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Variational transition state theory: theoretical
framework and recent developments

Junwei Lucas Bao * and Donald G. Truhlar *

This article reviews the fundamentals of variational transition state theory (VTST), its recent theoretical

development, and some modern applications. The theoretical methods reviewed here include multidimensional

quantum mechanical tunneling, multistructural VTST (MS-VTST), multi-path VTST (MP-VTST), both

reaction-path VTST (RP-VTST) and variable reaction coordinate VTST (VRC-VTST), system-specific

quantum Rice–Ramsperger–Kassel theory (SS-QRRK) for predicting pressure-dependent rate constants,

and VTST in the solid phase, liquid phase, and enzymes. We also provide some perspectives regarding

the general applicability of VTST.

1. Introduction

Chemical kinetics has a long history in chemical science. In
1864, Waage and Guldberg formulated the law of mass action,1

which can be considered as the first published work developing
the theory of chemical kinetics. About 25 years later, Arrhenius
proposed his well known empirical relation for the temperature
dependence of reaction rates.2 Both of these studies still exert a

profound influence on modern chemical kinetics. In the 1920s,
the concept of a transition state emerged, and in the 1930s it
became a central theoretical foundation for quantitative theory,
especially because of the work of Eyring, Wigner, Polanyi, and
Evans.3 The direct observation of transition state structures by
various spectroscopic techniques is considered to be one of the
major challenges in modern chemical science.4

For a long time, transition state theory was viewed some-
what skeptically as far as its relevance to quantitative work. For
example, a group of distinguished researchers wrote in 1983
that ‘‘The overall picture is that the validity of the transition
state theory has not yet been really proved and its success
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seems to be mysterious.’’5 This began to change though when
accurate quantum mechanical calculations became available
for prototype reactions of small molecules, and when accurate
semiclassical tunneling methods became available.6 Now transition
state theory is understood on a firm basis, especially since the
observation of quantized transition state level structure in
converged quantum mechanical dynamics calculations7–9 has
provided a solid quantum mechanical foundation for transition
state theory in terms of short-lived resonance states.10–13

Transition state theory is basically a theory for electronically
adiabatic reactions, i.e., reactions that occur on a single Born–
Oppenheimer potential energy surface. There are some extensions
to multiple-surface reactions, but they involve additional assump-
tions that are not traditionally considered to be part of transition
state theory, and we will not consider them here. Furthermore,
transition state theory in its basic form predicts reaction rates in
equilibrated ensembles, in particular canonical reaction rates in
thermal ensembles and microcanonical reaction rates in ensembles
with fixed total energy or fixed total energy and total angular
momentum; thus it is not designed for state-specific reaction
rates or for predicting product internal-state distributions,
although sometimes it is applied to such properties by making
additional assumptions.

Transition state theory is most powerful in the form of
variational transition state theory14–25 (VTST), especially when
combined with modern electronic structure theory, multi-
dimensional tunneling methods, and statistical mechanical
and quantum mechanical theory for anharmonicity, and it
has become a powerful tool in understanding and predicting
chemical reaction mechanisms and reaction rates.26–36

We have reviewed VTST elsewhere in a variety of
ways,6,20–25,30,33,35,37–41 but the current review has a special
focus on several modern enhancements that were not available
when those earlier reviews were written. In Section 2, we cover
the fundamental principles of variational transition state theory
in the context of gas-phase reactions; this section uses a reaction
coordinate associated with a reaction path, and it includes
tunneling. The next four sections continue the treatment of
gas-phase reactions, covering multistructural transition states
(Section 3), variable reaction coordinates (Section 4), pressure
effects (Section 5), and tests of the applicability of the theory
(Section 6).

Sections 1–3 apply to tight transition states, while Section 4
applies for loose transition states. Section 7 discusses extension of
the treatment to condensed-phase reactions, and Section 8 discusses
selected applications. We conclude this review in Section 9.

Most of the computational methods reviewed here are
available in the Polyrate computer code.42

2. Fundamentals of gas-phase
variational transition state theory

A detailed pedagogical review of the fundamental theory under-
lying gas-phase variational transition state theory, including
derivations, is available elsewhere.41 In this section we present

a briefer summary including a few new developments. We start
by using classical mechanics to derive variational transition
state theory for gas-phase reactions (Section 2.1), and then we
introduce quantum effects into VTST, in particular vibrational
mode quantization in the partition functions (Section 2.2) and
quantum mechanical tunneling in the treatment of reaction-
coordinate motion, including multidimensional coupling of
reaction coordinate motion to other coordinates (Section 2.3).
We emphasize the importance of utilizing curvilinear coordinate
for carrying out the VTST calculations in Section 2.5. State-selected
extensions of VTST are presented in Section 2.6.

2.1 Classical variational transition state theory

Transition state theory is first justified in classical mechanics;
then we add quantization effects. In classical mechanics, we
work with trajectories. At any given time, a trajectory is a point
in phase space, which is the space of all the coordinates and
their conjugate momenta. A point in phase space is called a
phase point.

Transition state theory may be applied to both thermal
ensembles and microcanonical ensembles. In either case the
first assumption is that the reactants are in local equilibrium.
For thermal ensembles, this means that the population of
reactant states is given by a Boltzmann distribution, even if
reactants are not in equilibrium with products. For a micro-
canonical ensemble, this means for classical systems that all
cells of equal volume in reactant phase space are equally
populated; for microcanonical quantum systems it means that
all reactant states of a given energy are equally populated. In the
rest of this subsection we assume a classical mechanical world.

The maintenance of reactant equilibrium means that the
rate of thermalizing collisions for maintaining the equilibrium
states of these species is at least as fast as the rate at which
these states are depopulated by the chemical reaction. Since the
phase points in the reactant region are assumed to be in
thermal equilibrium, Liouville’s theorem guarantees that as
the time evolves, the Boltzmann distribution is also satisfied in
the transition state region except that if products are absent
then phase points corresponding to trajectories that originated
in the product region are missing.43,44 This local-equilibrium
assumption in the reactant region is assumed valid for most
gas-phase bimolecular reactions and reactions in the liquid
phase because the inelastic collisions of the reactants are
efficient enough to repopulate their rovibrational states and
maintain local equilibrium in phase space, but it is not applicable
for unimolecular reactions (and some bimolecular reactions) in
the gas phase at low pressure. When the equilibrium assumption
breaks down, ‘‘thermal’’ rate constants become pressure dependent,
and the thermal rate constants calculated by using the transition
state theory are the high-pressure limit rate constants. In the
high-pressure limit, the word ‘‘thermal’’ refers to rate constants
averaged over Boltzmann distributions of both reactants and
bath gases; but at lower pressures, for reactions whose rate
constants are pressure-dependent, ‘‘thermal’’ refers to a Boltzmann
distribution of bath gases, but there is a pressure- and temperature-
dependent non-Boltzmann energy distribution of reactants.
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Thus, in the fall-off region, rate constants are functions of both
pressure and temperature. We will discuss pressure dependence
in Section 5.

It is convenient to introduce mass-scaled coordinates,22,45

which may also be called isoinertial coordinates. With such a
coordinate system, the motion of an N-atom system in three
dimensions can be reduced to that of a single-particle with a
reduced mass m moving in 3N-dimensional space. In other
words the reduced mass becomes the same for all directions
of motion (and hence the word ‘‘isoinertial’’). The reduced
mass m is usually chosen to be 1 atomic mass unit, or it can be
set to be the reduced mass of the relative translational motion
for a bimolecular reaction (one can use any value as long as one
is consistent). The value of m sets the scale for the reaction
coordinate s; however, the value of any physical observable is
independent of the value of m. If one sets m = 1 amu, the
numerical value of s in Å is the same as the numerical value of s
in amu1/2 if one used the familiar mass-weighted coordinates46

of spectroscopists. The motions of all the particles are governed
by a potential energy surface V({ri}) that depends on the set of N
three-dimensional positions ri of the particles, each with its
own mass. Equivalently speaking, the motion may be described
as that of a single particle with reduced mass m governed by
V(q), where q is a 3N-dimensional generalized mass-scaled
coordinate, and its conjugate momentum is p.

Now we present classical transition state theory. Consider an
ensemble of systems in phase space. Each phase point (q,p) in
the 6N-dimensional phase space represents an N-atom system,
and the motion of each point is governed by the following set of
Hamilton equations:

dq

dt
¼ @H
@p

;
dp

dt
¼ �@H

@q
(1)

where the classical Hamiltonian is

Hðq; pÞ ¼ 1

2m

X3N
i¼1

pi
2 þ VðqÞ (2)

Liouville’s theorem states that the phase space volume is
conserved as time evolves; it can be written in the form of a
continuity equation as follows:

@r
@t
þ = � rv ¼ 0 (3)

where = is the 6N-dimensional divergence operator, v is a
6N-dimensional velocity of a phase point, and r is the density
of points in phase space. Integrating r over the whole phase
space yields the total number of classical phase points (i.e., the
total number of systems in the ensemble).

The number of systems located in the reactant region is NR,
and it can be evaluated by integrating the density of phase
points over the phase space of the reactant:

NR ¼
ð
R

rd6Nt; d6Nt ¼
Y3N
i¼1

dpidqi (4)

where R indicates that the volume integral is carried out over
the reactant region. Differentiating eqn (4) with respect to t and
plugging into eqn (3) yields

�dN
R

dt
¼ � d

dt

ð
R

rd6Nt ¼
ð
R

= � rvd6Nt (5)

Then we can use Gauss’s theorem to rewrite the volume integral
in eqn (5) as a surface integral,

�dN
R

dt
¼
ð
S

rv � ndS (6)

where n is a unit vector normal to the surface S pointing out of
the volume R, and S is a (6N� 1)-dimensional hypersurface that
separates the reactant region from the product region; this
hypersurface is called the dividing surface.

The local one-way flux of systems going from reactants to
products through this dividing surface is

Fþ ¼
ð
Sþ
rv � ndS (7)

where we consider the portion, S+, of the dividing surface for
which the flux is positive. We define the coordinate q3N as the
coordinate normal to surface S, and we call this coordinate the
local reaction coordinate z. Note that the surface S is locally
normal to some global reaction path from reactants to products.
The dividing surface is put at the location where the global
reaction coordinate is s*, and the local reaction coordinate is z*.
The local one-way flux is evaluated as:

Fþ ¼
ð
Sþ
r _zdS ¼

ð
Sþ
r
pz

m
dq1 . . . dq3N�1dp1 . . . dp3N�1dpz

¼
ð
z¼z�

d6N�2t
ðþ1
0

r
pz

m
dpz

(8)

As we mentioned at the beginning of this subsection, TST
assumes the reactants are in local equilibrium at temperature T
and the density of classical phase points satisfies the Boltzmann
distribution

r = r0e�H/kBT (9)

where H is the Hamiltonian, kB is Boltzmann constant, T is
temperature, and r0 is a constant. Plugging eqn (9) into eqn (8)
and (4) yields

Fþ ¼ r0

ð
z¼z�

d6N�2t
ðþ1
0

pz

m
e�H=kBTdpz (10)

NR ¼ r0

ð
R

e�H=kBTd6Nt (11)

Now, we define a generalized transition state (GT) as a (6N � 2)-
dimensional fixed-z hyperplane with the following Hamiltonian HGT:

HGT q1; . . . ; q3N�1; p1; . . . ; p3N�1; z ¼ z�ð Þ

¼ H q1; . . . ; q3N ; p1; . . . ; p3Nð Þ � pz
2

2m
(12)

The generalized-transition-state Hamiltonian H GT is defined by
removing the kinetic energy associated with the motion of the
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local reaction coordinate z from the total Hamiltonian, and
fixing the value of z at some specific value z*. Notice that z is a
parameter rather than a variable in HGT, i.e., HGT depends
parametrically on z. Substituting eqn (12) into eqn (10), we
obtain the one-way flux FGT(T,z*) through a generalized transition
state fixed at z = z*, as

FGT T ; z�ð Þ ¼ r0kBT
ð
GT

e�H=kBTd6N�2t (13)

where GT indicates that the integral is carried out over the
generalized transition state.

The local equilibrium one-way flux FGT(T,z*) gives an upper
bound to the global reactive flux F(T) if we arbitrarily put our
dividing surface at the saddle point in this classical dynamics
approach. There is no guarantee that the trajectories in phase
space that are originating from the reactant region toward the
product region will cross the dividing surface once and only
once. In the conventional transition state theory, one simply
puts the dividing surface at the saddle point and makes a non-
recrossing assumption that there is no recrossing on this surface.

In order to have the best estimation of the classical rate
constant, the ideal location to put the dividing surface S would
be the location at which FGT(T,z*) = F(T), which means all the
trajectories originating from the reactant region cross the surface
only once (no recrossing) and end up in the product region. If one is
willing to make the transition state hypersurface arbitrarily convo-
luted in shape, or if one considers simple enough systems at low
energy,47 one can make classical transition state theory exact. For
real potential energy surfaces and dividing surfaces that are simple
enough to allow for the calculation of the flux, completely eliminat-
ing all the recrossing is almost impossible, so we would put the
dividing surface at the so-called dynamical bottleneck, which is the
position at which the recrossing is minimized. Classical transition
state theory will overestimate the classical rate constant, but the
variational procedure will minimize this overestimation.

For a bimolecular reaction (A + B), the classical generalized
transition state theory rate constant kGT

Classical(T), which is the
flux per volume divided by the product of the concentration of
reactants, obtained by the above procedure is

kGT
ClassicalðTÞ ¼

r0kBT
Ð
GTd

6N�2te�H=kBT

NR
AN

R
B

�
V

(14)

where V is the three-dimensional real-space volume of the
system, and GT indicates that the integral is carried out over
the generalized transition state. We can use the following
definition of the classical partition function for A

QA
ClassicalðTÞ ¼

1

h3N

ð
A

d6Nte�H=kBT (15)

where h is Planck’s constant, with an analogous expression for
B. Recall that Planck’s constant occurs in the classical partition
function because we require the classical partition function to
equal the quantum one in the classical limit.48 We also define a
classical partition function per volume as

FClassical = QClassical(T)/V (16)

For the generalized transition state, we freeze one degree of
freedom (the reaction coordinate) and take the local zero of
energy as the classical potential energy VRP evaluated at z = z*
on the reaction path (RP). The generalized transition state
classical partition function per volume for the transition state
becomes

FGT
Classical ¼

Ð
GTd

6N�2te� H�VRPð Þ=kBT

Vh3N�1
(17)

The total Hamiltonian can be written as the sum of the
Hamiltonians of the reactants, HA and HB, and using

NR
X = rX

0h3NXVFX
Classical (18)

where NR
X is the number of atoms in X (NR

A + NR
B = N), and the

constant r0 = rA
0r

B
0, we obtain

FX
Classical ¼

Ð
Xd

6NXte�H
X=kBT

Vh3NX
(19)

in which X is A or B, X represents that the volume integral is
carried out over reactant region, and HX is the Hamiltonian of
the reactant X.

We then use eqn (15)–(18) to re-write eqn (14) as

kGT
ClassicalðTÞ ¼

kBT

h

FGT
Classical

FA
ClassicalF

B
Classical

e�VRP z¼z�ð Þ=kBT (20)

Follow a similar derivation, the classical generalized TST rate
constant for unimolecular reactions is:

kGT
ClassicalðTÞ ¼

kBT

h

QGT
Classical

QA
Classical

e�VRP z¼z�ð Þ=kBT (21)

A convenient choice for the reaction path is the minimum
energy path (MEP) in isoinertial coordinates.49 The global
reaction coordinate s is then the signed distance along the
MEP. An MEP is the union of the paths of steepest descent in
isoinertial coordinates from the saddle point towards reactants
and products. The physical meaning of the MEP is that it is the
path followed by a classical trajectory that starts at the saddle
point but is continuously damped so as to always have only an
infinitesimal velocity. A positive value of s represents for the
direction toward the product; s = 0 is the saddle point; and a
negative value of s represents the direction toward the reactant
side. Starting from the saddle point with coordinates x‡ (which
may also be called x(s = 0)), the geometry of a non-stationary
point that is close to the saddle point on the reaction path is
computed using:

x(s1 = �ds) = x(s = 0) � ds�L(x‡) (22)

where ds is the step size (typically chosen to be 0.001 to 0.003 Å)
along the MEP, and L(x‡) is the normal-mode eigenvector
associated with the imaginary frequency (it is a column of
the orthogonal matrix that diagonalizes the Hessian matrix
evaluated at the saddle point). If we start from any non-stationary
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point x(sj) on MEP, then the next point can be computed by using
the normalized gradient as:

x sjþ1 ¼ sj � ds
� �

¼ x sj
� �
� ds �

rVMEP sj
� �

rVMEP sj
� ����� (23)

At each value of s, we can define a new coordinate system by
rotating and translating the original coordinates so that the
coordinate z that we mentioned in the generalized TST is
tangent to MEP at s, and any surface that is orthogonal to
MEP can be described by z* = 0. The dividing surface intersects
MEP at the reaction coordinate s*. Note that s* depends on
temperature.

In canonical variational transition state theory (CVT), we
variationally optimize the position of the dividing surface to
minimize the generalized transition state rate constant kGT

Classical

(T) since the local one-way flux provides an upper bound of the
global reactive flux. The CVT rate constant is computed by

kCVTClassicalðTÞ ¼ kGT
Classical T ; s

CVT
�

� �
¼ min

s
kGT
ClassicalðT ; sÞ (24)

Therefore

@

@s
kGT
ClassicalðT ; sÞ

� �����
s¼sCVT�

¼ 0 (25)

which leads to the following CVT rate constant for bimolecular
reactions

kCVTClassicalðTÞ ¼
kBT

h

FGT
Classical s ¼ s�ð Þ

FA
ClassicalF

B
Classical

e�V
CVT
MEP

s¼s�ð Þ=kBT (26)

and for unimolecular reactions

kCVTClassicalðTÞ ¼
kBT

h

QGT
Classical s ¼ s�ð Þ
QA

Classical

e�V
CVT
MEP

s¼s�ð Þ=kBT (27)

Another way to understand the canonical variational approach
is to re-write the classical generalized TST rate constant in
terms of the standard-state Gibbs free energy of activation
DGGT,0

act (T,s).

kGT
ClassicalðTÞ ¼

kBT

h
K0e�DG

GT;0
act ðT ;sÞ=kBT (28)

where K0 is the reaction quotient (for the formation of TS)
evaluated at the standard-state concentration of each species:

K0 ¼
1 ðunimolecularÞ

c�ð Þ�1 ðbimolecularÞ

(
(29)

where, for gas-phase bimolecular reaction with unit cm3

molecule�1 s�1, (c1)�1 is kBT/p1, where p1 is 1 bar; for liquid-
phase reaction, the standard-state concentration is 1 mole L�1.

CVT is equivalent to maximizing the free energy of activation

DGCVT;0
act ðTÞ ¼ max

s
DGGT;0

act ðT ; sÞ (30)

In a microcanonical ensemble (NVE ensemble), the micro-
canonical energy-resolved classical rate constant (which is

obtained by firstly integrating the E, J-resolved rate constant
kGT(E,J,s) over the angular momentum J distribution) is

kGTðE; sÞ ¼ NGTðE; sÞ
rRðEÞh

(31)

where NGT(E,s) is the phase-space volume of the generalized
transition state (it is, quantum mechanically, the number of
states for the generalized transition state), and rR(E) is the
density of states for reactant. The density of states is the inverse
Laplace transform of the partition function. In microcanonical
variational transition state theory (mVT), the variational rate
constant is obtained by minimizing eqn (31) with respect to s:

kmVTðEÞ ¼
min
s

NGTðE; sÞ
rRðEÞh

(32)

and therefore the location of microcanonical variational transi-
tion state is energy-dependent. To obtain canonical mVT rate
constant, one needs to perform the following integration:

kmVTðTÞ ¼
ðþ1
0

kmVTðEÞPRðEÞdE (33)

where PR(E) is the normalized population distribution of the reactant:

PRðEÞ ¼
rRðEÞe�E=kBT

QRðTÞ
(34)

where QR(T) is the canonical partition function of reactant. If the
dividing surface is located at the saddle point of the potential energy
surface, then eqn (33) is equivalent to the rate constant expression
of the conventional transition state theory. It can be shown that

kCVT(T) Z kmVT(T) (35)

Inserting eqn (34) into (33) shows that the canonical rate
constant may be considered as a Laplace transform of the
microcanonical one, or the microcanonical rate constant may
be considered to be an inverse Laplace transform of the
canonical one. This will be a useful perspective in Section 5.

2.2 Quantization: quasiclassical variational transition state theory

The classical canonical variational transition state theory cannot
be rigorously quantized because in order to define the generalized
transition state appropriately, we need to know the local reaction
coordinate z and its conjugate momentum pz simultaneously,
which is a violation of Heisenberg’s uncertainty principle.
However, the quantum mechanical effects along the reaction
path usually cannot be ignored, and therefore we put in the
quantum effects approximately to obtain what may be called
quantized variational transition state theory. In order to quantize
classical variational transition state theory,38,50–56,77 we need to: (1)
quantize the translational, rotational, and vibrational degrees of
freedom (the electronic degrees of freedom have already been
quantized by the Born–Oppenheimer approximation); (2) quantize
the corresponding partition functions; and (3) quantize the
motion along the reaction coordinate, which includes quantum
mechanical tunneling (including nonclassical reflection). We
will discuss quantum mechanical tunneling in Section 2.3.
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First, we quantize all the degrees of freedom except for the
vibrational mode associated with the reaction coordinate s at a
given generalized transition state. This degree of quantization
was called hybrid in early papers on VTST; now we call it
quasiclassical. In many cases we ignore the coupling between
some of the degrees of the freedom; that is, we assume
independent normal modes of vibration, and we neglect vibration–
rotation coupling. VTST theory is not restricted to neglecting these
couplings, but computations of the partition functions are more
complicated if they are included. (We do include such coupling in
some of the approximations considered later in this section and in
Sections 3.1 and 4.1.)

The quantized translational motion is described by a particle
in 3-dimensional box; since box length is macroscopic, this agrees
exactly with the classical result. For overall rotation, usually, it is
sufficient to use the classical rotor approximation, provided one also
correctly includes the rotational symmetry number (which is a
quantum effect); nevertheless, at accessible temperatures including
300 K and below, all of the diatomic hydrides, many important free
radicals (e.g., OH, CH, and CH2), and a few polyatomics have large
rotational constants, for which the classical approximation is not
always sufficiently accurate. For H2, it is advisable to always use the
quantal rotational partition function.

For vibrational motion, the traditional procedure is to use
the harmonic oscillator approximation, which assumes a quadratic
potential. A quadratic potential has only one minimum-energy
structure, whereas real molecules often have multiple structures
(conformations) due to torsions and/or rings. In some cases, the
single-structure approximation causes large errors, and eliminating
these errors is the subject of Section 3.

If the goal is a quantitative calculation, one should explicitly
consider anharmonicity even for stretches and bends in a single
structure (this vibrational anharmonicity needs to be corrected
because the harmonic-oscillator approximation truncates the
series expansion of the potential energy at the second-order
terms). Vibrational anharmonicity can be included by vibrational
self-consistent-filed theory (VSCF), vibrational perturbation theory
(VPT), vibrational configurational interaction (VCI) and other
VSCF-based methods,57 but this can get expensive. To avoid the
cost of those higher-level vibrational calculations, it is convenient
use a scale factor58 (for a given level of electronic structure theory)
to scale all the computed harmonic vibrational frequencies in
order to account for vibrational anharmonicity; such scale factors
can also partially correct for systematic errors in the chosen level of
electronic structure theory. Using the harmonic oscillator formulas
with effective frequencies (such as those obtained by scaling) is
called the quasi-harmonic oscillator (QHO) approximation. (Some-
times it is just called the harmonic oscillator approximation, but
that can lead to confusion.) Note that the scaled frequencies can
(and usually do) account for vibrational mode coupling as well as
intramode anharmonicity, so the QHO approximation is a way to
include non-separability in a separable-mode formalism.

For the purpose of thermochemical kinetics computations,
the scale factor we often choose is the one that is developed for
reproducing an accurate zero point energy; this is denoted
as lZPE, and it includes the corrections both for systematic

errors in the electronic structure level and for the vibrational
anharmonicity. The scale factors58 are developed based on a
database that consists of 15 representative small molecules,
whose experimental harmonic vibrational frequencies, funda-
mental frequencies and zero-point vibrational energies are
available. The ZPE scale factor (lZPE) can be written as the
product of the harmonic frequency scale factor (lHO, which
corrects the systematic error of a given electronic structure
method) with the vibrational anharmonicity scale factor (lanh,
which corrects the vibrational anharmonicity).

Instead of using the generic scale factors, the vibrational
anharmonicity scale factor for a given structure can be computed by
using hybrid,59 degeneracy-corrected,60 second-order61–63 vibrational
perturbation theory (HDCVPT2); and it is equal to the ratio of
HDCVPT2 computed anharmonic ZPE to the harmonic-oscillator
ZPE. (The use of the HDCVPT2 method, like the use of vibrational
scale factors, includes the effects of mode–mode coupling.)

To properly take account of anharmonicity, we have usually
assumed that it is sufficient to include anharmonicity in all
bends and stretches by a single scaling factor. Note that the
scale factors designed to treat the zero-point energy are primarily
dictated by the stretching frequencies since they are larger than the
bending and torsion frequencies and hence their contributions
dominate the zero-point energy. Since stretches usually have
negative anharmonicity, frequency-scaling factors are usually
smaller than unity, which means that partition functions are
increased by using a frequency-scaling factor. However, anharmoni-
city of a bend mode could either increase or decrease the partition
function. To achieve the most accurate possible thermodynamic and
kinetic calculations requires treating anharmonicity in each high-
frequency mode/non-torsional mode individually. One approxi-
mation for computing such vibrational partition function with
vibrational anharmonicity is called simple perturbation theory
(SPT);64 it only requires calculation of the fundamental frequencies,
which can be computed by the above-mentioned HDCVPT2 method.

The quantized total partition function of species X can be
then written as

Q(X) = Qtrans(X)Qrot(X)Qvib(X)Qelec(X) (36)

with the vibrational partition function in the QHO approxi-
mation given by

QHO
vib ðXÞ ¼

Yi¼F
i¼1

e�hni=2kBT

1� e�hni=kBT
(37)

where for the reactant and product, the vibrational degree of
freedom F = 3N � 5 for linear molecule, or 3N � 6 for nonlinear
molecule, 3N � 6 for linear transition states, and 3N � 7 for
nonlinear transition states. And ni is the vibrational frequency
for the normal mode i.

Note that we have introduced the zero point energy, we have to
specify what we take as the zero of energy for partition functions.
Textbooks routinely take the zero point level as the zero of energy;
then partition functions tend to unity (or, more generally, to the
degeneracy of the ground state) when the temperature goes to
zero. In our work (and in this whole article) the zero of energy for
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the vibrational partition function is chosen to be VMEP(s). We also
define the zero of energy for the electronic partition function as
VMEP(s), and hence, without considering spin–orbit coupling or
low-lying electronic states, the electronic partition function is just
equal to the degeneracy of the ground electronic state, but the
vibrational partition function is not (and we do include low-lying
electronic states in the electronic partition function when they
are present – see the next paragraph). The rotational partition
function (which is approximated by the classical rotor approxi-
mation) is determined by the principal moments of inertial of the
species. For the generalized transition state, QGT is a function of
reaction coordinate s.

In thermochemical kinetics we usually assume the molecules
are in their ground electronic states. The zero of energy is set
equal to be electronic energy of the ground state, the electronic
partition function is

Qelec = g0 + g1e�E1/kBT +� � � (38)

where g0 and g1 are the degeneracy of ground state and first
excited state, and E1 is the adiabatic excitation energy of the
first excited state (i.e., the first excited state energy relative to
the ground state). Usually the first excited state is much higher
than the ground state, and thus only including the first term is
usually sufficient, i.e., the electronic partition function is equal
to the ground-state degeneracy. Notable exceptions are reactions
involving halogen atoms and the OH radical.

Next we need to consider the vibrational zero-point energy (ZPE),
which is of central importance in the interpretation of the kinetic
isotope effects.65–74 The generalized normal mode analysis is carried
out along the MEP, and the total zero-point energy at each s is
computed as the summation of the ZPEs of all the vibrational
modes that are orthogonal to the reaction coordinate. We define the
vibrationally adiabatic ground-state potential energy VG

a as follows:

VG
a = VMEP(s) + eG(s) (39)

where eG(s) is the zero-point energy of the transverse vibrational
modes. The generalized normal mode analysis along the reaction
coordinate is carried out with curvilinear coordinates rather than
with rectilinear coordinates or Cartesian coordinates. In order to
eliminate or minimize the appearance of unphysical imaginary
frequencies for modes transverse to the reaction coordinate, one
should use curvilinear coordinates, which are physically more
meaningful.75,76 Note that only at the stationary points are the
harmonic vibrational frequencies independent of the choice of
coordinates.

One important practical issue about the formulas for computing
rate constants is the choice of the zero of energy for the calculation,
which must be done consistently. If one chooses the zero of energy
as the bottom of the potential energy well, i.e., the equilibrium
potential energy, for the lowest-energy structure of the reactant in a
unimolecular reaction, or as the summation of the equilibrium
potential energies of the two (infinitely separated) reactants in a
bimolecular reaction, then the vibrational partition function must
be computed accordingly, and this is why we include e�hni/2kBT in the
numerator of eqn (37). In the rate constant expressions, the barrier
height is then ZPE-exclusive. As stated above, this is the choice we

make. (If, instead of using bottom of the potential well, one
uses ZPE(s) of reactant(s) as the zero of energy, then the
numerator of the vibrational partition function is 1, and the
barrier height is ZPE-inclusive, i.e., it is based on V G

a .)
The quantized CVT rate constant (which we denote as

CVT/T, where ‘‘/T’’ means tunneling) can be then written as

Bimolecular reaction : kCVT=TðTÞ

¼ kT
kBT

h

QGT s ¼ s�ð Þ
FR

e�V
VT s¼sCVT�ð Þ=kBT

(40)

Unimolecular reaction : kCVT=TðTÞ

¼ kT
kBT

h

QGT s ¼ s�ð Þ
QA

e�V
VT s¼sCVT�ð Þ=kBT

(41)

where kT is the (temperature-dependent) tunneling transmission
coefficient, which will be discussed in Section 2.3. VVT s ¼ sCVT�

� �
is the classical barrier height evaluated as the difference between
the ground state energy of the variational transition state and the
reactant(s), and because the latter is the zero of energy,

VVT s ¼ sCVT�
� �

is simply the potential energy of the variational
transition state; QGT and QA are the translational-motion-
excluded quantized partition functions; FR is the product of
the reactants’ partition functions per volume, which is equal to

FR ¼ QA
eleQ

A
rotQ

A
vibQ

B
eleQ

B
rotQ

B
vib

2pmAmBkBT

mGTh2

� 	3=2

(42)

in which mAmB/mGT is just the reduced mass of relative translational
motion of A and B (because mGT = mA + mB). An alternative
(equivalent) way for computing partition functions is that, in
eqn (40) and (41), the partition functions QGT and QA are
the total partition function (including translational partition
function), and FR is the product of reactants’ total partition
functions per volume.

The above eqn (40) and (41) can also be re-written as:

kCVT/T(T) =kTGCVTkTST (43)

where kTST is the conventional TST rate constant, and GCVT is the
canonical variational transition state theory recrossing transmission
coefficient. (A pioneering physical picture for the transmission
coefficients was developed in Hirschfelder and Wigner’s work245

in the very early days.) If we ignore tunneling (i.e., we set kT = 1),
then the CVT variational transmission coefficient is

GCVT = kCVT/kTST (44)

The value of GCVT characterizes the importance of variational
effects (recrossing) in the studied system, and it is smaller than
unity. Under the harmonic-oscillator approximation, CVT variational
transmission coefficient is computed as

GCVT ¼
QVT-HO exp �VVT

�
kBT

� �
Qz-HO exp �Vz=kBTð Þ (45)

where QVT-HO is the vibrational partition function of variational
transition state, Q‡-HO is the vibrational partition function of the
saddle point; VVT is the potential energy of the variational transition
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state, and V‡ is the potential energy of the saddle point. The location
of the GT is temperature-dependent, and so does the GCVT.

Similarly, for microcanonical variational transition state
theory (mVT), we have

kmVTðEÞ ¼ GmVTðEÞN
zðEÞ

rRðEÞh
(46)

where GmVT(E) is the microcanonical variational transmission
coefficient. Microcanonical variational transition state theory
provides a variational extension of the Rice–Ramsperger–Kassel–
Marcus (RRKM) theory, which is based on conventional transition
state theory. If quantum mechanical tunneling through rovibrational
excited states of the transition state is considered, the number
of states of the generalized transition state would be replaced by
the cumulative reaction probability,77,78 which thereby becomes
an effective number of reactive states.

Notice that in the above equations, the overall rotational
symmetry number of the molecule is included in the rotational
partition function. Sometimes, the rotational symmetry numbers
for TS and for reactant(s) in their rotational partition functions
are factored out to the reaction symmetry number79

srxn ¼
sR
�
sz unimolecular reaction

sR1sR2
�
sz bimolecular reaction

8<
: (47)

and the corresponding VTST rate constants are expressed as (in
which the rotational partition function excludes the rotational
symmetry number)

Bimolecular reaction : kCVT=TðTÞ

¼ srxnkT
kBT

h

QGT s ¼ s�ð Þ
FR

e�V
VT s¼sCVT�ð Þ=kBT

(48)

Unimolecular reaction : kCVT=TðTÞ

¼ srxnkT
kBT

h

QGT s ¼ s�ð Þ
QA

e�V
VT s¼sCVT�ð Þ=kBT

(49)

where sR and s‡ are the rotational symmetry number for the
reactant and transition state structure, which are equal to the order
of the rotational subgroup for polyatomic molecule; rotational
symmetry number is 1 for CNv point group (for instance, a hetero-
nuclear diatomic molecule) and 2 for DNh point group (for instance,
a homonuclear diatomic molecule); for monoatomic species, which
do not have rotational motion, sR is taken to be 1.

A common misunderstanding about the reaction symmetry
number is that it represents the number of equivalent ways (or
chemically equivalent positions) for the reactants to react; this is
simply not true, although in some cases they (the number of
equivalent ways to react and the reaction symmetry number) might
coincidentally have the same value. For instance, in the case of
CH4 + OH - CH3 + H2O, the number of equivalent ways for OH to
abstract the H atom from CH4 is 4 (CH4 has four chemically
equivalent H atoms), but the reaction symmetry number for forward
reaction is 12 (the order of rotational subgroup for Td point group
(CH4) is 12, and rotational symmetry number for OH is 1 and for TS
(Cs point group) is 1); but in the case of CH4 + O - CH3 + OH,

because the point group of the TS is C3v (for which the order of
rotational subgroup is 3), the forward reaction symmetry number is
4, which coincidently happens to be equal to the number of
equivalent H atoms on CH4. The reaction symmetry number should
also include the contributions from the non-superimposable mirror
images.80 However, if the MS-T method137,138 (which will be
discussed in later section) has been applied, then the reaction
symmetry number should exclude the mirror images, because
they have already been included in MS-T partition function and
we should not double count them.

We should remind ourselves that after this non-rigorous
quantization of the classical canonical variational transition
state theory, the CVT rate constant no longer necessarily
provides an upper bound to the exact quantum rate constant.
Nevertheless, the variationally optimized rate constants provide
much better predictions than the ones obtained by putting
dividing surface at the saddle point as in the conventional TST.

2.3 Quantum mechanical tunneling

2.3.1 Importance of tunneling. Tunneling is the quantum
mechanical process by which a particle has a finite probability
to pass through a barrier, even though its energy is lower than
the barrier. Nonclassical reflection refers to the quantum
diffraction phenomenon that when the incident particle’s energy
is higher than the barrier, there is a finite probability of the particle
being reflected. Because the treatment presented so far treats the
reaction-coordinate motion as classical, it does not include either
quantum mechanical tunneling through the reaction barrier or
nonclassical reflection from the barrier. Tunneling increases the
rate constant, and nonclassical reflection decreases it. Since
tunneling occurs at lower energies where the Boltzmann factors
are larger, tunneling is usually the more important one of the two
phenomena for thermal rate constants, and the net effect of
including these two quantum effects on reaction-coordinate
motion are usually lumped together in a transmission coefficient
that is simply called the tunneling transmission coefficient.

Quantum mechanical tunneling is almost always significant
for reactions involving transfer of light atoms (such as hydrogen
atoms, protons, or hydride ions) at low temperatures. It is often
most easily noticed in large values of H/D kinetic isotope effects
(KIEs). Sometimes it is also significant for heavier-atom motion,
for example, carbon tunneling.

2.3.2 Tunneling transmission coefficient. The tunneling
transmission coefficient k(T) for VTST is defined as the ratio
of the thermally averaged quantum tunneling probability to the
quasiclassical transmission probability. The quasiclassical
transmission probability is the one that is assumed in quasiclassical
VTST, and it is a Heaviside step function that increases from
0 to 1 at the maximum of the effective potential. The tunneling
transmission coefficient is:

kðTÞ ¼
Ðþ1
E0

PTðEÞe�E=kBTdEÐþ1
E0

PCðEÞe�E=kBTdE
(50)

where E0 is the higher of either the ground-vibrational-state
energy of the reactants or the ground-vibrational-state energy of
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the products (this is the lowest energy at which reaction can
occur), PT(E) is the quantum tunneling probability, and PC(E) is
the classical transmission probability. We assume that the
effective potential for tunneling is the vibrationally adiabatic
ground-state potential energy curve VG

a of eqn (39), whose
maximum value is called VAG. Then, if the transition state were
at the maximum of the vibrationally adiabatic ground-state
potential energy curve, we would have

PCðEÞ ¼
0 E � VAG
� �

1 E4VAG
� �

8<
: (51)

where VAG is the maximum of the vibrationally adiabatic
ground-state potential energy VG

a along the reaction coordinate.
But in general, the CVT transition state is not at the maximum
of the vibrationally adiabatic ground-state potential energy;

thus we have to replace VAG by VG
a sCVT� ðTÞ
� �

where sCVT� ðTÞ is
the location of the CVT transition state at temperature T.

The above definition of the PC(E) is consistent with the
classical picture of a moving particle (i.e., no tunneling under
the barrier and no reflection above the barrier). Carrying out
the integral in the denominator of eqn (50), we get

kTðTÞ ¼ 1

kBT

ðþ1
E0

PTðEÞe� E�VAGð Þ=kBTdE (52)

As for the quantum tunneling probability PT(E), it satisfies:

PTðEÞ ¼

0 � PTðEÞo 1=2 EoVAG
� �

1=2 E ¼ VAG
� �

1=2oPTðEÞ � 1 E4VAG
� �

8>>><
>>>: (53)

The region below barrier is the tunneling region, and the region
above barrier is non-classical reflection region. The remaining
problem is approximating the quantum tunneling probability PT(E).

2.3.3 Semiclassical tunneling approximations. In this section,
we review various models for approximating the accurate quantum
tunneling in reaction rate constant computations. Commonly used
tunneling models can be divided to two classes: one-dimensional
and multidimensional tunneling models. The multidimensional
tunneling models include the variation of the vibrational
frequencies along the reaction path, as included by the final
term of eqn (39). The one-dimensional tunneling models do
not. The one-dimensional models reviewed in this article
include the Eckart tunneling model,81,82 the Wigner tunneling
model,83 the one-dimensional truncated parabolic tunneling
approximation;84 and multidimensional tunneling models include
zero-curvature tunneling (ZCT),49,50 the parabolic model with an
effective frequency,85 small-curvature tunneling (SCT),86 large-
curvature tunneling (LCT),71,87–90 microcanonically optimized multi-
dimensional tunneling (mOMT),71 and least-action tunneling
(LAT).91–93 All of the one-dimensional tunneling models and
the ZCT tunneling model ignore the reaction-path curvature;
this is not a good assumption for many cases. The effects of the
reaction-path curvature often dramatically increase the amount
of tunneling.

Tunneling models can also be divided into two classes in
another way, namely models with analytic results (Wigner
model, parabolic models, and Eckart model) and models where
the tunneling probability must be calculated by numerical
integration. The latter models are usually based on the semi-
classical WKB approximation94 or – to be more precise – on a
uniformized WKB approximation. The primitive WKB approxi-
mation suffers from infinities and has poor behavior for energies
near the barrier top; uniformization95,96 is the process by which one
include higher-order effects to obtain more uniformly accurate
results, and when one does this, the results for tunneling through
a barrier are often in good agreement (B15% or better) with a
quantal treatment of the same barrier model. But converting the
multidimensional problem into a tractable problem with an effective
barrier as a function of a tunneling coordinate (or a set of such
tractable problems) is harder. We will begin with analytic one-
dimensional models.

2.3.3.1 One-dimensional tunneling models. A popular approxi-
mation is to assume that the shape of the potential energy along
the reaction coordinate s can be approximated by an Eckart
potential:82

VðsÞ ¼ yDV
1þ y

þ By

ð1þ yÞ2 (54)

where

y = exp[a(s � s0)] (55)

B = [Vmax
1/2 + (Vmax � DV)1/2]2 (56)

in which DV is the value of the potential at s = +N relative to
s = �N, Vmax is the value of the potential at its maximum
relative to s = �N. And the constant s0 is defined to give the
maximum value of V(s), (i.e., Vmax) at s = 0:

s0 = (2a)�1 ln(1 � DV/Vmax) (57)

The intrinsic barrier height Vb described by the potential is:

Vb = Vmax � max[0,DV] (58)

The parameters in Eckart model are usually chosen to fit the
enthalpy of reaction at 0 K and the enthalpy of activation at 0 K.
The parameter a determines the range of the potential, and it is
related to the magnitude of the second derivative of the
potential at its maximum by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BFs

2Vmax Vmax � DVð Þ

s
(59)

where the second derivative Fs, in practice, can only be approximately
computed by:

Fs = 4p2m|n‡|2 (60)

where |n‡| is the magnitude of the imaginary vibrational
frequency of the saddle point, and m is the reduced mass
associated with the imaginary-frequency vibrational mode.
The reduced mass for reaction coordinate tunneling is often
arbitrarily chosen to be 1 amu (atomic mass unit), or 1.008 amu
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for hydrogen atom tunneling (if we assume that the mass of the
heavy atom is infinitely large). This way of approximating Fs is
artificial, and it simply cannot be done unambiguously. The
only advantages of the Eckart tunneling model are that one
does not need to compute a reaction path, and the tunneling
probability PT(E) can be analytically evaluated, which provides
computational simplicity, but it may yield quantitatively
unsatisfactory results. The PT(E) given by Eckart potential is:

PTðEÞ ¼ coshðaþ bÞ � coshða� bÞ
coshðaþ bÞ þ coshðdÞ (61)

where

a = 2p(2mE)1/2/(h� a) (62)

b = 2p[2m(E � DV)]1/2/(h� a) (63)

d = 2p[2mB � h� 2a2/4]1/2/(h� a) (64)

The Eckart tunneling model can be viewed as a crude approximation
to the zero-curvature tunneling (ZCT) approximation, which
systematically underestimates the tunneling due to neglecting
reaction path curvature; however, the Eckart tunneling model
often overestimates the ZCT tunneling transmission coefficient,
which in turn partially compensates its intrinsic error. Eckart
tunneling model uses a fit to VMEP, in the sense that one fits it to
enthalpy at 0 K for the energetics, but the frequency is still fit to
the one based on VMEP, which is probably why it often over-
estimates the tunneling probability compared to ZCT. (The VMEP

curve tends to be thinner for the nearly symmetric barriers that
have the greatest tunneling.)

Although PT(E) for Eckart tunneling can be expressed analytically,
the tunneling transmission coefficient kT(T) needs to be computed
by numerical integration. To further simplify the computation of
kT(T), one could make additional assumptions (which may not be
appropriate though) based on Eckart tunneling. If we consider a
symmetric Eckart potential function, that is, we set DV = 0 in the
asymmetric potential given by eqn (54) and we can get

VðsÞ ¼ Vmax

cosh 2 s

ffiffiffiffiffiffiffiffiffiffiffiffi
Fs

2Vmax

r� 	 (65)

The corresponding tunneling probability, which can be derived
from eqn (61), is

PTðEÞ ¼
cosh 2ge1=2

� �
� 1

cosh 2ge1=2ð Þ þ cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 � p2

p� � (66)

where

e = E/Vmax

(67)

g ¼ 2pVmax

h nzj j (68)

If we assume the barrier is very high or very broad such that
g c 1, then we have

PTðEÞ ¼ 1

1þ exp 2g 1� e1=2ð Þ½ � (69)

Plug the above tunneling probability into eqn (52), we can get

kTðTÞ ¼
h nz
�� ��

2pkBT

ðþ1
�g

exp �
h nz
�� ��x

2pkBT

 !

1þ exp 2g 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x=g

p� �h idx (70)

in which

x = g(E � Vmax)/Vmax (71)

Because of our previous assumption (g c 1), we carry out the
integral in eqn (70) from �N to +N, with a further assumption
that the temperature T is very high,22 i.e.,

h nz
�� ��

2pkBT
	 1 (72)

and finally an analytical expression can be arrived:

kTðTÞ ¼
h nz
�� ��� 2kBTð Þ

sin h nzj j= 2kBTð Þ½ � (73)

This expression could at most be valid when the temperature T
is very high and the barrier is very high or broad, but actually
this simple expression for computing the tunneling transmis-
sion coefficient is basically never valid primarily because it uses
a parabolic fit to VMEP – not to VG

a .
Eqn (73) can be further simplified since t/sin(t) E 1 + t2/6 for

t { 1, we obtain the simple Wigner tunneling approximation:83

kTðTÞ ¼ 1þ 1

24

h nz
�� ��
kBT

 !2

(74)

The Wigner tunneling transmission coefficient is very simple to
compute; it only requires the imaginary frequency of the saddle
point, but it is not useful for quantitative results.

It can be shown that, eqn (73) can also be derived from an
infinite untruncated parabolic barrier.97 An untruncated para-
bola has E0 = �N, and when T is lowered, the tunneling
through an untruncated parabola become so unphysically large
that the Boltzmann average in eqn (52) fails to converge and the
transmission coefficient blows up when

h|n‡|/(2kBT) = p (75)

Skodje and Truhlar84 have eliminated this issue by using the
uniformedized WKB semi-classical tunneling approximation,
and they have further generalized the result to be applicable for
any unsymmetrically truncated parabolic-type barrier that is
defined as:

VðsÞ ¼

0 so �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmax

2p2m nzj j2

s

Vmax � 2p2m nz
�� ��2s2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmax

2p2m nzj j2

s
� s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmax � DV

2p2m nzj j2

s

DV s4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmax � DV

2p2m nzj j2

s

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(76)
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and the intrinsic barrier Vb is

Vb = Vmax � max[0,DV] (77)

The Skodje–Truhlar one-dimensional truncated parabolic
tunneling transmission coefficient kT(T) is given by:

kTðTÞ¼

h nz
�� ��� 2kBTð Þ

sin h nzj j= 2kBTð Þ½ ��
exp

1

kBT
� 2p
h nzj j

� 	
Vb

 �
2pkBT= h nzj jð Þ�1

2pkBT
h nzj j 41

Vb

kBT

2pkBT
h nzj j ¼1

exp
1

kBT
� 2p
h nzj j

� 	
Vb

 �
�1

1�2pkBT= h nzj jð Þ
2pkBT
h nzj j o1

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(78)

which is a singularity-free generalization of the result given
by eqn (73). The above results (eqn (76)–(78)) are for one-
dimensional tunneling; later, Skodje et al. also showed that
this parabolic model could also be generalized so that it
includes the reaction-path curvature with the small-curvature
approximation,85 however, the correct effective mass for the
SCT tunneling approximation was only derived later;86,98 it is
not the one that is presented in this earlier paper85 (which is
valid only if the reaction-path curvature is confined to a single
transverse mode, which basically occurs only for atom–diatom
reactions with collinear reaction paths). We will present the
SCT tunneling model in the next section.

We do not recommend using any of the one-dimensional
models for quantitative studies; and they were reviewed in
this sub-section for completeness. Although these models are
computationally inexpensive and certainly very easy to use,
their accuracy is generally not good, and therefore for quantitative
study, we recommend more accurate multidimensional tunneling
models.

2.3.3.2 Multidimensional tunneling (MT) models. In real
dynamics, the motion of the reaction coordinate is not decoupled
from the other degrees of freedom, and the curvature of the MEP in
the mass-scaled coordinate system is one manifestation of the
coupling.41,99 A major consequence of reaction-path curvature is
that tunneling occurs in a corner cutting fashion.6,40,41,71,84–93,98–118

That is, the tunneling path does not need to follow the MEP;49

internal centrifugal effects cause the dynamical path to be displaced
from the MEP; specifically, the quantum centrifugal effect makes
the system move toward the concave side (that is the inside) of the
MEP, not the convex side (that is the outside) as the classical
centrifugal effect does. This is called the corner cutting effect,
and it is due to the negative kinetic energy (imaginary momentum)
in the classically forbidden region leading to a negative internal
centrifugal effect.

First, we begin with the zero-curvature tunneling approxi-
mation (ZCT). In ZCT, the reaction path curvature is neglected,
however, the contributions of other degrees of freedom are
included in the vibrationally adiabatic potential V G

a (s), which
contains the vibrational ground-state energies of all the vibrational

modes that are orthogonal to the reaction coordinate s, and this
zero-point energy depends on s. The contribution of vibrations
transverse to the reaction path to VG

a (s) is the reason why the
SCT approximation is multidimensional. The ZCT tunneling
probability is given by:

PZCTðEÞ¼

0 E�E0

½1þ expð2yÞ��1 VG
a ðs¼�1ÞoE�VG

a s�ð Þ

1�PZCT 2VG
a s�ð Þ�E

� �
VG

a s�ð ÞoE� 2VG
a s�ð Þ�E0

1 2VG
a s�ð Þ�E0oE

8>>>>>><
>>>>>>:

(79)

where E0 is the maximum between the VG
a of the reactants and

of the products; s* is the location of the variational transition
state, where the VG

a reaches its maximum. The magnitude of the
imaginary action integral is

y ¼ 1

�h

ðs4
so

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m VG

a ðsÞ � E
� �q

ds (80)

where so and s4 are the two turning points, at which VG
a = E.

The integrand is the imaginary part of the momentum of mass
m (that is the reduced mass of the isoinertial coordinate
system). The ZCT approximation underestimates the tunneling
transmission coefficient because it neglects reaction-path curvature;
there are shorter tunneling paths than the MEP that have the same
effective potential,119 which is given by eqn (39), and those paths
dominate the tunneling.

In the small-curvature tunneling approximation (SCT), an
effective reduced mass meff is introduced in computing the
tunneling probability as expressed in eqn (79). The value of meff

is smaller than m, which (as can be seen from eqn (80)) is
equivalent to shortening the tunneling path. In the current
version of SCT (which is also called the centrifugal-dominant
small curvature approximation), which is used in modern VTST
calculations, meff is determined by reaction-path curvature as
follows:86,98

meff ðsÞ ¼ m �min
exp �2�aðsÞ � ½�aðsÞ�2 þ ½d�tðsÞ=ds�2
� �

1

(
(81)

in which ā(s) = |k(s)%t(s)|, and the reaction-path curvature |k(s)|

is
PF�1
m¼1

BmF ðsÞ½ �2
� 	1=2

, where BmF(s) is the curvature component

of vector BF(s), which represents the coupling between the
reaction coordinate s and a mode m that is perpendicular to it:

BmF ðsÞ ¼ �signðsÞ
X3N
i¼1

dniðsÞ
ds

LGT
i;m ðsÞ (82)

where ni(s) is the component i of the unit vector perpendicular
to the generalized transition state dividing surface at s and
LGT

i,m(s) is the i-th component of the eigenvector for vibrational
mode m perpendicular to n(s) at s.

The effective harmonic potential V for the vibrational mode
u1 (which is constructed by a local rotation of the vibrational
axes such that BF(s) lies along with it, and by construction, the
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curvature coupling in all other vibrational coordinates u2 to
uF�1 are zero in this rotated coordinate system) is

V ¼ VMEP þ
1

2
m
XF�1
m¼1

Bm;F ðsÞ
kðsÞ omðsÞ

� 	2
" #

u1
2 (83)

where om(s) is the vibrational frequency of mode m at reaction
coordinate s. The associated turning point %t(s) for zero-point
motion in this harmonic potential is then:

�tðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h

m
PF�1
m¼1

Bm;F ðsÞ
kðsÞ omðsÞ

� 	2
" #1=2

vuuuut (84)

This form of turning point is able to avoid unphysically large
tunneling probability that existed in the old version of the
theory,85 which is caused by the assumption that all modes are
extended to their turning points along the tunneling path; we
no longer use the effective mass formula from the old version of
the theory.

The turning-point derivative terms dtm(s)/ds are evaluated
at s by a two-point central-difference method using the turning-
point results obtained at adjacent locations at which the
normal modes are found. Because the gradient of the potential
energy at the saddle point is zero, the effective reduced mass
meff(s = 0) is computed by a linear interpolation between the two
closest values of meff(s) as the following

meffðs ¼ 0Þ ¼ 1

2
meffðs ¼ þdsÞ þ meff ðs ¼ �dsÞ
� �

(85)

where ds is the step size of the reaction coordinate.
The corner-cutting model that led to the effective reduced

mass meff(s) does not apply to energies above the maximum of
V G

a , it is therefore inappropriate to compute the transmission
probability at the non-classical reflection region based on
PSCT(E). The transmission probability in the non-classical
reflection region is computed by

PSCT(E) = 1 � PSCT(2VG
a � E), VG

a (s*) o E r 2V G
a (s*) � E0

(86)

which means that the effective reduced mass is only used for
computing the transmission probability at tunneling energies.
SCT is currently the most widely used tunneling approximation
among the many multidimensional tunneling models; and it is
usually able to give a satisfactory tunneling transmission
coefficient with a balanced computational cost (when compared
to other more complex multidimensional models, which could
be expensive for medium to large sized molecules).

Nevertheless, the tunneling path can be further optimized, and
in some cases the system can tunnel directly into vibrationally
excited states (i.e., it is not necessary for tunneling to be governed
by the ground-state vibrationally adiabatic potential energy curve).
The large-curvature tunneling approximation71,87–90 (LCT) was
developed for more appropriately (as compared to SCT) describing
reactions with large curvature of the reaction path. One of the key
features in the LCT approximation is that the tunneling paths are
set of straight lines that connect reactant and product sides,

and these tunneling paths can connect vibrational-ground-state
turning points on the reactant side (in the exoergic direction
of reaction) with vibrationally excited turning points on the
product side. In the LCT method, the tunneling paths can be in
a wider region than the nearly quadratic valley around the MEP,
and the region that they pass through is called the reaction
swath. The LCT tunneling probability includes the contribution
from all the tunneling paths originating from the reactant
valley and some of these occur earlier than when the system
gets all the way in to where it hits the barrier. That is, in LCT,
one can have a significant probability of tunneling before
reaching the reaction-coordinate turning point. The classical
reaction-coordinate turning points are the points at which the
ground-state vibrationally adiabatic potential is equal to the
total energy E in either the reactant and product valley. Unlike
the treatment in ZCT and SCT, the LCT tunneling at energy
E takes place all along the entrance channel up to the turning
point, and it is initiated by the vibrational modes that are
orthogonal to the reaction coordinate rather than the motion
along the reaction coordinate. For large reaction-path curvature,
the LCT approximation gives larger tunneling probability than
SCT due to the very significant shortening of the tunneling
paths; however, in the limit of small reaction-path curvature, the
tunneling probability PLCT(E) could be smaller than PSCT(E),
because SCT is a more accurate treatment in this limit region.
At intermediate reaction-path curvature, SCT and LCT give
similar results.

In the microcanonically optimized multidimensional tunneling
model (mOMT), the tunneling probability at energy E is simply set
to be the maximum between PLCT(E) and PSCT(E). When one uses
mOMT, one often finds some contribution form large-curvature
tunneling at low energy, even if the more important higher-energy
tunneling is dominated by small-curvature tunneling. In some
older work, we used a method now called the canonically
optimized multidimensional tunneling model (OMT), in which
the thermally averaged tunneling transmission coefficient at
temperature T is set to be the maximum between kLCT(T) and
kSCT(T).

The most complete approximation for the quantum tunneling
is the least-action tunneling model (LAT).91–93 In this model, a
sequence of paths that are parameterized by a parameter a is
considered for each tunneling energy E and each final vibrational
state (not necessarily the vibrational ground state). The para-
meter a is defined so that these LAT paths are all located at or
between the MEP (a = 0) and LCT paths (a = 1). At every tunneling
energy E, within the chosen sequence of paths, the tunneling
path that has the largest tunneling probability is chosen to be
the LAT tunneling path; that is, the LAT tunneling path is
variationally optimized to minimize the action integral at E,
with respect to the parameter a. The LAT tunneling was originally
computationally very demanding, because one has to compute
the information of huge number of points on potential energy
surface (not just on MEP) including Hessians, but we have
derived efficient algorithms for it.93 However, it is seldom used
because the results are not sufficiently more accurate than those
obtained by the mOMT method.
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In the computations of the multi-dimensional tunneling
transmission coefficients, it is very important for the computed
reaction path (i.e., the range of s being computed) to be long
enough so that the quantum tunneling is converged; otherwise a
non-converged quantum tunneling calculation can yield erroneous
tunneling transmission coefficients. In practice, one can extend the
range of the reaction path that was computed in the previous
calculation and then redo the computation (with some possible
restart options to take advantage of the information produced in the
previous run), and the tunneling transmission coefficients should
remain the same at all temperatures. Extrapolation techniques
are available to minimize the needed length of reaction path
computation.120

2.3.4 Tunneling and the treatment of reaction intermediates.
An important issue involving tunneling is the treatment of reaction
intermediates. Consider a two-step reaction:

Aþ B �! �
k1

k�1
I �!k2 P (87)

The first step is the formation of an intermediate (I), with a
forward rate constant of k1; the intermediate I further proceeds
to yield the product P, with a rate constant of k2. The overall
reaction rate for the formation of product is:

d½P�
dt
¼ k2½I� (88)

and if the intermediate I is in equilibrium with A and B, we
would have

d½P�
dt
¼ k2K½A�½B� (89)

where K is the equilibrium constant for the first step, and
K = k1/k�1. And thus the overall bimolecular rate constant is

koverall = k2K (90)

With (variational) transition state theory, the rate constant k2 is

k2 ¼ kT2
kBT

h

QGT

QI
e
�V

GT�VI

kBT (91)

where kT
2 is the tunneling transmission coefficient computed by

using the intermediate I as the reactant. The equilibrium
constant K of the first step is

K ¼ QI

QAQB=V
e
�V

I�VA�VB

kBT (92)

and thus, the overall bimolecular rate constant is equivalent to

koverall ¼ kT2
kBT

h

QGT

QAQB=V
e
�V

GT�VA�VB

kBT (93)

If one ignores the intermediate, that is if one computes the
rate constant directly for A + B - P, the rate constant expres-
sion is almost the same as eqn (93); the difference is that kT

2 in
eqn (93) is replaced by kT

1, which is the tunneling transmission
coefficient computed by using A and B as the reactants. To
discuss this, we consider the case of an exothermic reaction at
low temperature where the reactant is in its ground state. If the

top of the effective barrier for tunneling is below the zero point
energy of the reactants, then there is no tunneling because all
systems have enough energy to pass over the barrier without
tunneling. Thus kT

1 is unity (or less than unity if we include
nonclassical reflection). But if the pressure is large enough to
stabilize states of the intermediate that have energies lower
than the reactant zero point energy and lower than the top of
the effective barrier for tunneling, those low energy states can
tunnel and kT

2 can be greater than unity. This shows that the
well-known dictum that one can ignore an intermediate that
occurs before the rate-determining transition state is only
partially true, and it is dangerous to ignore the existence of a
van der Waals intermediate in a bimolecular reaction (or
similarly, in a two-step unimolecular reaction). This is a very
general issue since most bimolecular reactions have barrier,
and a ground-electronic-state barrier is always preceded by a
van der Waals minimum. However, the issue is usually important
only for reactions with low barriers. For a high barrier, since the
tunneling usually has important contributions only from energies
at most a few kcal mol�1 below the barrier top, the tunneling from
intermediate states whose energy is below the reactant zero point
energy is expected to be negligible.

There is another complication, namely the assumption that
the intermediate is in equilibrium with A and B. If one is not in
the high-pressure limit, there may be inadequate collisional
stabilization of the complex. In the low-pressure limit, there are
no stabilizing collisions, and therefore there are no tunneling
contributions at energies below the ground-state energy of the
reactants121 (which would be the lowest possible energy that a
complex could have). The low-pressure limit and the high-pressure
limit are easily handled as limiting cases, but at intermediate
pressures one must use the theory of pressure-dependent reactions,
which is treated in a later section.

2.4 Recrossing transmission coefficient

The basic assumption of quasiclassical transition state theory,
which may be used to derive the equations in Section 2.2, is
that the systems with energy higher than the vibrationally
adiabatic potential barrier (which may be called the quasiclassical
threshold energy) react with unit probability and systems with
lower energy do not react, i.e., the reaction probability is a
Heaviside step function as a function of energy in the reaction
coordinate. Because the vibrationally adiabatic barrier involves
vibrational frequencies and rotational moments of inertia that
depend on the reaction coordinate, VTST goes beyond the
assumption of a separable reaction coordinate that is assumed
in purely classical conventional transition state theory.

In Section 2.3, we saw the use of a tunneling transmission
coefficient to account the breakdown of the step function
probability due motion along the reaction coordinate being
quantum mechanical so there is a small probability that
systems with higher energy than the effective barrier diffract
off the barrier top and do not react and a small probability that
systems with less energy that the barrier tunnel through it. The
latter events happen at lower energy where the Boltzmann
factor is higher, and so their effect usually dominates over
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the effect of nonclassical reflection, and the tunneling trans-
mission coefficient is usually great than unity. We take account
of tunneling by doing a multidimensional semiclassical calculation
that accounts for two aspects of reaction-coordinate non-
separability, namely (i) the already-mentioned reaction-
coordinate dependence of the vibration frequencies and (ii)
the corner cutting effect by which the tunneling path involves
displacement of the transverse vibrations to the concave side of
the curved minimum energy path during the tunneling event.

There is another reason why the step function probability
assumption can break down, namely that even for classical
reaction coordinate motion, the non-separability of the reaction
path can lead to less than unit probability of reaction for
systems with energy greater than the quasiclassical threshold
because systems cross the transition state but then recross it,
making the net reactive flux smaller than the one-way flux.
We can account for this by including another transmission
coefficient in the rate constant; we call this the recrossing
transmission coefficient. Note that the recrossing transmission
coefficient could also be called the quasiclassical transmission
coefficient because the effect is present even for classical
reaction-coordinate motion.

In general, then there are two contributions to the transmission
coefficient, and we write

g = kG (94)

where g is the full transmission coefficient, k is the tunneling
transmission coefficient, and G is the recrossing transmission
coefficient. We can apply this to the quasiclassical VTST rate
constant calculated without tunneling or recrossing to get a
better answer. When we do this, we usually set G = 1. For
example, using canonical variational transition state theory, we
write the rate constant with tunneling as

kCVT/T = kkCVT (95)

where kCVT is the quasiclassical VTST rate constant. However,
sometimes we use a different notation, namely

kCVT/T = kGCVTkTST = gkTST (96)

where kTST is the quasiclassical conventional VTST rate constant,
and

GCVT = kCVT/kTST (97)

These different conventions should be clear from the context.
The quantity GCVT is sometimes called the variational effect

because it accounts for the difference between variational
transition state theory and conventional transition state theory
when both are applied without tunneling. Its deviation from
unity is a measure of the extent to which VTST accounts for the
breakdown of the no-recrossing assumption of quasiclassical
transition state theory at the conventional transition state that
passes through the saddle point. For example, a recrossing
transmission coefficient of 0.8 means that 20% of the quasi-
classical flux through the conventional transition state does not
contribute to the net one-way flux because the true dynamical
bottleneck is the variational transition state, not the conventional

transition state. This would mean that 20% of the flux through
the conventional transition state is nonreactive because it does
not pass through the variational transition state, which has a
higher free energy of activation.

One can also define an exact recrossing transmission
coefficient as

Gexact or gexact = kexact/kTST (98)

This is the definition implicitly used in original literature,3

where it is simply called the transmission coefficient.

2.5 Importance of using curvilinear coordinates in VTST/MT
calculations for vibrations transverse to the reaction coordinate

In the VTST/MT calculations, the computations of both the
variational transition states and the multi-dimensional quantum
tunneling transmission coefficients rely on the computed
vibrationally adiabatic ground-state energy along the reaction
path; the generalized normal mode analysis is performed at
evenly spaced points along the minimum energy path. For non-
stationary points (notice that the reactants, products, and the
conventional transition state structures are stationary points)
along the reaction path, the frequency calculations have to be
carried out based on projected Hessians (which project out the
translational modes, overall rotational modes and the mode
corresponding to the reaction-coordinate degree of freedom).
One should keep in mind the fact that the projected Hessians
in this generalized normal mode analysis are coordinate-
system-dependent,75,76 and so are the bound-mode vibrational
frequencies of non-stationary points.

The reason that the vibrational frequencies along the MEP
are coordinate-dependent can be explained as follows. The choice
between the rectilinear coordinates (which are linear combinations
of Cartesian coordinates) and the curvilinear coordinates (internal
coordinates) is equivalent to the choice between two different
definitions, s and s0, of the reaction coordinate for points off the
MEP; they have the same values for stationary points on the MEP,
but not for non-stationary points. These two different choices of
the reaction coordinate are related by76,122

s0 ¼ sþ 1

2

XF�1
i¼1

XF�1
j¼1

bijðsÞqiqj þ o qi
3

� �
(99)

in which F is the number of internal coordinates, and F � 1
excludes the reaction coordinate s (which is also called qF). The
qi represent curvilinear (internal) coordinates, which measure
distortions away from the MEP, and by definition they vanish on
the MEP. The bij involve second-order partial derivatives of s0

with respect to qi, and they are in general nonzero. The double
summation runs over a complete, non-redundant set q1, q2,. . .,
qF�1 of such coordinates that are orthogonal to the MEP. The
matrix elements of the Hessians expressed using these two
different reaction coordinate definitions are related by:123

@2V

@qi@qj

� 	
s0

����
q0¼ð0;...;0;s0Þ

¼ @2V

@qi@qj

� 	
s

�bij
@V

@s

� 	
q

" #�����
q¼ð0;...;0;sÞ

(100)
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in which q 
 {q1,q2,. . ., qF�1,s} and q0 
 {q1,q2,. . ., qF�1,s0}.
Clearly, at stationary points, where the first-order derivative of
V with respect to s is zero, the two Hessians are the same;
Cartesian coordinates and internal coordinates yield the same
frequencies for the stationary points. However, at non-stationary
points, where the (qV/qs) term does not vanish, the frequencies
are coordinate-system-dependent.

And thus, the important consequence is that, the results
of the VTST/MT calculations depend on the choice of the
coordinates75,76 that are used for the generalized mode analysis
along MEP. It is highly possible for a set of Cartesian coordinates (a
linear combination of which yields a set of rectilinear coordinates)
to unphysically yield one or more imaginary frequencies along the
reaction path75,76 (along the reaction path, in the absence of a
real bifurcation, there should be no imaginary frequency after
the projection); and the resulting VTST/MT rate constants can
be significantly affected, and thus they could be unreliable or
even wrong. Along the reaction path, the free energy cannot be
computed at the regions where one has imaginary frequencies,
and thus Polyrate program42 arbitrarily sets the vibrational
partition function to very large number (which decreases the
Gibbs free energy by a large amount) in order to ensure that the
computed canonical variational transition state will never occur
in these unphysical regions which contains imaginary frequencies.
Using Cartesian coordinates for generalized normal mode analysis
along the reaction path could possibly cause: (1) unphysical
discontinuity of the vibrationally adiabatic ground-state energy
(VG

a ) along the reaction path; (2) unphysical sudden jump(s) on
the Gibbs free energy at a given temperature along the reaction
path, because of the above-mentioned arbitrary setting that the
program has to make; (3) in the case of microcanonical VTST
calculations, using Cartesian coordinate can cause unphysical
sudden jump(s) in the computed vibrational number of states
NmVT(E,s) and thus the energy-dependent microcanonical variational
transition state would be located in these unphysical regions, which
leads to unphysical results for the mVT rate constants.

In order to obtain reliable VTST/MT rate constants, one
should first choose a set of physically reasonable curvilinear
coordinates that are capable of describing the atomic motion
along the whole reaction path, and then use this set of coordinates
to carry out the generalized normal mode analysis and to further
compute the variational transition states and multi-dimensional
tunneling. In Polyrate, one could choose either a set of 3N � 6
(where N is total number of atoms) non-redundant internal
coordinates75 (via the ‘‘CURV2’’ option), or redundant internal
coordinates124 (via the ‘‘CURV3’’ option), as curvilinear coordinates
for performing the generalized normal mode analysis. A set of
physically meaningful and well-chosen internal coordinates is
usually able to give an imaginary-frequency-free reaction path in
physically important regions (i.e., the regions where the variational
transition states are located and where the quantum tunneling
take place). In some cases, it is useful to also re-orient the
generalized-transition-state dividing surface (via the ‘‘RODS’’
option) to eliminate the imaginary frequencies along the path.125

As for the computations of the multi-dimensional tunneling
transmission coefficients, it is very important for the computed

reaction path (i.e., the range of s being computed) to be long
enough so that the quantum tunneling is converged; otherwise a
non-converged quantum tunneling calculation can yield erroneously
large tunneling transmission coefficients. In practice, one can extend
the range of the reaction path that was computed in the previous
calculation and then redo the computation (with some possible
restart options to take advantage of the information produced in
the previous run), and the tunneling transmission coefficients
should remain the same at all temperatures.

2.6 State-selected rate constants

Although transition state theory is formulated for the calculation
of the reaction rates of thermally equilibrated or microcanonically
equilibrated reagents, extensions have been proposed to
approximate vibrational-state-selected rate constants.126,127

Liu recently reviewed the experimental progress made in studying
the mode-selected reaction dynamics.128 In this section, we
briefly review using VTST to study state-selected reaction rate
constants.

There are two basic ways to extend VTST to reactions in
which the initial vibrational state is specified to have some
specific excitation. One is to assume vibrational adiabaticity of
the excited mode;127 then, in the sums over vibrational quantum
numbers for the state-selected mode, only one term contributes.
Another is based on non-adiabaticity. We first review the former
approach and then the latter one.

Consider the vibrational partition function with F vibrational
degrees of freedom assumed separable (for stationary points, F
includes all the vibrational degrees of freedom; and for non-
stationary points, F includes all the bound-mode vibrational
degrees of freedom that are orthogonal to MEP, which excludes
the reaction coordinate),

QvibðTÞ ¼
YF
m¼1

Xnm¼nmax
m

nm¼0
e�e

vib
m nmð Þ=kBT (101)

where m labels a vibrational mode, and nm is the number of
quanta in that mode, and nmax

m is the number of quanta used to
converge the summation. If the vibrational energy levels are
computed by harmonic oscillator (HO) approximation

evibm nmð Þ ¼ nm þ
1

2

� 	
hvm (102)

where vm is the vibrational frequency of mode m. This yields the
HO vibrational partition function of eqn (37), which is used in
computing thermal VTST rate constants in the harmonic
approximation. In mode-selected VTST, one modifies eqn (101) to

Qvib nrm
� �

;T
� �

¼
Ym¼F r

m¼1
e�e

vib
m nrmð Þ=kBT

" # YF
m0¼Frþ1

Xnm0 ¼nmax
m0

nm0 ¼0
e�e

vib
m0 nm0ð Þ

�
kBT

(103)

in which the modes from m = 1 to m = Fr are the selected modes
(i.e., each of these modes is restricted to have a specific number
of excitation quanta equal to nr

m); and the remaining F–F r modes
are treated as usual with the summation over all the vibrational
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quantum numbers nm0 of modes m0 going up to a high enough
value to converge the partition function, i.e., up to a large number
that converges the summation. This restricted vibrational partition
function is a function of the selected vibrational quantum states,
which are characterized by the set of the specified vibrational
quantum numbers {nr

m}. In adiabatic mode-selected VTST, the
locations of the variational transition states are determined based
on the vibrational partition functions of the generalized transition
state using eqn (103) with the bound-mode vibrational frequencies
along the reaction path. This same restriction is also used to
generate state-selected conventional transition state theory, in which
the generalized transition state is chosen to be at the saddle point
rather than variationally optimized.

The multidimensional quantum tunneling transmission
coefficients in state-selected VTST is computed based on the
following state-selected vibrationally adiabatic potential:

Vg
a nrm
� �

; s
� �

¼VMEPðsÞþ
Xm¼F r

m¼1
evibm nrm; s
� �

þ
Xm0¼F

m0¼F rþ1
evib;gm0 s;nm0 ¼ 0ð Þ

(104)

The effective potential of eqn (104) is based on the adiabatic
approximation, which is a good approximation when the dynamical
bottleneck occurs prior to the region of large reaction-path
curvature; large reaction-path curvature causes strong vibrational
nonadiabaticity,129 and in such a case, one should use the second
way to treat state-selected reactions, namely the diabatic one126

with the vibrationally diabatic potential given by

Vd nrm
� �

;s
� �

¼VMEPðsÞþ
Xm¼F r

m¼1
evib;dm nrm;s

� �
þ

Xm0¼F
m0¼F rþ1

evib;dm0 s;nm0 ¼0ð Þ

(105)

which is similar in form to the expression for the vibrationally
adiabatic potential Vg

a, but instead of using adiabatic frequencies,
it uses diabatic frequencies which change smoothly along the
reaction coordinate. When the adiabatic frequencies vm(s) show
an avoided crossing in the frequencies vm vs. s diagram (this is
called the vibrational-mode correlation diagram, in which the
curves corresponding to modes of the same symmetry do not
cross), it is often a better approximation physically to assume that
the modes preserve their character in passing through the avoided
crossing region. For instance, in the OH + H2 - H2O + H
reaction,126 there are five bound vibrational modes along the
reaction coordinate s, in which the three modes with the lowest
adiabatic vibrational frequencies (of which the modes are denoted
as m = 1, 2, 3) change smoothly along s, and the two highest-
vibrational-frequency modes (which are denoted as m = 4, 5)
with the same symmetry have an avoided crossing at s0 (which
is about �0.16 Å). The diabatic frequencies vd

m(s) are then
defined as:

vdmðsÞ¼
vmðsÞ ðm¼1;2;3Þ

y s0�sð ÞvmðsÞþy s�s0ð Þ dm;4v5ðsÞþdm;5v4ðsÞ
� �

ðm¼4;5Þ

(

(106)

where y is the step function, and d is Kronecker delta.

State-selected VTST calculations have been tested for various
systems,130–136 and good agreement with experimental values or
accurate quantum dynamics are confirmed. The most sophisticated
treatment131 assumes that the reaction is vibrationally adiabatic up
to the first occurrence in proceeding from reactants to products of
an appreciable local maximum in the reaction-path curvature; at
that point the reaction is treated as if all flux is suddenly diverted to
the ground vibrational channel.

3. Multistructural and multipath
variational transition state theory
3.1 Multistructural anharmonicity

The textbook way of computing molecular partition function
is based on a single lowest-energy structure and on the
(quasi-)harmonic oscillator approximation. A harmonic oscillator
has only one minimum-energy structure, but real species often
have multiple structures, e.g., gauche and trans 1,2-dichloro-
ethane. This section discusses how to include those features in
VTST. Some of the material in this section applies to any reactant
or transition state that has multiple structures, but most of the
discussion is written in the framework of torsional multistructural
anharmonicity, which has two components: multiple-structure
anharmonicity and torsional potential anharmonicity. The
multiple-structure and torsional potential anharmonicity effects
can be very important in the computation of partition functions,
especially at high temperatures.

If a reagent or a transition state being studied has one or
more torsional degrees of freedom (internal rotations), the harmonic
oscillator approximation fails because (a) the potential function is
not quadratic and (b) torsions usually generate multiple structures,
each of which contributes to the partition function. Issue (a) is called
torsional potential anharmonicity,137 and issue (b) is called multiple
structure anharmonicity. Multistructural torsion anharmonicity can
be treated with the recently developed multistructural torsion (MS-T)
method, which has two versions: MS-T with uncoupled torsional
potential method (MS-T(U) method), and MS-T with coupled
torsional potential method (MS-T(C) method). We recommend
the second version of this method, which is based on a coupled
torsional potential.138 Including the MS-T treatment of
anharmonicity in VTST will be called multistructural VTST
(MS-VTST) or multipath VTST (MP-VTST), depending on how
completely it is included.

A methyl group can usually be safely treated as nearly separable
from other torsions, but more generally the torsional degrees of
freedom in a molecule are coupled; they interact with each other,
and sometimes this coupling is strong. If we rotate each torsional
bond to n different angular positions, and if we have t torsions
(temporarily excluding methyl groups because rotating methyl
groups does not generate new distinguishable structures; however
we do consider all the torsions including methyl groups in the
final MS-T partition function), we will generate nt initial structures.
However, after optimizing all these initial structures by some
electronic structure method (this step is called the conformational
search), the distinguishable conformers one finds will not be equal
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to nt. All of the distinguishable conformers that are generated by
torsions are included in the computation of the MS-T partition
function, including non-superimposable mirror images. The
multiple structure effect can be very large when one is treating
a long chain molecule.

One may propose to treat all the local minima (or in the case
of transition state, all the first order saddle points on reaction
paths from reactants to products) with the harmonic oscillator
formulas; and this is called the multistructural local harmonic
oscillator approximation (MS-LH).139 However, treating low-
frequency modes that are torsions or have large contributions from
torsions by the harmonic oscillator approximation can be very
inaccurate. The harmonic potential is a good approximation to the
real potential only around the equilibrium structure. The harmonic
vibrational partition function has the high-temperature limit:

Qvib ¼ kBTQ
i

hni
(107)

and this is the vibrational partition function of a classical harmonic
oscillator.

At very low temperatures where kBT { hn, an internal
rotation can be reasonably well treated with the harmonic-
oscillator approximation at each minimum of the torsional
potential; at very high temperature where kBT is much larger
than the internal rotational barrier W, and the internal rotation
becomes a free rotor. At intermediate temperature where
hno kBT o W, torsional degrees of freedom should be treated
as hindered rotors.

Here we review the MS-T method based on a coupled
torsional potential (i.e., MS-T(C) method). By ‘‘coupled’’, we
mean that we are using consistently coupled torsional vibrational
frequencies, coupled effective torsional barriers, and coupled
internal moments of inertia; the kinetic couplings between the
torsional motions and the overall rotation of the molecule are
also fully treated.

The MS-T rotational–vibrational (which can be abbreviated
as rovibrational) partition function is computed as the summation
of the single-structure torsional rovibrational partition function
(SS-T) of the unique structure j. In the equations used for the MS-T
partition function, a unique structure refers to a quantum
mechanically distinguishable (both structurally and energetically)
conformational structure, which is generated by a change in
vibrational coordinates, usually by a torsion; the unique structures
are torsional conformers – not chemical isomers. And a distinguish-
able non-superimposable mirror image that can be generated
via torsion also counts as a unique structure. The MS-T partition
function is:

QMS-T ¼
X
j

QSS-T
j (108)

where the SS-T rovibrational partition function for distinguish-
able structure j is defined as

QSS-T
j ¼ Qrot

j QHO
j exp � Uj

kBT

� 	Yt
Z¼1

fj;Z (109)

where Qrot
j is the rotational partition function of structure j,

QHO
j is the harmonic-oscillator (or quasi-harmonic-oscillator)

vibrational partition function of structure j, Uj is the relative
Born–Oppenheimer equilibrium energy of structure j with
respect to the Born–Oppenheimer equilibrium energy of the
lowest-energy conformer (which is denoted as the global minimum
or GM), t is the total number of torsions, and fj,Z is the torsional
correction factor for the coupled torsion Z of structure j. If we set all
the torsional correction factors in eqn (109) to unity, then this
equation reduces to the single-structure harmonic-oscillator
rovibrational partition function (SS-HO) of structure j.

The rotational partition function for structure j is computed
using the classical rotor approximation, which is sufficient for
most purposes, and which yields:

Qrot
j ¼

ffiffiffi
p
p

srot;j

2kBT

�h2

� 	3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I rotj;1 I

rot
j;2 I

rot
j;3

q
(110)

where srot,j is the overall rotational symmetry number for
structure j (each conformer j has its own symmetry number),
and Irot

j,1 , Irot
j,2 , and Irot

j,3 are the three principal moment of inertia
associated with the overall rotation of the rigid structure j. The
rotational symmetry number of conformer j is equal to the
order of the rotational subgroup for a polyatomic molecule
(conformer j); the rotational symmetry number is 1 for a
heteronuclear diatomic molecule and 2 for a homonuclear
diatomic molecule.

The torsional correction factors of all the coupled torsions
are treated together by

Yt
Z¼1

fj;Z ¼
Yt
Z¼1

q
RCðCÞ
j;Z

q
CHOðCÞ
j;Z

(111)

where qRC(C)
j,Z is the reference classical partition function of

coupled torsional motion Z for structure j using the coupled
effective torsional barrier, and q CHO(C)

j,Z is the classical harmonic
oscillator partition function using consistently coupled frequencies.

The reference classical partition function of structure j is an
approximation to the fully coupled classical partition function
QFCC (where all t torsions and the overall rotation are coupled):

QFCC ¼ 8p2

srot

kBT

2p�h2

� 	ðtþ3Þ=2ð2p=s1
0

� � �
ð2p=st
0

e�V=kBT
ffiffiffiffiffiffiffiffiffiffiffi
detS
p Yt

Z¼1
dfZ

(112)

where srot is the overall rotational symmetry number, sZ is the
torsional symmetry number for torsion Z (the symmetry number for
a torsion can be determined by treating the least symmetric of the
two rotating fragments as a fixed frame and counting the number of
identical structures obtained when the more symmetrical top is
rotated from 0 to 360 degrees with respect to this torsional bond
and relaxed), V is the potential energy as function of torsional angles
fZ, and det(S) is the determinant of the Kilpatrick and Pitzer
moment of inertia matrix for overall and internal rotation,140 which
is uniquely defined by the torsional coordinates (dihedral angles).
The fully coupled classical partition function cannot be analytically
integrated, and the computation of the whole potential energy V
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as function of torsional angles is generally unaffordable for systems
with multiple torsions, and therefore several approximations are
made in order to evaluate QFCC: (a) we approximate the determinant
of S(f1,. . .,ft) matrix in the vicinity of each conformational structure
j by its value at a local minimum or the saddle point; (b) we use a
congruent transformation to block diagonalize the S matrix so that
it can be written as the product of the three principal moment of
inertia for the overall rotation of a rigid structure, with the torsional
moment of inertial matrix D (which fully accounts for kinetic
coupling of torsions to each other and to overall rotation);
(c) we approximate the potential V(f1,. . .,ft) with the uncoupled
local reference potential in the vicinity of structure j as

Vj;t ¼ Uj þ
Wj;t

2
1� cosMj;t fj;t � fj;t;eq

� �h i
(113)

where, in the coupled MS-T calculation, Wj,t is the coupled
effective torsional barrier W(C)

j,t for torsion t, which is computed
by diagonalizing the torsional Wilson–Decius–Cross GF submatrix,46

and Mj,t is the local periodicity of torsion t for conformer j, which is
related to the number of structures (including both distinguishable
and indistinguishable ones) that can be generated by torsion t.

The local periodicity of an uncoupled torsional degree of
freedom is the same in all unique conformers, and it is an
integer equal to the number of distinguishable conformers
(including mirror images) that can be generated by this torsion,
multiplied by the torsional symmetry number of this torsion.
For instance, for a nearly-separable uncoupled –CH3 group,
there is only one distinguishable conformer that can be generated
by rotating this torsional bond, and the torsional symmetry
number of methyl group is 3; and thus it has M = 3. In strongly
coupled systems, Mj,t is generally a conformer-dependent non-
integer, and it is assigned by using Voronoi tessellation.141–143

As a result of putting all these elements together, our reference
classical partition function for structure j, in which all the
coupled torsions are treated together in product form, is

Yt
Z¼1

q
RCðCÞ
j;Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Dj

� �q Yt
t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBT
p

�hMj;t

Yt
Z¼1

exp �
W
ðCÞ
j;Z

2kBT

 !
I0

W
ðCÞ
j;Z

2kBT

 !

(114)

where I0 is modified Bessel function. Notice that, for coupled
torsions, it is the product of local periodicities that appears
here, rather than a separate dependence on the local periodicity
of each coupled torsion.

When torsions are strongly coupled together, it is some-
times impossible to assign integer Mj,t values for each torsion.
We divide the t torsions into two types: nearly separable (NS, for
instance CH3 groups) and strongly coupled (SC). We use the
notation NS:SC = tNS:tSC to denote that tNS torsions are treated
as nearly separable and tSC torsions are treated as strongly
coupled. In general, the strongly coupled coordinates may be
further partitioned into two or more subspaces, with each
subspace involving only those coordinates that are strongly
coupled to each other. Each of the strongly coupled subspaces
is treated by Voronoi tessellation separately. Voronoi tessellation
divides a space into cells around a discrete set of points, and the

space to be tessellated here is described by the dihedral angles
f1, f2,. . ., ftSC

, and the points correspond to structures. Each cell
corresponds to a specific structure and consists of all torsional
configurations closer to this structure than to any other structure
when only the tSC strongly coupled degrees of freedom are
considered. In Voronoi tessellation, all the distinguishable and
indistinguishable structures that can be interconverted via
torsions are included. The volume of the SC torsional subspace
is then given by

OSC;tot ¼ ð2pÞ
tSCQtSC

t¼1
st

(115)

where tSC is the number of torsions in the strongly coupled
space, and st is the torsional symmetry number for torsion t.
Whenever we use Voronoi tessellation, we assume that the
torsional subspace is so strongly coupled that we cannot assign
Mj,tSC

by considering each torsion separately; then we replace all
Mj,tSC

for strongly coupled torsions of a given conformer j by a
single MSC

j equal to

MSC
j ¼

2p

OSC
j

� �1=tSC (116)

As we can see in eqn (111) and (114), it is the product of the local
periodicities rather than the individual terms that are needed in
the computation of the torsional correction. In the practical
Voronoi algorithm,141 eqn (116) is computed by:

MSC
j ¼

Ntot

Nj

� 	1=tSC

(117)

In this sampling algorithm, a total number of Ntot random
points in the torsional space are generated, and each point is
assigned to the structure that is the closest to it (in other words,
each point is assigned to a particular Voronoi tile), and Nj is the
number of points that are assigned to structure j.

Here we give some numerical examples of the MSC
j values for

the strongly coupled (SC) torsional degrees of freedom in some
systems; all the methyl groups in the following examples are
excluded in the given MSC

j values, because they are treated as
nearly separable with M = 3. For 1-pentyl radical (for which the
conformational search is carried out by M06-2X/MG3S), the
MSC

j values for the SC torsions in its eight distinguishable
conformers (which excludes 7 distinguishable mirror images)
are, from lowest-energy conformer to highest-energy conformer,
respectively 2.67, 2.63, 2.73, 3.84, 3.82, 3.82, 3.36, and 3.39. The
transition state structure of the hydrogen abstraction reaction
from a methyl group of the tert-butanol by HO2 radical (the
products are (CH3)2C(OH)CH2

� radical and H2O2) possesses five
SC torsions and has 46 distinguishable conformers (i.e., 23 pairs
of non-superimposable mirror images, which are found by
M08-HX/MG3S); the MSC

j values range from 2.00 to 2.45, with
a mean value of 2.17 and a standard deviation of 0.13. For
(S)-sec-butanol (for which the conformational search is carried out
by M08-HX/MG3S), the MSC

j values for the SC torsions in its nine
distinguishable conformers (from the lowest-energy conformer to
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the highest-energy one) are respectively 3.01, 2.97, 3.01, 3.00, 3.00,
2.95, 3.02, 3.05, and 3.00.

The classical harmonic oscillator partition function q CHO(C)
j,Z with

coupled frequencies is:

Yt
Z¼1

1

q
CHOðCÞ
j;Z

¼ �h

kBT

� 	t

QF
m¼1

oj;m

QF�t
m¼1

~oj;m

(118)

where F is the number of vibrational degrees of freedom, oj,m is
the vibrational frequency of normal mode m, and ~oj,m are the
non-torsional vibrational frequencies; these frequencies are
computed by diagonalizing respectively the full Wilson–
Decius–Cross GF matrix and its non-torsional submatrix with
non-redundant internal coordinates.

The final result is

Yt
Z¼1

fj;Z ¼
2p
kBT

� 	t=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Dj

� �q QF
m¼1

oj;m

Qt
t¼1

Mj;t
QF�t
m¼1

~oj;m

Yt
Z¼1

exp �
W
ðCÞ
j;Z

2kBT

 !
I0

W
ðCÞ
j;Z

2kBT

 !

(119)

In general, for a system with multiple coupled torsional
degrees of freedom, the accurate partition function is unaffordable
to compute. Nevertheless, for two-dimensional systems, i.e., mole-
cules with two coupled torsional degrees of freedom, where the
highly accurate partition functions are available via the extended
two-dimensional torsion method144 (E2DT) which is a method that
is based on the solution of the torsional Schrödinger equation and
that includes full coupling in both the kinetic and potential energy,
the satisfactory accuracy of the MS-T method with coupled
torsional potential, i.e., MS-T(C) method, has been confirmed;
and it is concluded that ‘‘If the E2DT method is not affordable,
the MS-T(C) method is the best option to calculate rovibrational
partition functions including torsional anharmonicity’’.

To carry out MS-T calculations, one has to do an exhaustive
conformational search at the first step, which might be unafford-
able for structures with a large number of torsional degrees of
freedom, even when using economical density functional methods.
Recently we have proposed a much less expensive method called
dual-level MS-T,145 which requires the user to carry out a con-
formational search with a chosen low-level theory (for instance, a
semiempirical molecular orbital method) and then re-optimize
the 30% energetically lowest low-level structures at a higher level.
Dual-level MS-T is able to combine the information from a low-
level theory with that from a higher-level theory to obtain an
approximate MS-T partition function that agrees with the full
high-level MS-T partition function within a factor 2 to 3; an even
more encouraging feature is that we have shown that when one is
using dual-level MS-T partition functions in computing rate con-
stants or thermodynamic functions (in which cases one usually
needs the ratio of the partition functions rather than an individual
partition function, and the errors of the dual-level method canceled
out to a large extent), very satisfactory results (as compared to using
full high-level MS-T partition functions) can be obtained.

3.2 Multistructural variational transition state theory

In multistructural variational transition state theory146,150 (MS-VTST),
we replace the single structure harmonic oscillator partition
functions in the expression of the VTST rate constant, by MS-T
partition functions. And therefore, the multistructural and
torsional anharmonicity is incorporated in the VTST theory.

We now derive the MS-VTST rate constant for unimolecular
reactions, for bimolecular reactions one can follow the similar
approach. For unimolecular reactions, the single structural
variational transition state theory rate constant with multi-
dimensional tunneling can be written as

kSS-VTST=TðTÞ ¼ kT
kBT

h

QGT
ele Q

GT-SSHO s ¼ s�ð Þ
QR

eleQ
R-SSHO

e�V s¼s�ð Þ=kBT

(120)

where QGT-SSHO and QR-SSHO are respectively the single-structural
(lowest-energy structure) harmonic-oscillator rovibrational partition
function for the generalized transition state and for the reactant.
The location of the variational transition state is denoted as s*;
V(s = s*) is the potential energy of the variational transition
state. We can re-write this expression in terms of the recrossing
transmission coefficient and the conventional (single-structural)
TST rate constant

kSS-VTST=TðTÞ ¼ kTGVTSTkBT

h

Q
z
eleQ

z-SSHO

QR
eleQ

R-SSHO
e�V

z
�
kBT

¼ kTGVTSTkSS-TSTðTÞ

(121)

where GVTST is the VTST recrossing transmission coefficient
(which could be computed from canonical, microcanonical, or
any other version of variational transition state theory) resulting
from variational effects. In CVT, the recrossing transmission
coefficient is a special case of GVTST and is computed as

GCVT ¼
QGT-SSHO s ¼ sCVT�

� �
Qz-SSHO

e�V s¼sCVT�ð Þ=kBT

e�V
z
�
kBT

(122)

where Q‡-SSHO is the single-structural harmonic-oscillator
rovibrational partition function for the lowest-energy saddle
point. In order to take the MS-T effects into VTST calculation,
we replace the single-structural transition state theory rate
constant with the multistructural TST (MS-TST) rate constant
in eqn (121). The multistructural TST rate constant is defined by
replacing the single-structural partition functions with MS-T
partition functions

kMS-TSTðTÞ ¼ kBT

h

Q
z
eleQ

z-MS-T

QR
eleQ

R-MS-Te
�Vz
�
kBT (123)

which can be written in terms of the multistructural and
torsional anharmonicity factor FMS-T

fwd of forward reaction:

kMS-TST(T) = F MS-T
fwd kSS-TST(T) (124)

FMS-T
fwd ¼ FMS-TðTSÞ

FMS-TðRÞ ¼
Qz-MS-T�Qz-SSHO

QR-MS-T=QR-SSHO
(125)
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The multistructural canonical variational transition state
theory (MS-CVT) rate constant is defined as the following:

kMS-CVT/T(T) = kTGCVTkMS-TST(T) = FMS-T
fwd kSS-CVT/T(T)

(126)

where the single-structural CVT rate constant is

kSS-CVT/T(T) = kTGCVTkSS-TST(T) (127)

Notice that, in the MS-CVT theory presented here, we approximate
the ratio of the MS-T partition function to the SS-HO partition
function at the variational transition state as the ratio at the
conventional transition state; and the variational transmission
coefficients are computed based on single-structural (quasi-)
harmonic-oscillator approximation. This is usually a very good
approximation because usually the variational transition states
are very close to the saddle point (at generally accessible
temperatures, the CVT variational transition state is usually
not more than 0.1 to 0.2 Å away from the saddle point). Also,
by adopting this approximation, we completely eliminate the
need for computing the multiple-structural anharmonicity
(which requires optimizations and generalized normal mode
analysis for all the possible generalized conformers of the non-
stationary points) along the reaction path, which is simply
unaffordable for large or even medium-sized transition state
structures. For bimolecular reactions, the factor F MS-T

fwd for forward
reaction is defined as:

FMS-T
fwd ¼

Qz-MS-T�Qz-SSHO

QR-MS-T
A

�
QR-SSHO

A

� �
QR-MS-T

B

�
QR-SSHO

B

� � (128)

For the reverse reaction, we can also define the FMS-T
rev factor

for the reverse reaction, in which one replaces the reactant
partition function in the denominator with the product partition
function. We can also define the MS-T standard-state reaction
equilibrium constant K1,MS-T being the product of FMS-T

rxn factor
for the reaction (which is equal to FMS-T

fwd /FMS-T
rev ), with the

single-structural harmonic-oscillator standard-state reaction
equilibrium constant K1,SS-HO (which can be derived from

SS-HO standard Gibbs free energy of reaction DG�;SS-HO
rxn );

and the MS-T standard Gibbs free energy of reaction

DG�;MS-T
rxn ¼ �RT lnK�;MS-T.
The basic assumption of transition state theory is that the

conformational structures of the reactants in phase space are in
local equilibrium with each other and with those of the transition
state that correspond to motion toward the product. MS-VTST is
applied under this assumption, and it assumes that the inter-
conversion between the conformers of the reactant is much faster
than the chemical reaction itself.121 However, if the interconversion
is comparable or even slower than the reaction being considered, as
possibly in the case where the torsional barriers are high as
compared to the reaction barrier, then these different conformers
should be considered as different reactants. It is also interesting to
point out that, as compared to the generalized Winstein–Holness
(GWH) equation,147,148 or other similar treatments (such as the
so-called multi-conformer TST), which requires one to associate
a unique reactant conformer with each corresponding transition

state conformer, MS-VTST does not require this one-to-one
mapping; and actually based on the local equilibrium assumption
in transition state theory, one should not associate a given transition
state conformer with a unique path originating from a specific
reactant conformer. We view this advantage of MS-VTST as the
correct formulation of transition state theory with multiple
conformers.

3.3 Multipath variational transition state theory

MS-VTST only considers one single lowest-energy path of the
reaction. The multistructural effect of the saddle point (i.e., the
multiple conformers of the saddle point) can lead to different
reaction paths for the same chemical reaction (with different
barrier heights). A more complete approach would be to
explicitly consider the contributions from all these different
reaction paths (of the same reaction) to the total reaction rate
constant, and treat the variational effects and quantum tunneling
of each reaction path individually. Multi-path variational transition
state theory149,150 (MP-VTST) is a generalization based on
MS-VTST.

We now derive the MP-VTST rate constant for a unimolecular
reaction (for a bimolecular reaction the derivation follows a
similar manner). For a unimolecular reaction, the MP-CVT rate
constant is the sum of the rate constants of all the reaction
paths, which includes all the contributions from different paths
into the total reactive flux:

kMP-CVT=T ¼ kBT

h

X
p

kTpG
CVT
p

Q
z
eleQ

z-SS-T
p

QR
eleQ

R-MS-Te
�Vz

1

�
kBT (129)

where V‡
1 is the classical barrier height of the lowest-energy

reaction path; Q‡-SS-T
p is the single-structural rovibrational torsional

partition function for the saddle point of path p, which represents
the contribution from the p-th saddle point structure to the total
conformational rovibrational torsional partition function of the
transition state:

Qz�SS-Tp ¼ Q
z
rot;pQ

z-HO
vib;p exp �Up

�
kBT

� �Yt
Z¼1

fp;Z (130)

where Up is the relative electronic energy of the saddle point p
with respect to the zero of energy set to be the electronic energy
of the lowest-energy saddle point structure. Notice that the
differences between the barrier heights of various paths
have already been included in the Boltzmann factor of the
single-structural rovibrational torsional partition function of
the saddle point of path p in eqn (130), and therefore in
eqn (129) only the V‡

1 of the lowest-energy path was explicitly
written out.

Eqn (129) can be further modified as follows

kMP-CVT=T ¼ kBT

h

Q
z
ele

QR
eleQ

R-MS-Te
�Vz

1

�
kBT
X
p

kTpG
CVT
p Qz-SS-Tp

(131)
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and it is equal to

kMP-CVT=T¼

P
p

kTpG
CVT
p Qz-SS-TpP

p

Q
z-SS-T
p

Qz-MS-T

Q
z�SSHO
1

QR-MS-T

QR-SSHO

kBT

h

Q
z
eleQ

z-SS-HO
1

QR
eleQ

R-SSHO
e�V

z
1

�
kBT

(132)

where Q‡-SSHO
1 is the single-structural rovibrational partition

function of the saddle point of the lowest-energy path. Notice
that if we included all the reaction paths, then the denominator
of the first term in eqn (132) is equal to the MS-T conforma-
tional rovibrational partition function Q‡-MS-T. Finally, eqn (129)
can be expressed in the following form

kMP-CVT/T(T) = hgiF MS-T
fwd kTST

1 (133)

where kTST
1 is the conventional (single-structural) TST rate constant

computed based on the lowest-energy path. The averaged
generalized transmission coefficient hgi is defined as

gh i ¼

P
p

kTpG
CVT
p Qz-SS-TpP

p

Qz-SS-Tp

(134)

The multistructural and torsional anharmonicity factor FMS-T
fwd is

FMS-T
fwd ¼

Qz-MS-T
.
Qz-SSHO

1

QR-MS-T=QR-SSHO
(135)

As we can see from eqn (133), if we only include the single
lowest-energy path, the MP-VTST rate constant reduces to the
MS-VTST rate constant.

In the above approach, the torsional anharmonicity is only
included for the saddle point and the reactant(s); the torsional
anharmonicity at the variational transition states are approxi-
mated as its values at the saddle point. We can also treat the
torsional anharmonicity as a function of reaction coordinate s
along the MEP by replacing the single-structural HO rovibrational
partition functions QX-SSHO (X is saddle point, reactant, or variational
transition state) in the above equations with the single-structural
rovibrational partition function with torsional anharmonicity
QX-SS-T;151 the computation of variational transmission coefficient
is also based on QX-SS-T. For the generalized transition state,
QGT-SS-T(s) treats the torsional anharmonicity as a function of
the reaction coordinate s. The location of the dividing surface
(or equivalently speaking, the value of variational transmission
coefficient GCVT

p ) will be different from the previous approach,
because the generalized-transition-state Gibbs free energy of
activation DGGT,0

act (T,s) is now evaluated with the torsional
anharmonicity; and hence the position of the generalized-
transition-state dividing surface, where DGGT,0

act (T,s) reaches
the maximum, could be different, i.e., the locations of the
variational transition states are possibly different from the ones
that are determined based on QX-SSHO. As a further complete
treatment, in the full MP-VTST, we use QX-MS-T(s) to compute
the variational transmission coefficient, which is computationally
prohibitive.

The microcanonical variational transition state theory can
also be generalized to include MS-T effects; this is multistructural
microcanonical VTST (MS-mVT). And this is done by

kMS-mVTðEÞ ¼ GmVTðEÞN
z;MS-T

hrR;MS-T (136)

in which the number of states for the saddle point is computed
from the integration of density of states, and the density
of states is computed from the inverse Laplace transform of
the QMS-T.

3.4 Truncation of paths included in MP-VTST

Ideally, all the reaction paths generated by the multiple con-
formational structures of the transition state structure should
be included in the computation of MP-VTST. However, for even
a medium-sized chain molecule, the number of conformers of
the transition state structure is very large, and it is simply
unaffordable to perform VTST calculations on all of the paths.
In eqn (134), formally, the summation is from p = 1 to the total
number of distinguishable reaction paths P (including paths
that are mirror images), which is equal to the number N of
distinguishable structures of the transition state (TS). Practically,
we have to limit the number of paths included in MP-VTST
calculation, that is to say, in the practical MP-VTST calculation,
P o N. If P = N, then the denominator of eqn (134) is exactly
equal to QMS-T(TS); and if P o N, then we have introduced
truncation errors in the computed MP-VTST rate constant.

A recent study152 compares the MP-VTST results including
different numbers of paths to the MP-VTST with all the paths
included; the comparison is for the hydrogen abstraction
reaction of tert-butanol. In total there are 46 reaction paths. It
was found that the variational transmission coefficient could be
very different from path to path; for the lowest energy path, the
variational transmission coefficients at all temperatures are
close to unity, while for high energy paths, the variational
transmission coefficient decreases almost linearly as temperature
increases. The tunneling transmission coefficients are also
path-dependent, and higher-energy paths usually have larger
tunneling transmission coefficients. A simple hypothesis to
explain this trend is that taller barrier tend to be thinner
barriers; interestingly, this explanation does not support the
observations in this study, where we examines the widths of the
VG

a potential curves for different paths in the energy range that
has significant tunneling contributions, and we found that the
barriers have very similar widths. Therefore we must attribute
the difference to something else, and we concluded that
because the higher-energy paths can tunnel at energies farther
below the barrier top, they are able to gain more from tunneling
contributions. As for the error introduced by truncating the
number of paths, it was found that at lower temperatures (less
than 300 K), one typically needs to include more paths (about
30% of the total number of paths) in order to have an error
smaller than 20%, whereas at higher temperatures, including
only a few paths in MP-VTST is good enough (as compared to
MP-VTST with all paths being included).
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4. Loose transition states

We can divide transition states into two classes. In one class,
the transition state is loose. A loose transition state is composed of
fragments that rotate with respect to one another freely or almost
freely in more than one dimension (note that the existence of
torsions, which are one-dimensional internal rotations, is not
enough to make a transition state loose). Typical loose transition
states are found in bond fission reactions that do not have an
intrinsic barrier, i.e., where the potential energy is in mono-
tonically uphill or monotonically downhill in the reverse
association.

In the second class, the transition state is tight, which
means it is not loose as defined above. Reactions with barriers
(saddle points) usually have tight transition states. Furthermore,
if a saddle point is present but it is too low in energy (e.g., below
the reactants of the downhill direction), then the dynamical
bottleneck might be a tight transition state near the saddle
point, but it also might be a loose transition state leading into a
well between the reactants and the saddle point. In fact, there
are probably two dynamical bottlenecks. (One can also find
successive transition states, i.e., transition states in series, when
there is no barrier between reactants and products.153) If one of
them has a much higher free energy of activation than the other,
then that one should be used for transition state theory. If the
two free energies of activation are comparable, one can use the
unified statistical theory or the canonical unified statistical
theory, as discussed in Section 4.2.

The implementation of VTST that we have reviewed so far is
for tight transition states, and this version of VTST is called
reaction-path VTST (RP-VTST) because we search along a reaction
path for variationally optimal dividing surfaces that are trans-
verse to a reaction path; the accessible coordinate space can be
described in terms of nearly harmonic vibrations and torsions
around the reaction path, and the reaction coordinate is usually
the distance along a reaction path, typically the MEP. Reaction-
path VTST is not usually valid for a loose transition state
because the accessible coordinate has wide-amplitude motion
that cannot be well descried by torsions and nearly harmonic
stretches and bends. It is still possible to use reaction-path VTST
for barrierless reactions by computing a reaction path without
starting from the saddle point; however, this strategy is expected
to give realistic results only (if at all) at fairly high temperatures
where the transition state may tighten up. A more appropriate way
to treat loose transition states is with loose transition state theory,154

which has now been well developed in a form called variable-
reaction-coordinate VTST155–159 (VRC-VTST), as discussed next.

4.1 Variable-reaction-coordinate variational transition state theory

Next we review the VRC-VTST theory. The VRC-VTST methodology
is available in the Polyrate code42 and also in the earlier Variflex
code.160 The codes were written completely independently. The
present article discusses the way that the calculations are done in
Polyrate.

In VRC-VTST, the vibrational modes are classified as conserved
modes and transitional modes. The frequencies of the vibrational

modes of reactants are assumed to be conserved in the association
reaction. The transitional modes consist of all of the vibrational
modes except for conserved modes and the overall rotational and
translational modes. During the association, the transitional
modes are converted from the free rotational modes and
translational modes of the infinitely separated reactants to
vibrational modes and overall rotation of the associated species.

The high-pressure-limit rate constant given by VRC-VTST for
association (R1 + R2 - P) is

kðTÞ ¼ geh
2

ð2pmkBTÞ3=2
s1s2

szQ1Q2

ðð
E;J

e�E=kBTNðE; J; sÞdEdJ

(137)

where ge is the ratio of the electronic partition function of
transition state to the product of the electronic partition functions
of reactants; the ratio of the rotational symmetry numbers s1s2/s‡

is equal to 0.5 if the reactants are the same, and it is equal to 1
if the reactants are different; Q1 and Q2 are the rotational
partition functions excluding rotational symmetry number for
the reactants; m is the reduced mass for the relative translational
motion of the associating reactants; N(E,J,s) is the number of
accessible states at energy E and total angular momentum J, at
reaction coordinate s.

The meaning of the reaction coordinate s in VRC-VTST is
different from the one in reaction-path VTST. In VRC-VTST, the
reaction coordinate is defined by pivot points. Pivot points are
used to orientate the two fragments in the VRC-VTST calcula-
tion. The locations of the pivot points are critical to the final
computed rate constant; they should be chosen to yield the
variationally lowest rate constants at each of the temperatures
that one considers, and this is generally done by trial and error.
Fixing the location of pivot point at the center of mass of the
fragment or at the atomic nucleus of the dissociating/forming
bond, does not necessarily lead to variationally lowest rate
constant. Optimal locations of pivot points can be temperature-
dependent. The reader is referred to the SI of our paper161 on
2CF2 " C2F4 for details of the way we use pivot points to define a
reaction coordinate.

In the single faceted VRC-VTST, each reactant has one single
pivot point, and we denote their coordinates as P1 and P2; the
reaction coordinate s is defined as s = |P1� P2|. Depends on the
location of the pivot points, s may or may not be (and generally
it is not) the distance between the two centers of mass of the
two reactants. In multi-faceted VRC-VTST, each reactant can
have more than one pivot points. We denote the distance
between one pivot point on reactant 1 and another pivot point
on reactant 2 as rij, where i is the index of pivot points on
reactant 1, and j is the index of pivot points on reactant 2. The
reaction coordinate s is defined as the minimal value of the
rij set:

s = min{rij} (138)

According to variational transition state theory, the pivot
points should be defined so that the integral in eqn (137) is
minimized.
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The number of states N(E,J,s) is computed as

N(E,J,s) = hNq(E,J,s)iO (139)

where the bracket means the average over all possible orientations
of the two reactants and of the orientation of the vector s. We
define the vector s as a vector connecting two pivot points, one in
each fragment. The subscript q means a specific orientation of the
whole system. And this average is carried out by Monte Carlo
sampling, where the orientations of the system are randomly
sampled over the whole phase space corresponding to a given s.
The practical implementation of the algorithm is presented in
detail in the SI of our paper on 2CF2 " C2F4.161 The number of
states at a given orientation is computed as

NqðE; J; sÞ ¼ FJ2ms2
8pka�1

Gðv=2� 1Þ

Q2
k¼1

Qvk
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
2pI ðkÞi

q
Q3
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
2pIi;q

p

� max E � Vq �
X3
i¼1

Ji
2

2Ii;q
; 0

 !v=2�2* +
OJ

(140)

F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

X2
k¼1

Xvk
i¼1

nð12Þ � dðkÞ � nðkÞi

� �.
I
ðkÞ
i

vuut (141)

where the bracket denotes the averaging over all possible
orientations of the vector of total angular momentum J while
its length is fixed. v = v1 + v2 + 3, where v1 and v2 are the number
of orientations sampled for reactant 1 and 2; I(k)

i is the ith
moment of inertia of the kth (k = 1, 2) reactant, and Ii,q is the
ith moment of inertia for the system as a whole at a given
orientation q. n(12) is the unit vector pointed from one pivot
point on reactant 2 to the one on reactant 1; d(k) is the vector
connecting the center of mass of the kth reactant to its pivot
point; n(k)

i is the unit vector directed along the ith principal axis
of the kth reactant; and ka is number of monoatomic reactant,
which is equal to 0 or 1.

As in reaction path VTST, the variational calculation can be
done in different ensembles. For VRC-VTST, the optimization
of the transition-state dividing surface can be done by canonical
variational transition state theory (CVT), microcanonical
variational transition state theory (mVT), or energy and total
angular momentum resolved microcanonical variational theory
(E, J-mVT). In CVT-VRC-VTST, N(E,J,s) is calculated for all E and J
at a given value of s, then the rate constant k(T,s) is minimized
with respect to s at each T. In microcanonical mVT-VRC-VTST,
the integral over J in eqn (137) is computed first to obtain
N(E,s); and this is done by integrating eqn (140) over J and then
averaging Nq(E,s) via eqn (139). Then N(E,s) is minimized with
respect to s at each E, and this optimized N(E) is used for the
integral over E to obtain the final rate constant. In E, J-mVT,
N(E,J) is minimized with respect to s for each E and J, and
then the integral is carried out to obtain final rate constant; E,
J-mVT yields the smallest rate constant as compared to the
former two.

4.2 Canonical unified statistical theory and related extensions

Here we consider the case of two or more transition states in
series. This should not be confused with multiple transition
states in parallel, which are treated by multistructural variational
transition state theory, multipath variational transition state
theory, or ensemble-averaged variational transition state theory.

We will limit our discussion here to two transition states in
series, but the generalization to three or more is straight-
forward. When there are two transition state regions in series,
we may call them inner and outer transition state regions.162

The outer region is where the centrifugal barrier is located, and
in some cases it may be treated using only the long-range form
of the interaction potential, although in general – using the
language of association reactions – one must also consider the
transformation of long-range rotations to librations (which is a
name for loose vibrations) and eventually to tight vibrations as
the fragments approach. The inner region is where chemical
interactions (valence forces) have overtaken the long-range
forces. In some cases, the inner region provides the highest
free energy barrier at high temperatures, and the outer region
does so at low temperatures.

The canonical unified statistical theory22,163 (CUS) has been
developed as an extension to canonical ensembles of Miller’s
unified statistical theory164,246 (US) for microcanonical ensembles,
which is based on the branching analysis of Hirschfelder and
Wigner.245 In this theory, local fluxes are calculated for dividing
surfaces at both bottlenecks of the chemical process and also at a
dividing surface between them. This provides the simplest way to
allow for a statistical branching probability for the reaction
complex to re-dissociate to reactants. In the case of two transition
states in series, the CUS rate constant is:

kCUS(T) = kCVT(T)GCUS(T) (142)

where GCUS(T) is the CUS recrossing transmission coefficient,
which plays the role of including additional recrossing corrections
on the CVT rate constants. The GCUS(T) factor is calculated as:

GCUSðTÞ ¼ qmaxðTÞ
qmaxðTÞ þ qCVTðTÞ � qmaxðTÞqCVTðTÞ=qminðTÞ

(143)

where qCVT(T) is the rovibrational partition function for the
canonical variational transition state (the location of which is
denoted as sCVT� , which corresponds to the highest maximum
point on the generalized-transition-state Gibbs free energy
surface), qmax(T) is for the second highest maximum point on
the generalized-transition-state Gibbs free energy surface (the
location of which is denoted as smax

� ), and qmin is for the lowest

local minimum point that is between sCVT� and smax
� on the

generalized-transition-state Gibbs free energy surface. All these
three partition functions are computed based on the zero-of-
energy being at the minimum of reactants’ potential well (i.e.,
the value of VMEP at s = �N); notice that, there is a relation
between the generalized-transition-state vibrational partition
function QGT(T,s) that is based on the zero of energy being
at the value of VMEP(s) of the potential on MEP, and the
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vibrational partition function qGT(T,s) that is based on the
former definition of zero of energy:

qGT(T,s) = exp[�VMEP(s)/kBT]QGT(T,s) (144)

Clearly, if sCVT� , smax
� , and smin

� are the same, as in the case
which there is only one local maximum on the generalized-
transition-state Gibbs free energy surface along the reaction
coordinate, the CUS recrossing transmission coefficient GCUS(T) = 1.

The CUS theory has been tested for various systems against
accurate quantum dynamics rate constants or the best available
experimentally measured rate constants.165–170,361 It does not
necessarily get the recrossing right, but it does provide a smooth
connection between the regime where the inner bottleneck is
dominant and the one where the outer bottleneck is dominant.

The CUS approximation is valid at high enough pressure
where the statistical dissociation of the complex is promoted by
collision-induced energy redistribution, and it is valid at low
pressure if intramolecular vibrational relaxation is fast enough.
But when tunneling is important, it has the same issues with
total energy conservation as those discussed in relation to CVT
in Section 2.3.4.

The CUS rate constant kCUS can also be expressed by using
the rate constant (or the reactive flux coefficient) of passing the
highest variational transition state kI, the second highest
variational transition state kII, and the formation of the lowest
local minimum complex kC, on the Gibbs free energy surface
along the MEP, as follows:

1

kCUS
¼ 1

kI
þ 1

kII
� 1

kC
(145)

And when there exists multiple parallel branching reactions
after the complex, then it is straightforward to generalize
eqn (145) to the following:

1

kCCUS
¼ 1

kI
þ 1P

i

kIIi
� 1

kC
(146)

where kII
i is the rate constant for the i-th parallel reaction after

the complex; here the transition state theory gives the overall
reactive flux. And this is called the competitive canonical
unified statistical (CCUS) model.248 The CCUS model has been
widely used in studying reaction process with competitive
reaction paths171–177,248 with the VTST theoretical framework,
that is with the statistical model. One especially interesting
application is the use of CCUS to explain the experimental KIEs
for the SN2 ion–molecule reactions,247 and for the competition
between E2 and SN2 reactions.248 A non-statistical extension of
CCUS model will be discussed in Section 6.

5. Pressure-dependent reaction rate
constants
5.1 Overview

For reactions with two reactants and more than one product, it
is usually assumed that collisional repopulation of states
depleted by reaction is fast enough to maintain the thermal

equilibrium distribution of states, and hence the rate constants
for bimolecular reaction can be treated as pressure independent.
However, in general we must consider pressure dependence
when either the reactant or the product (or both) is unimolecular,
i.e., association reactions, unimolecular dissociation, and
unimolecular isomerization. Variational transition state theory
provides the high-pressure-limit rate constants. However, in
practical laboratory measurements, the pressure is seldom high
enough to measure the high-pressure limit, and measured rate
constants can be significantly different from the ones computed
for the high-pressure-limit. For thermal unimolecular reactions,
the rate falls off as pressure decreases, and this is called the
falloff effect. It is a consequence of a non-equilibrium state
distribution in the reactant.

A master equation34,178–182 may be used to accurately treat
non-equilibrium effects if the full matrix of state-selected reaction
rates and state-to-state energy transfer rates is available.34,181,182

This is essentially never the case, but a master question can still
be used if one makes additional assumptions. For example, one
may assume that the unimolecular state-specific rate constants
do not depend on the full state specification but rather only on
the total energy or on the total energy E and total angular
momentum J. We will make the former assumption. Then the
master equation becomes one-dimensional, and it may be
written:183,184

d

dt
piðE; tÞ ¼ oiðT ;PÞ

ð1
0

PiðE;E0;TÞpiðE0; tÞdE0 �oiðT ;PÞpiðE; tÞ

þ
XNisom

jai

kijðEÞpjðE; tÞ�
XNisom

jai

kjiðEÞpiðE; tÞ

þ
XNreact

n¼1
ynAðtÞynBðtÞkinðEÞbnðE; tÞ

�
XNreactþNprod

n¼1
kniðEÞpiðE; tÞ

(147)

d

dt
ynAðtÞ ¼

d

dt
ynBðtÞ

¼
XNisom

i¼1

ð1
0

kniðEÞpiðE; tÞdE

�
XNisom

i¼1
ynAðtÞynBðtÞ

ð1
0

kinðEÞbnðE;TÞdE

(148)

where pi(E,t) is the population of isomer i with energy E at time
t, oi(T,P) is the collision frequency (which is in the unit of s�1; it
is the bimolecular collision rate constant times the concentration of
bath gas M), P(E,E0,t) is the probability density of collisional energy
transfer from energy E0 to E, ynA(t) and ynB(t) are concentrations of
the nth arrangement-channel reactants with A and B distinguishing
between the two reactants, kij(E), kin(E), and kni(E) are the
microcanonical rate constants for isomerization, association
and dissociation reactions, bn(E,T) is the Boltzmann distribution
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for bimolecular reactant channel n, and Nisom, Nreact, and Nprod

are the numbers of isomers, bimolecular reactant channels, and
bimolecular product channels, respectively.

Popular master equation solvers are available, such as
Mesmer,185 Multiwell,186 and RMG.187 The computations of
microcanonical rate constants in these codes do not explicitly
include variational effects, microcanonical multidimensional
tunneling, or multistructural and coupled torsional potential
anharmonicity However, in some cases variational effects are
included effectively, for example, many Mesmer calculations
have been performed for loose TSs with good success by first
computing the parameters for a generalized three-parameter
Arrhenius expression by using Variflex, which includes variational
effects, and then using the inverse Laplace transform method for
the generalized 3-parameter Arrhenius expression to compute
k(E). The inverse Laplace transform method can be viewed as an
approximate way to include various dynamics effects if the
computed canonical rate constants include those effects.
Multiwell calculations have also been reported using variational
effects; Multiwell includes a code (Ktools) for explicitly calculating
k(E,J) (the rate constants as a function of energy and total angular
momentum) for loose TSs (even those with more than one
bottleneck); Ktools also computes canonical VTST rate constants
in two ways: based on the k(E,J)s and based on a canonical VTST
approach (however, in Multiwell, the canonical variation is car-
ried out based on computing a large number of trial TST rate
constants at a given temperature along the reaction coordinate,
and its generalized normal mode analysis is based on Cartesian
rather than curvilinear coordinates, which, as we discussed in
Section 2.5, are not well suited for VTST and should be used with
caution). Neither Mesmer nor Multiwell has the capability to
automatically compute multistructural effects and the effects of
coupled internal rotors.

However, even when adequate dynamical methods can be
employed, master equation computations add an extra layer of
complexity, and it would require a significant effort to compute
multidimensional tunneling by summation over calculations
for a large number of vibrationally excited states for each local
conformational structure. In many cases we would like to use
approximate chemical models to predict the pressure dependence
without solving a master equation.

Pressure-dependent elementary reactions can be classified,
based on their mechanism, as chemically activated and thermally
activated. In a chemical activation mechanism, a reactive adduct
is generated via a chemical reaction; and in a thermal activation
mechanism, the rovibrationally excited unimolecular states are
generated via thermal collisions between the reactant and a bath
gas. In the chemical activation mechanism, because collisional
energy transfer to stabilize the energized adduct is slow at low
pressure, the low-pressure rate constants of the formation of
the stabilized adduct are lower than the high-pressure-limit, and
the rate constants of the further isomerization/dissociation of the
formed adduct are larger than the high-pressure equilibrium rate
constant. Experimentally, Rabinovitch and co-workers are among
the pioneers who carried out various measurements in investi-
gating the kinetics of chemically activated reaction systems.188

However, in thermally activated unimolecular reactions, the
low-pressure rate constants are smaller than the high-pressure
equilibrium rate constant because collisional energy transfer is
too slow to repopulate the reacting states of the reactant (i.e., to
form the energized unimolecular reactive states), and hence –
as already mentioned – the pressure effect for this kind of
reaction is called ‘‘falloff’’. In both mechanisms, the micro-
canonical rate constants can be obtained via quantum RRK
(QRRK) theory189 or via the full microcanonical variational
transition state theory (sometimes called variational RRKM). Barker,
Westmoreland, Dean, and Bozzelli and their coworkers190–197 have
carried out important pioneering works in the developments and
applications of QRRK theory. In many approaches, QRRK theory has
been replaced by RRKM theory (i.e., transition state theory) or full
variational transition state theory, which are more complete theories,
but QRRK theory can significantly lower the computational effort as
compared to full microcanonical VTST with multidimensional
tunneling and anharmonicity. The recently proposed system-
specific quantum RRK theory78,198,199 (SS-QRRK) is able to
incorporate variational effects, multidimensional tunneling,
and various anharmonicity effects into the microcanonical rate
constants, without any additional cost except for the computations
of the high-pressure-limit rate constants. In conventional
RRKM theory for k(E), energy-resolved variational effects,
multi-dimensional tunneling and multistructural and coupled
torsional potential anharmonicity are not included; some of
these dynamic effects can be directly incorporated into micro-
canonical rate constants in RRKM theory only with considerable
effort. SS-QRRK can be viewed as an effective way of recovering
the above-mentioned effects in k(E) from the high-pressure-limit
canonical k(T) that do include those effects in the canonical
ensemble; and we use it to compute the pressure-dependence so
that the computed k(T,p) can connect with the correct high-
pressure-limit.

5.2 Thermal activation

The thermal activation mechanism for unimolecular reaction
X - P is

XðTÞ þM�! �
kactðE;TÞ

kdeactðTÞ
X�ðEÞ þM (149)

X�ðEÞ ����!kcon;XðEÞ
P (150)

where X is the reactant, M is bath gas (such as He, Ar, N2, etc.), P
is the product, and X* is the rovibrationally excited (energized)
complex, which is generated by collisions with a thermal
ensemble of bath molecules M. (Of course M could be X, i.e.,
reaction could be occurring in neat X, and the equations can
easily be modified to treat that special case, so we need not
discuss it explicitly.) The parenthetical arguments following
X and X* denote that X is thermalized at temperature T, and X*
has internal energy E, which is greater than the threshold
energy E0 for the reaction step. (M is also thermal at temperature
T, and the translational energy of X* is thermal at temperature T,
but these conditions are not explicit in the notation.) The rate
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constant for the thermal activation step is kact, and we will call the
reverse step de-activation and label it kdeact, although in this step
the decrease of energy in X* could still yield a molecule that is
activated enough to react, except in the limit of so called strong
collisions, in which each collision fully de-energizes X*. The rate
constant for the step in which reactant is converted to product is
called kcon,X (this could be either isomerization or dissociation).
The phenomenological unimolecular reaction rate constant is
defined as

kuniðTÞ ¼ �
1

½X�
d½X�
dt

(151)

In the classical Lindemann theory, all of the rate constants
are considered to be energy-independent. If we use steady-state
approximation to treat X*, i.e., if we assume

d X�½ �
dt
¼ kact½X�½M� � kdeact X

�½ �½M� � kcon;X X�½ � ¼ 0 (152)

then we get

X�½ � ¼ kact½X�½M�
kdeact½M� þ kcon;X

(153)

If we assume ideal-gas behavior, [M] can be replaced by p/RT,
where p is pressure. Then, since kuni[X] = kcon,X[X*], we have

kuniðT ; pÞ ¼
ðp=RTÞkactkcon;X
ðp=RTÞkdeact þ kcon;X

(154)

In the high-pressure limit, the Lindemann unimolecular
rate constant becomes

kNuni = kactkcon,X/kdeact (155)

and the unimolecular reaction is of pseudo-first order; whereas
in the limit of very low pressure, the low-pressure-limit k0

uni is
much smaller than kNuni:

k0
uni = (p/RT)kact (156)

which depends linearly on the pressure, and the reaction is of
second order. The falling off of the kuni rate constant predicted by
classical Lindemann theory starts too early, i.e., the computed
pressure at which significant falloff effect begins is too high as
compared to experiment.

For higher accuracy, the energy dependence of kcon,X should
be considered. One could use microcanonical VTST to calculate
the energy-dependent rate constants, just as RRKM theory uses
microcanonical conventional TST energy-dependent rate constants.
Alternatively one could calculate thermal rate constants and obtain
the fixed-energy ones by an inverse Laplace transform as mentioned
at the end of Section 2.1, but inverse Laplace transform is often
unstable. What we will do instead is to use SS-QRRK as an effective
kinetics-specific inverse Laplace transform to convert canonical
kcon,X rate constants to microcanonical ones; SS-QRRK is a physical
model for achieving this goal, but without explicitly carrying out the
inverse Laplace transform in its actual computation.

In the thermal activation step, the thermally equilibrated
reactant X at temperature T collides with bath gas M to produce
X* with internal energy E, and a key assumption of classical

RRK theory, which is retained in QRRK and SS-QRRK, is that we
neglect rotational energy and assume the vibrational energy E is
randomly distributed among all the modes (nevertheless, in
SS-QRRK the rotational contribution is implicitly included in
k(E) because the canonical high-pressure-limit includes rotational
modes, and thus they are implicitly in AK and E0, which are
discussed below). For simplicity we treat X and X* as multi-mode
harmonic oscillators with all frequencies the same (i.e., an
effective geometric mean frequency); this will not be as serious
an approximation as it might seem because the resulting formula
will be used only to make a kinetics-specific inverse Laplace
transform of a thermal rate constants calculated without this
assumption. In calculations, we will use the geometric mean
frequency of X, and we will call in �n (in wavenumbers). With all
the internal energy distributed among harmonic oscillators of the
same frequency, we may change the independent variable from
internal energy E to number of vibrational quanta n:

n = E/hc%v (157)

where c is speed of light. Following a similar derivation to that
in classical Lindemann theory, but employing n-dependent rate
constants, the unimolecular rate constant is

kuniðT ; pÞ ¼
Xþ1
n¼m

ðp=RTÞkactðn;TÞkcon;XðnÞ
ðp=RTÞkdeactðTÞ þ kcon;Xðn;mÞ (158)

in which m is the number of quanta at the threshold energy E0,

m = E0/hc%v (159)

and the determination of threshold energy in SS-QRRK will be
discussed later.

The ratio of the thermal activation and de-activation rate
constants in eqn (149) is a mixed-ensemble equilibrium constant,
representing the thermal equilibrium of species X* in a micro-
canonical ensemble at energy E with species X in a thermal
ensemble with temperature T. In the QRRK model, this is the
fraction of molecules at temperature T that have n quanta of
excitation, which is given by200

Kact;Xðn;TÞ ¼
kactðn;TÞ
kdeactðTÞ

¼ exp
�nhc�n
kBT

� 	
1� exp

�hc�n
kBT

� 	 �sðnþ s� 1Þ!
n!ðs� 1Þ!

(160)

where s is the number of vibrational degrees of freedom of X*
(which is 3N� 6 for a nonlinear molecule). We assume that kdeact

does not depend on E, i.e., does not depend on number of
vibrational quanta n, but does depend on T; then we solve
eqn (160) for kact, which yields

kactðn;TÞ ¼ kdeactðTÞ exp
�nhc�n
kBT

� 	
1� exp

�hc�n
kBT

� 	 �sðnþ s� 1Þ!
n!ðs� 1Þ!

(161)

In QRRK, a unimolecular reaction happens when a specific
vibrational mode associated with the reaction coordinate possesses
threshold energy E0. Therefore the QRRK rate constant equals a
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frequency factor AK (the superscript stands for Kassel) times the
fraction of molecules that have at least m quanta of excitation;
this is given by181,201

kcon;Xðn;mÞ ¼ AK n!ðn�mþ s� 1Þ!
ðn�mÞ!ðnþ s� 1Þ! (162)

Substituting eqn (159), (161) and (162) into (158) yields the
QRRK rate constant, but in order to finish the calculation we must
specify AK, E0, and kdeact. The computation of kdeact will be discussed
in Section 5.4, and next we turn our attention to AK and E0.

Taking the high-pressure-limit of eqn (158), using eqn (159),
and summing the series yields the following pure Arrhenius form:

kNuni(T) = AK exp(�E0/kBT) (163)

and this motivates the approach we proposed to obtain the
parameters needed in SS-QRRK computations. The first step is
to calculate the high-pressure-limit canonical-ensemble VTST
rate constant (for example, an MP-CVT/SCT calculation that
includes variational effects, multidimensional tunneling, var-
ious anharmonicity). Next, we fit the canonical-ensemble high-
pressure-limit rate constant by the four-parameter formula202

k1ðTÞ¼
B

T

300

� 	n0

exp � E0 TþT0ð Þ
R T2þT0

2ð Þ

 �
endothermic reaction

B
TþT0

300

� 	n0

exp � E0 TþT0ð Þ
R T2þT0

2ð Þ

 �
exothermic reaction

8>>>>><
>>>>>:

(164)

where B, T0, E0, and n0 are fitting constants. In combustion
community, the widely used fitting formulas are either conventional
Arrhenius formula or the three-parameter fitting formula in the
form BTn exp(�E/RT), which assumes a linear dependence of
activation energy on temperature; however, this linear dependence
can be very inaccurate at low temperatures, where the tunneling
non-linearly reduce the activation energy significantly,150 and also
at high temperature. Our four-parameter formulas are more
physically sound, and they permits a nonzero rate constant for
an exothermic reaction in the low-temperature limit; furthermore
they are more accurate in terms of the fitting error.202

Based on our four-parameter fitting formula, the local Arrhenius
activation energy (which may also be called the Tolman activation
energy)203 for temperatures near a given temperature T0 is obtained
from the negative slope of the Arrhenius plot,

EaðT 0Þ ¼ �R
d ln k1

dð1=TÞ

����
T¼T 0

(165)

which yields

EaðT 0Þ

¼

E0 T 04 þ 2T0T
03 � T0

2T 02
� �

T 02 þ T0
2ð Þ2

þ n0RT 0 endothermic reaction

E0 T 04 þ 2T0T
03 � T0

2T 02
� �

T 02 þ T0
2ð Þ2

þ n0RT 02

T 0 þ T0
exothermic reaction

8>>>>><
>>>>>:

(166)

With this energy of activation, we have a local Arrhenius fit
for temperature T given by

kN(T) = A(T)exp[�Ea(T)/RT]

with A(T) obtained by

A(T) = kN(T)exp[Ea(T)/RT] (167)

Then Ea(T) and A(T) are used for E0 and AK in the QRRK
expression given by eqn (158), (159), (161) and (162). This yields
SS-QRRK. Notice that the parameters E0 and AK are constants
in conventional QRRK, but they depend on temperature in
SS-QRRK, which is a major change. This procedure allows one
to incorporate the full apparatus of VTST (including variational
optimization of the transition state, tunneling, and anharmonicity)
in the high-pressure-limit rate constants and approximately trans-
fer it to the microcanonical energy-dependent rate constants,
without actually doing the microcanonical computations. We view
the subsequently obtained SS-QRRK microcanonical rate constants
as an effective approximation to the microcanonical variational
transition state theory rate constants including variational
optimization, tunneling, and anharmonicity.

If one wants to do the microcanonical computations (which
could be expensive in order to fully account for MS-T anharmonicity
and microcanonical multidimensional tunneling), the sum in
eqn (158) can be replaced by an integration, which yields

kuniðT ; pÞ ¼
ð1
E¼Ethr

dE
ðp=RTÞKact;XðE;TÞkcon;XðEÞkdeactðTÞ
ðp=RTÞkdeactðTÞ þ kcon;XðEÞ

(168)

in which

Kact;XðE;TÞ ¼
rðEÞ expð�E=RTÞÐ1

0
dE0rðE0Þ expð�E0=RTÞ

¼ rðEÞ expð�E=RTÞ
QXðTÞ

(169)

where r(E) is MS-T rovibrational density of states of X, QX(T) is
the MS-T rovibrational partition function of reactant X, Ethr is
the threshold energy. Notice that, in this rigorous microcanonical
treatment where the microcanonical rate constants are computed
by mVT theory (which can be viewed as a variational RRKM
theory), the threshold energy is the ZPE-included electronic
potential-energy barrier height; this is different from the way of
determining the threshold energy in SS-QRRK theory, which is a
temperature-dependent activation energy. Also, the rotational
contributions are explicitly treated in this formalism. The micro-
canonical rate constants in eqn (168) can be computed by MS-mVT
with multidimensional tunneling. In the case of small-curvature
tunneling (SCT), the MS-mVT/SCT rate constant is

kMS-mVT=SCTðEÞ ¼ GmVTðEÞN
z;MS-T=SCT

hrX;MS-T (170)

where the cumulative reaction probability N‡,MS-T/SCT is the
convolution of the SCT tunneling probability PSCT(E) with the
density of states of the saddle point, in which the summation
goes over all rovibrational states of all conformations of the
transition state, from vibrational ground-state and continues
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up in energy until it converges or until one reaches the dissociation
energy of the transition state. This is computationally demanding
even for medium-sized systems.

Finally, let us consider use SS-QRRK for treating unimolecular
dissociation with multiple parallel dissociation reactions.

XðTÞ þM�! �
kactðE;TÞ

kdeactðTÞ
X�ðEÞ þM (171)

X�ðEÞ

����!k
ð1Þ
con;X

ðEÞ
P1

����!k
ð2Þ
con;X

ðEÞ
P2

� � �

����!k
ðNÞ
con;X

ðEÞ
PN

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(172)

where the reactant X has multiple parallel dissociation reactions,
of which the products are respectively P1, P2,. . ., PN (notice
that here the notation Pi for the i-th dissociation reaction
represents the product(s) of this dissociation reaction). The
overall phenomenological unimolecular reaction rate constant
(for the total dissociation rate constant of the reactant X) is
defined as:

koveralluni ðTÞ ¼ �
1

½X�
d½X�
dt

(173)

which, by using the condition [X] = [P1] + [P2] + � � � + [PN], can be
re-written as the summation of the rate constants of all the
parallel dissociation reactions

koveralluni ðTÞ ¼
XN
i¼1

k
ðiÞ
con;XðTÞ (174)

where

k
ðiÞ
con;XðTÞ ¼

1

½X�
d Pi½ �
dt

(175)

And the SS-QRRK pressure-dependent rate constant for the
i-th dissociation reaction, which is a straightforward generalization
of eqn (158), is:

k
ðiÞ
con;XðT ; pÞ ¼

Xþ1
n¼mi

ðp=RTÞkactðn;TÞkðiÞcon;XðnÞ

ðp=RTÞkdeactðTÞ þ
PN
i¼1

k
ðiÞ
con;X n;mið Þ

(176)

where mi is the threshold number of quanta for dissociation
reaction i, which is determined by using eqn (159), and k(i)

con,X(n)
is determined by eqn (162). Eqn (176) is equivalent to eqn (A5) of
Dollet et al.,204 who applied it to study fall-off in the cases such as
SiH4 - SiH3 + H or SiH2 + H2, although theirs work was based
on conventional TST without including the dynamic effects we
consider in SS-QRRK.

The addition of rate constants for parallel reactions, as in
eqn (174), is clearly valid for microcanonical rate constants and
for high-pressure-limit thermal rate constants for which
the energy distribution is thermal. But for application to the

falloff region, eqn (176) involves the additional assumption that
energy transfer competes with energy relaxation in the same
way for all product channels. But this is not necessarily the case
in the fall-off region if high-energy states are depleted more
rapidly by reactions with lower-energy thresholds than they are
by reactions with high-energy thresholds. This phenomenon
has been discussed in conjunction with the treatment of
the unimolecular reactions of 2-methylhexyl radicals.205

Thus eqn (176) should be used with caution in the falloff region
if the parallel reactions have a large difference in threshold
energies.

5.3 Chemical activation

For bimolecular association reaction or a two-step reaction with
a unimolecular intermediate, the chemical activation mechanisms
are:

(a) association reaction (Y + Z - YZ)

Yþ Z �! �
kadd

krev

YZ� �!þM
kdeact

YZ (177)

(b) two-step reaction (Y + Z - YZ - P)

Yþ Z �! �
kadd

krev

YZ� �!þM
kdeact

YZ

# kcon;YZ

P

(178)

where YZ* is the activated adduct generated by reaction
between Y and Z, and YZ is the stabilized product (it is the
intermediate in the case of two-step reaction), P is the product
of further reaction of the intermediate YZ*. In chemical
activation, the rate constant kadd of the formation of YZ* is
not pressure-dependent because it is formed via a bimolecular
chemical reaction, of which the value is just the high-pressure-
limit temperature-dependent bimolecular reaction rate kNadd(T).
The rate constant for the dissociation of YZ* back to the
reactants Y and Z is krev, which is treated as energy-dependent;
the rate constant for the formation of the product(s) from YZ* is
kcon,YZ(E).

Following a similar treatment as for thermally activated
unimolecular reactions, and defining kstab as the phenomeno-
logical bimolecular stabilization rate constant,

kstab ¼
1

½Y�½Z�
d½YZ�
dt

(179)

and krxn as the phenomenological bimolecular rate constant for
reaction

krxn ¼
1

½Y�½Z�
d½P�
dt

(180)

We applied steady-state approximation to the activated
adduct YZ*. Then the pressure-dependent rate constants given
by SS-QRRK theory are:

(a) for association reaction

kstab ¼ k1addðTÞ
Xþ1
E0

ðp=RTÞkdeact f ðEÞ
ðp=RTÞkdeact þ krevðEÞ

(181)
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(b) for two-step reaction

kstab ¼ k1addðTÞ
Xþ1
E0

ðp=RTÞkdeact f ðEÞ
ðp=RTÞkdeact þ krevðEÞ þ kcon;YZðEÞ

(182)

and

krxn ¼ k1addðTÞ
Xþ1
E0

kcon;YZðEÞ f ðEÞ
ðp=RTÞkdeact þ krevðEÞ þ kcon;YZðEÞ

(183)

where f (E) is the fraction of energized adduct (YZ*) at energy E,
which is given by

f ðEÞ ¼ krevðEÞKact;YZðEÞPþ1
E0

krevðEÞKact;YZðEÞ
(184)

and Kact,YZ is given by eqn (157) and (160), and E0 is the
SS-QRRK threshold energy for YZ dissociating back to reactants
Y and Z, and krev and kcon,YZ are computed by eqn (162) with the
appropriate m (number of quanta at threshold energy) and AK

values (for krev, these parameters are computed from the
reaction of YZ dissociating to Y and Z; and for kcon,YZ, from
the reaction of YZ dissociation to P).

Instead of using SS-QRRK to approximate microcanonical
rate constants, the above equations can be converted to the
form needed to use microcanonical VTST rate constants
(including microcanonical quantum tunneling):

(a) association reaction

kstab ¼ k1addðTÞ
ðþ1
Ethr

ðp=RTÞkdeactgðEÞdE
ðp=RTÞkdeact þ k

MS-mVT
rev ðEÞ

(185)

(b) two-step reaction

kstab ¼ k1addðTÞ
ðþ1
Ethr

ðp=RTÞkdeactgðEÞdE
ðp=RTÞkdeact þ kMS-mVT

rev ðEÞ þ kMS-mVT
con;YZ ðEÞ

(186)

krxn ¼ k1addðTÞ
ðþ1
Ethr

kMS-mVT
con;YZ ðEÞgðEÞdE

ðp=RTÞkdeact þ k
MS-mVT
rev ðEÞ þ k

MS-mVT
con;YZ ðEÞ

(187)

where the energy distribution function

gðEÞ ¼ kMSmVT
rev ðEÞrMS-T

YZ ðEÞ exp �E=kBTð ÞÐþ1
Ethr

k
MSmVT
rev ðEÞrMS-T

YZ ðEÞ exp �E=kBTð ÞdE
(188)

and in mVT, the threshold energy is denoted as Ethr, and it is
ZPE-included electronic potential-energy barrier height, which
is different from the threshold energy used in SS-QRRK theory
(which is a temperature-dependent activation energy).

As for the thermal activation process of unimolecular
dissociation with multiple parallel dissociation reactions, which
we discussed in Section 5.2, here we consider using SS-QRRK
for chemical activation processes with the intermediate YZ

undergoing multiple further parallel dissociation reactions.
The mechanism is as follows:

Yþ Z �! �
kadd

krev

YZ� �!þM
kdeact

YZ (189)

YZ�ðEÞ

�����!k
ð1Þ
con;YZ

ðEÞ
P1

�����!k
ð2Þ
con;YZ

ðEÞ
P2

� � �

�����!k
ðNÞ
con;YZ

ðEÞ
PN

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(190)

The phenomenological bimolecular rate constant for the
formation of the product(s) Pi of parallel reaction i in eqn (190)
is defined as:

kðiÞrxn ¼
1

½Y�½Z�
d Pi½ �
dt

(191)

The SS-QRRK rate constant for the stabilization of the
intermediate YZ, which is an extension based on eqn (182), is:

kstab ¼ k1addðTÞ
Xþ1
E0

ðp=RTÞkdeact f ðEÞ

ðp=RTÞkdeact þ krevðEÞ þ
PN
i¼1

k
ðiÞ
con;YZðEÞ

(192)

where E0 is the SS-QRRK threshold energy for YZ dissociating
back to reactants Y and Z. As we have discussed at the end of
Section 5.2, if the depletions of the high-energy states by the
low-threshold and high-threshold reactions are comparable,
then the current treatment for parallel channels provides a
good approximation. And the pressure-dependent rate constant
k(i)

rxn for the formation of the product(s) Pi is:

kðiÞrxn ¼ k1addðTÞ
Xþ1
E0

k
ðiÞ
con;YZðEÞf ðEÞ

ðp=RTÞkdeact þ krevðEÞ þ
PN
i¼1

k
ðiÞ
con;YZðEÞ

(193)

5.4 Collisional deactivation rate constant

In the strong collision approximation, the collision efficiency is
unity, which means that, in the strong collision limit, each
collision produces a Boltzmann distribution of the energized
complex (i.e., of the activated adduct in a chemically activated
system, and the rovibrationally excited unimolecular states in
a thermally activated system), which usually has a much
lower average energy than the energy prior to collision (i.e.,
de-activation has occurred). Note that de-activation refers to
reducing the total energy below the threshold for reaction.
However, in reality it may takes multiple energy transfer collisions
to fully de-activate the energized complex. At lower pressure, where
there is more time between collisions, the energy relaxation time
may be slower than the reaction time. Troe developed approximate
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way to treat single-well, single-reaction-channel systems by a
master-equation-based weak-collision model,206–209 which is
derived from the full master equation with an assumption that
the collisional energy transfer probability has an exponential
form; Troe’s collision model has been tested against various
bath gases, and its performance is well validated.215 In Troe’s
model, the bimolecular collisional rate constant kdeact (in units
of cm3 molecule�1 s�1) is computed as:

kdeact = bcO2,2*kHS (194)

where kHS is the hard-sphere collisional rate constant, bc is the
collision efficiency (dimensionless), and O2,2* is the reduced
collisional integral, for which the following approximation is
available:206,207

O2;2
� ¼

0:697þ 0:5185 log10
kBT

eA�M

� 	 ��1
kBT

eA�M
2 ½3300�

0:636þ 0:567 log10
kBT

eA�M

� 	 ��1
kBT

eA�M
=2½3300�

8>>>><
>>>>:

(195)

where eA–M is the Lennard-Jones interaction parameter between
molecule A and M and is computed as the geometric average of
eA–A and eM–M. The collision efficiency is computed as:

bc
1� bc1=2

¼ jhDEij
FE0
ðTÞkBT

(196)

where |hDEi| is the value of the average energy transferred
during both energization and de-energization processes (this
quantity is also denoted as |hDEiall|, in order to be distinguish-
able from the energy transferred only for de-energization
hDEidown,179,210,211 which is a positive number) and

FE0
ðTÞ ¼

Ðþ1
E0

rðEÞe�E=kBTdE
kBTr E0ð Þe�E0=kBT

(197)

is the thermal population of internal energies of unimolecular
states above the threshold energy of the reactant normalized by
a density of states factor at the threshold energy.212 If only the
hDEidown parameter is available, then the collision efficiency
could be computed as:179

bc ¼
hDEidown

hDEidown þ FE0
ðTÞkBT

� 	2

(198)

The FE0
factor can be computed directly from the density of

states (which is the inverse Laplace transform of the rovibrational
partition function), and in this case, the multistructural torsional
anharmonicity could be included in the factor FE0

by using
the MS-T partition function, which is reviewed in Section 3.1, in
the inverse Laplace transform; if the single structure quasi-
harmonic oscillator model is a good approximation, FE0

can also
be computed by direct counting algorithms, or (with much
less computational cost) the empirical Whitten–Rabinovitch
approximation,213 which is based on the classical harmonic
oscillator model. In principle, the value of the energy transfer
parameter |hDEiall| could be determined from theoretical

trajectory calculations, as done in ref. 214–216 (although the way
to extract information from trajectory calculation is not completely
unambiguous). Most applications use a value that has been used
in the literature for similar systems; or this quantity is simply
treated as a fitting parameter to reproduce the experimental results
in a certain range of temperature and pressure, and then one
hopes that the so-obtained pressure-dependence model becomes
predictive for other temperatures and pressures.

For the numerical value of FE0
, Troe studied a set of small

molecules and concluded that their values are all close to
unity.212 Using eqn (197), we also confirmed these observations
for some cases, although, for larger sized molecules and at high
temperatures, FE0

can deviate from 1 or 1.15 by quite a large
amount; in fact, for a large-sized molecule with lots of vibrational
degrees of freedom at high temperatures, FE0

grows exponentially.
For instance, for C2F4 dissociating to two CF2,161 FE0

is computed
to be 1.01 at 300 K, 1.12 at 400 K, and 1.39 at 1000 K; for
(SiH3)2SiHSiH� isomerization to (SiH3)2SiSiH3

�,199 it is 1.43 at
300 K, 1.63 at 400 K, and 6.54 at 1000 K; and for H addition on
toluene,78 it is 1.31 at 300 K, 1.47 at 400 K, 4.02 at 1000 K.
Therefore it is not justified to use a constant value close to unity,
as has been done189,190 in the literature. When the density of
states is obtained via our MS-T partition function (see Section 3.1)
and FE0

is computed by eqn (197), the multiple structural and
torsional anharmonicity (and also, the vibrational anharmonicity
for high-frequency modes when a vibrational scale factor is
applied) is built into FE0

, and therefore the previously proposed
empirical internal rotor correction and anharmonicity correction212

to FE0
should not be used.

The collision efficiency bc is smaller than 1 and it is
significantly smaller than 1 at high temperatures for small
molecules; furthermore bc decreases with increasing temperature.
The computed value of bc clearly depends on the value of the
energy transfer parameter |hDEiall|, and this is often the largest
source of uncertainty in falloff computations. Typically one finds
that larger molecules have higher values of the energy transfer
parameter;217,218 and a larger value of the energy transfer
parameter leads to a larger value of collision efficiency (i.e., a
stronger collision). As mentioned above, a common practice in
the literature is to use a previously used value of the energy
transfer parameter for similar systems. In principle, |hDEiall|
should depend on energy or temperature,218–221 but it is often
approximated as a constant; to introduce the temperature
dependence, an additional empirical parameter is then needed.
Furthermore, even when an experimental value is available, the
experiment may correspond to a different energy or temperature
than the one that is needed for the kinetics calculation. Yet another
complication that occurs in chemical activation mechanisms is that
the available experiments do not usually identify the adduct. For
example, in our calculations on addition of H atoms to toluene, we
used an experimental value for disappearance of toluene, whereas
what is really needed is an experimental value for producing the
adduct of H with toluene. The reader is directed to the
literature222–228 for examples of experimental values of |hDEiall|.

A number of collision efficiencies bc for a variety of chemical
systems that are obtained in the experimental work (in some
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cases, they are not obtained directly or solely based on experi-
mental measurements; they are derived with some information
from theoretical models) are collected in Tardy and Rabinovitch’s
review;229 for the collected collision efficiencies in their review,
the authors emphasized that ‘‘much of the presentation is
qualitative in nature’’ and they noted a ‘‘lack of quantification’’.
Here we give some examples of numerical values in some of the
recent SS-QRRK calculations for the collision efficiency bc. For H
addition on toluene (Ar as bath gas, with the energy transfer
parameter |hDEiall| being 130 cm�1),78 it is 0.2 at 300 K, 0.05 at
800 K, and 0.003 at 1500 K. For the SO2 and OH association
reaction in the atmosphere (assuming N2 as bath gas, with the
energy transfer parameter |hDEiall| being 74 cm�1),232 it is 0.21 at
250 K, 0.18 at 298 K, and 0.14 at 400 K. For C2F4 dissociating to
two CF2 (with Ar as bath gas, with the energy transfer parameter
|hDEiall| being 250 cm�1),161 it is 0.4 at 300 K, 0.2 at 800 K, and
0.1 at 1500 K.

5.5 Fitting the pressure-dependent rate constant k(T,p)

Functional forms have previously been proposed for fitting the
pressure-dependent rate constant with respect to both the
temperature and pressure,230,231 but recently we have suggested
a simpler formula for this purpose, and it has been shown that this
fitting yields quite satisfactory results.232 The formula involves
making three one-dimensional fits as a function of temperature.

Step 1: fit the computed high-pressure-limit rate constant
kN(T) (for a bimolecular association reaction, the units are cm3

molecule�1 s�1; and for a unimolecular reaction, the units s�1),
which has already been done by using eqn (164).

Step 2: fit the low-pressure-limit rate constant k0(T), which is
defined as the value of k(T,p)/[M] in the limit of p going to zero.
The low-pressure-limit rate constant is a pseudo-third-order
rate constant with unit being cm6 molecule�2 s�1 for a bimolecular
association, and it is a pseudo-second-order rate constant with
unit being cm3 molecule�1 s�1 for a unimolecular reaction. The
fitting formula used in this step has the same functional form
as the one used in step 1, i.e.,

k0 ¼
A

T

300

� 	n

exp � E T þ T0ð Þ
R T2 þ T0

2ð Þ

 �
endothermicreaction

A
T þ T0

300

� 	n

exp � E T þ T0ð Þ
R T2 þ T0

2ð Þ

 �
exothermic reaction

8>>>><
>>>>:

(199)

where A, n, E and T0 are the four fitting parameters, T is
temperature in K, and R is the ideal gas constant (in the unit
of 1.9872 � 10�3 kcal mol�1 K�1).

Step 3: fit the transition pressures p1/2(T), which have the
units of bar. The transition pressure is defined as the pressure
at which the rate constant is half of the high-pressure-limit. The
p1/2(T) could be fit with many possible formulas, and we give
one of the fitting formulas here:

log10 p1=2
�
bar

� �
¼ a1 þ a2

a3

1þ e l1�Tð Þ=T1
þ 1� a3

1þ e l2�Tð Þ=T2

 �
(200)

where a1, a2, a3, l1, l2, T1, and T2 are the fitting parameters, in
which a1, a2, and a3 are unitless, and l1, l2, T1, and T2 are in K.

The final fitted pressure-dependent rate constant k(T,p) is
expressed in terms of the fitted kN(T), k0(T), and p1/2(T) (and
thus it does not require any additional fitting) by the following
interpolatory equation:

kðT ; pÞ ¼ p2 þ BðTÞdðTÞp
p2 þ dðTÞ k1ðTÞ (201)

where

B ¼ k0ðTÞ
k1ðTÞkBT

(202)

and

d ¼
p1=2ðTÞ
� �2

1� 2Bp1=2ðTÞ
(203)

in which the Boltzmann constant kB in eqn (202) is 1.38 �
10�22 bar cm3 molecule�1 K�1, p is pressure in bar, B is a
derived parameter in units of bar�1, and d is in bar2. Eqn (201)
has the following three properties, which ensure the fitted rate
constants have the right high-pressure-limit, low-pressure-
limit, and the transition pressures:

k(T,p = N) = kN(T) (204)

k(T,p = 0) = k0(T)[M] (205)

and

k[T,p = p1/2(T)] = kN(T)/2 (206)

The pressure-dependent activation energy Ea(T,p) at a given
pressure p = p0 can then be determined by numerical differ-
entiation by employing the following formula:

Ea T ; p0ð Þ ¼ RT2 @ ln kðT ; pÞ
@T

 �
p¼p0

(207)

In the high-pressure limit, the above equation would yield
results that are identical to the ones given by eqn (166) at T = T0.

6. Applicability of transition state
theory

In this section, we discuss the applicability of transition state
theory. When we say transition state theory in such a context,
we mean variational transition state theory.

Classical transition state theory without a transmission
coefficient involves two main assumptions.19,41 The first assumption
of transition state theory is that the states (states in a quantal
treatment, phase points in a classical one) of the reactants are in
equilibrium (thermal equilibrium when we discuss temperature-
dependent rate constants as in a canonical ensemble; micro-
canonical equilibrium when we discuss energy-dependent rate
constants). The question arises of whether it is an additional
assumption to treat the transition states by equilibrium statistical
mechanics. This question has been answered, and in classical
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mechanical language we have the theorem:43,44 ‘‘When products
are absent the distribution in the transition region is identical to
an equilibrium distribution except that states [phase points] lying
on trajectories originating in the products are missing.’’ Thus it is
not a separate assumption to assume that states of the transition
state have a Boltzmann distribution.

The second assumption of transition state theory is that the
states crossing the transition state dividing surface in the
direction toward the products are on trajectories that originated
from the reactant region and that they will proceed to products
without recrossing the transition state.20

These two basic assumptions are called the local-equilibrium or
quasi-equilibrium assumption and the no-recrossing assumption.
We have stated the assumptions in classical mechanical language,
but they can be rephrased quantum mechanically by using
Heisenberg-transformed projection operators in the flux calculations
instead of the classical concept of where trajectories initiated.19,233

However, one cannot fully translate the classical justification of
transition state theory into quantum mechanics234 (for example,
one no longer has a practical variational bound on the rate constant)
because the uncertainty relations prevent us from simultaneously
fixing the reaction coordinate at a definite value and specifying the
sign of the momentum in that coordinate. Thus, in order to pass
from classical transition state theory to quasiclassical transition state
theory, we make another assumption, and the assumption we
make is that we can replace the classical partition functions by
quantum mechanical ones in calculating the flux. We may call
this the quasiclassical postulate since this is the step that
converts classical transition state theory to what we have called
quasiclassical transition state theory. (In early papers we called
it hybrid transition state theory, but now we recommend the
quasiclassical notation. Note also that this is called semi-
classical transition state theory in the kinetic-isotope-effects
literature,235–237 but we prefer to save the word semiclassical
for WKB-like treatments of tunneling. Thus when we say ‘‘semi-
classical,’’ we refer to including tunneling, but when they say
‘‘semiclassical’’ in the kinetic-isotope-effects literature, they
mean without tunneling, which is our quasiclassical.)

Although the quasiclassical postulate is far from rigorous, it
can be justified in various ways. Wigner was the first to do this;
he showed that such a substitution is justified to the lowest
order in h� .83,238

Modern quantum dynamics provides an even better justifi-
cation for the quasiclassical postulate. A key aspect of the
quasiclassical postulate is that systems cannot pass through
the transition state with less than zero point energy except by
tunneling. If we take the quasiclassical postulate literally, it
implies that systems actually pass through the transition state
not just in the quantized ground state (i.e., with zero point
energy) but in all of the quantized vibrational levels (excited
levels as well as the zero point level). Because the transition
state is metastable (i.e., unlike stationary states in quantum
mechanics, it has a finite lifetime), the quantized levels are
broadened, i.e., they are quantum mechanical resonance states
with finite widths related to their lifetimes. Accurate quantum
mechanical calculations have confirmed that this is actually

the case.7–10 The levels can be observed in the accurate quantum
mechanical cumulative reaction probabilities; the levels have
widths related to the lifetimes of individual quantized transition
states. The widths can also be related to tunneling, i.e., tunnel-
ing through the barrier in a vibrationally adiabatic potential
energy curve corresponds to reacting at an energy lower than the
center of the broadened vibrational level, and thus it accounts
for the broadening. It is beyond the scope of the present paper
to go into this in more detail, but reviews are available.8,9

In addition to the three basic assumptions of quasiclassical
transition state theory (quasi-equilibrium, no recrossing, and
the quasiclassical postulate), there are additional approximations
in the treatment of the transmission coefficient unless one uses
eqn (98), but eqn (98) is not generally practical.

Confirmation of the quantitative accuracy of transition state
theory including tunneling transmission coefficients is compli-
cated by the uncertainties in most available potential energy
surfaces. Thus there are errors in the potential energy surface
and errors in the dynamics for the given surface, and these two
kinds of error can cancel or reinforce. One of the few systems
for which the potential energy surface is well enough known so
as not to complicate tests of the dynamics is the H + H2 reaction,
and transition state theory with tunneling transmission coefficients
that include corner cutting agree well with experiment for that
case.106,239 It is encouraging that as the potential energy surfaces
have improved in accuracy in recent years, there are many other
cases where VTST agrees well with experiment. Nevertheless the best
tests of the dynamics are still the tests against accurate quantum
dynamics when the same potential energy surface is used because
then one can compare approximate and accurate dynamics on the
same potential energy surface, and the difference cannot be due to
inaccuracy of the surface but must instead reflect a test of the theory
used to calculate the approximate rate constants. Transition state
theory has fared very well in such tests. For example, in a review
of 311 such rate constant comparisons for collinear and three-
dimensional atom–diatom reactions in the temperature interval
200–2400 K, CVT/mOMT rate constants were found to agree with
accurate quantum mechanical rate constants within 22% on
average.6 Accurate quantal rate constants are also available for
H + CH4 - H2 + CH3 in the temperature range 200–1000 K; in
this case the average deviation is only 14%.240

Transition state theory is a dynamical theory because it
calculates the flux through a dividing surface. It is also a statistical
theory in that it provides a statistically averaged high-pressure-
limit rate constant of an ensemble, where the high-pressure limit
is invoked to main the local equilibrium of reactant states. Strictly
speaking, non-equilibrium effects are not included, although
sometimes one extends the theory by including a non-
equilibrium factor in the transmission coefficient and still calls
the result transition theory, so one must be careful to under-
stand what an author means. When we calculate pressure-
dependent reactions, we still make the equilibrium assumption
for microcanonical ensembles, but we no longer assume that
these microcanonical ensembles are weighted the same as in a
canonical ensemble (as we do for thermal equilibrium); so the
theory is still applied to equilibrium ensembles but they are not
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the same ones as for thermal rate constants (i.e., as for canonical
rate constants). RRKM theory is transition state theory applied
to microcanonical ensembles for unimolecular reactions, so
discussions about whether microcanonical ensembles are
equilibrated during reactions apply to both transition state theory
and RRKM theory.

The local-equilibrium assumption is usually expected to
hold well for bimolecular reactions because the translational
energy, rotational energy, and vibrational energy of reactants
are assumed to equilibrate on a faster time scale than the time
scale for reaction. This is usually true, but there may be deviations
for very fast reactants. Thus bimolecular reactions without an
intermediate are usually treated as pressure independent. The
participation of an intermediate in a low-temperature reaction
involving tunneling, as discussed in Section 2.3.4, may, however,
cause pressure effects, and pressure effects are prominent in the
cases discussed in Section 5, namely (i) chemical activation, which
is a two step mechanism with the first step bimolecular
and second being unimolecular and (ii) thermally activated
unimolecular reactions. Section 5 discusses the reaction of
chemically activated intermediates and thermally activated
intermediates as a function of total energy E (one can similarly
treat their rates as functions of E and total angular momentum J).
The rate at which the distribution of E becomes thermalized is
not a question that transition state theory answers or makes
assumptions about; but the transition state quasi-equilibrium
assumption enters when we assume that for those species with
a given E or E and J, phase space is statistically occupied subject
only to these constraints. This follows if we assume fast
intramolecular vibrational-energy relaxation (‘‘fast IVR’’), and
fast IVR may be considered part of the transition state theory
quasi-equilibrium assumption in this context. Thus transition
state theory, and hence also RRKM theory, is not applicable to
very short-lived complexes that do not have time for full
intramolecular energy redistribution241 or during the induction
period of a long-lived complex, i.e., during that period before a
steady-state phenomenological rate constant is established.

Next we turn to the no-recrossing assumption.
Hase and co-workers discussed the possible breakdown of TST

based on trajectory computations for ion–molecule reactions.242,243

As Hase points out,244 ‘‘the RRKM model for the complexes may
be invalid’’ and ‘‘recrossing of the central barrier may also be
important, violating the fundamental assumption of transition
state theory.’’ One issue is that classical trajectory computations
could overestimate the recrossing because classical trajectory
computations do not enforce zero point vibrational energy during
the trajectory. Although conservation of zero point energy is not
required during dynamics, we know – as discussed above – that
cumulative reaction probabilities (and hence threshold energies)
are consistent with its approximate conservation. Therefore, it is
not clear to what extent these recrossing effects observed in
trajectory computations are due to the classical nature of the
calculations. It has also been pointed though that the quantitative
validity of transition-state theory may be quite different in
classical and quantum mechanics.26 Interestingly, a canonical
unified statistical theory163 (which is an extension of the earlier

unified statistical theory245,246) has been applied to study simi-
lar problems,247,248 and the computed kinetic isotopic effects
(KIEs) agree reasonably well with experimental observations for
gas-phase SN2 reactions.

Consider, as an example, association reactions involving
small molecules, where the system crosses a loose bottleneck.
If there are not enough low-frequency degrees of freedom to
redistribute energy, the system can hit the repulsive wall
behind the well, and bounce right back, and thus the capture
probability is small. This fact has been known for a long
time.26,249 For many years, there have been studies of whether
energy is randomized in unimolecular decay, as assumed in
RRK, RRKM, and TST theories. This is actually the central
issue about the validity of RRKM theory since RRKM theory is
TST with the RRK assumption that reactants are equilibrated,
which is also a fundamental assumption of TST. In some
cases,250 TST describes small-molecule association reasonably
well.

Transition state theory does not predict product energy
distributions,251 and it predicts chemical product distributions
only when they each have their own variational transition state
dividing surface. Therefore it does not predict relative reaction
rates that are determined by bifurcation of a reaction path after a
single dynamical bottleneck that applies to both reactions.252–256

Similarly, if there is a high-free-energy bottleneck followed by two
parallel lower ones, and the later dynamical bottlenecks are not
separated from the earlier one by a thermalized intermediate,
one should not try to predict relative reaction rates from the two
lower ones by transition state theory – not because transition
state theory is in error but because it does not address this issue.
When there is a bifurcation after the overall bottleneck, TST only
gives the sum of reaction rates along the two paths. One can
however, try to model such problems with beyond-transition-
state-theory assumptions. For example, we combined VTST
with non-statistical assumptions to study bifurcation in the
BH3 + propene system, and we found that our computed
selectivity agrees well with experimental observations.257 This
method is called the canonical competitive non-statistical
(CCNM) model.

The dynamical problem that is modeled by CCNM is that of
a reaction with an overall dynamical bottleneck (the maximum
of the generalized transition state free energy along the MEP)
that is followed by a branching into two possible products. In
such models, we have two types of reaction mechanisms.257 The
indirect mechanism, which is computed by VTST/MT, applies
to some fraction of the molecules in the ensemble that become
equilibrated in an intermediate complex (which is denoted as
‘‘C’’), and the reaction of the equilibrated intermediate is
controlled by the second set of the dynamical bottlenecks (that
is the two transition states, which are denoted by 2A and 2B,
leading to the two possible products); and the direct mechanism,
which is modeled by non-statistical phase space theory,258,259

applies to the remaining portion of the ensemble members, which
keep a significant amount of energy in the reaction coordinate
degree of freedom until after passing the second bottleneck region
(sometimes this is called a ‘‘hot’’ molecule reaction). The total rate
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constant ktot, which is the sum of the direct (kdir) and indirect (kind)
components, is computed as:

1

ktot
¼ 1

k�1
� 1

kC
þ 1

k�2
(208)

where k*2 = min(kC,k*2A + k*2B), and ki is the reactive flux coefficient
for a dividing surface at location i (i = *1, C, 2A, *2B; ‘‘*1’’ is for the
first highest local maximum, ‘‘C’’ is at the location of the complex,
‘‘*2A’’ and ‘‘*2B’’ are for the two branching reaction A and B). The
direct component (kdir) is computed as:

kdir = k*1k*2/kC (209)

and the total reaction rate constants for the two branches A
and B are:

kCCNM
A ¼

RA=B

1þ RA=B

kdir þ
k�2A

k�2A þ k�2B
ktot � kdirð Þ (210)

kCCNM
B ¼ 1

1þ RA=B

kdir þ
k�2B

k�2A þ k�2B
ktot � kdirð Þ (211)

where RA/B is the branching ratio of the direct reactive components,
which is approximated as the equilibrium constant KA/B given by
statistical phase space theory260,261 with additional non-statistical
corrections:

KA=B ¼
QA

QB
e� VA�VBð Þ=kBT (212)

where the rovibrational partition function QX (X = A or B, which
denote the final product of reaction A or reaction B) is

QX ¼ QX;?
X
nF

1� e�tnF =trelax
� �

e�enF =kBT

" #
(213)

in which QX,> is the rovibrational partition function that includes
all the bound-mode vibrations that are orthogonal to the reaction
coordinate s, but excluding the reaction coordinate s itself, which
becomes a bound-mode vibration in the product (and it is
denoted as mode F, and its corresponding vibrational quantum
number is nF and vibrational energy is enF). The parameter trelax is
the characteristic relaxation time for intramolecular vibrational
relaxation, which cannot be obtained with a statistical theory,
and it is treated as an empirical parameter in the CCNM model
(although, some representative values, which are about 100 fs, are
available258 in the literature). The tnF characterizes the duration
of the collisional thermalization for a given vibrational state, and
it is estimated in the model as the ratio of a characteristic
distance (sproduct–sTS1) in coordinates scaled to a reduced mass
to a characteristic velocity in the reaction coordinate for reaction
coordinate quantum number nF.257

Although, we do not expect this proposed CCNM model to
be able to quantitatively treat any bifurcation systems without
any further modification, our point is that the VTST theory
itself (when applied with a high-level potential energy surface
and appropriate treatment of anharmonicity and tunneling)
can be accurate for the total rate constant but it should not be
applied to predict what happens after the system passes the
overall dynamical bottleneck.

Glowacki and co-workers262 presented an interesting study
for the same BH3 + propene system by an alternative method.
They use a master equation approach with the microcanonical
rate constants needed in the model being computed by RRKM
theory, and they also reproduce the experimental selectivity.
However, the master equation (which is reviewed in Section 5.1)
was originally developed and used for studying the pressure
and temperature-dependence of gas-phase reactions, and when
one tries to apply it in the liquid phase, there are huge
uncertainties in what to use for the average energy transfer
parameter and the collision frequency. Glowacki et al. varied
these parameters to reproduce the experimental selectivity, and
their adjusted collisional frequencies are around 3–10 ps�1,
and the adjusted hDEidown are 900–1100 cm�1. We may compare
this to the gas phase where the usually used value of hDEidown for
small to medium sized molecules is around 100–500 cm�1.
These authors consider their adjusted energy transfer para-
meters ‘‘are broadly consistent with gas phase studies’’,
and their adjusted collisional frequencies are consistent
with ‘‘experimental studies of solution phase intermolecular
vibrational relaxation show fast intermolecular energy transfer
to the solvent.’’

Another very important question is the accuracy of pressure-
dependent VTST calculations with SS-QRRK theory. Rigorously
speaking, the pressure-dependence calculation is beyond transition
state theory; transition state theory just provides the key ingredients
(high-pressure-limit rate constant, and the effectively transformed
energy-resolved microcanonical SS-QRRK rate constants) that
are needed in the computation of pressure-dependent rate
constant.

One important assumption about the non-statistical effects
in such calculations is the model we adopted for treating the
energy transfer. The collision efficiency we used (i.e., eqn (196)
in Section 5) is derived from the solution of master equation
with an exponential-down model for vibrational energy transfer;
the probability of an energy transfer collision reducing the energy
from E to E0 is assumed to have an exponential functional form,
with the larger the energy being transferred, the smaller the
transfer probability. This has often been used satisfactorily,
especially if one takes the uncertainty of the energy transfer
parameter itself into consideration; a test for such a model on
the simple CHF3 dissociation reaction198 (the dissociating
products are HF and CF2) and the C2F4 dissociation reaction
(which is a uphill from reactant to two CF2 on a PES without
saddle point) at combustion temperatures and over a wide
pressure range was consistent with the expected accuracy.
Another deficiency in the current SS-QRRK treatment is that
we did not explicitly consider the J (angular momentum)
dependence of the microcanonical rate constant, since the
QRRK model is based on vibrational energy randomization;
but the necessity of introducing the J-dependence in such a
SS-QRRK treatment needs further investigation since: (a) the
appropriately adjusted energy transfer parameter (which is
essentially an empirical parameter in most common practices)
is able to compensate such dependence in the final falloff
behavior; (b) SS-QRRK is an efficient model to approximately
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capture all the physical effects contained in high-pressure-limit
thermal rate constants and transfer them into microcanonical
rate constants, and the resulting microcanonical rate constants
therefore implicitly also contain these physical effects and
information about J.

7. VTST in condensed phases
7.1 Kinetics in liquid solutions

The central concept for reactions in liquid solutions is the free
energy surface (FES), which is another name for the potential of
mean force (PMF).180,263,264 The degrees of freedom for species
that are of explicit interest (such as reactants) are called the
primary degrees of freedom (primary system), and the remaining
degrees of freedom (such as solvents) are called secondary
degrees of freedom (secondary subsystem or environment). The
PMF is a free energy function for the secondary subsystem, but an
appropriately ensemble-averaged potential energy surface for the
primary system.

In practice, the solvent degrees of freedom can be treated
using an explicit solvation model, an implicit solvation model,
or an explicit–implicit hybrid treatment.265,266 In the case of
explicit solvation, the solvent molecules are treated at the full
atomistic level; the configuration space has to be statistically
sampled (via Monte Carlo or molecular dynamics) to provide an
ensemble average. In an implicit solvation model, the solute
molecules are embedded in the reaction field, which is the
electrostatic field produced by the solvent when it is polarized
by the solute; there are many reviews that cover implicit
solvation models.267–272 In the explicit–implicit hybrid treatment
or the so-called mixed discrete-continuum models, one explicitly
adds a few solvent molecules (first solvation shell) around the
solute molecule and then embeds them in a reaction field due to
the remaining environmental molecules;273 it has been found
that,274–276 in the case of strong interaction between solvent and
solute (such as hydrogen bond, and molecular anions), adding a
few explicit solvent molecules is able to yield better results as
compared to using purely implicit solvation treatment.

Let R denote the 3N � 6 primary system coordinates, and P
denote their conjugate momenta; the remaining degrees of
freedom of the whole system are denoted by r for internal
coordinates and p for conjugate momenta. The free energy G(S)
of species S is

e�GðSÞ=kBT ¼ C

ð
S

e�HðR;P;r;pÞ=kBTdRdPdrdp (214)

where the volume integral is carried out over the range of R
corresponding to species S; and C is a geometry-independent
constant. We can carry out this integral in two steps: first

e�WðRÞ=kBT ¼ C0
ð
S

dðR� R0Þe�HðR0;P;r;pÞ=kBTdR0dPdrdp (215)

and then

e�GðSÞ=kBT ¼ C00
ð
S

e�WðRÞ=kBTdR (216)

where d is the Dirac delta function, and W(R) is the PMF.
The reason that W(R) is called the potential of mean force
is that, when we take the derivative of W(R) with respect to R,
we have

�@WðRÞ
@R

¼ �@UðR; rÞ
@R

� �
(217)

where U(R,r) is the total potential energy of the entire system,
and the kinetic energy has been separated from the total
Hamiltonian and has been integrated out over momenta. This
result indicates that �qW(R)/qR is the mean force acting on
coordinate R that is averaged over all other coordinates.

In the implicit solvation models, the PMF (the free energy
surface) W(R) is

W(R) = V(R) + DGS*(R) (218)

where R denotes the 3N � 6 internal solute coordinate, V(R) is
the gas-phase Born–Oppenheimer electronic potential energy
surface, and DGS*(R) is the fixed-concentration Gibbs free
energy of solvation; it can be interpreted as the work of
coupling a solute that is fixed in position to the equilibrated
solvent at fixed temperature and pressure in an infinitely dilute
solution.277 The superscript ‘‘*’’ denotes a Gibbs free energy of
solvation that corresponds to the same concentration (e.g.,
1 mol L�1) of the molecule both in the gas phase and in the
liquid-phase solution; that is an ideal gas at a gas-phase
concentration of 1 mol L�1, dissolving as an ideal solution at
a liquid phase concentration of 1 mol L�1. In a practical
calculations that employ an implicit solvation model (for
instance SMD278), DGS* has already been included in the SCF
single-point energy, i.e., what we have calculated directly from a
self-consistent reaction field (SCRF) calculation is the free
energy surface.

The molar Gibbs free energy of a species i in liquid-phase
solution is:277

Gi = Gi* � TSlib,i (219)

where Gi* is the chemical potential of a species whose center
of mass is constrained to a fixed position in the solution
(it is called as the pseudo-chemical potential, and it is
associated with the internal free energy of the species in
solution including its coupling to the solvent); one may approximate
Gi* in as:

Gi* = U0 + Gint (220)

where Gint is the internal thermal Gibbs free energy summed
over all the configurations; U0 is the zero-point inclusive free
energy surface, given in the harmonic approximation by:

U0 ¼W þ �h

2

XFvib
m¼1

om (221)

where Fvib is the number of vibrational degrees of freedom, and
om is the vibrational frequency of mode m. The entropy term
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Slib,i in eqn (219) is the entropy of liberation of species i, which
is given by:

Slib;i ¼ �R ln ciNA
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmikBT
p
� 	3

" #
(222)

where R is the gas constant, ci is concentration of i in moles per
unit volume, NA is Avogadro’s constant. The last term of
eqn (219) is the free energy of liberation, which is formally
identical to the translational molar free energy in an ideal gas.

In order to obtain the thermodynamic standard-state Gibbs
free energy (which is directly related to partition functions and
standard equilibrium constants), the standard-state Gibbs free

energy of species B in solution G
�
solnðBÞ (i.e., the chemical

potential of B) should be computed as:

G
�
solnðBÞ ¼ G

�
gasðBÞ þ DGS

�ðBÞ þ DG�!�S ðBÞ (223)

where G
�
gasðBÞ is the standard-state gas-phase Gibbs free energy

of species B, which is usually computed based on gas-phase
computed frequencies of the gas-phase optimized geometries;
but one can also use solution-phase computed frequencies of
solution-phase optimized geometries.279 The superscript ‘‘1’’ in
eqn (223) denotes the usual thermodynamic standard state,
which is defined as follows: (a) gas-phase molecules: all
the molecules are ideal gases at a pressure of 1 bar, which
corresponds to 0.0404 mol L�1 at 298 K; (b) solutes in liquid-
phase solution: 1 mol L�1; (c) solvents: calculate from the
density, e.g., 55.5 mol L�1 for water at 298 K. The quantity
DG�!�S ðBÞ in eqn (223) is the amount that one must add to the
fixed-concentration Gibbs free energy of solvation to change the
standard state for the left hand side of the solvation process
(the gas phase) to a 1 bar standard state from the 1 mol L�1

standard state that would correspond to fixed concentration,
while keeping the standard state for the right-hand side of the
solvation process (the liquid-phase solution) at 1 mol L�1; the

value of DG�!
�

S ðBÞ is +1.9 kcal mol�1 for solutes at 298 K, and it
is +2.4 kcal mol�1 for water (as a pure solvent) at 298 K.

The inclusion of tunneling in condensed-phase calculations
with explicit solvent does not require additional dynamical
approximations although sampling raises new issues, as dis-
cussed in Section 7.3. With implicit solvent though, one only
has the PMF, which is a statistical quantity, whereas in principle
one should carry out tunneling on the true potential energy
function. In other words, one should calculate the tunneling
using the potential energy surface and average the dynamics,
but with the PMF one has averaged the potential, and it is an
additional approximation to carry out tunneling on the averaged
potential. This additional approximation is called the canonical
mean shape (CMS) approximation.280 With this approximation,
VTST calculations are readily interfaced with various solvation
model calculations.21,23,273,281,282

Further complications could arise due to strong interactions
between solute and solvent, and the dynamic solvent effect
becomes non-negligible. The key issue here is participation
of the solvent in the reaction coordinate.263,283 With explicit
solvent the reaction coordinate can have a component of

solvent motion, but this is not possible when one uses the
PMF. We should keep in mind that specifying the transition
state dividing surface is the same as specifying the reaction
coordinate since the reaction coordinate is the degree of free-
dom normal to this surface (the degree of freedom missing in
this surface). If the best dividing surface has a reaction coordinate
that includes a component of solvent motion, then a reaction
coordinate without solvent motion must correspond to a dividing
surface that leads to a larger transition state theory rate. Therefore
the effect of including solvent motion in the reaction coordinate
can be mimicked by adding a friction term that slows down the
rate. Such friction terms are present in Kramers theory,284

Grote–Hynes theory,26,285–287 and other stochastic dynamics
theories.288

There are three approaches for computing the reaction
rate constant for a liquid-phase reaction:281,289 (1) separable
equilibrium solvation (SES); (2) equilibrium solvation path
(ESP); (3) non-equilibrium solvation (NES). Both SES and ESP
are based on the equilibrium solvation assumption, which
assumes that the solvation is in equilibrium with solvent at
all points along the reaction path. In NES, on the other hand,
the solvent coordinates are explicitly required for defining the
reaction path, and this is called dynamic or nonadiabatic
solvation.

In SES, one first finds the reaction path in gas-phase, and
then adds the free energy of solvation (at a fixed solute
geometry) to the gas-phase free energy for each point on the
gas-phase reaction path, using the gas-phase optimized geometries
and gas-phase MEP. In ESP, the reaction path is determined by
using the potential of mean force, which has been described in
eqn (218); the position of the variational transition state in ESP
not only moves along the gas-phase reaction path but also
perpendicular to it in the remaining 3N � 7 degrees of freedom;
thus the ESP method is more flexible and more realistic than
the SES method. Although ESP is a more complete treatment as
compared to SES, the computationally less expensive SES often
reasonably agrees with ESP281 (within a factor of 2, when
the same solvation model269,273 is employed and quantum
tunneling is considered). In NES, the specification of the reaction
path explicitly involves one or more solvent coordinate as well as
the solute coordinates.

Non-equilibrium solvation can be considered via a linear-
response theory for solvent friction effects, which can be
incorporated with VTST and tunneling;290,291 the key concept
in such linear-response treatment, is the division of the system
into an explicit subspace and an implicit bath, and a solvent
coordinate (which is chosen based on physical basis and it is
often preferable to use one or more collective solvent coordinates,
that is a coordinate representing the solvent electric polarization
field) is introduced in the Hamiltonian using the approximation
of a single harmonic oscillator linearly coupled to the reaction
coordinate.

7.2 Solid–vapor interface kinetics

Classical transition state theory has been applied to solids; we
will limit our discussion to computing the migration and
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diffusion of atomic species on crystalline surfaces. Voter and
Doll292 compared classical trajectory simulations results with
classical TST results for diffusion constants. In trajectory
simulations, the diffusion constants D are obtained by:

D ¼ lim
t!1

Dr2ðtÞ
� �

2dt
(224)

where d is the dimensionality of the system; it is 2 for most
surfaces and 1 for channeled surfaces like the (211) surface of
bcc crystals, and hDr2(t)i is the mean-squared displacement of
the migrating atom, which can be obtained by averaging over
trajectories. In practice, D is obtained by plotting hDr2(t)i
with respect to time t, and fitting a line to the limiting slope.
The temperature dependence of the diffusion constant is
approximately described by an Arrhenius-type equation:

D = D0e�Ea/kBT (225)

If the motions of the migrating atoms are assumed to be
independent random hops between adjacent binding sites,
the diffusion constants can be computed by transition state
theory as

D ¼ l2

2d
khop (226)

where l is the distance (hop length) between adjacent
minimum-energy binding sites, and khop is the hopping rate.
One-dimensional harmonic conventional classical transition
state theory yields

khop = npv0e�V‡/kBT (227)

where V‡ is the energy difference between saddle point
(between two binding sites) and local binding site minimum;
v0 is the harmonic frequency of the migrating atom moving
along a pseudo-one-dimensional potential, in which all the
other atoms are adiabatically relaxed; and np is the number of
binding sites accessible by a single hop. If we equate V‡ to Ea

and equate eqn (225) and (226), the parameter D0 in the
Arrhenius-type equation for the diffusion constant is:

D0 ¼
npv0l

2

2d
(228)

Transition state theory can also be used to compute the
classical TST rate constant for transition from state A to state B
without invoking the harmonic approximation:

kA!B ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

pm

r
d½f ðRÞ�jrf jh iA (229)

where f (R) = 0 defines the dividing surface, and the ensemble
average hd[f (R)]|rf|iA is taken over the configuration space
belonging to state A (TST).293,294 Voter and Doll computed
the ensemble average by the Monte Carlo method using the
Metropolis algorithm as295

hd[f (R)]|rf|iA = fB/o (230)

where o is the width of the simulation box, and fB is the
fraction of the Monte Carlo steps that lie inside the box.

VTST can be used, instead of conventional TST, to compute
the hopping rate khop, and therefore it can give a better
prediction for diffusion constants. The practical computations
can be carried out with an embedded-cluster model.296–300

In such model systems, there is only one non-metal atom.
For instance, in the treatment of H atom diffusion on finite
copper(100) planes,297,298 the PES is approximated as the sum
of finite range H–Cu and Cu–Cu pair potentials. The H atom
and the near six Cu atoms are allowed to move in the calculation,
and other Cu atoms are fixed at experimental bulk geometry.
The areas of these lattice planes and their number are taken
large enough so that any atoms within the finite ranges of the
interaction potentials of the seven non-fixed atoms (i.e., H and
the six near Cu atoms) are included. The reactant is H located in
one site (hollow formed by four Cu atoms) and the product is H
in the next-door site; and the transition state structure is a
bridge site between these two fourfold sites. Normal mode
analysis is carried out along the minimum energy path,
and canonical variational transition state is determined by
maximizing the Gibbs free energy of activation; multidimensional
quantum mechanical tunneling can also be included in the
computation of the hopping rate to study the diffusion of
hydrogen on metal surface.301–304

For hydrogen diffusion on the Ni(100) surface, it has been
experimentally observed305–307 that there exists a transition
temperature, and for temperatures that are lower than the
transition temperature, the diffusion coefficients were inter-
preted experimentally as nearly temperature-independent due
to tunneling. The quantitative definition of the transition
temperature is the temperature at which the Arrhenius plot
has maximum curvature. This zero-temperature-limit, where
the rate coefficient becomes a constant, has also been observed
in organic reactions.308 However, the transition temperature
was misinterpreted in the physics literature. Reanalysis300 of
the low-temperature situation shows that the experimental
‘‘transition temperature’’ actually signifies the transition from
ground-state-dominated tunneling to thermally activated tunnel-
ing. Thermally activated tunneling continues to dominate the rate
constant at temperatures far above the transition temperature.
In low-temperature-limit, only the vibrational ground state is
populated, and the rate constant is constant because it simply
corresponds to the rate of reaction by tunneling out of a single
state. Under the harmonic-oscillator approximation, the low-
temperature-limit diffusion coefficients are:

D Tlowð Þ ¼ l2

2d
sc�uRPG ER

0

� �
(231)

where l is the lateral distance between the two minimum-energy
sites, d is the dimensionality of the systems (which is usually 2
for surface diffusion), s is a symmetry factor that accounts for
number of equivalent paths from reactants to products for the
reaction (which is 4 for the (100) surface), c is the speed of light,
�uR is the vibrational frequency in wavenumber for the lowest-
frequency hydrogenic vibration at the reactant well (which
corresponds to the reaction coordinate over most of the reaction
path away from the reactant well), and PG(ER

0) is the quantum
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transmission probability at the harmonic vibrational ground-
state energy of the reactant well. At higher, but still low
temperatures, where other states start to contribute, one can
approximate the tunneling as occurring at a sequence of discrete
energies in the reactant well, rather than out of a translational
continuum.296

7.3 Enzyme kinetics

Unlike in the solution phase, where the solute and solvent can
usually be clearly separated, in enzymes the partition of the
entire system into primary and secondary is somewhat
arbitrary. In practical computations of enzyme kinetics, one
often uses a combination of molecular mechanics (MM) and
quantum mechanics (QM), i.e., the QM/MM method. Enzyme–
solvent systems can have a huge number of possible con-
figurations, and these configurations make significant con-
tributions to the free energy of activation; the configurations
are usually sampled by MC or MD techniques. Ensemble-
averaged VTST309 (EA-VTST) with multidimensional tunneling
was developed for modeling kinetics in enzymes, and we will
briefly review EA-VTST here; the readers who are interested in the
detailed theory are directed to other previous publications with a
higher concentration of focus on this topic.30,33,36,118,310–314

EA-VTST calculations can be divided into three stages, and
each of the stages corresponds to a different level of complete-
ness of the dynamical treatment.

Stage 1. (Step 1) In this step we perform classical molecular
dynamics (via, for instance, umbrella sampling) along a pre-
defined reaction coordinate z (which can also be called a
distinguished reaction coordinate, with a good example being
the difference between internuclear distances of the forming
and breaking bonds, and a more sophisticated example being a
collective coordinate that is defined by the energy gap between
the valence bond states corresponding to the reactant and
product states) to produce the classical potential of mean
force WC(z) (free energy profile, or – more technically – the
generalized free energy of activation profile). Once the classical
potential of mean force is available, the generalized-transition-
state (GT) classical potential of mean force activation energy
DWGT,C(T,z = z*) at temperature T is computed by:

DWGT;C T ; z ¼ z�ð Þ ¼ max
z

WCðT ; zÞ �WC T ; z ¼ zRð Þ (232)

which is the difference between the maximum of classical
potential of mean force and the reactant classical potential of
mean force. Here ‘‘C’’ means classical.

(Step 2) In the first step, DWGT,C(T,z = z*) has already
included classical free energy contributions associated with
all degrees of freedom that are orthogonal to the reaction
coordinate; at a generalized transition state, the reaction
coordinate itself does not contribute to the free energy (while
all the vibrational modes that are orthogonal to reaction
coordinate do contribute), but at the reactant it does. Thus,
in the 2nd step, we add the missing contribution for the
vibrational reaction-coordinate-mode free energies of the reactant
to the computed classical DWGT,C(T,z = z*); and the so-obtained

quantity is the generalized transition state classical free energy of
activation given by

DGGT,C(T,z = z*) = DWGT,C(T,z = z*) � GC,F(T,z = zR)
(233)

where GC,F(T,z = zR) is the classical free energy contribution of
the reaction coordinate at its value at the reactant state zR; it
can be computed by calculating the free energy difference with
and without this coordinate by not projecting and projecting
the reaction coordinate from the Hessian matrix respectively.

(Step 3) The last part of this stage is to replace classical
vibrational partition functions by quantum mechanical vibrational
partition function, in order to include the quantization effects in
vibrational free energies. In practice, this quantization is only
done for an N1-atom subsystem; in particular, only 3N1 � 7
modes are quantized at the transition state, and 3N1 � 6 modes
are quantized at the reactant. The Gibbs free energy of
activation obtained this way is called the single-reaction-
coordinate (SRC) quasiclassical (QC) generalized-transition-
state (GT) free energy of activation, which is denoted as
DGSRC

GT,QC. The VTST rate constant for stage 1, which is denoted
as k(1), for a unimolecular enzymatic reaction (EP - ES, or
EP - E + P, where E, S, and P denote, respectively, the enzyme,
substrate, and product, and ES is a Michaelis adduct) is thus:

kð1Þ ¼ kBT

h
exp �DGSRC

GT;QC

.
RT

� �
(234)

Stage 2. In this stage, we calculate ensemble-averaged
recrossing and tunneling transmission coefficients in order
to obtain the ensemble-averaged quasiclassical variational
transition state theory rate constant. For EA-VTST with tunnel-
ing (abbreviated as ‘‘T’’), the rate constant is:

kEA-VTST/T = gk(1) (235)

where k(1) is the VTST rate constant obtained in stage 1, and g is
ensemble-averaged transmission coefficient

g ¼ 1

M

XM
i¼1

GikTi (236)

where M is the total number of ensemble members included in
the average, Gi is the recrossing transmission coefficient of
member i, and kT

i is the tunneling transmission coefficient of
member i. In principle, M is large enough to converge the
summation; in practice one can use M of about 20. During stage
2, the system evolves in a fixed field of its surroundings (these
surroundings are called the secondary zone, i.e., solvent and
part of the substrate and coenzyme); this is called the static
secondary-zone approximation. This stage involves semiclassical
reaction-path calculations for a subsystem (which is called
the primary zone) within the secondary-zone being in frozen
configurations that are taken from a quasiclassical transition
state ensemble in stage 1. Notice that, in eqn (236), averaging
the transmission coefficient over M ensemble members is
equivalent to letting the secondary zone participate in the reaction
coordinate.
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Stage 3. Usually, the static secondary-zone (also called
‘‘the frozen bath’’) assumption works very well, and the non-
equilibrium solvation effects are negligible; it is sufficient
to stop at stage 2. As a further improvement, the entropic
contributions from the secondary-zone can be included in the
transmission coefficient. Then in the equilibrium secondary-
zone approximation (which can be viewed as an analogous to a
liquid-phase kinetics calculation with the equilibrium solvation
model), the free energy (potential of mean force) is further
corrected by the bath free energy (which is obtained by equilibrating
the secondary-zone along the reaction path of stage 2, and the
bath free energy as a function of reaction coordinate is obtained
via free energy perturbation simulations), and the recrossing
transmission coefficient is computed based on this corrected
free energy surface.

8. Selected applications

In applications, one requires a potential energy surface. There
are two options. One option is to employ an analytic function,
which may be obtained by a simple theory, such as the London
equation,315 or by a fit to electronic structure calculations.316–324

The second option is direct dynamics.325,326 In direct dynamics
‘‘all required energies and forces for each geometry that is
important for evaluating dynamical properties are obtained
directly from electronic structure calculations.’’71 In modern
work, one almost always uses direct dynamics.

8.1 Combustion chemistry

VTST is a widely used tool for predicting the rate constants of
elementary reactions that are important in fuel combustion,
which is invaluable for selecting potential biofuels and fuel
additives, for optimizing the combustion process, and for
designing next-generation combustion engines. It has been
demonstrated that anharmonicity150,327–330 plays an important
role in controlling the VTST rate constants of hydrogen abstraction
reactions. One interesting study that uses MS and MP-VTST in
analyzing the effect of hydrogen-bonded transition states on
rate constants (for gas-phase hydrogen abstraction reactions)
shows that,150 the conventional thinking of H-bonded TSs
increasing rate constants, which is solely based on the energetic
effects of the hydrogen bond that excludes the entropic effects,
is not reliable; a hydrogen bond can reduce the entropy
and thereby increase the free energy of the transition state
(this is enthalpy–entropy compensation), and hence, a strong
hydrogen bond interaction may lead to a slower reaction rate,
and reliable conclusions about rate constants must be based on
free energies of activation, not barrier heights or enthalpies of
activation.

Among the many reactions that are important for ignition
are the hydrogen abstraction reactions from the fuel molecules
by various small radicals, such as H,78,88,331–333 HO2,334–337

OH,338–355 and O radicals.356–362 VTST can also supply rate
constants for newly proposed reaction mechanisms for oxidation
chemistry of fuels.363–370 VTST/MT has also been used to

study the kinetics of isomerization reactions between organic
radicals146,371–377 that are abundant in combustion flames.
Guan and co-workers have also applied MS-VTST to study
hydrogen transfer between dimethyl ether and the methoxy
radical,378 and combustion modeling of dimethyl ether.379

Kinetics of the unimolecular reactions of ethoxyethylperoxy
radicals, which are main intermediates in the oxidation of
diethyl ether under engine-relevant conditions, have also been
studied using VTST.380 Klippenstein and co-workers have
combined VTST with the master equation approach to study
some of the key decomposition and association reactions in
combustion.381–384

8.2 Atmospheric chemistry

Studying atmospherically important reactions is critical to
our understanding of climate change and air pollution. VTST
together with pressure-dependence theory is indispensible in
providing accurate rate constants for global climate modeling.
We have studied the chemistry of Criegee intermediates,385

whose importance in atmospheric science is widely appreciated,
and understanding their fate is a prerequisite to modeling
climate-controlling atmospheric aerosol formation.

We have modeled the dissociation of C2F4 with VRC-VTST
and SS-QRRK theory;161 this represents a class of reactions and
serves as an example for studying hydrofluorocarbon or Freon
decomposition. The decomposition of hydrofluorocarbons or
Freon is related to the destruction of the ozone layer.

We have also studied the reaction of SO2 with OH in the
atmosphere;232 this reaction plays an essential role in acid rain
and it is still attractive to experimentalists up-to-date,386 and
our temperature- and pressure-dependent rate constant
computations help to resolve the discrepancies between various
experimental studies. Cartoni et al. have studied the formation
of HSO2

+ ion in the gas phase, which is of special interest
because of an interesting reverse temperature-dependent
kinetics.387 In the study of the important roles played by
water and ammonia in promoting atmospheric reaction in
atmosphere: the rate constant of water-catalyzed H2SO4 + OH
reaction is about 1000 times larger than that of the same
reaction without water as reported by Long et al.;388 it has also
been found that ammonia can accelerate this reaction by
enhancing quantum tunneling.389 Using VTST with multi-
dimensional tunneling, the unusual temperature dependence
of the atmospherically important reaction OH + H2S reaction
has been understood, and predictions have been made for this
reaction at higher temperatures.390 Loerting and co-workers
have studied the proton transfer in small cyclic water clusters,
which are important in understanding water-cluster involved
atmospheric reactions.391

VTST is a powerful tool for filling the gap between limited
experimental measurements and the need for rate constants
in climate modeling at different altitudes, and in understand-
ing previously proposed important atmospheric reaction
mechanisms,392–399 and to provide rate constants that cover
the tropospheric and stratospheric temperature and pressure
range. As an example for using VTST/MT in modeling complex
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reaction mechanisms in atmospheric science and geoscience,
Molina and co-workers400 have studied the heterogeneous
reactions for chlorine nitrate hydrolysis on water-ice surface
in polar stratospheric cloud; their study incorporates proposed
reaction mechanisms with reliable kinetics calculations, which
lead to a good agreement of the estimated reaction probability
with the experientially reported one for such a complex system.

8.3 Plasma chemistry

Silicon-based chemically active nanodusty plasmas are an important
research subject in plasma physics and engineering.401–406

Engineers need thermochemical properties and rate constants
to understand experimentally observed particle distributions,
particle growth rates, and various transport phenomena in
plasma. We have used density functional theory and MS-T to
study the thermodynamic properties for various branched
silicon clusters,407,408 and we found that the contribution from
multiple conformational structures and torsional anharmoni-
city is significant; the conventional group-additivity based
estimations of thermodynamic properties were found to be
unreliable. We have studied detailed chemical mechanisms
for the growth of silicon hydride clusters,199,409 and we have
computed the rate constants for all elementary steps by using
VTST and multidimensional tunneling. We have also carried
out a systematic benchmark study for testing various density
functionals for their performance on elementary reactions
in the polymerization of neutral silane with the silylene or
silyl anion;199 this could serve as a reference for future
silicon-based nanodusty plasma chemistry study. Oueslati
et al. have compared the VTST/MT computed rate constants
for hydrogen abstraction from tetramethylsilane,410 which
can be viewed as a prototypical species in silane-based
plasmas, and good agreements with experimental values was
achieved.

8.4 Organic chemistry in solution

VTST with state-of-the-art solvation models can be used to
calculate reaction rates and elucidate reaction mechanisms in
liquid-phase solutions. As a recent example, we have used SMD
implicit solvation model to study the E1cb mechanism for
elimination reaction in liquid phase.264 The paper reporting
these results contains an explanation of free energy surfaces,
and using these we are able to distinguish between the concerted
second-order mechanism for b eliminations and non-concerted
mechanisms with discrete carbanion intermediates; distinguishing
these experimentally is very difficult.

Liquid-phase VTST calculations have also been carried out
to investigate hydrogen migration in carbenes,411 hydrogen
addition on heterocyclic ring,412 and hydrogen donation in
reductive decarboxylation reactions.413 In the study of the
kinetics of hydrogen transfer reaction for phenolic compounds
in water,414 we have found that the M05 exchange–correlation
functional415 yields more accurate rate constants than does
M08-HX, which is a density functional that is generally more
accurate for gas-phase reactions; this is possibly because the

error introduced in the solvation model partially cancels the
error in the less-accurate density functional.

When using VTST to compute rate constants in the liquid
phase, the accuracy of the final computed rate constants
depends on many factors, and the accuracy of the solvation
model is one of the most critical factors.

8.5 Enzyme reactions

Ensemble-averaged VTST with tunneling has been applied to
study a number of enzyme reactions, including reactions
catalyzed by yeast enolase,416 triosephosphate isomerase,417

methylamine dehydrogenase,418,419 alcohol dehydrogenase,309

thermophilic alcohol dehydrogenase,420 haloalkane dehalogenase,421

dihydrofolate reductase from E. coli,422,423 hyperthermophilic DHFR
from Thermotoga maritima,424 xylose isomerase,425,426 short-chain
acyl-CoA dehydrogenase,427 catechol o-methyltransferase,428

glyoxalase I,429 coenzyme B12,430,431 HIV-1 protease,432

4-oxalocrotonate tautomerase enzyme,433 hydride transfer between
Anabaena Tyr303Ser FNRrd/FNRox and NADP+/H,434 hydride transfer
from NADH to FMN in morphinone reductase.435 Some of this
work is reviewed elsewhere.30,33,36,310,311,314,436

One of the most important quantities in enzyme kinetics
is the kinetic isotope effect (KIE), which is often used to
determine mechanisms (primarily by helping to identify the
slow step) and which often provides evidence for quantum
mechanical tunneling. The ability for VTST to accurately
computing such KIEs is strong evidence for the soundness of
the theory.31,36,419,425,437–445

One interesting finding is that, it is possible for the isotope
D to tunnel more than H,446,447 and this can only be explained
by multidimensional tunneling239,448 (as opposed to one-
dimensional tunneling) because if both isotopes tunnel along
the same path with the same effective potential, H will always
tunnel more. However, in multidimensional tunneling, both
the tunneling paths and the effective potentials depend on all
the masses in the system.

9. Summary

In this review, we have discussed the fundamentals of
variational transition state theory, including multidimensional
tunneling and methods for incorporating multiple-structure
and torsional-potential anharmonicity in VTST. We reviewed
variable-reaction-coordinate VTST as well as reaction-path VTST.
We have discussed the recent extension of VTST for the
convenient calculation of pressure-dependent rate constants
and falloff effects. We also briefly reviewed the use of VTST
in condensed phases, including solid–gas interfaces, liquid
solutions, and enzyme kinetics. A number of recent applications
of VTST with its various recent developments are briefly
reviewed as well.

Here, we summarize the major steps in kinetics studies.
Please notice that for the sake of brevity, the following guide
does not include reaction systems that may require special
theoretical treatment.
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Variational transition state theory, combined with the power
of modern electronic structure methods, has been applied
successfully to study the kinetics of a variety of chemical
systems. We believe that the recent extensions of VTST can be
useful tools for future research in combustion, atmospheric
chemistry, environmental science, and other fields in which
accurate kinetics data (which could be experimentally very hard
to measure) play an indispensible role in understanding the
detailed mechanisms of the chemical processes. VTST has also
been applied successfully to enzyme kinetics and other
condensed-phase reactions. With the recent progress of the
development of more accurate and affordable electronic structure
methods for treating inherently multiconfigurational systems,
VTST is readily applicable to study the detailed kinetics in
modern organometallic and inorganic catalysis.
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150 J. L. Bao, R. Meana-Pañeda and D. G. Truhlar, Chem. Sci.,

2015, 6, 5866.
151 J. Zheng and D. G. Truhlar, J. Chem. Theory Comput., 2013,

9, 2875.
152 J. L. Bao, P. Sripa and D. G. Truhlar, Phys. Chem. Chem.

Phys., 2016, 18, 1032.
153 S. N. Rai and D. G. Truhlar, J. Chem. Phys., 1983, 79, 6046.

154 D. M. Wardlaw and R. A. Marcus, Chem. Phys. Lett., 1984,
110, 230.

155 Y. Georgievskii and S. J. Klippenstein, J. Chem. Phys., 2003,
118, 5442.

156 S. J. Klippenstein, J. Chem. Phys., 1991, 94, 6469.
157 Y. Georgievskii and S. J. Klippenstein, J. Phys. Chem. A,

2003, 107, 9776.
158 S. J. Klippenstein, Y. Georgievskii and L. B. Harding, Phys.

Chem. Chem. Phys., 2006, 8, 1133.
159 J. Zheng, S. Zhang and D. G. Truhlar, J. Phys. Chem. A,

2008, 112, 11509.
160 S. E. Klippenstein, A. Wagner, S. Robertson, R. Dunbar and

D. Wardlaw, Variflex – version 1.0, Argonne National
laboratory, Argonne, IL, 1999.

161 J. L. Bao, X. Zhang and D. G. Truhlar, Proc. Natl. Acad. Sci.
U. S. A., 2016, 113, 13606.

162 Y. Georgievskii and S. J. Klippenstein, J. Chem. Phys., 2005,
122, 194103.

163 B. C. Garrett and D. G. Truhlar, J. Chem. Phys., 1982, 76, 1853.
164 W. H. Miller, Reaction Path Hamiltonian for Polyatomic

Systems: Further Developments and Applications, in
Potential Energy Surfaces and Dynamics Calculations, ed.
D. G. Truhlar, Plenum, New York, 1981, p. 265.

165 J. Villà, A. González-Lafont and J. M. Lluch, J. Phys. Chem.,
1996, 100, 19389.
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362 R. Meana-Pañeda, X. Xu, H. Ma and D. G. Truhlar, J. Phys.
Chem. A, 2017, 121, 1693.

363 A. Jalan, I. M. Alecu, R. Meana-Pañeda, J. Aguilera-
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