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Introduction

Enzyme catalysis occurs by a variety of mechanisms [1], and
enzyme kineticists use a variety of levels of theory to calculate reac-
tion rates catalyzed by enzymes. Most of these methods, in one way
or another, attempt to calculate the free energy of activation, a
quantity whose meaning is defined by transition state theory.
Attempts to go beyond transition state theory are often cast in
terms of a transmission coefficient, which corrects for the break-
down of the assumption of a separable, classical reaction coordinate
in transition state theory without a transmission coefficient. Thus a
transmission coefficient in principle corrects for the breakdown of
the fundamental reaction–coordinate–separability assumption of
transition state theory [2], but in practice it also incorporates quan-
tum mechanics into the treatment of the reaction coordinate [3].
Since there is universal agreement that the correct description of
atomic motions is quantum mechanical rather than classical
mechanical, the quantum mechanical aspect of transmission coeffi-
cient is considered as an intrinsic part of the theory, not as a correc-
tion for breakdown of the theory. The transmission coefficient is an
intrinsic part of the theory in an even greater sense though because
the factorization of a transmission coefficient out of the total rate
expression is not unique; it depends on the way that the transition
state dividing surface is defined. The present essay will try to make
these issues and other aspects of modern transition state theory
clearer, with an explicit focus on enzyme kinetics.

It is becoming increasingly possible to use simulations in which
the motion of the substrate, enzyme, cofactors, if any, and an
appreciable portion of the solvent are all represented explicitly.
One can use transition state theory to extract rate constant predic-
tions from such simulations, but this often requires going beyond
textbook transition state theory and including new elements in the
simulations. The present article is an essay that discusses the issues
that arise in extending transition state theory to enzyme reactions.

Transition state theory was originally developed in the context
of gas-phase reactions, but it was extended to condensed reactions
shortly thereafter. The original formulation for condensed-phase
reactions was in terms of quasithermodynamic concepts, in partic-
ular quasiequilibrium between the transition state and the reac-
tants. I use the term quasiequilibrium for two reasons: (i) the
transition state needs to be in equilibrium with the reactants,
but the products states may be unpopulated; (ii) the transition
state is missing one degree of freedom. For example, Evans and
Polanyi [4] defined the transition state as ‘‘an infinitesimally thin
layer of phase space’’ extending to infinity in all directions except
the reaction coordinate. Thus a transition state is a mathematical
entity that is like a real molecule but is missing one degree of free-
dom, namely the reaction coordinate. In mathematical language,
we would define the transition state with a delta function for the
reaction coordinate. Real equilibrium constants are one-to-one
functions of free energies of reaction, and the temperature depen-
dence of the equilibrium constant can be used to separate the free
energy into an enthalpy of reaction and a term involving the
entropy of reaction. Since the transition state theory rate is propor-
tional to a the quasiequilibrium constant between the transition
state (sometimes called the activated complex), the transition state
rate is interpreted in terms of a generalization of the concept of
free energy of reaction, namely the free energy of activation, which
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is the difference in free energy between the mathematically
defined transition state and the reactants, and the temperature
dependence allows us to separate this into an enthalpy of activa-
tion and an term involving the entropy of activation. These func-
tions are quasithermodynamic because they refer to a transition
state rather than a real chemical species. This conceptual frame-
work will be used in deriving transition state theory below.

An important distinction in discussing transition state theory is
the difference between a potential energy surface (also called a
potential energy function) and a free energy surface (also called a
potential of mean force). In applying transition state theory to
gas-phase reactions, the basic input (energies, vibrational frequen-
cies, . . .) may be obtained from the Born–Oppenheimer potential
energy surface, which is the electronic energy (including nuclear
repulsion) of the ground electronic state as a function of nuclear
coordinates. Potential energy surfaces for general gas-phase mole-
cules with N atoms are functions of 3N � 6 coordinates, where 3N
is the number of atomic Cartesian coordinates, and we subtract 6
because the electronic energy does not depend on translating the
overall center of mass or rotating the whole system in space.
Reactants and products are associated with local minima on the
potential energy surface, and transition states were identified with
saddle points on the potential energy surface. A saddle point is a
local minimum of the potential energy surface in 3N � 7 degrees
of freedom, where now we have omitted the reaction coordinate;
but it corresponds to a local maximum along the reaction coordi-
nate. Notation: A saddle point is often called a transition structure.
Calculating a rate constant by transition state theory involves cal-
culating certain free energy quantities from the potential energy
surfaces, as discussed below.

Potential energy surfaces also underlie the theory for condensed
phase systems, but N is a very large number for a liquid, and it may
be tens of thousands or more for realistic models of liquid-phase
enzymes, but the use of free energy quantities that depend on a
smaller number of degrees of freedom (for example, the number
of degrees of freedom of a solute or an active site) allows one man-
age the complexity. For this reason, free energy surfaces are more
useful for condensed-phase reactions than for gas-phase ones –
both for conceptual purposes and for calculations, and yet they
are often not explained well in textbooks (and sometimes not even
mentioned).

Extending conventional transition state theory to reactants in a
condensed phase, for example in water, in the aqueous medium of
a cell, or in an enzyme which itself is in a liquid-phase medium, is
not as straightforward as many textbook treatments would lead
one to believe. To see this, consider a solute with n atoms.
Because it is surrounded by solvent, its electronic energy is not
well defined; that is, there are questions about how to partition
the solute–solvent interaction energy into energy of the solute
and energy of the solvent. But suppose we come up with a scheme
for that. We then find that the energy is not invariant to translation
or rotation of the solute if the solvent is fixed at some instanta-
neous configuration. The free translations and free rotations have
been converted to low-energy librations by interactions with sol-
vent. We could try to ameliorate the problem by considering a ‘‘su-
persolute,’’ by which I mean a system consisting of the solute plus
many nearby solvent molecules. Now we run into another prob-
lem. The solvent, being a liquid, has many local minima of nearly
the same energy. Consider water. We could have many possible
networks of hydrogen bonds, and rotation of a few water mole-
cules from one hydrogen-bonding arrangement to another gives
us another local minimum. Following Stillinger, one may call these
local minima of the potential energy function ‘‘inherent struc-
tures.’’ Stillinger proved that the number of distinguishable inher-
ent structures of a liquid rises exponentially as a function of the
number of molecules in the systems [5].
For gas-phase systems, we can proceed theoretically by finding
all the low-energy minima and low energy-saddle points [6,7]. We
can then carry out a complete analysis of the nuclear motion and
configurations by classical mechanics (for example, vibrations
might be treated by the classical mechanical harmonic oscillator
approximation) or, if the system is not too large, by quantum
mechanics (for example, vibrations might be treated by the quan-
tum mechanical harmonic oscillator approximation). Clearly that is
impossible for a liquid or an enzyme in solution, where it is not
practical to even think about all the structures, and we are forced
to use statistical mechanical sampling rather than full enumeration
of structures. Using statistical mechanics, we can make firm state-
ments even without finding all the inherent structures. The present
article will attempt to explain how we do this, using the least pos-
sible amount of mathematics, although the actual calculations
involve a lot of mathematics.

In section ‘‘Transition state theory in a classical world’’ we
explain transition state theory in a classical mechanical world. By
this we mean a world where nuclear motion follows the law of clas-
sical mechanics; as explained above, the potential energy surface
that governs nuclear motion represents the electronic energy,
and the electronic structure of atoms and molecules must always
come from a quantum mechanical treatment (even though it might
be represented by a molecular mechanics function that looks clas-
sical). The variational principle of variational transition state the-
ory is rooted in classical mechanics and it is also explained in
section ‘‘Transition state theory in a classical world’’.

Classical mechanics describes many aspects of nuclear motion
quite well, but for quantitative work one cannot neglect the quan-
tum mechanical nature of nuclear motion, especially zero point
energy and tunneling. Thus, in sections ‘‘Quantum mechanical
nuclear motion’’ and ‘‘Transmission coefficient’’, we explain how
quantum effects are included in transition state theory.
Transition state theory in a classical world

Basic concepts

To provide guidance for the statistical mechanical formulation
of transition state theory for condensed-phase process, we return
to gas-phase systems and reconsider the meaning of the quasither-
modynamic functions. In pioneering work cited above, Polanyi,
Evans, and Eyring arrived at the quasithermodynamic and statisti-
cal mechanical formulation of transition state theory by consider-
ing quasiequilibrium between reactants and transition states.
Since, as already pointed out, transition states are not real species,
this involved a somewhat intuitive generalization of the concept of
equilibrium, which they combined with one-dimensional classical
models for the reactive motion (motion along the reaction coordi-
nate) that takes a system from one side of the transition state to
the other. Although these derivations gave the correct result, there
were not completely satisfactory, and even as late as the 1970s,
people were arguing about factors of two in the derivation [8].

A more solid foundation for transition state theory was pro-
vided by the work of Wigner. Before summarizing Wigner’s results,
I briefly explain the language to be used. Phase space is the
6N-dimensional space consisting of the 3N-dimensional coordinate
space and the 3N-dimensional space of conjugate momenta. Points
in phase space are called phase points; they are the ‘‘states’’ of a
classical system. A region of phase space is said to be in local equi-
librium if the relative population of states in that region satisfies a
Boltzmann distribution. Note that since most phase points have
nonzero momentum they are constantly moving from one position
in phase space to another (from one state to another); the motion
of a phase point in phase space is called a trajectory.
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One more note on language: most chemical physicists use the
words ‘‘surface’’ and ‘‘hypersurface’’ interchangeably; thus a sur-
face is a geometrical structure with less degrees of freedom than
the full space. A plane or the surface of a sphere is a
two-dimensional surface in a three-dimensional space; a line
(straight or curved) is a one-dimensional surface in a plane. We
will discuss transition states as surfaces in this sense of the word,
although a mathematician might prefer the word ‘‘hypersurface.’’
The word ‘‘surface’’ is also used as a synonym for ‘‘function;’’ this
is the sense of the word that is used when we discuss potential
energy surfaces and free energy surfaces.

Wigner’s treatment of transition state theory (reviewed else-
where [9]) leads to the following procedure for deriving transition
state theory: (i) assume all phase points are populated according to
a Boltzmann distribution. (ii) Define a (6N � 1)-dimensional sur-
face (to be called the dividing surface) that separates reactant
regions of phase space from product regions. If reactants and prod-
ucts are well defined there will be a relatively sparsely populated
region of phase space between them; the dividing surface should
be in this region. Furthermore, since we usually define this surface
to be independent of the 3N momentum components and the 6
overall translations and rotations, it has only (3N � 7) degrees of
freedom. (iii) Calculate the one-way flux of phase points across
the dividing surface. Note the net flux will be zero because the sys-
tem is assumed to be at equilibrium, but the one-way flux is not
zero. Because we are doing this calculation in a classical world,
the one-way flux counts all trajectories passing through the transi-
tion state in the direction of products. In a classical world, systems
with an energy below the lowest energy in the dividing surface
cannot reach the transition state; if the dividing surface passes
through the saddle point, the saddle point will be the
lowest-energy point in the transition state. The difference between
the saddle point energy and the equilibrium energy of reactants is
called the classical barrier height.

When one calculates the one-way flux in step (iii), one finds
that the one-way flux equals kBT/h times exp(�DGC,act/kBT), where
kB is Boltzmann’s constant, T is temperature, h is Planck’s constant,
and DGC,act is a quantity that is exactly the same as one would get if
one calculated the free energy of the dividing surface minus the
free energy or reactants. The subscript C reminds us that we are
in a classical world in this section. Because, as just mentioned
and as introduced in the introduction, DGC,act is a generalization
of the free energy (because the dividing surface has one less degree
of freedom than a thermodynamic species), it is reasonable to label
it as some sort of free energy. It is not a real free energy because the
dividing surface is not a real species (it is missing one degree of
freedom, namely the reaction coordinate which is normal to the
dividing surface), so it is called the free energy of activation.

For real thermodynamic functions, knowing the free energy is
equivalent to knowing the system’s partition function, and there-
fore all other thermodynamic variables (e.g., enthalpy and entropy)
can be calculated from the free energy as a function of the indepen-
dent variables like temperature, pressure, and number of each kind
of particles. These same relations are applied to the free energy of
activation, and the resulting functions are called activation param-
eters (e.g., enthalpy of activation, entropy of activation, volume of
activation, etc.); these activation parameters are also quasithermo-
dynamic functions.

There are a few aspects of this derivation that deserve attention.
First is that it is a purely classical derivation and yet the result
involves h. This would never happen in real thermodynamics; it
happens here because translating the partition function for the
missing degree of freedom from quantum mechanics to classical
mechanics involves h.

The second issue about the above derivation that deserves
attention is: what does the one-way flux at equilibrium have to
do with the usual rate constants of chemical kinetics? Here is
where the physics comes into the mathematical derivation. First
we posit a situation where the reactant region of phase space is
populated at local thermal equilibrium, but there is no population
of the products. Then we assume that any trajectory that crosses
the dividing surface never crosses it again; this is the fundamental
assumption of transition state theory. Under these assumptions,
the one-way flux through the dividing surface toward products is
the same as the one-way flux in the same direction for the original
case where both reactants and product regions of phase space at
equilibrium. Furthermore, under these assumptions, and if we
equate one-way fluxes in phase space to one-way fluxes computed
from rate constants, the rate constants are just equal to one-way
fluxes divided by the reactant concentrations, or – stated another
way – to the one-way fluxes when the concentrations are all unity.
Therefore we have calculated the rate constants under the assump-
tions that reactants are in local equilibrium and trajectories do not
recross the dividing surface. The expression we obtain, for a stan-
dard state of 1 mol/L is

kC ¼ ðL=molÞm�1ðkBT=hÞ expð�DG
�

C;act=NAkBTÞ ð1Þ

where kC is the rate constant in a classical world (as the subscript
reminds us), m is the molecularity (1 for unimolecular reactions, 2
for bimolecular reactions), NA is Avogadro’s number (included sim-
ply so that the free energy is in molar units), and now we have
added the standard-state superscript to the free energy of activation
because we got this result by assuming unit concentrations (in the
gas phase one usually wants to quote thermodynamic functions for
a standard state of 1 bar rather than 1 mol/L; the conversion of stan-
dard states from 1 M to 1 bar is just same as in real thermodynam-
ics and involves straightforward formulas given elsewhere [10]).

A note on ‘‘never crosses it again’’: When I said that a trajectory
does not recross the transition state I meant by molecular motions
as part of single uninterrupted event. After moving to the product
region, the product must eventually be thermalized, e.g., by nonre-
active collisions with other molecules (including jostling with sol-
vent, if present). After that, a given product molecule might indeed
be activated again some time later and undergo reverse reaction,
but that is a separate event that does not violate the
no-recrossing assumption.

There are many subtle aspects of this derivation that could be
discussed, but I will limit myself to one, namely the relation of rate
constants to one-way flux coefficients. Naively it seems reasonable,
when one has the reaction A M B and the rate equation

Rate ¼ �d½A�=dt ¼ k1½A� � k�1½B� ð2Þ

to assume that the first term equals the one-way equilibrium flux
from reactants to products, and the second term equals the reverse
equilibrium flux. But this is not quite right [11,12]. In order to mea-
sure a rate constant that is independent of time, i.e., independent of
the concentrations (that is why they are called rate constants), the
system must have reached a steady state. At that point, for a nonin-
finitesimal rate, local equilibrium is perturbed, and k1 and k�1 are
not equal to equilibrium one-way fluxes. The rate constant calcu-
lated from the one-way flux at equilibrium is called the
local-equilibrium rate constant. The deviation of the observable
steady-state rate constant form the nonobservable
local-equilibrium rate constant is a nonequilibrium effect, i.e., all
the states (these would be phase points in a classical mechanical
world) of A are not in local equilibrium with one another.
Therefore there are two sources of possible error in transition state
theory in a classical mechanical world: nonequilibrium effects and
recrossing. Interestingly, nonequilibrium is unavoidable under cir-
cumstances where rates are measured (because the net rate is
finite), but usually small in the condensed phase (or at least
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assumed to be so), whereas recrossing is avoidable but can be large
if the transition state is not well optimized.

Nonequilibrium is unavoidable by definition when there is a
noninfinitesimal net rate (rate constants can only be measured in
a state of overall nonequilibrium – otherwise the net rate is zero).
There are cases where nonequilibrium effects are very large, e.g.,
unimolecular and association reactions in the gas phase at low
pressure and sometimes at moderate pressure [13]; in fact the
high-pressure limit is often unattainable for given experimental
setup. But for bimolecular reactions in the gas-phase and for reac-
tions in solution, nonequilibrium effects are usually assumed to be
small. The kind of nonequilibrium effects being discussed here
should not be confused with an effect confusingly called nonequi-
librium solvation; they are not at all the same. Nonequilibrium sol-
vation is discussed carefully elsewhere [14,15], and it is discussed
briefly below (it is really a breakdown of the no-recrossing
assumption, not a breakdown of the local-equilibrium
assumption).

Why is recrossing avoidable? That is the subject of the next
section.
1 Abbreviations used: PMF, potential of mean force; QC-EA-VTST, quasiclassica
ensemble-averaged variational transition state theory; SCT, small-curvature tunnel-
ing; LCT, large-curvature tunneling; WKB, Wentzel–Kramers–Brillouin.
Variational transition state theory

Recrossing is avoidable in the following sense: In a classical
mechanical world, there always exists a hypersurface in phase
space that is not recrossed (note that if one restricts one’s search
to dividing surfaces in coordinate space, existence is no longer
guaranteed, as discussed recently [16]). However, for real-world
applications it is too convoluted to find and use the exact dividing
surface in phase space, and in fact we would have to abandon our
convenient customary operating procedures of defining the transi-
tion state to depend only on internal coordinates (or, sometimes
for gas-phase reactions, only on internal coordinates and the total
energy), i.e., the dividing surface would have to depend on individ-
ual atomic momentum components. So as a practical matter, the
dividing surface we define for practical work will be one that is
recrossed. How do we minimize the recrossing? We use a varia-
tional principle that arises as follows: recrossing clearly lowers
the net flux. Therefore, if we assume that nonequilibrium effects
are negligible, then assuming no recrossing (which is the most
basic assumption of transition state theory, as discussed above
and also further below) always overestimates the rate. This leads
to the variational principle: we should choose the dividing surface
to minimize the calculated rate constant. Eq. (1) shows that we
may restate this as: we should choose the dividing surface to max-
imize the calculated standard-state free energy of activation. This
is called variational transition state theory [17]. A
fixed-temperature system is sometimes called a canonical ensem-
ble; as a consequence this is also called canonical variational the-
ory or CVT. Note that the general prescription is to optimize the
whole dividing surface, not just the value of a reaction coordinate.
In practice, though, as discussed below, full optimization is not car-
ried out and not required for a good approximation.

There is one point where Wigner’s paper can easily be misinter-
preted. When Wigner says that we have an upper bound on the
rate constant, and when he says that choosing a complicated divid-
ing surface to make the recrossing vanish will yield the exact rate
constant, we must interpret this as an upper bound to the
local-equilibrium rate constant and as yielding the exact
local-equilibrium rate constant. Wigner did not mention that the
local-equilibrium rate constant is different from the measurable
steady-state rate constant, but – as mentioned above – they are
often very similar, and, provided intermediates are treated as sep-
arate species, there is no evidence to suggest that nonequilibrium
effects are important for enzyme-catalyzed reactions.
How do we find the dividing surface with the maximum free
energy of activation? Before answering this we need a conceptual
prologue. Consider a gas-phase molecule with n atoms. It has a
potential energy function V(R), where R denotes the collection of
all its 3n atomic Cartesian coordinates (the fact the potential
energy can also be written as function of only 3n � 6 coordinates,
if one uses internal coordinates, is irrelevant here). At any position
R, the force on the nuclei is the negative gradient of the potential,
i.e., �rV. Now consider a solute with n atoms that is equilibrated
with a solvent at temperature T. The force on the atoms of the
solute now depends on the instantaneous configuration of the sol-
vent. We ask: is there a function W of R such that the mean force
(where ‘‘mean’’ denotes an average over the finite-temperature
ensemble) on the solute is �rW? The answer is yes, and this is
called the potential of mean force (PMF1). It is a function of 3n coor-
dinates in the much larger coordinate space of solute plus solvent.
Suppose that there are M atoms in the solvent; then the phase space
has dimension 6N = 6n + 6M. One obtains the PMF by averaging an
appropriate function over 6M solvent coordinates and momenta
and 3n solute momenta. Actually one could average over other sub-
sets of the dimensions. An important special case is to average over
all the momenta and all but k of the coordinates; this produces what
is called a PMF in k dimensions (where k is the number of coordi-
nates not averaged over). We then think of these k degrees of free-
dom as being in a bath of the rest of the degrees of freedom
(physicists sometimes describe this by saying these coordinates
are ‘‘dressed’’ by a bath). The importance of the PMF in theoretical
work was singled out in a recent perspective article [18]. If one car-
ries out the same average over all coordinates (k = 0) one obtains the
system free energy, which is just a number (0-dimensional) for a
give T, pressure or volume, and system composition. With this as a
motivation, the PMF for k P 2 is sometimes called a free energy sur-
face [19] (or free energy function), and a PMF with k = 1 is some-
times called a free energy profile. Free energy profiles are special
cases of free energy surfaces. One can think of free energy surfaces
as finite-temperature generalizations of potential energy surfaces,
to which they reduce (in a classical mechanical world) as T ? 0.
They also reduce to potential energy surfaces as one strips away
the solvent.

Early thinking on this subject of finding the transition state with
maximum free energy was quite confused. There was discussion of
finding a free energy surface (i.e., a free energy function of the coor-
dinates – see above), but it was not clear how to do this. The first
practical and general approach was based on free energy profiles
in the gas phase [20]. Since the transition state is missing one degree
of freedom (the reaction coordinate, which we usually define in
coordinate space), a natural way to proceed is as follows. First define
a path that leads from reactants to products in coordinate space (this
will also lead from the reactants region of phase space to the prod-
ucts region of phase space); call this the reaction path. If there is a
saddle point, the reaction path should ordinarily pass through the
saddle point. Define a progress coordinate as the signed distance
along this path from some reference point, e.g., from the saddle
point. Then calculate a free energy profile along this path, where
the unaveraged degree of freedom is locally the reaction coordinate,
where the reaction coordinate is a coordinate normal to the dividing
surface. The free energy of activation as a function of the progress
variable is often called a free energy profile, although a more techni-
cally correct name would be a generalized free energy of activation
profile. The variational transition state is a surface that intersects
the reaction path, is usually locally orthogonal to it, and has the min-
imum free energy of activation. The minimum here refers to a min-
l
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imum from among all possible intersection points of the trial divid-
ing surface with the reaction path. Since the reaction path is
one-dimensional, finding the variational transition state reduces to
a one-dimensional search, which is quite practical. Notes: (1) if the
dividing surface intersects the reaction path orthogonal to it, then
the reaction coordinate and the progress variable are locally the
same, but not necessarily globally the same. (2) The progress vari-
able is usually called the reaction coordinate, even though the above
discussion shows that they are not quite the same thing. However,
this usually causes no confusion.

The choice of reaction path and surface orthogonal to it usually
based on making it practical and convenient to calculate the gener-
alized free energy of activation. For example, the reaction path was
originally taken as the path of steepest descent in isoinertial coor-
dinates (i.e., coordinates scaled [21] so they all have the same
reduced mass) with the dividing surface orthogonal to it where
they intersect. This makes the calculation of the free energy profile
as straightforward as possible, and the gratifying empirical result is
that this way of defining dividing surfaces does eliminate most of
the recrossing. In advanced algorithms one sometimes uses other
paths and/or one sometimes optimizes not just the location where
the dividing surface intersects the reaction path but also the angle
at which it intersects.

Note that optimizing the dividing surface is the same as opti-
mizing the reaction coordinate since the reaction coordinate is
the coordinate normal to the dividing surface.

The simplest generalization to liquid-phase reactions, including
enzyme reactions, is as follows. First define a reaction coordinate;
this can be very general, but a common choice in our work has
been the internuclear distance of the bond being broken minus
the internuclear distance of the bond being formed [22]. This can
be called a geometrical reaction coordinate; it increases as the
reaction proceeds. One can then use any convenient algorithm to
calculate the one-dimensional PMF along this coordinate; our
own preferred method has been the WHAM method [23], where
WHAM stands for weighted histogram analysis method (other
methods for calculating free energies are reviewed elsewhere
[24,25]). The maximum of this profile gives us the classical varia-

tional free energy of activation, DGCVT;�

C;act , and the rate constant is
given by Eq. (2). However, this is the just the classical rate constant
with no transmission coefficient, so we are not done.

We need to incorporate quantum effects and a transmission
coefficient. These are discussed in sections ‘‘Quantum mechanical
nuclear motion’’ and ‘‘Transmission coefficient’’.

First though we comment on improving the reaction
coordinate.

One way to improve the reaction coordinate is to calculate a 2-D
free energy surface (k = 2 in the notation above) [26,27]. Rather
than identify the dividing surface as orthogonal to a pre-chosen
progress coordinate, one can then take it as normal to the steepest
decent path from a saddle point in the 2-D function. Similarly the
reaction coordinate is taken as the steepest-descent path at this
saddle point.

More generally the reaction coordinate could involve the sol-
vent or collective degrees of freedom of protein. For example,
Hammes-Schiffer and coworkers use an energy gap coordinate
defined as the difference in energy of a valence bond state repre-
senting the reactant one representing the product [28]. The use
of this kind of coordinate has been compared to the use a geomet-
rical reaction coordinate [29], and it was concluded that the com-
puted free energies of activation are expected to be similar from
calculations employing the geometrical and energy-gap reaction
coordinates.

Next we consider the case where one calculates a free energy
surface as a function of two coordinates, with the first coordinate
– call it x –being a geometrical coordinate based on solute bond
lengths for a reaction in liquid-phase solution or based on sub-
strate bond lengths for an enzyme-catalyzed reaction, and the sec-
ond coordinate – call it y – being a solvent coordinate for a liquid
phase or a protein or coenzyme relaxation coordinate for an
enzyme-catalyzed reaction. Suppose that one finds a saddle point
with an imaginary-frequency normal mode – call it z – that is
not parallel to the x-axis. The classical motion is locally separable
in normal mode coordinates so one expects no or little recrossing
if the reaction coordinate is set equal to z. But if one takes the reac-
tion coordinate to be x, there will be recrossing [30]. This is the
effect that is called nonequilibrium solvation. It leads to a trans-
mission coefficient less than unity for reactions in solution (in
enzymes) when the reaction coordinate is assumed to be indepen-
dent of solvent coordinates (protein or coenzyme coordinates).
From another perspective this identical effect shows up as ‘‘solvent
friction,’’ as in Grote-Hynes theory [31].

When we want to stress the difference between placing the
transition state in the original way of Eyring at a saddle point ver-
sus optimizing it, we use the following language: a conventional
transition state is one that passes through a saddle point and is ori-
ented perpendicular to the imaginary-frequency normal mode of
that saddle point, and any other transition state is a generalized
transition state. A generalized transition state that is optimized
variationally is called a variational transition state. This kind of dis-
tinction has been useful for reactions in the gas phase. For reac-
tions of complex molecules in the gas-phase, there are usually
many transition states and a proper treatment involves a
multi-faceted dividing surface that passes through them all [6,7].
If it passes through all the saddle points oriented normally to their
imaginary-frequency normal modes, such a treatment is called
multi-structural conventional transition state theory or
multi-path conventional transition state theory (where the differ-
ence is in how the transmission coefficient is calculated). If the
multi-faceted transition state is optimized, such a treatment is
called multi-structural variational transition state theory or
multi-path variational transition state theory (where the difference
again is in how the transmission coefficient is calculated).
However, as we already explained, for reactions in liquid-phase
solutions or in liquid-phase enzymes, it is essentially impossible
to find all the saddle points, and we use statistical methods to find
the maximum of a free energy profile as a function of a
pre-selected progress coordinate. In such a case conventional tran-
sition state theory is useless, and we are using only variational
transition state theory. In many cases we just say ‘‘transition state
theory’’ to refer to any or all of these kinds of treatment.

Finally, I want to comment on the fundamental assumption of
transition state theory. As stated above, in conjunction with
Wigner’s derivation, the fundamental assumption is that no
recrossing of the transition state occurs. Suppose that the reaction
coordinate were globally separable. Then motion in the reaction
coordinate would be uncoupled to other degrees of freedom, and
the position of highest potential energy along the reaction coordi-
nate would be independent of the values of the other coordinates.
Defining the transition state at that value of the reaction coordi-
nate would then eliminate recrossing. Thus, instead of saying that
the fundamental assumption is no recrossing, one could say that
the fundamental assumption is that the reaction coordinate is sep-
arable. Similarly, instead of saying that the transmission coefficient
corrects for recrossing, one could say that it corrects for nonsepa-
rability. However, it is probably more constructive to think about
it in terms of recrossing because even when the reaction coordi-
nate is nonseparable, the assumption of no recrossing can be a
good approximation, and it is the extent of recrossing that controls
the error in transition state theory.
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Quantum mechanical nuclear motion

Up to this point everything has been classical. We pointed out
above that in a classical world, the zero-temperature limit of a free
energy surface is the potential energy surface. Aside from consider-
ations of degeneracy and symmetry, the zero-temperature limit in
quantum mechanics is the sum of the potential energy plus the
zero-point vibrational energy. Therefore we need to put in the
effects of the quantization of bound vibrational modes, especially
their zero point energy. We also need to correct for the fact that
the reaction coordinate motion (which is locally an unbound vibra-
tion at the transition state) has been treated classically.

Before we proceed with practical matters, it is worthwhile to
stop and address the following question: Is it really correct to
quantize the vibrational energies when we stop to consider that
the transition state is not stationary state. The answer is yes, but
with broadening. The transition state is actually a metastable state.
For example, in one dimension, a particle at the top of a parabolic
barrier is metastable, as is a classical particle at a multidimensional
saddle point of the potential energy surface. The quantum mechan-
ical analogs of classical metastable states are called resonances
[32,33] (one of the many uses of this overworked noun). The tran-
sition state analogs of quantized energy levels of equilibrium struc-
tures of molecules are resonance energy levels [34,35]. Resonances
have complex energies; the real part of the energy is the analog of
the quantized energy of a bound state. The imaginary part is writ-
ten as ½C, where C is called the width; it is associated with the
lifetime by the Heisenberg uncertainty principle in time and
energy. In particular, a large width corresponds to a broad reso-
nance, which is associated with a short-lived resonance. A typical
transition state resonance lifetime of a gas-phase atom–diatom
reaction is �30 fs, corresponding to a width of �0.04 eV [36]. To
a reasonable approximation, the real parts of transition state
energy levels may be calculated by ignoring the unbound degree
of freedom corresponding to the reaction coordinate.

How do we put in the effect of quantized vibrations for a con-
densed phase system? That is straightforward for gas-phase reac-
tions because we calculate the free energy of activation from
molecular partition functions, and so we simply replace the classi-
cal mechanical partition functions by quantum mechanical ones,
while ignoring the unbound reaction coordinate at the transition
state. For liquid-phase reactions and reactions in enzymes, we cal-
culate the free energy of activation profile by liquid-phase simula-
tion methods, which are typically based on classical molecular
dynamics. There is no fully satisfactory way to add quantized
vibrational modes to such calculations for general purposes, but
for calculating a free energy profile, a scheme has been developed
[37] and it seems to be satisfactory since it has yielded accurate
kinetic isotope effects for several reactions [38–40], and kinetic
isotope effects are very sensitive to quantized vibrational energies.

After quantizing the vibrations, the maximum of the free energy
profile is shifted. Placing the transition state at the maximum of
the free energy profile without quantizing the vibrations yielded
a result we called classical variational transition state theory or
classical CVT. Placing the transition state dividing surface at the
maximum of the quantized free energy profile is called quasiclas-
sical ensemble-averaged variational transition state theory
(QC-EA-VTST). It may be written:

KQC-EA-VTST ¼ ðL=molÞm�1ðkBT=hÞ expð�DGQC-EA-VTST;�=RTÞ ð3Þ

where R is the gas constant, and DGEA- VTST;� is the quasiclassical free
energy of activation according to EA-VTST. The reason that EA is
included in the name of this method is that for the free energy of acti-
vation is computed from a free energy simulation and is therefore
ensemble averaged. The reason for the ‘‘quasi’’ here is that one
important aspect of the treatment is still classical, even though the
vibrations are now quantum mechanical. The missing aspect is the
collection of quantum mechanical effects on the reaction coordinate
at the transition state because the reaction coordinate is missing in
the transition state and so it did not get quantized when we quantized
the vibrations of the transition state (the reaction coordinate did get
quantized at reactants if it corresponds to a locally bound vibration
there, as it does for unimolecular reactions). Quantal effects on the
reaction coordinate at the transition state are included in a transmis-
sion coefficient, as discussed in the next section.
Transmission coefficient

Adding tunneling to a gas-phase calculation involves replacing
the classical reaction coordinate motion by a quantum mechanical
motion. Classical reaction coordinate motion in classical transition
state theory corresponds to zero probability of reaction at energies
below the saddle point and a probability of reaction of one at
higher energies. Classical reaction coordinate motion in quasiclas-
sical transition state theory corresponds to zero probability of reac-
tion at energies below the quantized transition state energy level
and a probability of reaction of one at higher energies.

When one incorporates quantum effects on reaction coordinate
motion, the transmission probability becomes nonzero below the
barrier height and non-unity above it. The former is tunneling,
and the latter is nonclassical reflection. Because the Boltzmann fac-
tors are larger at energies below the quasiclassical threshold than
at energies above it, the tunneling effect is much large than the
nonclassical effect. Therefore the factor in the transmission coeffi-
cient that accounts for quantum mechanical effects on the
reaction-coordinate motion is usually called the tunneling trans-
mission coefficient.

To calculate a quantum mechanical probability of reaction, we
need to know more than the energy value at the transition state;
rather we need a whole an effective potential energy along the
whole reaction coordinate, and the tunneling probability is greater
if the effective barrier of this effective potential is thinner or if the
reduced mass along the reaction coordinate is smaller. The effec-
tive potential should be consistent with transition state theory
such that if we approximate the quantum probability of transmis-
sion through the barrier by the classical one (which is zero at ener-
gies below the maximum of the effective potential and one at
higher energies), the transmission coefficient reduces to unity.
The barrier that is consistent with transition state theory in this
sense is obtained by adding the local quantized vibrational energy
to the potential energy along the reaction path through the transi-
tion state [41].

We typically make the ‘‘ground-state approximation’’ which
means that we define the tunneling transmission coefficient as
the ratio of the thermally averaged quantum mechanical transmis-
sion probability for the ground-state effective potential to the ther-
mally averaged classical mechanical transmission probability for
the ground-state effective potential. The ground-state effective
potential corresponds to adding the local zero-point vibrational
energy to the potential energy. Calculating the transmission coeffi-
cient this way is called the zero-curvature tunneling approxima-
tion because the tunneling probability through the barrier is
calculated as if the reaction coordinate were a single Cartesian
coordinate. Notice that the zero-curvature tunneling approxima-
tion considers the changing vibrational energy in degrees of free-
dom transverse to the reaction path as well the motion parallel
to the reaction path. For this reason we call it a multidimensional
approximation.

The zero-curvature tunneling approximation is usually not very
accurate. Actual dominant reaction paths and tunneling paths are
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not straight lines in Cartesian coordinates – just as internal coordi-
nates like bond stretches and valence angle bends are nonlinear
functions of atomic Cartesian coordinates. The dominant physical
feature that they incorporate is corner cutting, i.e., the tendency
for the optimal tunneling path to be shorter than the
minimum-energy path. In the limit of large curvature of the reac-
tion path, the optimum tunneling paths are straight lines [42] (a
straight line is the shortest distance between the two sides of the
multidimensional effective potential barrier). Accurate multidi-
mensional semiclassical methods for taking account of the curva-
ture of the reaction coordinate have been developed, in particular
the small-curvature tunneling (SCT) approximation [43], the
large-curvature tunneling (LCT) approximation [44], the optimized
multidimensional tunneling approximation [45], and the
least-action tunneling approximation [46,47]. These methods are
reviewed elsewhere [48,49].

Notation: the word ‘‘semiclassical’’ here, as in most chemical
physics literature, means that the tunneling is calculated by multi-
dimensional generalizations [50] of the Wentzel–Kramers–Brillou
in (WKB) method; in the kinetic isotope literature the word ‘‘semi-
classical’’ is used for what I have called ‘‘quasiclassical’’.

Adding tunneling to EA-VTST requires some extra considera-
tions, because we have a free energy barrier, but tunneling occurs
through potential energy barriers. One way to think about the
problem is that we should thermally average the tunneling
through the various potential barriers, not calculate the tunneling
through a thermally averaged free energy barrier. However, one
can justify using the free energy barrier for tunneling by an
approximation called the zero-order canonical mean shape
approximation [51].

For a gas-phase case where one finds all the transition struc-
tures, there is a reaction path through each of them, and each reac-
tion path has its own effective potential (in SCT) or effective
potentials (in LCT, OMT, and LAT), and taking account of these
yields multipath variational transition state theory [6,7]. In
EA-VTST, though, we sample reaction paths [38,52] rather than
consider them all, which would be impossible.

Now we write the final rate constant as

k ¼ ckEA-VTST ð4Þ

where kEA-VTST is the quasiclassical rate constant of section
‘‘Quantum mechanical nuclear motion’’, and

c ¼ gCj ð5Þ

and where g corrects for nonequilibrium effects, C corrects for
recrossing, and j is the tunneling transmission coefficient (nota-
tion: this C should not be confused with the C in section
‘‘Quantum mechanical nuclear motion’’, but we want to use nota-
tion consistent with the rest of the literature, and C is used for both
of these quantities).

Nonequilibrium effects have already been discussed (we
neglect them, i.e., we take g = 1).

If the reaction coordinate is sufficiently optimized, the recross-
ing can in principle be made small, but in practice the recrossing
transmission coefficient is sometimes close to unity and some-
times significantly less [53–64].

Experimental kineticists often express experimental rate con-
stants as

k ¼ ðL=molÞm�1ðkBT=hÞ expð�DGz;
�
=RTÞ ð6Þ

We can label the free energy in Eq. (6) as the phenomenological
free energy of activation.

Comparing Eq. (5) to Eqs. (3) and (4) yields

DGz;
�
¼ DGQC-EA-VTST;� � RT ln g � RT ln C� RT ln j ð7Þ
This is a convenient framework for interpreting experimental
data, but it is not unique. If one had treated the dynamics quantum
mechanically instead of semiclassically, one would not have been
able to separate the contributions to the reactive flux into an over-
barrier part and a tunneling part or into a variational transition
state flux and a recrossing transmission coefficient.
Applications

Applications have been reviewed elsewhere, and hence we will
simply refer to those reviews [38,65–71].
Concluding remarks

In this article I have discussed some of the conceptual issues
that underlie modern transition state theory as applied to
condensed-phase reactions, using enzyme-catalyzed reactions as
the example. Based on these kinds of ideas, ensemble-averaged
variational transition state theory with multidimensional tunnel-
ing contributions has proved to be a powerful method for calculat-
ing rate constants for enzyme-catalyzed reactions. The leading
errors are usually due more to the uncertainties in the potential
energy functions than in the treatment of the dynamics per se.
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