamics since it occurs in a high-energy region where 

the third state is unimportant at the energies of the experimental work reviewed in the 

introduction. The change in character of the second diabatic state is a more significant 

approximation of the present treatment; limiting the treatment to three states is potentially 

one of the most serious approximations of the present treatment, especially in the 

tricoordinate region. In our experience it often happens that if one uses n adiabatic-equivalent 

diabatic states, the nth diabatic state may acquire some nonsmoothness because of a conical 

intersection or locally avoided crossing of adiabatic surfaces n and n + 1; if this occurs in a 

dynamically important region, one should add another state. Fortunately, in the present case it 

does not.  

 

IV. ANALYTICAL FIT OF THE DIABATIC MATRIX ELEMENTS  

Our minimal criteria for a useful diabatic representation of potential energy surfaces are: 

(a) The DPEM should be as smooth as possible within the constraint of maintaining adiabatic 

equivalence. (b) It should be single-valued. (c) The transformed adiabatic surfaces should 

agree reasonably well with the originally calculated adiabatic surfaces for those energies that 

are low enough to be accessible during the planned simulation. We next present a fit designed 

to satisfy these criteria. 

IV.A. Diabatic Potential Energy Surfaces. The six-dimensional diabatic potential 

energy surfaces are fit to the following functional form 

 V r1,r2,r3,r4,r5,r6  V0  VPA ri 
i

6

 VMB  (14) 

where V0  a constant that sets the zero of energy at the equilibrium OH+H2 asymptote, VPA  

is a two-body term in a pairwise additive sum, and VMB is a many-body term.  

For the U11 and U22 diabatic surfaces and for the HH interaction in U33, the pairwise 

potentials for H2 and OH are written as a sum of short- and long-range potentials 

 VPA r  VSR r  VLR r   (15) 

The short-range potentials are given by an even-tempered Gaussian fitting function92, 
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 VSR r   ak exp  kr2 
k0

7

  (16) 

The long-range term is a damped dispersion term based on Grimme’s D3 formalism with the 

Becke–Johnson (BJ) damping function.93,94  

 VLR r    SnCn
AB

rn  a1rAB
0  a2 nn6,8

  (17) 

where rAB
0  C8

AB C6
AB , S6 1, S8  2 , a1  0.5299, a2  2.2 Å, 

6
6 07.5916HH

hC E a , 8
8 091.76991786HH

hC E a , 6
6 010.8496OH

hC E a , 

8
8 0169.45918093OH

hC E a . With VLR  given, the short-range sum is obtained by fitting 

VPA VLR  as described below. To account for the spin-orbit effect, the short-range term in 

U22 is multiplied by a scaling factor of (De - 140cm-1)/De, where De is the dissociation energy 

of the pairwise potential of OH in the original U22. The scaling factor equals 

0.9960924723525706. This value is chosen so that the nearly degenerate components of the 

2 reactant have the correct splitting caused by the spin-orbit coupling.  

The pairwise potential for OH* in the U33 diabatic potential energy surface, is written as 

two even-tempered Gaussian functions smoothly connected by a switching function, 

 VPA
OH* r   fs r VSR

OH* r   1 fs r 



VLR

OH* r   (18) 

VSR
OH* r  has six terms, VLR

OH* r  has three terms, and the switching function is given by 

 fs r   1

2
1 tanh  r  r0  



 (19) 

with  10 Å1
 and r0 1.577 Å.  

For all three pairwise potentials (H2, OH, and OH*), the linear coefficients ak  are 

determined by linear regression, and the non-linear parameters ߙ and ߚ are determined by 

nonlinear minimization using the constrained optimization by linear approximations 

algorithm95 implemented on the NLOpt library.96 The root-mean-square deviations (RMSDs) 

of the fitted pairwise potentials are 5 ൈ 10ିସ eV (30 points), 3 ൈ 10ିଷ eV (56 points), and 
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2.6 ൈ 10ିଶ eV (56 points) for H2, OH, and OH*, respectively. 

The many-body interaction in the diabatic potential energy surface fitting function is 

given by  

 VMB  Dn1n2n3n4n5n6
S Y1

n1Y2
n2Y3

n3Y4
n4Y5

n5Y6
n6





n1n2n3n4n5n62,

connected

M

  (20) 

where S Y1
n

1Y2
n

2Y3
n

3Y4
n

4Y5
n

5Y6
n

6





 are the symmetrized permutation-invariant polynomials97,98 

in mixed exponential-Gaussian (MEGs) variables99, 

 Yi ri   exp 
ri  ri,e 

a


ri  ri,e 2
b
















 (21) 

The combination of eqs. (14) and (20) follows the approach100 of adding pairwise terms to 

invariant polynomials obtained by monomial symmetrization97,98 with the removal of 

disconnected terms100 that can give spurious interactions in asymptotic regions.  

For U11 and U22, the nonlinear parameters of the MEG variables used in the present fit 

are 8 Å0.a  , 2Å1.0b  , ri,e 1.2 Å  for HH distances and 0 Å1.a  , 2Å1.5b  , 

ri,e 1.5 Å for OH distances. For U33, the nonlinear parameters of the MEG variables are 

8 Å0.a  , 2Å1.0b  , ri,e 1.2 Å  for HH distances and 0 Å1.a  , 2Å1.5b  , 

, Å1.4i er   for OH distances. The polynomial order of the fit is 8M  , leading to 545 

independent coefficients ܦ௡భ௡మ௡య௡ర௡ఱ௡ల that are determined by generalized least squares 

fitting using a weighting function on the square of the deviation given by 

 wi 

1 if Ui V0

V0

Ui











2

if Ui V0











 (22) 

where Δ iU  is the energy relative to H2 + OH in the ground state and in their equilibrium 

geometries, and the threshold energy for decreasing the weights is V0  5.5 eV . In addition, 
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the points near the ground-state reaction path are effectively weighted higher by replicating 

them in the data set.  

The parameters of the potential energy surfaces are given in Fortran program that is 

included as a text file in the supplementary material. 

IV.B. Diabatic Couplings. The diabatic couplings must be single-valued, which 

requires that they satisfy the following two conditions: (1) If we consider two 

indistinguishable geometries (i.e., geometries that differ only by permutation of identical 

particles, in this case that would be permutation of hydrogen atoms), |Uij| must be 

permutationally invariant. (2) We must be able to determine the sign of Uij by assuming a 

particular symmetry under elementary transpositions and inversions. (Note that the adiabatic 

energies are independent of the sign of U12 when one has only two states, but they do depend 

on the signs of the couplings when one has three or more coupled states, as we have here.) 

Furthermore, the problem is nuanced by the fact that the adiabatic wave functions can have 

arbitrary signs as long as one is consistent. Consistency at a single geometry is trivial, but 

consistency of the signs from one geometry to another is trickier. In this subsection we 

discuss the practical scheme we developed for fitting the diabatic couplings to analytic 

functions satisfying these requirements. The problem of determining the signs of diabatic 

couplings is a general one (not restricted to the fourfold-way, but occurring in any 

diabatization scheme) – so the algorithm developed here may be more widely useful.  

 Although the adiabatic wave functions delivered by electronic structure programs and 

the diabatic wave functions delivered by the fourfold-way have arbitrary signs, the signs of 

diabatic matrix elements are only semi-arbitrary. To explain this, we first note that since U is 

symmetric and we are treating the case of three states, there are only three unique signs to 

consider, namely the signs of U12, U13, and U 23. Changing the sign of U12 corresponds to 

changing the sign of Φ1 or Φ2, but not both. Hence if we change the sign of U12, we must also 

change the sign of U13 or U 23. For the present 3-state problem, we can summarize this 

requirement by saying that there must be an even number of sign changes of the three unique 

matrix elements, i.e., the product of the three sign changes must be +1.  

IV.B.1. Cluster Growing Algorithm to Achieve Sign Consistency. As we have said, 

the signs of the diabatic couplings produced by the fourfold-way diabatization scheme are 
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arbitrary, and this arbitrariness adds a new dimension of difficulty to the fitting problem. For 

example, the diabatic couplings along an OH stretching path should be a smooth function of 

the OH internuclear distance; arbitrary phases can cause an oscillatory behavior and thereby 

degrade the accuracy of fitting. Here, we propose an algorithm called cluster growing to 

automatically achieve sign consistency. The idea of cluster growing algorithm is to start with 

an initial cluster of points where are confident of the sign assignments (for example, because 

none of the couplings passes through zero or close to zero in this region) and use this cluster 

to determine the phases of nearby points. The newly determined points are then added into 

the cluster, and another iteration is performed. At each iteration, the cluster grows.  

At each iteration, the choice of “nearby” points is based on a distance criterion. The 

distances between the points are computed as the Euclidean distance in the six-dimensional 

internuclear-distance space of the OH3 system. Figure 2(a) shows the pseudocode of the 

cluster growing algorithm. We start with an initial cluster, and for each point in the initial 

cluster, the nearby points are found based on a cutoff. Here, for each iteration, we use 0.001Å 

as an initial cutoff, and we increase this cutoff incrementally until we have at least 50 new 

points. Notice that a small cutoff increases the computational cost as well as the accuracy. 

Due to the large size of the data set, the cluster growing part is vectorized with graphics 

processing units (GPUs). The calculations were performed with Nvidia Tesla K40m GPUs 

installed on K40 GPU cluster of Minnesota Supercomputing Institute. Each K40m GPU has 

2880 CUDA cores. 

At the start of each iteration, the diabatic couplings of the points already in the cluster 

are fitted with permutationally invariant polynomials as discussed in detail in the next 

subsection. The total order of the permutationally invariant polynomials adaptively increases 

as the size of the cluster grows to achieve better accuracy of the fitting. The fit is used to 

predict the diabatic couplings of the new points and compare them with the computed values 

from the fourfold-way and model space diabatization. Based on the comparison, two signs 

are changed if a smaller difference of the values predicted values can be achieved with the 

even sign change product constraint. For example, computed and fitted diabatic couplings are 

1.3 eV and -1.1 eV, the penalties of preserving and changing the phase are 2.4 eV and -0.2 eV, 

and hence a phase change would be preferred; but because all three diabatic couplings (U12, 
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U13 and U23) are checked at once, the final decision on whether to change two signs is that we 

make the sum of the three penalties as small as possible. Figure 2(b) graphically shows the 

process of cluster growing. For the initial cluster of the iteration, as shown in the top panel, 

the diabatic couplings change smoothly from negative (red color) to positive (blue color) 

along a geometrical path. Such sign consistency is represented by the grey arrow. This initial 

cluster grows by finding the nearby points, but these new points do not necessarily have the 

correct signs as shown in the middle panel. The last panel shows the signs of new points after 

they are tailored by the algorithm such that a consistent sets of signs is achieved.  

As an example, Fig. 3 shows the phase of the U13 changes before and after the cluster 

growing algorithm. Figure 3(a) introduces the labeling and the geometrical path. The O-H1 is 

fixed at 0.986 Å, and the H2-H3 distance is fixed at 0.800 Å. The center of the H2–H3 

diatomic is labeled D. (Throughout the whole article, D always denotes either the center of 

HB and HC or the center of H2 and H3, depending on the context.) The angle of H2-O-H1 and 

the H3-O-H1 keeps the same and represented as the angle of D-O-H1. The two directions 

considered here are the O-H2 distance and the D-O-H1 angle. Figure 3(b) shows the U13 as a 

function of the two directions plotted in 1D. Within each grid, the O-H2 distances are the 

same and D-O-H1 angle changes from 90 to 180 degrees. One can see that U13 has different 

phase for a path with O-H2 distance equals 1.1 Å (emphasized with light grey color) as 

compared with the other paths. Figures 3(c) and 3(d) show the dependence of U13 on the two 

coordinates as computed directly from the electronic structure theory and as tailored by the 

cluster growing algorithm. The portion with the wrong phase is emphasized by the light grey 

color in Fig. 3(c). The signed U13 is smooth after tailoring by the cluster growing algorithm. 

The achieved sign consistency of the diabatic couplings makes accurate analytical fitting 

possible. 

IV.B.2. Symmetries of Diabatic Couplings, Choice of Analytical Functions, and 

Fitting. Diabatic wave functions do not necessarily satisfy point group symmetry. For 

example, valence bond functions are often reasonable choices for diabatic functions, but 

valence bond functions do not necessarily have point-group symmetry. We wish to take 

advantage of the nonuniqueness of diabatic representations to define our diabatic states to 

have certain symmetry properties – not point group symmetry but rather the molecular 
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symmetry group C2v(M), where we use the notation of Bunker.101 This group has is a 

subgroup of the D3h(M) group, and it has three kinds of operations: identity, elementary 

transposition of two particles, and transposition–inversion, where we use the language of 

Rutherford.102 All its irreducible representations are nondegenerate. Let A and B denote 

symmetry under elementary transposition P, and let 1 and 2 denote symmetry under P*, 

which is the combination of an elementary transposition and an inversion, so we have 

symmetries A1, A2, B1, and B2.101,103 We emphasize that we are using irreducible 

representation labels here for symmetries in the molecular symmetry group C2v(M) with 

operations P and P*, not for symmetries in C2v. (When these symbols are used for C2v, there is 

always a left superscript 2S+1; thus 2A1 is a C2v label, whereas A1 is a C2v(M) label.) Table III 

shows the symmetry properties, where “A” and “1” denote even, and “B” and “2” denote 

odd. We want our diabatic state functions to transform as a definite irreducible 

representations of C2v(M) because this will be very convenient for fitting the Ujk to functional 

forms for use in dynamics.. The diabatic couplings do not necessarily have A1 symmetry, 

however, the product of the diabatic couplings, U12U13U23, must transform as A1.  

Table IV provides analytic functions that transform according to the four irreducible 

representations, where R denotes the nuclear geometry, [ ]jk
mc  is a linear coefficient to be 

determined by fitting, T̂AB  is an elementary transposition of hydrogen atom A with hydrogen 

atom B, T̂AB,AC  is a cyclic permutation obtained as AB followed by AC, rOA, rOB, and 

rOC  are vectors from oxygen to each of the three hydrogen atoms labeled as in Subsection 

III.B.1, and Pm R   is a monomial that is a product of exponentials of the magnitudes of the 

internuclear distances, and therefore Pm R   must be even under inversion. The inclusion of 

tanh pr1  (r2 r3)  ensures the function is odd and smooth under the inversion operation, 

and p is a fitting parameter.. Note that r1  (r2 r3)  is equal to the volume of a 

parallelepiped with sides given by the three vectors; hence the magnitude of the argument of 

the tanh prOA  (rOB rOC)   function does not change under any permutation, but its sign 

changes under an elementary transposition as well as changing sign under an inversion.  
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By examining the behavior of the Ujk for paths that interchange the hydrogen atoms by 

inversion, by elementary transposition, or both, we found that U13 has A1 symmetry, and U12 

and U23 have B1 symmetry.  

The analytical function for fitting the A1 coupling including permutational symmetry can 

be written as,  

 U jk
fit r1 ,r2,r3,r4,r5,r6   D

n1n2n3n4n5n6

jk S Y1
n1Y2

n2Y3
n3Y4

n4Y5
n5Y6

n6







n1n2n3n4n5n63,
connected

M

 (23)
 
 

where  is a coefficient determined by least-squares fitting, and the definitions of 

the other quantities are given above. Notice some important differences from functions used 

for the diabatic potential energy surfaces, namely that there is no constant term and no 

pairwise additive term, and the summation starts with the sum of the powers equal to three. In 

order to make the diabatic couplings vanish in the asymptote regions, all the disconnected 

terms are removed. The disconnected terms include all terms with the sum of the powers 

equal to 2 and some terms with the sum of the powers equal to 3. Hence, the total order starts 

with 3.  

The U13 matrix element is directly fitted with a 12th order polynomial (M = 12) by using 

the A1 function as shown in eq. (23). Although the MEG function of eq. (23) is defined in eq. 

(21), we use different a, b, and ri,e parameters for the fitting of U12, U13, and U23. These 

parameters were optimized by fitting the diabatic couplings with various values of the 

parameters and fitting the mean unsigned deviations (MUDs) versus the values of parameters 

to a quadratic form to find optimized values. (We define unsigned deviation as the absolute 

magnitude of the difference between the value from the fit and the original electronic 

structure value.) The values used for the diabatic couplings are summarized in Table V, and 

the other parameters of the fits to the diabatic couplings are given in the Fortran program in 

the supplementary material. The MUD for the final fit to U13 is 0.097 eV.  

The fittings of U12 and U23 are achieved by fits including only the nonplanar geometries 

since these functions vanish for planar geometries. In particular, we chose a value for p, and 

we fit U
jk

R  / tanh pr
OA

 (r
OB
r

OC
)  for nonplanar geometries to eq. (23). Notice |tanh x| 

D
n

1
n

2
n

3
n

4
n

5
n

6

jk
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is between 0 and 1, hence    OA OB OC/ tanh ( )jkU p  R r r r  is always larger than  jkU R . 

Figure S13 shows an example of mean unsigned deviation (MUD) as a function of p for U12 

and U23. (Figures with a prefix s are in Supplementary Material.) In this work, we use p = 

15.4 Å-3 as the MUD is well converged with this value. Figure S14 shows the value of

 OA OB OCtanh ( )p  r r r  as a function of the signed volume  OA OB OC( ) r r r  of a 

parallelepiped spanned by the three OH vectors with the currently selected p value. To further 

validate that the chosen p value can provide a smooth and odd function under the inversion 

operation, we have investigated how the diabatic couplings change under the inversion. 

Figure S15 shows how the diabatic couplings change along two paths that cross the planar 

geometry. Figures S15(a) and (c) show the geometries of the two paths, named the H-out-of-

plane path and the H2-out-of-plane path, corresponding to the motion of the H atom or H2 

molecule normal to the plane of original plane. For the H-out-of-plane path, the OH bond 

distances (O-HA and O-HB) of water are fixed at 0.966 Å and the HAOHB angle is fixed at 

104.5 degrees, and at the planar geometry, the O-HC distance is 2.304 Å. For the H2-out-of-

plane path, the O-HA and HB-HC distances are fixed at 0.984 Å and 0.74 Å respectively, and 

at the planar geometry the distance between the O and the center of HB and HC is fixed at 

2.00 Å. Figures S15(b) and (d) show the diabatic coupling in planes containing the two paths. 

One can see that fitted U12 and U23 are odd and smooth under the inversion motion, although 

the originally computed U12 and U23 were even because we employed the standard 

orientation. As we have removed the planar geometries from the database, to avoid over 

fitting, we fit U12 and U23 with a lower value of M, in particular with a 10th order polynomial 

(M = 10); we used MEG and Morse functions for U12 and U23 respectively. The MUDs for 

U12 and U23 are 0.087 and 0.069 eV respectively. 

IV.B.3. Transformed adiabatic surfaces. The transformed adiabatic surfaces are 

obtained by diagonalizing the diabatic potential energy matrix at each nuclear configuration. 

The eigenvectors form the rotation matrix T between the adiabatic and diabatic wave 

functions. With the implemented analytical gradients for all 6 unique matrix elements (U11, 

U22, U33, U12, U13 and U23), at nuclear geometry R, the analytical gradients of the adiabatic 

surfaces iVR  and the nonadiabatic couplings ijF  between adiabatic states are computed 
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based on the following relations,82  

 nVi  Tij
*TikRU jk

j,k
  (24) 

 

 

 

*

,

1
ik jl kl

k lj iij

T T U i j
V V

i j

    
 

 R
F

0
 (25) 

where ijT  has been introduced in eq. (5). Hence, the current coupled surfaces can be used in 

both adiabatic and diabatic representations.  

 

V. ACCURACY OF THE CURRENT PES 

In order to assess the quality of the fit, it is essential to specify the range over which it is 

intended to be used. In the key experiment of Todd et al.,4 the OH is excited to V3 with a 

photon of energy 4.0 eV. Adding the zero point energy of 0.4 eV and a possible thermal 

energy of 0.1 eV, gives 4.5 eV relative to the OH(re) + H2(re) asymptote, where re is the 

equilibrium bond length. (Fu et al.32 simulated the experiment with trajectories at 4.46 eV.) 

By considering all the geometries in the database with V3 below 4.50 eV, the MUDs for V1, 

V2, and V3 are 0.053, 0.031, and 0.077 eV respectively. This is a check of the fits of both the 

diabatic potentials and the diabatic couplings, since the transformed adiabats are obtained by 

diagonalizing the fitted DPEM. 

In a fit it is important to ensure that the fitted potential remains high at higher-energy 

data points so the classically inaccessible regions on the accurate surfaces are also 

inaccessible on the fitted surfaces. By considering all the geometries in the database with V3 

below 7 eV, the MUDs for V1, V2, and V3 are 0.075, 0.047 and 0.114 eV respectively.  

We conclude that the fit is successful on average. Next we consider important 

geometries in more detail. 

V.A. Ground and excited states of reactants and products. The ground-state 

equilibrium geometries for reactant and product are shown in Table VI. We compare to two 

previous fits to the ground-state surface32,104 and to experiment.105 Cuts through the ground-

state PES corresponding to OH and HH stretching in the reactant region are shown in Fig. 

S16, and those corresponding to the three water vibrational modes are shown in Fig. S17. 
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These comparisons show that, although higher accuracy could be attained if one were fitting 

only the ground-state surface rather than three coupled surfaces, the current ground-state 

surface is accurate enough in the asymptotic regions for studies of nonadiabatic collisions. 

The potential energy level of the product relative to the reactant is –0.70 eV, which 

compares well to our best estimate106 of –0.71 eV.  

V.B. van der Waals wells in reactant valley. We also investigated the geometry at the 

ground and excited state van der Waals (vdW) minima close to the reactant region. For this 

discussion, we consider five geometrical parameters, namely the O-HA distance (ROH), the 

HB-HC distance (RHH), the distance between O and the center of HBHC (ROD), the HAOD angle 

(θ1), and the ODHB angle (θ2). We will compare these geometrical parameters from the 

current PES with those from SA-MCSCF/CI/pQZ calculations by Hoffman and Yarkony.21 

The results are shown in Table VII. Both the ground and excited states vdW minima show a 

T-shaped structure with HA of the OH molecule pointed toward HBHC. (Notice these 

optimized structures are not exactly T-shaped (θ1 = 0 deg and θ2 = 90 deg), but they are very 

close to it.) For the ground-state vdW minimum, the fragment structures are very close to the 

optimized reactant structure, with O-D distance at 3.736 Å. For the excited state vdW 

minimum, the structure correctly shows a much smaller O-D distance at 2.219 Å with longer 

O-HA and HB-HC bond lengths at 1.055 and 0.774 Å respectively. From the comparisons, one 

can see the current PES is acceptably accurate for the van der Waals minima. 

V.C. Ground-state minimum-energy reaction path. Next we investigate the energy 

along an approximate minimum-energy path for the ground-state hydrogen transfer reaction. 

The comparisons between computed and fitted diabatic states and diabatic couplings along 

the MEP are shown in Figs. 4(a) and (b) respectively. Figure 4(c) shows the comparisons 

between the original and transformed adiabatic surfaces. Three representative geometries 

along the MEP corresponding to the reactant, transition state, and product regions are shown 

as inserts in Fig. 4(a). Figure 4 shows a clear crossing of the reactant and product diabatic 

states, similar to what is seen in a valence bond treatment107 of the H + H2 reaction; this 

behavior was expected from the electronic structure considerations summarized in Fig. 1. 

Although U11 and U33 cross along the MEP, the large value of the U13 coupling near the 

crossing geometries makes the V1 and V3 have a large separation all along the MEP.  
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Because the reaction path geometries are planar, U12 and U23 are zero along the reaction 

path, which is properly reflected in our fit. The MUDs of the transformed V1, V2, and V3 

along the reaction path (at a total of 31 geometries) are 0.053, 0.030, and 0.064 eV 

respectively. This confirms the accuracy of the fitted diabatic potentials and the fitted U13 

along the reaction path. 

V.D. From reactant to the tricoordinate region. The supplementary material presents 

results for two especially interesting two-dimensional cuts. Figure S1 corresponds to the H2 

rotational motion of Fig. 3(b) and is denoted as the HH rotation path; Figures S2, S3, and S4 

are for an OH rotational motion illustrated in Fig. 5 of a previous publication32 and is denoted 

as the OH rotation path. These figures show that the results for these geometries are accurate 

enough for realistic simulations. 

V.E. Vibrational modes at transition state geometry. Figure 5 shows some cuts along 

the vibrational modes at the ground-electronic state saddle point for the chemical reaction. 

Representative geometries along the path are shown as inserts. We see most of transformed 

adiabatic surfaces agree very well with the originally computed ones. A large deviation is 

observed for V3 in Fig. 5(d), however this region is at high energy (higher than 4.5 eV) and 

hence should have less relevance. Figures S18 and S19 show the fitted and computed diabatic 

states and diabatic couplings. The MUDs for transformed V1, V2, and V3 for the four 

vibrational modes considered here (a total of 190 geometries) are 0.072, 0.022, and 0.119 eV. 

The transformed and computed V1, V2, and V3 along the six normal modes computed from 

previous ground state adiabatic PES by Chen et al.108 is shown in Fig. S20. Again, these 

accuracies are good enough for realistic simulations. 

V.F. Vertical and adiabatic excitation energies of OH radical. The O-H distance at the 

optimized excited-state minimum of the reactant radical is 1.011 Å. At this excited-state 

minimum, the transformed adiabatic energy levels of the ground and excited states are 0.035 

and 4.098 eV respectively (energies in this article are relative to OH(re) + H2(re)). This 

indicates the classical-equilibrium-to-classical-equilibrium adiabatic excitation energy of the 

OH radical is 4.098 eV. Experiments yield a zero-point-level-to-zero-point-level adiabatic 

excitation energy of OH equal to 4.052 eV (32682.5 cm-1)109, which is in reasonable 

agreement. The vertical excitation of the OH radical on our transformed adiabatic surfaces is 
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4.129 eV. By using the experimental adiabatic excitation energy of 4.052 eV) and the 

experimental fundamental vibrational frequency (3180.56 cm-1) for the excited state, here we 

approximate the experimental vertical excitation energy should be 4.083 eV. Both 

comparisons show an energy difference of only 0.046 eV between the current PES and the 

corresponding experimental value.  

V.G. PESs near conical intersections. An advantage of fitting the diabatic potential 

energy matrix elements is that the fitted surfaces should have qualitatively correct shapes near 

conical intersections. Unlike adiabatic PESs, the diabatic surfaces are smooth, and hence the 

fitting the PESs does not encounter additional difficulties near the conical intersections. In 

this subsection, we will report the comparisons between transformed and originally computed 

adiabatic surfaces at geometries near a conical intersection. A detailed analysis of conical 

intersection seams will be given in section VI.  

The geometries considered in this regard are MRCI-optimized conical intersections 

reported in Refs. 21 and 37; because they are computed with MRCI, which is different from 

the XMC-QDPT method used here, they are not conical intersections of the present surfaces; 

however, the conical intersection geometries should be similar for the two treatments, and 

hence these geometries provide good test geometries for considering regions near a conical 

intersection. To enrich the diversity of our database, we have included our calculated results 

at these geometries in our fitting. We show in this subsection and in the supplementary 

information that the current PES is robust at these near-conical-intersection geometries. 

The first near-conical-intersection geometry considered here is near a two-state 

intersection with C2v symmetry (point #4 of Table III of Ref. 21); we will denote it as 

geometry P in the following text). The results near this conical intersection geometry are 

discussed in supplementary material in conjunction with Figures S7, S8, and S9.  

Figure S21 shows two one-dimensional plots of the originally computed and 

transformed adiabatic surfaces as a function of the geometrical index for geometries in the 

branching plane of two C2v and C∞v conical intersection geometries. The C2v conical 

intersection is the P geometry mentioned above and discussed in supplementary information, 

while the C∞v conical intersection is a representative conical intersection with C∞v symmetry 

(point #1 of Table IV in Ref. 21; the branching plane is discussed in the Ref. 36 as well). 
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These comparisons provide further confirmation that that current PES is accurate. 

In addition, we have compared the energy levels of four high-symmetry points found to 

be minimal energy conical intersections (MECIs) within their symmetry at the MRCI 

theoretical level by Dillon and Yarkony37. The energy levels computed from the current PES 

and by XMC-QDPT are summarized in Table VIII. Again, we remind the reader that these 

geometries do not represent the MECIs on the XMC-QDPT PESs. For three of the four 

symmetries the XMC-QDPT and MRCI calculations agree well, with larger deviations for 

C∞v.  

 

VI. ANALYSIS OF CURRENT PES 

In this section, we will investigate the behavior of current PESs in various regions. 

Because this section only considers the fitted diabatic surfaces, fitted diabatic couplings, and 

transformed adiabatic surfaces, we will simply call them diabatic surfaces Uii, diabatic 

couplings Uij, and adiabatic surfaces Vi. We will order the following discussion from lower to 

higher symmetries. Specifically, we will investigate how the PESs change from nonplanar to 

planar geometries (Cs symmetry), how the PESs change along a path in Cs symmetry that 

connects the C∞v and C2v symmetries, and how the PESs change along coordinates that 

preserves C2v, C∞v, C3v, and D3h symmetries.  

The total number of nuclear internal degrees of freedom is denoted as F (which equals 

3N – 6, where N is the number of atoms). For the present problem F = 6. The number of 

nuclear degrees of freedom for a subspace with a given symmetry is denoted as and is 5, 3, 

3, 2, and 1 for Cs, C2v, C∞v, C3v, and D3h symmetries, respectively. The dimension of a zero 

surface of the diabatic coupling in an -dimensional subspace is typically either 1 or , 

where the latter implies that the diabatic coupling vanishes in the whole subspace due to an 

enforced symmetry. In the former case, the conical intersection seam has symmetry – 2; in 

the latter it has dimension – 1. 

It is not required that diabatic wave functions transform according to an irrep of the 

relevant symmetry group, but in our analytic DPEM we do enforce some symmetries. If we 

enforced symmetry in all cases, we would find the following: 
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The behavior shown for Cs is built into our analytical functions. Therefore, diagonalizing the 

DPEM in Cs symmetry is equivalent to diagonalize a 2  2 matrix that involves U11, U13, and 

U33. The resulting two transformed adiabatic states are 12A´ and 22A´ states; hence we label 

the conical intersection seam within Cs symmetry as the 22A´ -12A´ conical intersection. In 

the whole space this conical intersection has dimension F – 2 = 4; in the Cs space it has 

dimension – 2 = 3; that is a three-dimensional subseam of the four-dimensional seam lies in 

Cs. 

If one further changes the geometry from Cs symmetry to C2v and C∞v symmetries, eq. 

(26) shows all three diabatic couplings being zero; however, such symmetry is not present in 

our diabatization. Because all C2v and C∞v geometries are planar, we do have U12 = U23 = 0, 

but we do not force U13 to be zero for C2v and C∞v symmetries in the current fit. However, this 

has the consequence that our adiabatic states also have broken symmetry for these 

symmetries. The two states with A´ symmetry when OH3 is in Cs symmetry become 12Π and 

12Σ+ states when OH3 in the C∞v subspaces and 12B2 and 12A1 states when OH3 in a C2v 

subspace. Next we discuss the 12Π-2Σ+ conical intersection seam and the diabatic crossing 

seam for C∞v geometries and also the 12B2-12A1 conical intersection seam and the diabatic 

crossing seam for C2v symmetries. The transformed surfaces corresponding to these two 

adiabatic states are obtained by diagonalizing a 2  2 matrix that contains U11, U13, and U33. 

The two conditions for a conical intersection are U11 = U33 and U13 = 0. Because we do not 

enforce U13 = 0, our fit has a conical intersection of dimensionality - 2 = 1, but the 

dimensionality of the conical intersections in the C2v and C∞v subspaces should be - 1 = 2. 

We alleviated this problem by including many C2v and C∞v geometries in our database in the 

hope of obtaining U13 as close to zero as possible. As a result, the fitted U13 are very close to 

zero, and conical intersection is approximately two-dimensional in these subspaces. 

VI.A. From nonplanar to planar geometry. First we investigate how the PES changes 
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when one changes the OH3 from nonplanar geometry to planar geometry. We start with a Cs 

geometry having O-HA , HB-HC , and O-D distances of 1.0 Å, 1.2 Å, and 1.5 Å respectively, 

where O is at the origin, HA has positive x coordinates, and D has negative x coordinate. Both 

HA and D are on x-axis; HB and HC have positive and negative y-axis respectively, with HB-

D-O angle equals 60 degrees. In the following text, we will label this geometry as Q. We will 

investigate the following processes: (1) the HBHC out-of-plane motion that involves vertically 

moving HBHC out of the plane of the four atoms at geometry Q, (2) the motion that changes 

the O-D distance, and (3) the motion that changes the O-HA distance.  

The three adiabatic surfaces V1, V2, and V3 are shown as a function of the out-of-plane 

coordinate of HB-HC, O-D distance, and O-HA distance in Figs. 6(a), (c), and (e) respectively. 

The U11, U22, U33, U12, U13, and U23 along the three coordinates are shown in Figs. 6(b), (d), 

and (f) respectively. Notice the geometries considered in Figs. 6(c), (d), (e), and (f) have Cs 

symmetry. Hence only U13 is shown in Figs. 6(c) and (e) because for planar geometries, U12 

and U23 are exactly zero by symmetry. The adiabatic PESs and DPEM elements change 

smoothly for both in-plane and out-of-plane motions. One can see that U12 and U23 change 

sign smoothly when HBHC moves from one side of the plane formed at Q to the other side as 

shown in in Fig. 6(b). In addition, we find U11 and U22 has in general qualitatively similar 

behavior along different coordinates and are close in energy. Such behavior is consistent with 

that has been schematically illustrated for the global PESs as shown in Fig. 1.  

An example of 22A´ -12A´ conical intersection is shown in Fig. 6(c) where it is labeled 

as geometry Q1. At Q1, the O-D distance is 1.58 Å, and the rest of geometrical parameters 

are the same as for Q. The U11, U22, U33, and U13 matrix elements are 2.400, 2.379, 2.415, and 

0.003 eV respectively at Q1. The three transformed adiabatic surfaces are V1 = 2.379, V2 = 

2.399, and V3 = 2.415 eV at Q1. Notice that V1 = U22 at Q1 because U22 is decoupled from 

U11 and U33. Hence, for the geometry Q1, the 22A´ -12A´ conical intersection can be classified 

as a V2-V3 conical intersection. Figures S22(a) and (b) zoom into Figs. 6(c) and (d) in the 

range of O-D distance from 1.5 to 1.65 Å. These cuts clearly show the correct behavior of the 

PESs near the conical intersection. The cuspidal behavior at conical intersection cannot be 

achieved by a direct fit of the adiabatic surfaces, and hence this region of the surface shows 

the power of employing the DPEM as the fitting target. The PES along the O-HA distance is 
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shown in Figs. 6(e) and (f).  

Further discussing of the nonplanar-to-planar geometries is given in supplementary 

material. 

VI.B. Connection among C2v, , and C∞v subspaces. Here we consider a motion that 

corresponds connections among C2v, Cs, and C∞v symmetries. The geometry labels are 

defined in Fig. 7(a), with O-H1 fixed at 1.0 Å. We are considering planar geometries with 

two coordinates corresponding to the H2H3 rotation around the center of H2H3, with the 

rotation angle changing from 0 to 90 degrees, and the H2-H3 distance changing from 0.6 to 

1.4 Å. When the H2H3 rotation angle equals 0 and 90 degrees, the geometry has C2v and C∞v 

symmetry respectively. Hence, if one considers a change of the H2H3 rotation angle from 0 

to 90 degrees, the path involves a C∞v geometry changing to Cs and then to C2v symmetry. 

The quantitiesU13, U33 - U11, and V(22A´ ) – V(12A´ ) (notice that at 0 degrees, the two states 

are 12Π and 12Σ+ states, while at 90 degrees, the two states are 12B2 and 12A1) are shown as 

functions of the H2H3 rotation angle and the H2-H3 distance in Figs. 7(b), (c), and (d) 

respectively. We can see from Fig. 7(b) that U13 is close to zero as a function of the H2-H3 

distance for both C∞v and C2v geometries. One can see that U33 – U11 changes from negative 

values for long H2-H3 distance and small rotation angle to positive values with short H2-H3 

distance and large rotation angle. We have shown the two contour lines with values 

correspond to –0.335 eV and 0.523 eV in Fig. 7(c), and hence between these two contours, 

there must exist a diabatic crossing seam. This shows an example of how the diabatic 

crossing seam in Cs symmetry connects the diabatic crossing seams in C∞v and C2v 

symmetries. A 22A´ -12A´ conical intersection seam can be found in Fig. 7(d), where it is 

shown as a black band with 22A´ -12A´ below 0.2 eV. This gives an example of how such a 

22A´ -12A´ conical intersection seam in Cs symmetry connects a 12Π-12Σ+ conical intersection 

within the C∞v subspaces to a 12B2-12A1 conical intersection within the C2v subspace.  

VI.C. Conical intersections and diabatic crossing seams in C2v symmetry. Now we 

will discuss paths (cuts) that pass near (within about 0.2 eV) to the planar C2v portions of the 

conical intersection seams and diabatic crossing seams. We consider 12B2 and 12A1 states for 

C2v symmetry which corresponds to the transformed adiabatic surfaces by diagonalizing the 

2 2 matrix involves U11, U33 and U13. We will show that in the current fit, U13 is very close 
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to zero for C2v geometries, and 12B2-12A1 conical intersection seam and diabatic crossing 

seam form an approximately 2-dimensional surface in the 3-dimensional C2v subspace.  

Here we use O-HA , HB-HC, and O-D distances as the coordinates in C2v (recall from 

section IV.B.1 that in the present context D in as the center of the HB-HC diatomic). The 

geometries considered here are shown in Fig. 8(a), where the O-D distance is fixed at 1.5 Å. 

The U13, U33 – U11, and |V(12B2) – V(2A1)| contours are shown in Figs. 8(b), (c), and (d) 

respectively. In panels (b) and (c), the contours on either side of 0 are labeled. One can see 

that U13 is very close to zero for the geometries shown by the plots; it ranges from -0.09 to 

0.08 eV. A diabatic crossing seam is found in the region where HB-HC is near 1.1 Å for 

shorter O-HA distance and 1.3 to 1.4 Å for longer O-HA distance, as can be seen from Fig. 

8(b). Not surprisingly, due to the small values of U13, conical intersection seam is located in a 

similar region. This can be observed from the black band as shown in Fig. 8(d).  

We further consider two additional cuts corresponding to O-HA fixed at 1.0 Å and HB-HC 

fixed at 1.2 Å. Figures 9(a), (b), and (c) show how U33 – U11, U13, and |V(12B2) – V(2A1)| 

change as functions of the O-D distance and HB-HC distance. One can observe a clear change 

from negative to positive for U33 – U11 when the O-D distance increases. A diabatic crossing 

seam (green band in Fig. 9(a)) can be found for region where O-D is near 1.5 Å. The U13 

matrix element is close to zero except for the region corresponding to an O-D distance around 

1.0 Å and an HB-HC distance around 1.0 to 1.3 Å, with the largest U13 equal to 0.279 eV. We 

can see from Fig. 11(b) that U13 is close to zero as a function of the H2–H3 distance for both 

C∞v and C2v geometries at short H2–H3 distances. Therefore, one sees a conical intersection 

seam in Fig. 9(c) in the same region as the diabatic crossing seam, with the O-D distance near 

1.5 Å. This conical intersection seam is shown as a thick black line in Fig. 9(c). Figure 9(d), 

(e), and (f) show how U33 – U11, U13, and |V(12B2) – V(2A1)| change as functions of the O-D 

distance and the O-HA distance. Panels (d)–(f) are similar to panels (a)–(c) except that we fix 

HA-HB instead of O-HA.  

The geometries with |U33 – U11| < 0.2 eV and |V(12B2) – V(2A1)| < 0.2 eV are plotted in 

Fig. 10 as a 3-dimensional scatter plot as a function of the O-HA , HB-HC, and O-D distances 

with the O-HA distance in the range 0.9 to 1.4 Å, the HB-HC distance in the range 0.6 to 1.4 Å, 

and the O-D from 1.0 to 3.0 Å with a step size of 0.05 Å. Panels (a) and (b) show scatter plots 

http://dx.doi.org/10.1063/1.5111547


  32

with two different perspectives, with black dots represent the geometries with |U33-U11| < 0.2 

eV and the red dots representing geometries with |V(12B2) – V(2A1)| < 0.2 eV. The yellow 

surface shown in the figure represents the 2-dimensional surface of the diabatic crossing and 

conical intersection seam in the 3-dimensional space. One can see that most of the geometries 

indicated in the scatter plot are on both diabatic crossing and conical intersection seam (with 

black and red color on the same dot). This illustrates our previous analysis that the diabatic 

crossing and conical intersection seam will be both 2-dimensional. In addition, panels (c) and 

(d) show the distribution of U13 for geometries satisfying the 0.2 eV criteria. We see that U13 

is very close to zero for these geometries.  

VI.D. Conical intersections and diabatic crossing seams in C∞v symmetry. In this 

section, we consider the 12Π-2Σ+ conical intersection seam and diabatic crossing seam in the 

C∞v subspace. Based on the previous discussion, we know that the conical intersection and 

diabatic crossing seams are 2-dimensioanl in C∞v. In this section, we will show that U13 is 

fitted close to zero.  

We use the three O-H distances as representative coordinates, as shown in Fig. 11(a). 

Figures 11 (b), (c), and (d) shows the U13, U33 – U11, and |V(12Π) – V(12Σ+)| as functions of the 

O-H2 and O-H3 distances with the O-H1 distance at 1.0 Å. In addition, we are considering 

the situation where OH3 is at least 0.5 Å longer than OH2 to avoid a strong H2-H3 repulsive 

potential. Figure 11(b) shows that U13 ranges from -0.10 to 0.10 eV, with most of the region 

close to zero, indicated by the green color. One can observe a green band in Fig. 11(c) near 

the diagonal of the of the coordinate space considered here. A contour line marked with 0.044 

eV shows that the diabatic crossing seam is located nearby. A black band shown in Fig. 11(d) 

indicates the location of the conical intersection seam, which is close to the region where the 

diabatic states cross. Figure 12 shows a similar scenario for the C∞v subspace with O-H2 at 

1.5 Å and changing the O-H1 distance from 0.9 to 1.4 Å and the O-H3 distances from 2.0 to 

4.0 Å.  

Similar to the procedure we employed for C2v subspace, Fig. 13 shows an analysis of the 

conical intersection seam in the region with O-H1 from 0.9 to 1.4 Å, O-H2 from 0.9 to 1.9 Å, 

and O-H3 from 1.4 to 4.4 Å with the O-H3 distance at least 0.5 Å bigger than the O-H2 

distance. We again used a step size of 0.05 Å. Black and red dots indicate the geometries with 
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less than 0.2 eV for |U33-U11| and |V(12Π) – V(12Σ+)| respectively. One can see that black and 

red dots are almost on top of each other, as they should be.  

VI.E. D3h region and a path from D3h to C3v. In the D3h subspace, we only have one 

independent degree of freedom, namely the O-H distance. Figure 14(a) shows the three 

adiabatic surfaces as a function of OH distance ranging from 0.9 to 1.5 Å. The V1, V2, and V3 

surfaces are shown as red, blue, and yellow curves respectively; due to the degeneracy 

between V2 and V3, blue and yellow curves are on top of each other. Such degeneracy is 

required by D3h symmetry. The two nearly degenerate states have single occupancies of one 

or another of the two 2e SOMOs shown as DMO7 and DMO9 in Table I. The dominant DSFs 

for the associated states U11 and U22 are χ1 and χ5 respectively. Although we don’t enforce the 

D3h symmetry in the construction of diabatic states, Fig. 14(a) shows the current fit is very 

accurate in the D3h subspace in that the two adiabatic states are nearly degenerate. Figure 

14(b) shows the U11, U22, U33, and U13 of the corresponding region in D3h symmetry. The 

fitted U11 and U22 preserves such degeneracy for D3h configurations.  

Now we start with each geometry in D3h symmetry considered in Fig. 14, and we 

consider the out-of-plane motion of the three H atoms to see how the PESs behave when one 

changes from D3h to C3v. At the D3h configuration, the four atoms are in the xy-plane, and we 

change the symmetry from D3h region to C3v region by moving the O atom vertically in the z 

direction between -1.0 and 1.0 Å. The adiabatic surfaces V1, V2, and V3 as functions of the O-

H distance and out-of-plane coordinate are shown in Figs. 15(a), (b), and (c) respectively. It is 

shown that V2 and V3 are nearly degenerate (notice the color bars are the same for Figs. 15 (b) 

and (c)), which indicates the current fit is robust for C3v symmetries. 

VI.F. Diabatic state crossing along a reaction path. Here we consider the diabatic 

state crossings along a reaction path. This path involves the O-H2 and O-H3 distances 

changing with a fixed O-H1 distance of 0.962 Å and a fixed D-O-H1 angle of 103.7 degrees. 

The H1, H2, and H3 labels are defined in Fig. 16(a), and D is the center of H2 and H3. Notice 

O, H2, and H3 are collinear with O-H3 at least 0.6 Å longer than O-H2. We are considering 

the O-H2 distance from 0.8 to 2.6 Å and the O-H2 distance from 1.4 to 3.2 Å. Figure 16(b) 

shows the diabatic state ordering along the path. The U11-U22 diabatic state crossing is also 

shown in Fig. 16(c). Figures 16(d) and (e) show the U11-U33 and U22-U33 diabatic state 
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crossings. One can see that Figs. 16(d) and (e) are very similar. Along the path, U33 crosses 

both U11 and U22 once. This is consistent with what has been illustrated in schematic Fig. 1. 

The reaction of H2 with OH to form H2O + H can be approximately understood by following 

a path starting from the upper right corner of Fig. 16(b) and following the diagonal boundary 

to a shorter O-H2 distance, then vertically going up to a longer O-H3 distance. Along such a 

path, one would observe U33 cross both U11 and U22 one time and the system maintain the U33 

< U22 < U11 diabatic state ordering. Figure S23 is a similar figure with the D-O-H1 angle at 

120 degrees. 

VI.G. Nonadiabatic coupling vectors. We consider an example of the NACs as a 

function the HBHC out-of-plane motion described in section VI.A. The transformed adiabatic 

states and DPEM elements along the HBHC out-of-plane motion are shown in Fig. 6(a) and 

(b). The magnitudes of the NACs between the three transformed adiabatic states, |F12|, |F13|, 

and |F23|, are shown in Fig. 17. One can see |F13| and |F23| are much larger than |F12| along the 

path. This can be understood from Fig. 6(b), which shows that along the HBHC out-of-plane 

motion, U11 and U22 cross with U33, and U13 and U23 deviate significantly from zero. One also 

sees that |F12| can be small even though the energy gap between the transformed adiabatic 

states V1 and V2 is small, for example, where the HBHC out-of-plane coordinate ranges from -

1.0 to 0.5 Å. This is because the two states are weakly coupled, and Fig. 6(b) shows that U12 

is close to zero along the path.  

 

VII. CONCLUSION 

We have performed three-state XMC-QDPT calculations for more than 70000 

geometries to explore the global coupled potential energy surfaces of the OH3 system and to 

develop analytic fits that can be used for investigating the quenching reactions of excited 

hydroxyl radical with H2. The diabatic states and diabatic couplings are obtained by 

employing the fourfold-way and model space diabatization at each geometry. Each matrix 

element in the diabatic matrix (U11, U22, U33, U12, U13 and U23) is fitted with a suitable 

analytical function that takes account of the invariance with respect to permuting the H 

atoms, and a new algorithm is used for determining the phases of the off-diagonal diabatic 

matrix elements. The adiabatic surfaces are subsequently obtained by diagonalizing the 
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diabatic potential energy matrix at each nuclear geometry; the adiabatic energies obtained in 

this way from the fits are called the transformed adiabatic energies. With the implemented 

analytical derivative of diabatic states and diabatic couplings, the gradients of the adiabatic 

surfaces and nonadiabatic couplings can also be computed.  

By comparing the originally computed adiabatic energies and the transformed adiabatic 

energies, the mean unsigned deviations of V1, V2, and V3 are 0.053, 0.031, and 0.077 eV 

respectively for geometries with V3 below 4.5 eV. In addition, we have compared the 

transformed adiabatic energies to the originally computed XMC-QDPT adiabatic surfaces 

along various cuts and at some critical geometries, for example near conical intersections and 

at ground-state and excited-state van der Waals minima. These comparisons show high 

accuracy for the analytic fit. Due to the smoothness of the diabatic states and diabatic 

couplings, the current fit can correctly predict the PESs near the conical intersection 

geometries.  

Further analysis investigated various regions of the PESs in greater detail. Specifically, 

we have shown how the PESs behave when one changes the OH3 molecule from nonplanar to 

planar geometry, when one changes the OH3 molecule within the Cs symmetry along a path 

that connects the C∞v and C2v symmetries, and when one changes the molecule along paths 

that preserve C2v, C∞v, C3v, and D3h symmetries. We have also mapped out the 12B2-12A1 

conical intersection seam and diabatic crossing seam within the C2v symmetry, the 12Π-2Σ+ 

conical intersection seam and diabatic crossing seams within the C∞v symmetry, and diabatic 

crossing s among U11, U22, and U33 along an approximate reaction path. These results have 

shown the current PES is reasonably accurate near conical intersections. Hence, we believe 

the current fit can be employed to investigate the dynamical behaviors of the quenching 

reactions of excited hydroxyl radical with H2. 

 

POTENTIAL ENERGY MATRIX: SURFACES AND COUPLINGS 

Fortran subroutines containing the fits to the potential energy surfaces and couplings are 

included in the supplementary material. These files can also be obtained from the Potlib 

library at https://comp.chem.umn.edu/potlib. A manual for the PES subroutines is also 

included in the supplementary material.  
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SUPPLEMENTARY MATERIAL 

See supplementary material for Fortran routines containing the fitted surfaces and 

additional figures containing mean unsigned deviations, the hyperbolic tangent inversion 

function, diabatic potential energy matrix elements, and adiabatic potential energy surfaces. 
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Table I. Point-group symmetries of the DMOs 

DMO 
Character in 

OH + H2 
regiona 

Local 
symmetrya

Character in 
tricoordinate 

region 

Local 
symmetry 

Character in  
H2O + H  
regionb 

Local 
symmetryb

Cs C2v Cs C2v Cs C2v 

1 2s a´ 1a  2s a´ 1a  2s a´ 1a  

2 σOHA a´ 1a  
,

1
x ype  a´ 2b  1b

2
H

2
O a´ 2b  

3 2pyO a´ 2b  
,

1
x ype  a´ 1a  1 22 H Oa  a´ 1a  

4 2pzO a´´ 1b  11b  a´´ 1b  2 p
z
H

2
O(HOMO) a´´ 1b  

5 σHBHC a´ 1a  
σ*OHA + 
σ*OHB + 
σ*OHC 

a´ 1a  1sH a´ 1a  

6 3pyO a´ 2b  3e  a´ 1a  1 / 3a p  a´ 1a  

7 23 O
z

d  a´ 1a  2e  a´ 2b  3 xyd  a´ 2b  

8 3pxO/σ*OHA a´ 1a  3e  a´ 2b  σ*OHA + σ*OHB a´ 2b  

9 σ*HBHC a´ 2b  2e  a´ 1a  3s / 4a
1
H

2
O(LUMO) a´ 1a  

10 3pzO a´´ 1b  3pzO a´´ 1b  3pzO a´´ 1b  

11 3sO a´ 1a  3sO a´ 1a  16a  a´ 1a  

a For OH + H2 we define the symmetry as follows for this table: all four atoms lie in the xy 

plane, the O atom is at the origin, the x-axis coincides with the OH bond, and HH is 

orthogonal to OH forming a T-shape structure 

b For H2O + H we define the symmetry as follows for this table: H2O is in the xy plane, the O 

atom is at the origin, the x-axis is on the HOH bisector, and the separated H is on this bisector 

axis. 
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Table II. Orbital occupanciesa and point-group symmetriesb of prototype configurations of the 

diabatic states 

   Local symmetrya 

State DSF Occupanciesb Reactants Tricoordinate Products 

1 1    2222 00100 2A1 
2B2 2B2 

1 2    2212 20000 2B2 
2A1 2A1 

1 3    2221 10001,S 2A2 
2B1 2B1 

2 4    2221 20000 2B1 
2B1 2B1 

2 5    2222 00001 2B2 2A1 2A1 

2 6    2221 10001,T 2A2 2B1 2B1 

3 7    2122 20000 2A1 2B2 
2B2 

3 8    2222 10000 2A1 2A1 2A1 

a The local symmetry elements for reactant-like and product-like regions are defined in 
Table I. The tricoordinate column is for D3h structures, but classified according to the 
symmetry in the C2v subgroup so that one can see how the states evolve when the symmetry 
is broken in dynamics. Symmetry information is presented here only to characterize the 
states; symmetry is not imposed in actual calculations. 
b These are the occupancies of the first nine DMOs of Table I; DMOs 10 and 11have zero 
occupancy in all of the prototype configurations. S and T denote the spin coupling by 
denoting whether the state dissociates to singlet water or triplet water in the product region. 
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Table III. Symmetry propertiesa of the C2v(M) group  

irrep Identity Transposition (P) Inversion (*) Transposition-Inversion (P*) 

A1 even even even even 

A2 even even odd odd 

B1 even odd odd even 

B2 even odd even odd 

aadapted from Serre (ref.103) 

 

Table IV. Symmetry-adapted functions for the C2v(M) group 

irrep Function 

A1 U jk R   cm
[ jk ](1 T̂AB  T̂BC  T̂AC  T̂AB,AC  T̂AB,BC )Pm R 

m
  

A2 U jk R   tanh prOA  (rOB rOC)  cm
[ jk ](1 T̂AB  T̂BC  T̂AC  T̂AB,AC  T̂AB,BC )Pm R 

m


B1 U jk R   tanh prOA  (rOB rOC)  cm
[ jk ](1 T̂AB  T̂BC  T̂AC  T̂AB,AC  T̂AB,BC )Pm R 

m


B2 U jk R   cm
[ jk ](1 T̂AB  T̂BC  T̂AC  T̂AB,AC  T̂AB,BC )Pm R 

m
  

 

Table V. The MEG parameters used for fitting diabatic coupling 

Diabatic 

Couplings 

a / Å b / Å2 ri,e / Å 

HH OH HH OH HH OH 

U12 0.800 0.610 1.300 1.300 0.702 0.802 

U13 1.1028022 1.2561573 1.61 1.75 0.9333333 1.196078 

U23 1.09 1.323343 1.633190 1.823343 1.001178 1.113545 
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Table VI. The equilibrium geometries, harmonic vibrational frequencies, and energies of the 
optimized ground state minima at reactant and product regions 
 

 Propertya Present PES FKBb YZCLc Ref. 

OH re 0.972 0.967 0.97 0.970 d 
ω 3759 3737 3764 3738 d 

H2 re 0.745 0.740 0.742 0.741 d 
ω 4378 4401 4406 4401 d 

H2O re 0.965 0.962 0.959 0.959 d 
θe 103.7 103.8 104.2 104.3 d 
ω1 3694 3788 3859 3825 d 
ω2 1809 1653 1649 1654 d 
ω3 3850 3879 3961 3936 d 

OH+H2 H2O+Hf  ΔV1
 f  -0.70 -0.64 -0.68 -0.71g 

aBond lengths (r) are in Å, bond angles (θ) are in degrees, vibrational frequencies are in cm–1, 
energy of reaction is in eV. The vibrational frequencies are ω1 for the symmetric stretch, ω2 
for the bend, and ω3 for the asymmetric stretch. 

bFu, Kamarchik, and Bowman, fir to MRCISD+Q/aug-cc-pVTZ calculations, Ref. 32 
cYang, Zhang, Collins, and Lee, fit to a mixture of QCISD(T)/ 6-311++G(3df,2pd), IC-
MRCISD+Q/aug-cc-pVTZ, and UCCSD(T)/aug-cc-pVQZ calculations, Ref. 102 

dExperiment, Refs. 103 and 107 
fEnergy of H2O(re, θe) + H relative to OH(re) + H2(re) 
gBest estimate, Ref. 104 

  
Table VII. The geometries and energies of the optimized ground and excited state van der 
Waals minima close to the reactant region. 

PESs this work DYa 

State 
 
 

2

1
2

OH

+H g

X

X 




 

 
 

2

1
2

OH

H g

A

X







 
 

 
 

2

1
2

OH

+H g

X

X 




 

 
 

2

1
2

OH

H g

A

X







 
 

ROH / Å 0.970 1.055 0.977 1.059 
RHH / Å 0.743 0.774 0.744 0.778 
ROD / Å 3.736 2.219 3.310 2.175 
θ1 / deg 6.25 1.36 0.55 0.04 
θ2 / deg 90.52 89.08 90.42 89.92 
De (eV) 0.039 0.375 0.027 0.312 

V – V*/eVb -3.805 0.000 -3.860 0.000 
a Dillon and Yarkony, SA-MCSCF/CI Ref. 21. 
b To compare with Ref. 21, we provide the energy relative to V*, which is the energy of the 
excited-state van der Waals minimum of the corresponding PES.  
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Table VIII. The energy levels of four high-symmetry minimal energy conical intersections 

optimized at MRCI methoda, all energies are relative to the    2 1
2OH H gA X     state at 

the reactant geometry.  
 

States 
C2v / eV C∞v / eV C3v / eV D3h / eV 

Current PESb 

V1 2.612  2.066 0.408 0.593 
V2 2.771  2.291 2.590 2.628 
V3 2.957  2.317 2.644 2.690 
 XMC-QDPT calculation 

V1 2.626 2.087 0.374 0.592 
V2 2.772 2.281 2.570 2.680 
V3 2.826 2.281 2.570 2.680 
 MRCI calculationc 

V1 2.622 2.265  0.421 0.654  
V2 2.870 2.265 2.613 2.722  
V3 2.870 2.265 2.613 2.722 

 
aNotice that these geometries are not optimized high-symmetry minimal energy conical 
intersections at XMC-QDPT method, a clear discrepancy can be seen from the results 
between XMC-QDPT and MRCI calculations 

bEnergy relative to the    2 1
2OH H gX X     state at OH(re)+H2(re) in eV, the reference 

energy is -76.8015361068575Eh. 
cRef. 37. 
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Figure captions 
 
Fig. 1. Diabatic states and their dominant configurations at the reactant, tricoordinate, and 
product regions. The orbitals are labeled in standard orientation and their characters are given 
in Table I. The vertical direction is potential energy (but only in a schematic sense, not in a 
quantitative way), and horizontal direction is a schematic reaction coordinate that passes 
through the three regions. The solid curves represent the diabatic states, and dotted curves 
represent the diabatic prototype states.  
 
Fig. 2. (a) Pseudocode of the cluster growing algorithm. (b) The top, middle, and bottom 
panels are graphical representations of the phases of the initial cluster of the iteration, the 
cluster growing intermediate, and the final cluster of the iteration. The color bar from red to 
blue indicates the values of diabatic couplings changes from more negative side to more 
positive side. The grey arrow in top and bottom panels represent the phase consistency, where 
the arrow points from the direction of negative to positive values of the diabatic coupling 
under consideration. 
 
Fig. 3 (a) The definition of labels and the two directions considered. (b) A comparison of 
computed and fitted U13 as a function of the two directions plotted in 1D. Within each 
segment (segments are separated by thin vertical lines in the plot), the O-H2 distance is 
constant and D-O-H1 angle changes from 90 to 180 degrees, where D in the figure is the 
center of the H2-H3 fragment. Then the O–H2 distance is increased for the next segment. The 
original matrix elements produced with the wrong phases are shown in a red on a grey 
background. (c) and (d) two-dimensional plot of computed and fitted U13, respectively, as 
functions of the two directions. The grey color highlights the part with wrong signs in part c.  
 
Fig. 4 (a) Comparisons between computed and fitted (a) diabatic states and (b) diabatic 
couplings along the reaction path. (c) Comparisons between computed and transformed 
adiabatic surfaces along MEP. The inserted pictures in (a) are representative geometries along 
the MEP; oxygen and hydrogen atoms are shown with red and white colors respectively. The 
reaction path starts at a geometry in the reactant region (where the equilibrium values of the 

geometric parameters are O-HA = 0.969 Å, O-HB = 2.049 Å, A BH OH 94.47   , HC-

HB=0.743 Å), proceeds to the transition state region (where the geometry of the transition 

structure has O-HA = 0.968 Å, O-HB = 1.343 Å, A BH OH 98.70   , and HC-HB = 0.814 Å), 

and finally goes to the product region (where the equilibrium structure of the product has O-

HA  = 0.954 Å, O-HB = 0.956 Å, A BH OH 105.21   , and O-HC = 2.630 Å). 

 
Fig. 5. Comparisons between computed and transformed adiabatic surfaces along vibrational 
modes at the transition state geometry. The inserted pictures indicate representative 
geometries along the paths.   
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Fig. 6. (a), (b) The adiabatic surfaces (V1, V2, and V3) and the DPEM elements (U11, U22, U33, 
U12, U13, and U23) along the out-of-plane coordinate of HBHC. (c), (d) The adiabatic surfaces 
(V1, V2, and V3) and DPEM elements (U11, U22, U33, and U13) as functions of the O-D 
distance. (e), (f) The adiabatic surfaces (V1, V2, and V3) and DPEM elements (U11, U22, U33, 
and U13) as functions of the O-HA distance. 
 
Fig. 7. (a) Illustration of the H2H3 rotation angle and the H1, H2, H3 labeling. The figure 
shows U13, U33-U11, and V(22A´ ) – V(12A´) as functions of the H2H3 rotation angle and the 
H2-H3 distance in (b), (c), and (d) respectively. Notice in (d) that at 0 degrees, the two states 
are 12Π and 12Σ+ states, while at 90 degrees, the two states are 12B2 and 12A1 states 
 
Fig. 8. (a) Notation used in this figure, corresponding to C2v symmetry with the O-D distance 
fixed at 1.5 Å. (Note that D is the center of the HA–HB diatomic.) (b) U13, (c) U11 – U33, and 
(d) |12B2-12A1| as functions of the O-HA and HB-HC distances.  
 
Fig. 9. Contour maps as functions of the O–D distance and another distance, where D is the 
center of HB–HC. (a) U11-U33, (b) U13, and (c) |12B2-12A1| for a two-dimensional cut with the 
O-HA distance fixed at 1.0 Å, where the O-D distance changes from 1.0 to 3.0 Å, and the HA-
HB changes distance from 0.6 to 1.4 Å. (d) U11-U33, (e) U13, and (f) |12B2-12A1| for a two-
dimensional cut with the HA-HB distance fixed at 1.2 Å, where the O-D distance changes 
from 1.0 to 3.0 Å, and the O-HA distance changes from 0.9 to 1.4 Å.  
 
Fig. 10. Conical intersection and diabatic crossing seams shown as a scatter plot in the 3-
dimensional space of O-HA , HB-HC, and O-D distances. The black and red dots represent 
geometries with |U33-U11| < 0.2 eV and |12B2-12A1| < 0.2 eV respectively. A 2-dimensional 
surface with yellow color represents the conical intersection and diabatic crossing seam in the 
C2v symmetry subspace. These two seams are shown with (a) top-down and (b) bottom-up 
perspectives. The distribution of U13 for the geometries with |12B2-12A1| < 0.2 eV and |U33-
U11| < 0.2 eV are shown in (c) and (d) respectively.  
 
Fig. 11. (a) Notation used in this figure, corresponding to C∞v symmetry with the O-H1 
distance fixed at 1.0 Å. (b) U13, (c) U33-U11, and (d) |12Π-12Σ+| as functions of the O-H2 and 
O-H3 distances.  
 
Fig. 12. (a) U11-U33, (b) U13, and (c) |V(12Π) – V(12Σ+)| for a two-dimensional cut with the O-
H2 distance fixed at 1.5 Å, where the O-H1 distance changes from 0.9 to 1.4 Å, and the O-H3 
distance changes from 2.0 to 4.0 Å. (d) U11-U33, (e) U13, and (f) |12Π-12Σ+| for a two-
dimensional cut with the O-H3 distance fixed at 2.5 Å, where the O-H1 distance changes 
from 0.9 to 1.4 Å, and the OH2 distance changes from 0.9 to 1.9 Å. 
  

http://dx.doi.org/10.1063/1.5111547


  44

Fig. 13. Conical intersection and diabatic crossing seams shown as a scatter plot in the 3-
dimensional space of O-H1, O-H2, and O-H3 distances. The black and red dots represent 
geometries with |U33-U11| < 0.2 eV and |12Π-12Σ+| < 0.2 eV respectively. A 2-dimensional 
surface with yellow color represents the conical intersection and diabatic crossing seam in the 
C2v symmetry subspace. These two seams are shown with (a) top down and (b) bottom up 
perspectives. The distribution of U13 for the geometries with |12Π-12Σ+| < 0.2 eV and |U33-U11| 
< 0.2 eV are shown in (c) and (d) respectively.  
 
Fig. 14. (a) V1, V2, and V3, (b) U11, U22, U33, and U13 as functions of the O-H distance for D3h 
symmetry. In panel (a), the yellow and blue curves are on top of each other. In panel (b), the 
red and blue curves are on top of each other. 
 
Fig. 15. (a) V1, (b) V2, and (c) V3 as functions of O-H distance and out-of-plane coordinate for 
C3v symmetry  
 
Fig. 16. (a) The labeling of H1, H2, and H3. (b) Diabatic state orders along the O-H2 and O-
H3 distances. The U11-U22, U11-U33, and U22-U33 diabatic state crossings are shown in (c), (d) 
and (e) respectively.  
 
Fig. 17. The magnitudes |F12|, |F13|, and |F23| of the nonadiabatic coupling vectors in units of 
Å-1 as functions of the HBHC out-of-plane motion.  
 
 

References 

1 R. A. Loomis and M. I. Lester, Annu. Rev. Phys. Chem. 48, 463 (1997). 
2 M. I. Lester, R. A. Loomis, R. L. Schwartz, and S. P. Walch, J. Phys. Chem. A 101, 9195 

(1997). 
3 D. T. Anderson, M. W. Todd, and M. I. Lester, J. Chem. Phys. 110, 11117 (1999). 
4 M. W. Todd, D. T. Anderson, and M. I. Lester, J. Phys. Chem. A 105, 10031 (2001). 
5 D. R. Crosley, in Progress and Problems in Atmospheric Chemistry, Advanced Series in 

Physical Chemistry – Vol. 3, edited by J.R. Barker (World Scientific, Singapore,1995), pp. 
256-317. 

6 B. L. Hemming, D. R. Crosley, J. E. Harrington, and V. Sick, J. Chem. Phys. 115, 3099 (2001). 
7 B. L. Hemming and D. R. Crosley, J. Phys. Chem. A 106, 8992 (2002). 
8 D. E. Heard and D. A. Henderson, Phys. Chem. Chem. Phys. 2, 67 (2000). 
9 J. Luque and D. R. Crosley, LIFBASE: Database and Spectral Simulation Program (Version 

1.6), SRI Int. Rep. MP 99-009 (SRI Int., Menlo Park, CA, 1999). 
10 R. P. Wayne, Chemistry of Atmospheres, 3rd ed. (Oxford Univ. Press, New York, 2000). 
11 A. Fiore, Nature 513, 176 (2014). 
12 I. Glassman and R. Yetter, Combustion, 4th ed. (Academic, Boston, 2008). 
13 J. H. Lehman and M. I. Lester, Annu. Rev. Phys. Chem. 65, 537 (2014). 
14 D. R. Yarkony, Rev. Mod. Phys. 68, 985 (1996). 
15 D. G. Truhlar and C. A. Mead, Phys. Rev. A 68, 32501 (2003). 
16 B. G. Levine and T. J. Martinéz. Annu. Rev. Phys. Chem. 58, 613 (2007). 
17 S. Matsika and P. Krause, Annu. Rev. Phys. Chem. 62, 621 (2011). 
18 W. Domcke and D. R. Yarkony, Annu. Rev. Phys. Chem. 63, 325 (2012). 

 

http://dx.doi.org/10.1063/1.5111547


  45

 
19 Y. Shu, B. S. Fales, W.-T. Peng, and B. G. Levine, J. Phys. Chem. Lett. 8, 4091 (2017).  
20 B. G. Levine, M. P. Esch, B. S. Fales, D. T. Hardwick, W.-T. Peng, and Y. Shu, Annu. Rev. 

Phys. Chem. 70, 21 (2019). 
21 B. C. Hoffman and D. R. Yarkony, J Chem. Phys. 113, 10091 (2000). 
22 C. A. Mead, J. Chem. Phys. 70, 2276 (1979). 
23 S. Matsika and D. R. Yarkony, J. Chem. Phys. 115, 5066 (2001). 
24 M. Ortiz-Suárez, M. F. Witinski, and H. F. Davis, J. Chem. Phys. 124, 201106 (2006). 
25 I. B. Pollack, Y. Lei, T. A. Stephenson, and M. I. Lester, Chem. Phys. Lett. 421, 324 (2006). 
26 P. A. Cleary, L. P. Dempsey, C. Murray, M. I. Lester, J. Kłos, and M. Alexander, J. Chem. 

Phys. 126, 204316 (2007). 
27 L. P. Dempsey, C. Murray, P. A. Cleary, and M. I. Lester, Phys. Chem. Chem. Phys. 10, 1424 

(2008). 
28 P. Dempsey, C. Murray, and M. I. Lester, J. Chem. Phys. 127, 151101 (2007). 
29 M. D. Wheeler, D. T. Anderson, M. W. Todd, M. I. Lester, P. J. Krause, and D. C. Clary, Mol. 

Phys. 97, 151 (1999). 
30 M. D. Wheeler, D. T. Anderson, and M. I. Lester, Int. Rev. Phys. Chem. 19, 501 (2000). 
31 E. Kamarchik, B. Fu, and J. M. Bowman, J. Chem. Phys. 132, 091102 (2010). 
32 B. Fu, E. Kamarchik, and J. M. Bowman, J. Chem. Phys. 133, 164306 (2010). 
33 J. H. Lehman, L. P. Dempsey, M. I. Lester, B. Fu, E. Kamarchik, and J. M. Bowman, J. Chem. 

Phys. 133, 164307 (2010). 
34 R. Conte, B. Fu, E. Kamarchik, and J. M. Bowman, J. Chem. Phys. 139, 044104 (2013). 
35 P.-Y. Zhang, R.-F. Lu, T.-S. Chu, and K.-L. Han, J. Phys. Chem. A 114, 6565 (2010). 
36 P.-Y. Zhang, R.-F. Lu, T.-S. Chu, and K.-L. Han, J. Chem. Phys. 133, 174316 (2010). 
37 J. Dillon and D. R. Yarkony, J. Phys. Chem. A 117, 7344 (2013). 
38 J. Dillon and D. R. Yarkony, J. Chem. Phys. 139, 064314 (2013). 
39 M. A. Collins, O. Godsi, S. Liu, and D. H. Zhang, J. Chem. Phys. 135, 234307 (2011). 
40 Q. Ma, J. Kłos, M. H. Alexander, A. van der Avoird, and P. J. Dagdigian, J. Chem. Phys. 141, 

174309 (2014). 
41 C. A. Mead and D. G. Truhlar, Chem. Phys. 277, 31 (2002). 
42 A. W. Jasper, B. K. Kendrick, C. A. Mead, and D. G. Truhlar, in Modern Trends in Chemical 

Reaction Dynamics: Experiment and Theory (Part 1), Advanced Series in Physical Chemistry 
– Vol. 14, edited by X. Yang and K. Liu (World Scientific, Singapore, 2004), pp. 329-391. 

43 M. S. Child, in Atom-Molecule Collision Theory, edited by R. B. Bernstein (Plenum, New 
York, 1979), pp. 427-465. 

44 S. Chapman, Adv. Chem. Phys. 82, 423 (1992). 
45 R. Valero and D. G. Truhlar, J. Chem. Phys. 125, 194305 (2006). 
46 J. M. Bowman, G. Czakó, and B. Fu, Phys. Chem. Chem. Phys. 13, 8094 (2011). 
47 M. J. T. Jordan, K. C. Thompson, and M. A. Collins, J. Chem. Phys. 102, 5647 (1995) 
48 K. C. Thompson, M. J. T. Jordan, and M. A. Collins, J. Chem. Phys. 108, 8302 (1998) 
49 R. P. Bettens and M. A. Collins, J. Chem. Phys. 111, 816 (1999). 
50 O. Tishchenko and D. G. Truhlar, J. Chem. Phys. 130, 024105 (2009) 
51 F. Spiegelmann and J. P. Malrieu, J. Phys. B 17, 1259 (1984). 
52 R. Cimiraglia, J.-P. Malrieu, M. Persico, and F. Spiegelmann, J. Phys, B 18, 3073 (1985). 
53 H.-J. Werner, B. Follmeg, and M. H. Alexander, J. Chem. Phys. 89, 3139 (1988). 
54 T. Pacher, L. S. Cederbaum, and H. Köppel, J. Chem. Phys. 89, 7367 (1988). 
55 P. Halvick and D. G. Truhlar, J. Chem. Phys. 96, 2895 (1992). 
56 K. Ruedenberg and G. J. Atchity, J. Chem. Phys. 99, 3799 (1993). 
57 G. J. Atchity and K. Ruedenberg, Theor. Chem. Acc. 97, 47 (1997). 
58 R. G. Sadygov and D. R. Yarkony, J. Chem. Phys. 109, 20 (1998) 
59 E. S. Kryachko and D. R. Yarkony, Int. J. Quantum Chem. 76, 235 (2000). 
60 H. Nakamura and D. G. Truhlar, J. Chem. Phys. 115, 10353 (2001). 

http://dx.doi.org/10.1063/1.5111547


  46

 
61 R. Abrol and A. Kuppermann, J. Chem. Phys. 116, 1035 (2002). 
62 M. P. Fülscher and L. Serrano-Andrés, Mol. Phys. 100, 903 (2002). 
63 H. Nakamura and D. G. Truhlar, J. Chem. Phys. 117, 5576 (2002). 
64 H. Nakamura and D. G. Truhlar, J. Chem. Phys. 118, 6816 (2003). 
65 O. Godsi, C. R. Evenhuis, and M. A. Collins. J. Chem. Phys. 125, 104105 (2006). 
66 B. N Papas, M. S. Schuurman, and D. R. Yarkony, J. Chem. Phys. 129, 124104 (2008). 
67 K. R. Yang, X. Xu, and D. G. Truhlar, Chem. Phys. Lett. 573, 84 (2013). 
68 C. E. Hoyer, X. Xu, D. Ma, L. Gargliardi, and D. G. Truhlar, J. Chem. Phys. 141, 114104 

(2014). 
69 X. Zhu and D. R. Yarkony, J. Chem. Phys. 140, 024112 (2014). 
70 X. Zhu and D. R. Yarkony J. Phys. Chem. A 119, 12383 (2015). 
71 C. E. Hoyer, K. A. Parker, L. Gargliardi, and D. G. Truhlar, J. Chem. Phys. 144, 194101 

(2016). 
72 D. M. G. Williams and W. Eisfeld, J. Chem. Phys. 149, 204106 (2018). 
73 Z. Varga, K. A. Parker, and D. G. Truhlar, Phys. Chem. Chem. Phys. 20, 26643 (2018). 
74 R. Valero and D. G. Truhlar, J. Chem. Phys. 125, 194305 (2006). 
75 S. Nangia and D. G. Truhlar, J. Chem. Phys. 124, 124309 (2006). 
76 Z. Li, R. Valero, and D. G. Truhlar, Theor. Chem. Acc. 118, 9 (2007). 
77 X. Xu, K. R. Yang, and D. G. Truhlar, J. Chem. Theory Comp. 9, 3612 (2013). 
78 X. Xu, J. Zheng, K. R. Yang, and D. G. Truhlar, J. Amer. Chem. Soc. 136, 16378 (2014). 
79 K. R. Yang, X. Xu, J. Zheng, and D. G. Truhlar, Chem. Sci. 5, 4661 (2014). 
80 S. L. Li, and D. G. Truhlar, J. Chem. Phys. 146, 064301 (2017). 
81 L. Zhang, D. G. Truhlar, and S. Sun Phys. Chem. Chem. Phys. 20, 28144 (2018). 
82 A. W. Jasper and D. G. Truhlar, in Conical Intersections: Theory, Computation, and 

Experiment, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, 
Singapore, 2011), pp. 375-412. 

83 H. Nakano, J. Chem. Phys. 99, 7983 (1993). 
84 H. Nakano, Chem. Phys. Lett. 207, 372 (1993). 
85 H. Nakano, T. Nakajima, T. Tsuneda, and K. Hirao, J. Mol. Struct. 573, 91 (2001). 
86 A. A. Granovsky, J. Chem. Phys. 134, 214113 (2011). 
87 K. Ruedenberg, L. M. Cheung, and S. T. Elbert, Int. J. Quantum Chem. 16, 1069 (1979).  
88 T. H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). 
89 O. Tishchenko, J. Zheng, and D. G. Truhlar, J. Chem Theory Comput. 4, 1208 (2008). 
90 H.A. Witek, Y.-K. Choe, J.P. Finley, and K. Hirao, J. Comput. Chem. 10, 957 (2002). 
91 S. L. Li, and D. G. Truhlar, J. Chem. Phys. 142, 064106 (2015). 
92 L. Bytautas, N. Matsunaga, and K. Ruedenberg, J. Chem. Phys. 132, 074307 (2010). 
93 S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011). 
94 S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010), 0405167. 
95 M. J. D. Powell, Acta Numer. 7, 287 (1998). 
96 S. G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt 
97 B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577−606 (2009). 
98 Z. Xie and J. M. Bowman, J. Chem. Theory Comput. 6, 26−34 (2010). 
99 J. D. Bender, P. Valentini, I. Nompelis, Y. Paukku, Z. Varga, D. G. Truhlar, T. 

Schwartzentruber, and G. V. Candler, J. Chem. Phys. 143, 054304 (2015). 
100 Y. Paukku, K. R. Yang, Z. Varga, and D. G. Truhlar, J. Chem. Phys. 139, 044309 (2013), 140, 

019903(E) (2014). 
101  P. R. Bunker, Molecular Symmetry and Spectroscopy (Academic Press, New York, 1979) 
102  D. E. Rutherford, Substitutional Analysis (Hafner, New York, 1968). 
103 J. Serre, Adv. Quantum Chem. 8, 1 (1974). 
104 M. Yang, D. H. Zhang, M. A. Collins, and S.-Y. Lee, J. Chem. Phys. 115, 174 (2001). 

http://dx.doi.org/10.1063/1.5111547


  47

 
105 G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic 

Molecules (Krieger, Malabar, 1979). 
106 Y. Wang, P. Verma, X. Jin, D. G. Truhlar, and X. He, Proc. Natl. Acad. Sci. USA 115, 10257 

(2018).  
107 I. Yasumori, Bull. Chem. Soc. Japan 32, 1110 (1959).  
108 J. Chen, X. Xu, X. Xu, and D. H. Zhang, J. Chem Phys. 138, 154301 (2013). 
109 G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules 

(Van Nostrand Reinhold, New York, 1950). 

http://dx.doi.org/10.1063/1.5111547

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	Manuscript File

