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introduction

Transition state theory (TST) [1-4] is a widely used method for calculating rate
constants for chemical reactions. TST has a long history, which dates back
70 years, including both theoretical development and applications to a variety of
reactions in the gas phase, in liquids, at interfaces, and in biological systems. Its
popularity and wide use can be attributed to the fact that it provides a theoretical
framework for understanding fundamental factors controlling chemical reaction
rates and an efficient computational tool for accurate predictions of rate constants.

TST provides an approximation to the rate constant for a system where reactants
are at equilibrium constituted by either a canonical ensemble (thermal equilibri-
um) or a microcanonical ensemble (corresponding to a fixed total energy). Two
advances in TST have contributed significantly to its accuracy: (i) the variational
form of TST in which the optimum dividing surface is determined to minimize
the rate constant and (ii) the development of consistent methods for treating
quantum mechanical effects, particularly tunneling. TST in a classical mechanical
world can be derived by making one approximation — Wigner's fundamental
assumption [3]. With this assumption, the net reactive flux through a dividing sur-
face separating reactants and products is approximated by the equilibrium one-
way flux in the product direction. In a dlassical world this approximation leads to
an overestimation of the rate constant, since all reactive trajectories are counted as
reactive, but some nonreactive ones also contribute to the one-way flux. In varia-
tional TST (VTST), the dividing surface is optimized to give the lowest upper
bound to the true rate constant [5-7].

The need to include quantum mechanical effects in reaction rate constants was
realized early in the development of rate theories. Wigner [8] considered the low-
est order terms in an #i-expansion of the phase-space probability distribution func-
tion around the saddle point, resulting in a separable approximation, in which
bound modes are quantized and a correction is inciuded for quantum motion
along the reaction coordinate — the so-called Wigner tunneling correction. This
separable approximation was adopted in the standard ad hoc procedure for quan-
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tizing TST [1). In this approach, partition functions for bound modes are treated
quantum mechanically, usually within a harmonic approximation, and a correc-
tion for tunneling through the potential barrier along the reaction coordinate is
included. Even though more accurate treatments of tunneling through parabolic
barriers have been presented [9], beyond the expansion through #2 of Wigner, tests
of TST using accurate quantum mechanical benchmarks have shown that this
nonseparable approximation is inadequate for quantitative predictions of rate con-
stants when quantum mechanical effects are important (10, 11].

Breakthroughs in the development of quantum corrections for VTST, particular
ly tunneling, came from comparing the adiabatic theory of reactions [12-14] with
VTST for a microcanonical ensemble (microcanonical variational theory). Even
though the two theories are based upon very different approximations, they pre-
dict the same reaction rates when the reaction coordinate is defined in the same
way in both theories and motion perpendicular to it is treated classically [7] or by
an identical quantum mechanical approximation [15]. Consequently, quantum
mechanical treatments of reaction-coordinate motion for the adiabatic theory pro-
vide a starting point for developing quantal corrections for VIST that include the
nonseparable, multidimensional nature of tunneling [16-24]. In these approach-
es, the multidimensional character of the tunneling is included by specifying an
optimal tunneling path through the multidimensional space. This approach was
pioneered by Marcus and Coltrin [25], who developed the first successful nonse-
parable tunneling correction for the collinear H + H, reaction, for which only one
mode is coupled to the reaction coordinate.

H-transfer reactions are of great interest because they play important roles in 2
variety of systems, from gas-phase combustion and atmospheric reactions of
small molecules to complex catalytic and biomolecular processes. Many enzyme
reactions involve proton or hydride transfer in the chemical step [26], and we
know from experience with simpler reactions that multidimensional treatments
of the tunneling process are essential for quantitative accuracy and sometimes
even for qualitative understanding.

From a theoretical point of view H transfer reactions are of great interest
because they provide opportunities to study the importance of quantum mechani-
cal effects in chemical reactions and are a good testing ground to evaluate approx-
imate theories, such as TST approaches. There is a long history of applications of
TST to H-transfer reactions starting with the H + H, reaction and its isotopic var-
jants. A comprehensive review of the early literature for the H + H, reaction

appeared over 30 years ago [27]. In the 1960s it was being debated whether quan-
tum mechanical tunneling was important in the H + H, reaction (see Ref. [28],
PP. 204-206}). Since then studies on gas-phase H-atom transfer reactions, particu-
larly using TST methods, have shown definitively that treatment of quantum
mechanical effects on both bound modes and reaction coordinate motion is
important in the treatment of light-atom transfer reactions, such as hydrogen
atom, proton, and hydride transfers. This point is strongly supported by two com-
prehensive reviews of TST and applications of TST approaches to chemical reac-
tions, including H transfer, that have been published over the past 20 years [4).



27.2 Incorporation of Quantum Mechanical Effects in VTST | 835

Kinetic isotope effects (KIEs) have played an important role in using experiments
to unravel mechanisms of chemical reactions from experimental data [29]. The pri-
mary theoretical tool for interpreting KIEs is TST [29, 30]. The largest KIEs occur
for hydrogen isotopes, for which it is critical to consider quantum mechanical
effects. It has also been shown that effects of variationally optimizing the dividing
surface can have significant effects on primary hydrogen KiEs [31]. VI'ST with mul-
tidimensional tunneling (MT) provides a more complete theory of kinetic isotope
effects, which has recently been demonstrated by its ability to predict kinetic isotope
effects in complex systems, such as hydride transfer in an enzymatic reaction {32].

Calculations of reaction rates with variationally determined dynamical bottle-
necks and realistic treatments of tunneling require knowledge of an appreciable,
but still manageably localized, region of the potential energy surface [33}. In this
chapter we assume that such potentials are available or can be modeled or calcu-
lated by direct dynamics, and we focus attention on the dynamical methods.

In this chapter we provide a review of variational transition state theory with a
focus on how quantum mechanical effects are incorporated. We use illustrative
examples of H-transfer reactions to assist in the presentation of the concepts and
to highlight special considerations or procedures required in different cases. The
examples span the range from simple gas-phase hydrogen atom transfer reactions
(triatomic to polyatomic systems), to solid-state and liquid-phase reactions, includ-
ing complex reactions in biomolecular enzyme systems.

27.2
Incorporation of Quantum Mechanical Effects in VTST

An important consideration in developing variational transition state theory is the
definition of the dividing surfac¢ separating reactants from products. A conveni-
ent choice is to consider a one-parameter sequence of dividing surfaces that are
defined to be orthogonal to a reaction path [7, 34}, rather than to allow more arbi-
trary definitions. This procedure has a few advantages. First, the variational opti-
mization is performed for one parameter defining the dividing surfaces, even for
complex, multidimensional reactions. Second, the reaction path can be uniquely
defined as the path of steepest descent in a mass-weighted or mass-scaled coordi-
nate system [35, 36}, e.g., the minimum energy path (MEP), and this choice of
reaction path has further advantages as discussed below. Third, use of a reaction
path allows connection to the adiabatic theory of reactions, which provides the
basis for including consistent, multidimensional tunneling corrections into VIST.
With this choice of dividing surfaces, a generalized expression for the transition
state theory rate constant for a bimolecular reaction is given by:
kGT(T, S) - a,kBT Q.GT(T! S) 1 [__ VMEP (S)]

B BX(T) | " T

27.1)

where T is temperature, s is the distance along the reaction path with the conven-
tion that s = 0 at the saddle poi.'dt and s < 0 (> 0) on the reactant (product) side of
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the reaction path, o is a symmetry factor, ky is Boltzmann’s constant, h is Planck’s
constant, QST(T, s) is the generalized transition state partition function for the
bound modes orthogonal to the reaction path at s, ®*(T) is the reactant partition
function per unit volume and includes the translational partition function per
unit volume for the relative motion of the two reacting species, and Viygpls) is the
potential evaluated on the MEP at s. The symmetry factor o accounts for the fact
that the generalized transition state partition function is computed for one reac-
tion path, and for reactions with equivalent reaction paths this partition function:
needs to be multiplied by the number of equivalent ways the reaction can proceed.
In computing the vibrational frequencies that are required to evaluate Q6T(Ts) at
a value s of the reaction coordinate, we use a projection operator to project seven
degrees of freedom out of the system’s Hessian so that the frequencies corre-
spond to a space orthogonal to the reaction coordinate and to three overall transla-
tions and three overall vibrations [37-40}.

Canonical variational theory (CVT) is obtained by minimizing the generalized
transition state rate expression kGT(T, s) with respect to the location s of the divid-
ing surface along the reaction coordinate: :

KVT(T) = min KST(T,s) = kT[T, sV(T)) 27

where sCVT(T) is the location of the dividing surface that minimizes Eq. (27.1) a

temperature T.
Sometimes it is convenient to write Eq. (27.1) as [16]

KST(T, s) = "“Trxiﬂap[—Ac‘;T"’(s) / Rr] @73)
where Kio is the reciprocal of the standard-state concentration for bimolecular
reactions (it is unity for unimolecular reactions), R is the gas constant, and AGT™
is the standard-state generalized-transition-state theory molar free energy of acti-
vation. Then Eq. (27.2) becomes t

T(T) = l‘yhl K'exp (—Ac?’“’ / RT)

where
AGS™® = AGST® (sVT) (27.5):

is the standard-state quasithermodynamic molar free energy of activation at tem-
perature T. ,

Although we have described the theory in terms of taking the reaction path as
the MEP in isoinertial coordinates, this can be generalized to arbitrary paths by
methods discussed elsewhere [41]. The treatment of the reaction coordinate at ge-
ometries off the reaction path also has a significant effect on the results; one can’
use either rectilinear [34, 37-39] or curvilinear [40, 42] coordinates for this pur-
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pose, where the latter are more physical and more accurate. In particular, the
vibrational modes are less coupled in curvilinear coordinates, and therefore anhar-
monic mode-mode coupling, which is hard to include, is less important. Recently
a method has been presented for including anharmonicity in rate constant calcu-
lations of general polyatomics using curvilinear coordinates [43].

An expression similar to Eq. (27.1), but for a microcanonical ensemble (fixed
energy instead of temperature) can be obtained for the generalized transition-state
microcanonical rate constant. Optimizing the location of the dividing surface for
this microcanonical expression at each energy and then performing a Boltzmann
average of the rmcrocanokucal rate constants yields a microcanonical variational
theory expression for the\ temperature-dependent rate constant. Canonical varia-
tional theory optimizes thb dividing surface for each temperature, whereas micro-
canonical variational theory optimizes the dividing surface for each energy, and
gives a rate constant is lower than or equal to the CVT one [7, 15]. The
improved canonical variational theory (ICVT) [16] is a compromise between CVT
and the microcanonical theory, which only locates one optimum dividing surface
for each temperature, but removes contributions from energies below the maxi-
mum in the ground-state adiabatic potential. The proper treatment of the reaction
threshold in the ICVT method recovers most of the differences between the GVT
and microcanonical theory. In most cases, CVT and ICVT give essentially the
same predicted rate constants.

Equations (27.1) and (27.2) are “hybrid” quantized expressions in which the bound
modes orthogonal to the reaction coordinate are treated quantum mechanically, that
is, the partition functions QCT(T, s) and &% (T) are computed quantum mechanically
for the bound degrees of freedom, although the reaction coordinate is still classical. In
recent work we often use the word “quasiclassical” to refer to this hybrid. Others,
mainly organic chemists and enzyme kineticists, often call this “semiclassical,” but
chemical physicists eschew this usage because “semiclassical’ is often a good descrip-
tion for the WKB-like methods that are used to include tunneling.

The “hybrid” or “quasiclassical” approach is very old [1]. As the next step we go
beyond the standard tteatdlent, and we discuss using the adiabatic theory to develop
a procedure for including quantum effects on reaction coordinate motion. A critical
feature of this approach is that it is only necessary to make a partial adiabatic
approximation, in two . First, one needs to assume adiabaticity only locally,
not globally. Second, even locally, although one uses an adiabatic effective potential,
one does not use the adiabatic approximation for all aspects of the dynamics.

2721
Adiabatic Theory of Reactions

The adiabatic approximation for reaction dynamics assumes that motion along
the reaction coordinate is slow compared to the other modes of the system and
the latter adjust rapidly to changes in the potential from motion along the reaction
coordinate. This approximation is the same as the Born—Oppenheimer electroni-
cally adiabatic separation of electronic and nuclear motion, except that here we
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use the vibrationally adiabatic approximation for an adiabatic separation of one
coordinate, the reaction coordinate, from all other nuclear degrees of freedom [1,
14, 44]. The Born-Oppenheimer approximation is justified based on the large
mass difference between electrons and atoms. It is less clear that the adiabatic
approximation should be valid for separating different nuclear degrees of free-
dom, although a general principle for applying this to chemically reactive systems
near the dynamical bottleneck would be that near the reaction threshold energy
(which is the important energy range for thermally averaged rate constants), the
reaction coordinate motion is slow because of the threshold condition. As we dis-
cuss below, the vibrationally adiabatic approximation can provide a useful frame-
work for treating quantum mechanical tunneling.

For chemical reactions, the adiabatic approximation is made in a curvilinear
coordinate system where the reaction coordinate s measures progress along a
curved path through Cartesian coordinates, and the remainder of the coordinates
u are locally orthogonal to this path. Note that the effective mass for motion along
the reaction coordinate is unambiguously defined by the transformation from Car-
tesian to curvilinear coordinates. The effective mass may be further changed by
scaling of the coordinates and momenta. When one scales a coordinate u,, by a
constant c!/2, one must change the reduced mass u,, for that coordinate by a factor
of ¢! so that the kinetic energy, 34,12, where an overdot denotes a time deriva-
tive, stays the same [45]. We are free to choose the value of the reduced mass for
each coordinate, and we choose it consistently to be the same value x for all coor-
dinates because this makes it easier to write the kinetic energy for curved paths
and for paths at arbitrary orientations with respect to the axes, and it makes it eas-
ier to make physical dynamical approximations. Coordinate systems in which the
reduced masses for all motions are the same are called isoinertial. In the present
article we call the constant reduced mass # and set it equal to the mass of the
hydrogen atom to allow easier comparison of intermediate quantities that depend
on the reaction coordinate.

A convenient choice of the reaction path is the MEP in isoinertial coordinates,
because by construction the gradient of the potential V(s,u) is tangent to s and
there is no coupling between s and u through second order. Therefore the poten-
tial can be conveniently approximated by

V(s,u) = Vygp(s) + Vi (u; ) = Vi (s) + Z w; Hy(s)u; (27.6)
ij

where the Hessian matrix for a location s along the reaction coordinate is given by

(27.7)

J s,u,=ul-=0

and we choose the origin for the u coordinates to be on the MEP. Although the
potential energy term in these coordinates is simple, the kinetic energy term is
complicated by factors dependent upon the curvature of the reaction path [13, 14,
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37, 46]. As a first approximation we will assume that the reaction-path curvature
can be neglected, but we will eliminate this approximation after Eq. (27.22)
because the curvature of the reaction path is very important for tunneling.

Treating bound modes quantum mechanically, the adiabatic separation between
sand u is equivalent to assuming that quantum states in bound modes orthogonal
to s do not change throughout the reaction (as s progresses from reactants to prod-
ucts). The reaction dynamics is then described by motion on a one-mathematical-
dimensional vibrationally and rotationally adiabatic potential

Va(n, 4,5) = Viygp(s) + €51 (n, 4, 5) (27.8)

where n and A are quantum numbers for vibrations and rotations, respectively,
and £5{(n, 4, s) is the vibrational-rotational energy of quantum state (n,4) of the
generalized transition state at s. In a rigid-body, harmonic approximation, the gen-
eralized transitive-state energy level is given by

o0, 4,9 = @)+ 3) +eH (49 279

where the harmonic vibrational| frequencies wy(s) are obtained from the non-
zero eigenvalues of the Hessian matrix in Eq. (27.7), and the rotational energy
level £3f (4, 5) is determined for the rigid-body geometry of the MEP at location s.
Six of the eigenvalues of the Hessian will be zero (for a nonlinear system), corre-
sponding to three rotations and three translations of the total system.

If the reaction coordinate is treated classically, the probability for reaction on a
state (n,4) at a total energy E is zero if the energy is below the maximum in the
adiabatic potential for that state, and 1 otherwise:

P¢(n, 4, E) = 6[E — VA(n, 1)) (27.10)

where VA(n, 4) is the absolute maximum of the adiabatic potential V,(n, 4,s)
and 0(x) is a Heaviside step function such that #(x) = 0 (1) for x < 0 (> 0). Since
the classical reaction probability is determined entirely by whether the energy is
above the adiabatic barrier or not, the neglect of reaction-path curvature in the
kinetic energy term does not matter. We shall see below that this is not true when
the reaction path is treated quan mechanically, in which case the curvature of
the reaction path must be inct X

An expression for the rate co t can be obtained by the proper Boltzmann
average over total energy E and over vibrational and rotational states

A (T) = [ho®(T)] ™ / dE exp(~E/ksT) 3" PA(n, 4, E) (27.11)
nA

which can be reduced for a bimolecular reaction to

kT |
(T) = ﬁ—ﬁ—(?) g; exp[— VA (n, 4)/ky T] (27.12)

839
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Like Eq. (27.2), Eqs. (27.11) and (27.12) are also hybrid quantized expressions in
which the bound modes are treated quantum mechanically but the reaction coor-
dinate motion is treated classically. Whereas it is difficult to see how quantum me-
chanical effects on reaction coordinate motion can be included in VTST, the path
forward is straightforward in the adiabatic theory, since the one-dimensional
scattering problem can be treated quantum mechanically. Since Eq. (27.12) is
equivalent to the expression for the rate constant obtained from microcanonical
variational theory [7, 15}, the quantum correction factor obtained for the adiabatic
theory of reactions can also be used in VIST.

27.2.2
Quantum Mechanical Effects on Reaction Coordinate Motion

A fully quantum mechanical expression for the rate constant within the adiabatic
approximation is given by replacing the classical reaction probabilities in
ﬁq. (27.11) with quantum mechanical ones P§(n, 4, E) corresponding to one-
dimensional transmission through the potential V,(n,4.s). Note that, at the ener-
gim of interest, tunneling and nonclassical reflection by this potential are con-
trolled mainly by its shape near the barrier top, that is, near the variational transi-
tion state. Thus P4(n, A,s) only requires the assumption of local vibrational adia-
baticity along with the observation that reactive systems pass through the dynami-
cal bottleneck region in quantized transition states [47). The quantum mechanical
vibrationally and rotationally adiabatic rate constant can be expressed in terms of
the hybrid expression in Eq. (27.12) by

kYA(T) = kYA(T) k¥A(T) (27.13)
where the transmission coefficient is defined by
deexp(_E/kBT) Z/l P(Az(nv 4, E)

KVA(T) =3
[dEexp(~E/kyT) T Pe(m, A, E)

(27.14)

Rather than compute the reaction probabilities for all quantum states that contrib-
ute significantly to the sum in Eq. (27.14), we approximate the probabilities for all
excited states by the probabilities for the ground state with the energy shifted by
the difference in adiabatic barrier heights (relative to a single overall zero of ener-
gy) for the excited state, VA(n, 4), and ground state, VA [16]:

P4(n, 4, E) = P [E — Vi (n, 4) — V€] {27.15)
where PAC(E) is the reaction probability for the ground-state adiabatic potential

This approximation assumes that adiabatic potentials for excited states are similar
in shape to the ground-state potential. Although this approximation is not valid in
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general, it works surprisingly well for calculating the transmission coefficient
, because at low tempexatures the transmission coefficient is dominated by contri-
€ | butions from the ground state or states energetically similar to the ground state,

and at high temperatures, where classical mechanics becomes valid, it correctly
goes to a value of one. With this approximation the transmission coefficient takes
the form

J dE exp(—E/ks T)PAS(E)
VAG (1) = ‘l (27.16)
[dE exp(~E/kaT)PES(E)

where G in general denotes the ground state, PAC(E) is PA(n, 4, E) with n, 4 in
. the ground state, and PAS(E) is like PAC(E) for all degrees of freedom except the

X reaction coordinate, but with the reaction coordinate motion classical. Then

. PAS(E) = 6(E - V%) (27.17)
where

y VAS = VA((n, 4) = G] (27.18)
p This yields

) KVAS(T) = (kBT)_lexlT(VAG [ksT) of dEexp(—E/ks T) PAS(E) 27.19)

We first consider the where the reaction probabilities are computed for

the adiabatic model with the reaction-path curvature neglected, the so-called

, vibrationally adiabatic zero-curvature approximation {36]. We approximate the

4) , quantum mechanical jground-state probabilities P§S(E) for the one-dimen-
: sional scattering problem by a uniform semiclassical expression {48}, which for

E < VAG jg given by

31 1 PSAS(E) = {1 + exp2B(E)]} " (27.20)
by | where the imaginary action integral is

ar-

£ |
6(E) = 4! / ds{2u[VS(s) — E] I8 @27.21)
£5) .
al. 4 is the mass for motidn along the reaction coordinate, VE(s) is the ground-state
lar , adiabatic potential, that is V,(n, 4,s) for n= 4 = 0, and s_ and s, are the classical

in turning points, that is the locations where VS(s) = E. The uniform semiclassical
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approximation can be extended to energies above the ground-state barrier maxi-
mum for a parabolic barrier [48]

PSAG(VAS 4 AE) =1 - PSAG(VAC - AE) (27.22)

and we use this method to obtain reaction probabilities for energies above the bar-
rier maximum up to 2VAS— E;, where E; is the maximum of the reactant and
product zero-point energies. For higher energies the probability is set to one.

When one uses CVT, one must replace PAS(E) by an approximation that is con-
sistent with the threshold implicitly assumed by CVT. In particular we replace
VAG bjy VE[sCVT(T)] in Eq. (27.17). This then yields for the rate constant with tun-
neling

ESVI/MT(T) = (THKVT(T) (27.23)

where

J d(E/ky T)exp(—E/ks T) PAC
k(1) =2
exp{—VE[sST(T)]}

(27.24)

and where MT can be SCT, LCT, or OMT.

The inability of the zero-curvature tunneling (ZCT) approximation to provide
reliable rate constants has been known for over 30 years [10, 36], and over the last
25 years significant progress has been made in developing approaches to treat the
multidimensional effect of reaction-path curvature in adiabatic calculations of
reaction probabilities. The most successful methods for including the multidi-
mensional effect of reaction-path curvature in adiabatic calculations of reaction
probabilities specify a tunneling path that ‘cuts the corner’ and shortens the tun-
neling length [18]. Marcus and Coltrin [25] found the optimum tunneling path for
the cpllinear H + H, reaction by finding the path that gave the least exponential
dam?ing. General multidimensional tunneling (MT) methods, applicable to
polyatomic reactions, have been developed that are appropriate for systems with
both small [17, 18, 22, 24] and large [20, 23, 34] reaction path curvature, as well as
more general methods that optimize tunneling paths by a least-imaginary-action
principle [20, 39]. In practice it is usually sufficient to optimize the imaginary
action from among a small set of choices by choosing either the small-curvature
tunneling (SCT) approximation or the large-curvature tunneling (LCT) approxi-
mation, whichever gives more tunneling at a given tunneling energy; this is called
microcanonical optimized multidimensional tunneling (#OMT), or, for short,
optimized multidimensional tunneling (OMT) [23, 49]. These methods are dis-
mssbd below in more detail in the context of illustrative examples of H-transfer
processes, but we anticipate that discussion and the later discussion of con-
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densed-phase reactions by noting that all MT approximations generalize
Eq. (27.24) to

{ d(E/kg T)exp(—E/kg T)P(V1, V2| E)
T) =
M = LI /kT)

(27.25)

where V, is the effective multidimensional potential energy surface, V; is the
effective one-dimensional adiabatic potential energy curve, and s«(T) is the varia-
tional transition state location at temperature T. In the ZCT and SCT approxima-
tions, one need not specify V;, that is the tunneling depends only on the effective
one-dimensional adiabatic potential energy curve, but in the LCT and OMT
approximations we need to know more about the potential energy surface than
just the information contained in V,(s). For gas-phase reactions, V,(s) is just
V& (s), and V, is the full potential energy surface.

273
H-atom Transfer in Bimolecular Gas-phase Reactions

Gas-phase reactions of two finteracting reactants have provided a fertile ground for
developing and testing methods for treating H-transfer reactions. In particular,
triatomic reactions like H + H; have been instrumental in this development and
in helping us understand the limits of validity of the approximations used in these
methods, because accurate quantum mechanical results are available for compari-
son. We present three examples of reactions that help us present details of the
methods as well as features displayed by H-atom transfers.

2734
H+H,and Mu + H,

The H + H, reaction and its isotopic variants have been extensively studied over
the years. Muonium (Mu) is one of the most interesting isotopes studied for this
reaction because Mu (consisting of a positive muon and an electron) has a mass
that is about 8.8 times er than that of H and has the potential to exhibit very
large kinetic isotope effects. Even though both reactions, H + H, and Mu + H,,
involve the transfer of a H atom, the presence of the much lighter Mu atom drasti-
cally changes the nature of|the quantum mechanical effects on the H-transfer pro-
cess. Calculations of H- and Mu-transfer rate constants are illustrated here using
the Liu-Siegbahn-Truhlar-Horowitz (LSTH) potential energy surface [50}.

The traditional treatment of KIEs is based upon conventional TST {29, 30}, in
which the dividing surface is placed at the saddle point of the reaction, with tun-
neling effects generally included by a separable approximation such as the Wigner

843
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correction or Bell parabolic tunneling. Using this approach with the harmonic
approximation, the Mu/H KIE is determined by

e PF

The Wigner correction for tunneling depends only on the imaginaty frequency
@, x for the unbound mode at the saddle point (8]

2
lew l
1 5, X
Ky =1 +§ ( 6T ) (27.27)

Reactant vibrational and rotational partition functions are the same for both reac-
tions (i.e., those for H,) and the ratio of reactant partition functions reduces to the
ratio of translational partition functions, which depends only on the reduced
masses for the relative motion of the reactants

o g (31) (728)

13}

The ratio of partition functions for bound modes at the saddle point is determined
by the frequencies for those modes,

0y, 1) sinh (heorgui/ 2k T)
QH B i1 sinh (ﬁwH,i/ 2"BT)

(27.29)

where F is the number of vibrational modes. With the rate constant for the reac-
tion with the light mass in the numerator, a KIE is termed ‘normal’ if it is greater
than one. Because of the large difference in masses, the saddle point frequendies
for the Mu reaction are larger than those of the H reaction, and the ratio of saddle
point partition functions is less than one. The imaginary frequency for the reac-
tion coordinate motion is also higher for the Mu reaction than for the H reaction,
so that the ratio of tunneling factors is greater than one as well as the ratio of reac-
tant partition functions. The saddle point frequencies for these two reactions
using the LSTH potential energy surface are (2059, 909, and 1506 i cm™!) and
(4338, 1382, and 1784 i cm™) and for the (stretch, bend, and unbound) modes for
H + H, and Mu + H,, respectively. Using these frequencies in harmonic transition
state theory with Wigner tunneling gives a KIE less than one, which is termed
inverse, as shown in Fig. 27.1, where the TST/W results are compared with experi-
ment [51]. Although TST with Wigner tunneling gives the right qualitative trend,
both the magnitude and slope are inaccurate. We next discuss the other curves in
Fig. 27.1, which present improvements in the treatment of quantum mechanical
effects for the hydrogen transfer process.
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Figure 27.1 Kinetic isotope effects for the Mu/H + H,
reaction as a function of temperature.

A first consideration is the treatment of the bound vibrational modes, which in
the TST/W results shown in Fig. 27.1, use the harmonic approximation. The total
harmonic zero-point energy at the saddle point (for stretch and bend vibrations) is
much higher for the Mu reaction, 10.2 keal mol-!, than for the H reaction,
5.5 keal mol-1. As shown in Fig. 27.2, the stretching vibration extends to larger
distances and higher energies for the Mu reaction than for the H reaction, and
therefore accesses more anharmonic parts of the potential. In this situation meth-
ods for including anharmonicity must be considered [52, 53].

The straight lines through the saddle point end at the classical turning points
for the harmonic approximation to the stretch potential at the saddle point. For
the symmetric H + H, reaction the harmonic turning points extend just past the
12 kcal mol! contour, and on the concave side, it is very close to the accurate
anharmonic turning point, calculated using a WKB approximation [53}. For the
Mu + H, reaction the harmonic turning point on the concave side falls short of
the anharmonic turning point, which is near the 16 kcal mol! contour, and it
extends past the 20 kcal mol-! contour on the convex side of the turning point,
clearly indicating that the potential for this mode is quite anharmonic. Compari-
son of the curves label TSTYW (harmonic treatment) and TST/W (WKB) in
Fig. 27.1 shows the importance of anharmonicity in the quantum treatment of
bound states. When the vibrational modes at the saddle point are treated more
accurately using a WKB method [53], the Mu rate constants are increased by about
a factor of two, while the H rate constants change only slightly, leading to a larger
disagreement with experiment for the KIE.

A more accurate treatment of the reaction uses variational TST, in which the
dividing surface is allowed to *nove off the saddle point, or equivalently, uses the
adiabatic theory as described in Section 27.2. The vibrationally adiabatic potential
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1.0

R (A)
Figure 27.2 Potential energy contours the H and Mu reactions, respectively. Harmo-
(thin solid curves) at 4, 8,12, 16, and nic stretch vibrational modes are the straight
20 keal mol! are shown for collinear A~-HH lines through the saddle point. Minimum
geometries (A= H or Mu) with HH and AH energy paths are the curved lines through the
distances represented by R, and R,, respec- saddle point. The curved lines on the concave
tively. The solid diamond denotes the saddle side of the MEP are paths of tuming points
point. Thick solid and dashed curves are for for the anharmonic stretch vibration.

curves for the two reactions are shown in Fig. 27.3 and are compared with the
potential along the MEP. The MEPs for the two reactions, as shown in Fig. 27.2,
are very close to each other, so that the potentials along the MEP are also about
the same. Note that the MEPs are paths of steepest descent in a mass-weighted or
mass-scaled coordinated system, and therefore, the MEPs for the H and Mu reac-
tions are slightly different. The largest differences are seen in the entrance chan-
nel (large R,;) where the reaction coordinate is dominated by either H or Mu
motion relative to H,, while in the exit channel (large R;) the reaction coordinate
for both reactions is an H atom moving relative to the diatomic product (either H,
or MuH). The reaction coordinate in Fig. 27.3 is defined as the arc length along
the MEP through mass-weighted coordinates. To facilitate comparisons of poten-
tial curves for the two reactions, we use the same effective mass for the mass
weighting — the mass of the hydrogen atom. Because the mass of Mu is so much
lighter than H, the scale of s on the reactant side is contracted when the same
mass weighting is used for both reactions, leading to a steeper increase for Mu.
The ground-state adiabatic potential curves in Fig. 27.3 are constructed by add-
ing accurate anharmonic zero-point energies for the stretch and bend modes to
Vymep- On the reactant side the shapes of Viygp and VS are very similar with the
adiabatic potential being shifted up by approximately the zero-point energy for the
H, stretch vibrations, 6.2 kcal mol-t. Near the saddle point this contribution
decreases markedly for the H + H, reaction, to 2.9 kcal mol-, causing the adia-
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and ground-state adiabatic potential (VG, upper pair of curves)
as a function of reaction coordinate s for the H + H, reaction
{solid lines) and Mu + H, reaction (dashed line).

Figure 273 Potential along the I}EP (Viem Jower pair of curves)

batic potential to be less peaked than Vg for this reaction. Contributions from
the bending vibration near the saddle point are about 2.6 kcal mol-1, otherwise the
adiabatic potential curve would be even flatter near the saddle point. The zero-
point energy for MuH is 13/4 kcal mol-!, which accounts for the large difference
in the H and Mu adiabatic curves in the product region and the shift of its max-

imum toward products. Thé difference in the maximum of the adiabatic curve
and its value at the saddle point is about 2.3 kcal mol-!, which leads to a decrease
by about a factor of 10 in thqe Mu rate constant at 500 K. This is the main reason
for the large shift in the curve labeled ICVT/SCSAG (WKB) relative to the TST/W
(WKB) curve in Fig. 27.1.

We now turn our attention to the issue of quantum mechanical tunneling in
these H-atom transfer reactlbns The Wigner and Bell tunneling methods use the
shape of Vygp at the saddle | pomt to estimate the tunneling correction. The effec-
tive mass for the reaction cpordinate in Fig. 27.3 is the same for both reactions,
therefore, tunneling is treated as the motion of a particle with the mass of a hydro-
gen atom through the potentials in the figure. The similarity in the Vygp curves
for H and Mu indicates why the tunneling correction using these methods gives
similar results for the H anﬂ Mu reactions. For example, Wigner tunneling gives
corrections for Mu that are less than 30% higher those for H for 300 K and higher
temperatures. The shapes of the adiabatic curves exhibit greater differences with
the curve for the Mu reaction having a narrow barrier near the maximum. When
reaction-path curvature is neglected, the tunneling correction factors for Mu are
factors of 2.5 and 1.6 higher those for H at temperatures of 300 and 400 K.
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As discussed above, the most accurate methods for treating tunneling include
the effects of reaction-path curvature. The original small-curvature tunneling
(SCT) method [17] provides an accurate description of the H-transfer process in
these triatomic H-atom transfer reactions. In the Marcus—Coltrin method [25] the
tunneling occurs along the path of concave-side turning points for the stretch
vibration orthogonal to the reaction coordinate. Figure 27.2 shows paths of tum-
ing points t,(s) for the stretch vibration for the H/Mu + H, reactions, where the
turning points are obtained for the anharmonic potential at the WKB zero-point
energy. Tunneling along this path shortens the tunneling distance and the effect
of the shortening of the path can be included in the calculation of the action inte-
gral by replacing the arc length along the MEP ds in Eq. (27.15) by the arc length
along this new path d¢, or equivalently by including the Jacobian d¢ /ds in the inte-
grand of Eq. (27.15). An approximate expression for d/ds can be written in terms
of the curvature of the MEP and vibrational turning points [17, 18]. The MEP is
collinear for the H + H, reaction and the curvature coupling the bend vibration to
the reaction coordinate is zero for collinear symmetry. Therefore, the Jacobian can
be written just in terms of the one mode

(%)2 ~ 1 — ()t ()] (9—;;3)2 (@7.30)

The SCT method extends the Marcus—Coltrin idea in a way that eliminates prob-
lems with the Jacobian becoming unphysical. Rather than including the Jacobian
factor, the reduced mass for motion along the reaction coordinate 4 is replaced by
feals) in Eq. (27.21), where p1.g(s) is given by

) _ min{l,exP[—Za(S) - {a(s)12+(d—;=;s-)z}} @731

a(s) = K(s)tr(s) (27.32)

where k{s) is the curvature coupling between the reaction coordinate motion and
the stretch vibrational motion [37]. Note that the signs of k(s) and ty(s) are chosen
so that the path lies on the concave side of the path and their product a(s) is posi-
tive.

The reaction-path curvature is given by the coupling of the stretch vibration to
the reaction coordinate in the mass-weighted coordinate system, not the coordi-
nate system used to display the paths in Fig. 27.2. The reaction Mu + H, has
smaller reaction-path curvature than the H + H, reaction, by about a factor of two
in the region near the peak of the adiabatic barriers, and the enhancement of the
tunneling from corner cutting is much less for the Mu reaction. Neglect of reac-
tion-path curvature gave tunneling factors for the Mu reaction that are much high-
er than those for the H reaction and including the effects of the curvature greatly
reduces this large difference. In fact, at 300 K without curvature the Mu reaction




o

SO own

§1

-
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has a tunneling factor that is 2.5 times larger than the H reaction and this is
reduced to an enhancement of only 2% when curvature is included with the SCT
method. For temperatures from 400 to 600 K, the SCT tunneling factors for the
Mu reaction are lower than those for the H reaction by about 9%. When these
effects are included the predicted KIEs are in good agreement with the experimen-
tal results, being only 30-40% low, as shown in Fig. 27.1.

The H/Mu + H, reactions are examples of H-atom transfers with relatively
small reaction-path curvature and provide a good example of how the description
of the hydrogen transfer process is effected by quantization of bound modes, var-
iational optimization of the location of the dividing surface, and inclusion of
quantum mechanical effects on reaction coordinate motion. The magnitude of
the reaction-path curvature for an H-atom transfer reaction is often correlated
with the skew angle, where the skew angle is defined as the angle between the
gradient along the reaction path in the product channel with that in the reactant
channel. For the H-atom transfer reaction AH + B — A + BH this angle is defined
by

1
mymg ] 2

<08 Potem = [(mA + my)(mg + my)

(27.33)

where A and B can be atomic or polyatomic moieties with masses m, and my.
Skew angles for the H and Mu reactions are 60° and 77", respectively, and we saw
above how the larger curvature in the system with the smaller skew-angle system
resulted in greater tunneling. When the masses of A and B are much larger than
the mass of H, the skew angle can become very small, resulting in large reaction-
path curvature. These systems require tunneling methods that go beyond the
small-curvature approach used here.

27.3.2
Cl+ HBr

The collinear Cl + HBr reaction provides an example of a system with a very small
skew angle. Figure 27.4 shows potential energy contours for this collinear reaction
in mass-scaled coordinates x and y for the potential energy surface of Babamov et
al. [54], where x is the distance from Cl to the center of mass of HBr and y is a
scaled HBr distance. The kinetic energy is diagonal in this coordinate system and
the scaling of y is chosen so that the effective masses for x and y motion are the
same. Therefore, reaction dynamics in this coordinate system can be viewed as a
single mass point moving on the potential energy contours in Fig. 27.4. The skew
angle, which in this coordinate system is the angle between the minimum energy
path in the asymptotic reactant channel and the asymptotic product channel, is
only 12°. Regions of large reaction-path curvature, which can be seen near the sad-
dle point, lead to a breakdown of the approximations used in the SCSAG method.
The approximation of vibrational adiabaticity is valid in the entrance and exit
channels where the stretch vibration is dominated by motion of the hydrogen
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Figure 27.4 Potential energy contours

(thin solid curves) from —10 to 20 kcal mol~!
(spaced every 5 kcal mol™') are shown for the
collinear Ck-H-Br reaction as a function of
internal coordinates x and y (see text). A solid
diamond denotes the saddle point and the
thick straight line through the saddle point is
the anharmonic vibrational mode. The thick
solid curve is the minimum energy path.

The classical turning point on the ground-
state adiabatic potential energy curve at

9 kcal mol is indicated by the unfilled
symbol in the entrance channel. Turning
points for adiabatic potential curves with the
stretch vibration in its ground state (n=0)
and excited state (n = 2) are shown as an
unfilled circle (n = 0) and square (n=2)

in the exit channel. Dashed lines connect
the turning point for the ground-state adia-
batic potential curve in the entrance channel
with the turning points for n=0and 2in
the exit channel.

atom. At the saddle point the vibrational motion more nearly resembles the rela-
tive motion of the two heavy atoms leading to a low vibrational energy (e.g., only
0.4 kcal mol-! at the saddle point compared to 3.8 kcal mol! for reactants). The
thick straight line through the saddle point shows the extent of the vibrational
motion. Because of the large reaction-path curvature, the regions of vibrational
motion in the reactant valley on the concave side of the MEP, just before the bend
in the MEP, overlap with the vibrational motion at the saddle point. This compli-
cation, and the strong coupling of the reaction coordinate motion to the vibration
orthogonal to it, argues against an adiabatic treatment of hydrogen atom tunnel-
ing in the saddle point region. For this type of system the LCT method is more
appropriate [19, 20, 22, 39, 49, 55], and we describe it briefly here. A key aspect of
LCT methods is that the tunneling depends on more aspects of the potential ener-
gy surface than just VG(s), and that is why we introduced the multidimensional
potential energy surface in Eq. (27.25).

In the vibrationally adiabatic approximation, tunneling at a fixed total energy is
promoted by motion along the reaction coordinate and initiates from the dlassical
turning point on the adiabatic potential. The physical picture in the LCT method
is that the rapid vibration of the hydrogen atomn promotes transfer of the hydrogen
atom between the reactant and product valleys and this hopping begins from turn-
ing points in the vibrational coordinate on the concave side of the MEP. For a giv-
en total energy, tunneling can take place all along the entrance channel, up to the
adiabatic turning point, as the reactants approach and recede. Tunneling is
assumed to occur along straight-line paths from the reactant to product valleys,
subject to the constraint that adiabatic energies in the reactant and product chan-
nels are the same. Figure 27.4 illustrates the LCT tunneling paths, where the
straight dashed line is the tunneling path connecting points, denoted by open cir-
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cles, along the MEP for which the ground-state adiabatic potential curve has an
energy of 9 kcal mol-L. In the large-curvature ground state approximation, version
3 or version 4 [22, 39, 49}, the straight-line path used to specify a given tunneling
path initiates and terminates on the MEP rather than at the turning points for the
vibrational motion. This assumption simplifies the extension of the method to
polyatomic reactions, and it yields results that are similar to earlier versions of the
method with more complicated specifications. In current work one should always
use the latest version (version 4) of the LCT method because it incorporates our
most complete experience on how to embed the physical approximations in a
stable algorithm, although the differences between the versions are small in most
cases.

Although the LCT method does not rely on the adiabatic approximation in the
region where it breaks down (i.e., the nonadiabatic region), it does use the approx-
imation in the reactant and product channels to determine the termini for the
straight-line tunneling paths. Figure 27.5 shows adiabatic potential curves in the
reactant and product regions and the potential along the MEP. This reaction is
exoergic by about 16 kcal mol! with a barrier over 10 kcal mol! higher than the
minimum of the reactant valley. Because of the large exoergicity and rapid
decrease of the potential along the MEP on the product side, the value of the

10

Energy (kcal/mol)

!
-—
<

1 T

s (aﬂ)

Figure 27.5 Potential along the minimum
energy path (lowest continuous curve) and
adiabatic potential segments in the reactant
and product regions for n = 0 (solid curve),

1 (long dashed curve) and 2 (short dashed
curve) as a function of reaction coordinate
for the collinear Cl + HBr reactions. The
values of the adiabatic potential curves in the
asymptotic reactant and product regions are

shown as short straight-line segments on the
left and right of the plot. The gray shaded
area around the saddle point is a region
where the adiabatic approximation is not
valid (see text). The 3 small tick marks at

s = 0 are the values the 3 adiabatic potential
curves would have at the saddle point.

The bullets are turning points for a total
energy of 9 kcal mol-1.
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ground-state adiabatic potential at the edge of the nonadiabatic region on the
product side is already quite low (near 0).

The vibrationally adiabatic approximation requires that vibrational quantum
numbers remain constant throughout a reaction. The strong coupling induced by
the reaction-path curvature can lead to appreciable nonadiabaticity and population
of excited states in the product channel, and this effect is included in the LCT
method. (As mentioned above, the SCT approximation does not imply global
vibrational adiabaticity either, but it does assume adiabaticity for the effective
potential during the entire tunneling event itself; the LCT approximation includes
vibrational nonadiabaticity even for the effective potential during the tunneling
event.) Figure 27.5 shows the product-channel segments of the adiabatic potential
curves for the ground and first two excited states. The product-side turning point
for the first excited adiabatic curve also falls within the nonadiabatic region like
the ground-state one, and on the scale of the plot is not discernible from the
ground-state turning point. The energies of the n = 2 adiabatic curve are suffi-
ciently high that the turning points occur well out into the product region {around
s =1 ag for a tunneling energy of 9 kcal mol-!). Figure 27.4 shows the tunneling
path corresponding to these turning points. This path is seen to cut the corner
significantly. The barrier to tunneling along this path is comparable to the adia-
batic barrier and the shorter tunneling path offered by this corner cutting greatly
enhances the tunneling. The LCT method was extended to account for contribu-
tions from tunneling into excited states of products {55}, and for this reaction, the
contribution to the tunneling correction factor is dominated by tunneling into the
n=2 state.

The small-curvature (SC) and large-curvature {(LC) methods were developed to
treat tunneling in the cases of two extremes of reaction-path curvature. In the 5C
methods, the effective tunneling path {which is implicit but never constructed
and not completely specified, since it need not be) is at or near the path of con-
cave-side turning points for the bound vibrational motions that are coupled to the
reaction coordinate motion. In the LC methods, the effective tunneling paths
(which are explicit) are straight-line paths between the reactant and product val-
leys. The optimum tunneling paths for reactions with intermediate reaction-path
curvature may be between these two extremes, and for these reactions the least-
action tunneling (LAT) method {20, 39, 56] is most appropriate. In the LAT meth-
od, we consider a sequence of tunneling paths depending on a single parameter a
such that for a = 0 the tunneling path is the MEP and for a = 1 it is the LCT tun-
neling path. The optimum value of « (yielding the optimum tunneling path) for
each tunneling energy is determined to minimize the imaginary-action integral
and thereby maximize the tunneling probability. Figure 27.6 compares rate con-
stants computed by the ICVT method, including tunneling by SCT, L.CT, and LAT
methods, with accurate quantum mechanical ones [55] for the collinear Cl + HBr
reaction. The adiabatic method (SCT) cannot account for the large probability of
populating the n= 2 excited product state and underestimates the accurate rate
constants by factors of 3 to 6 for temperatures from 200 to 300 K. The LCT and
LAT methods agree to within plotting accuracy, and are therefore shown as one
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Figure 27.6 Rate constants as a function of temperature for the colfinear
Cl + HBr reaction. Accurate quantum mechanical rate constants (solid line
with bullets) are compared with those computed using improved canonical
variational theory (ICVT) with tunneling included by SCSAG (dotted line)
and LCG3 and LAG (long dashed line).

curve, indicating that the optimum tunneling paths for this reaction are the
straight-line paths connecting the reactant and product valleys. These methods
underestimate the accurate rate constants by only 10-25% for T from 200 to 300 K
and agree to within 50% over the entire temperature range from 200 to 1000 K.
The excellent agreement with accurate rate constants for this model system indi-
cates the good accuracy provided by the LCT and LAT methods for this type of
small skew angle reaction.

The physical picture of tunneling in this system provided by the approximate,
yet accurate, tunneling methods is very different than descriptions of tunneling in
simpler conventional models of tunneling. In the Wigner and Bell tunneling
approximations, properties of the potential near the saddle point determine the
tunneling correction factors. As illustrated in Fig. 27.4, barriers along straight-line
paths, which connect the reactant and product channels, control the actual tunnel-
ing in this small-skew angle system, and these paths are significantly displaced
from the saddle point.

2733
Cl+ CH4

The higher dimensionality of polyatomic reactions makes them more of a chal-
lenge to treat theoretically. Variational transition state theory with multidimen-
sional tunneling has been developed to allow calculations for a wide variety of
polyatomic systems. In this section we consider issues that arise when treating
polyatomic systems. The Cl + CH, reaction provides a good system for this pur-
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pose because the accurate SPES potential energy surface of Corchado et al. [57} is
available and a variety of experimental results [58] exist to validate the methods.
Hydrogen transfer between Cl and CH; corresponds to a heavy-light-heavy
mass combination and this reaction has a small skew angle of about 17° and
regions of large curvature along the reaction path. The reaction is endoergic by
6.1 kcal mol-! on the analytical potential energy surface with its barrier in the
product valley (the HCl bond length at the saddle point is only 0.08 A longer than
HCl in products while the CH bond length is 0.30 A longer at the saddle point
than in the reactants). Figure 27.7 shows the potential along the MEP and the
ground-state adiabatic potential for this reaction, harmonic frequencies wys), and
components ki{s) of reaction-path curvature along the reaction coordinate. Al-
though there are 11 vibrational modes orthogonal to the reaction path, only 3 have
significant curvature components. Relative motion of the two heavy moieties CH,
and Cl dominates the reaction coordinate in the reactant and product regions,
while in the interaction region, where the curvature is largest, motion of the H
atom between CH, and Cl characterizes reaction coordinate motion. The mode
that couples most strongly to reaction coordinate motion mirrors this behavior
and is denoted the reactive mode. It originates as a nondegenerate CH stretch in
the reactants, transforms into motion that is dominated by C—Cl vibration in the
region of strong coupling, and ends as an HC(l stretch in the products. Note that
regions of large reaction-path curvature also coincide with regions where the har-
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Figure 27.7 (a) Potential energy and ground-state adiabatic potential curves as a
function of reaction coordinate for the Cl + CH, reaction using the SPES surface.

{b) Nine highest harmonic frequencies for modes orthogonal to the reaction coordinate.
Doubly degenerate modes are shown as dashed curves. The two lowest frequency
transition modes are not shown. (c) Components of reaction-path curvature (solid lines)
for 3 vibrational modes and two approximations for turning points along the curvature
vector (dashed curves) as a function of reaction coordinate. Short dashed curve is

the #(s)- t(s) approximation and the long dashed curve is (s) (see text).
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monic frequencies change rapidly and we observe crossings of modes. Because of
the late barrier, the largest curvature occurs well before the saddle point (between
s = 0.6 and —0.4 a,), where the potential along the MEP is only about half the
value at the barrier maximum and the adiabatic potential exhibits a local minimum.
The peak in the curvature and dip in the adiabatic potential are a result of the transfor-
mation of the reactive mode from a high-frequency CH stretching mode (2870 cm™!
in the reactants) to a lower frequency mode {~1300 cm! at s=—0.5 ag) with contribu-
tions from CCl motion. A second region of large curvature occurs near the saddle
point where this low-frequency mode transforms into a high frequency HCl vibra-
tion (2990 cm-! at products). A second mode, corresponding to a methyl umbrella
mode, also shows significant coupling to the reaction coordinate, and the value of
curvature coupling for this mode is larger than the reactive mode near s = 0). A
third mode, corresponding to a high-frequency CH stretching mode throughout
the reaction, exhibits much smaller, but still significant, coupling near s=-0.5 ag).

Accurate treatment of tunneling in this reaction requires consideration of how the
curvature in multiple dimensions is taken into account. First we consider how the
SCT method is defined to consistently treat reactions with curvature coupling in mul-
tiple modes. In SCT, we assume that the corner cutting occurs in the direction along
the curvature vector x(s) in the space of the local vibrational coordinates Q. To empha-
size this, the final version of the SCT method was originally called the centrifugal-
dominant small-curvature approximation [22]. In this method, we make a local
rotation of the vibrational axes so that &{(s) lies along one of the axes, u,, and by con-
struction the curvature coupling in all other vibrational coordinates, u;, i=2to F-1,
are zero in this coordinate system. Defining ¥(s) as the turning point for zero-point
motion in the potential for the u; coordinate, the effective mass in the imaginary
action integral is given by the SCT expression for one mode coupled to the reaction
coordinate, as written in Eq. (27.31), with a(s) replaced by

i

F-1 7
a(s) = (}: [xi(s)]’) Ks) (27.34)

i=1

where F is the number of vibrational modes, t(s) is the turning point for mode i
on the concave side of the MEP. The definition of i(s) is provided in previous
work for a harmonic description of the vibrational modes [22]. We illustrate here
how it works for the Cl + CH, reaction.

As discussed above, only three modes contribute significantly to the reaction-
path curvature in the Cl + CH, reaction, and the coupling for two of the modes is
much greater than for the third. Figure 27.8 shows a contour plot of the two har-
monic vibrational modes with the largest coupling where the frequencies are
those at s=—0.49 a,. Turning points in these modes, #,(s) and #,(s), are indicated by
the square and triangle. The direction &(s), a unit vector, of the curvature-coupling
vector x{s) is shown as a straight line and this line defines the u; axis. The line
extends out to a value equal to &(s)-t(s) = x(s)}t;(s) + K(s)t(s). This approximation
to the turning point in u, (which is what one would use if one allowed indepen-
dent corner cutting in every generalized normal mode) gives a value that is too
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Figure 27.8 Potential energy contours for two harmonic vibrational modes,
which are orthogonal to the reaction coordinate, for the Cl + CH, reaction

at s = -0.49 a, on the reaction coordinate. The straight line is the direction u,
of the reaction-path curvature vector and the symbols are turning points for
zero-point harmonic metion along O, (square), O, (triangle), and u, (circle).

high when compared with value of ¥(s) for the SCT method, which is indicated by
the circle. Figure 27.7 presents a comparison of #(s) and &{s)-t(s) along the reac-
tion path and shows that the value obtained using the &(s)-t(s) approximation is
consistently larger than #(s). For systems with many modes contributing signifi-
cantly to the reaction-path curvature, the overestimate of the turning point that
one would obtain by allowing independent corner cutting in every generalized
normal mode is even larger and unphysical. Equation (27.34) gives a consistent
procedure to extend the SCT approach to multidimensional systems.

As was the case with the Cl + HBr reaction, the small skew angle and concomi-
tant large reaction-path curvature in the C1 + CH, reaction require consideration
of methods beyond the small-curvature approximation. It might be argued that
the SCT method is adequate because the region of largest curvature falls outside
the region where tunneling contributes significantly to the thermal rate constant.
However, the only true test is to perform calculations that treat corner cutting
more accurately for large-curvature systems. Previous work on this system has
shown that the optimum tunneling paths are the straight-line paths used in the
LCT method [57]. Consistent procedures have been presented for extending large-
curvature methods to multidimensional systems [22, 39, 49]. In the LCG3 and
LCG4 versions of the LCT method the tunneling paths are uniquely defined as
straight lines between points on the MEP in the reactant and product valleys, and
the key to their success is the definition of the effective potentials along these tun-
neling paths. As mentioned previously, the SCT and LCT methods represent ap-
proaches that are most appropriate for two extremes and the most general and
optimal way to interpolate between these extremes is the least-action method. A
simpler optimized tunneling (OMT) approach (23, 59] is obtained by using the
SCT and LCT reaction probabilities and choosing the one that gives the largest
tunneling probability at each energy. In this case the OMT probability is given by

POMT(E) = max{ ﬁggg (27.35)
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and the microcanonical optimized multidimensional tunneling (#OMT) tunnel-
ing correction factor is obtained by substituting this expression for the probability
into Eq. (27.13). Rate constants and kinetic isotope effects for the Cl + CH, reac-
tion, its reserve, and its isotopic variants, computed using #OMT on the potential
of Corchado et al. agree well with experiment [57).

274
Intramolecular Hydrogen Transfer in Unimolecular Gas-phase Reactions

Intramolecular hydrogen transfer is another important class of chemical reactions
that has been widely studied using transition state theory. Unimolecular gas-
phase reactions are most often treated using RRKM theory [60}, which combines a
microcanonical transition state theory treatment of the unimolecular reaction step
with models for energy redistribution within the molecule. In this presentation
we will focus on the unimolecular reaction step and assume that energy redistri-
bution is rapid, which is equivalent to the high-pressure limit of RRKM theory.

Unimolecular hydrogen transfer reactions require additional comsiderations
beyond those discussed for bimolecular reactions. The expression for the thermal
rate constant takes the same form as Eq. (27.1), but the reactant partition function
per unit volume in the bimolecular expression is replaced by a unitless partition
function for the vibrations and rotations of the reactant molecule. More serious con-
siderations are required in treating quantum mechanical effects, particularly tun-
neling. For bimolecular reactions, quantum mechanical tunneling can be initiated
by relative translational motion along the reaction coordinate or by vibrational
motion in small skew-angle systems. For unimolecular reactions, vibrational
motion alone promotes tunneling. For bimolecular reactions, heavy-light-heavy
mass combinations require the reaction coordinate to have regions of large reac-
tion-path curvature to connect the reaction paths in the asymptotic entrance and
exit channels. (If the barrier occurs in the region of high curvature, large-curvature
tunneling may dominate small-curvature tunneling.) Such a general statement can-
not be made for unimolecular reactions, and the type of reaction-path curvature in
unimolecular H-transfer reactions can vary from small-curvature to large-curvature.

Initiation of tunneling by vibrational motion in the reaction coordinate motion
requires modification to the expression used to obtain the thermally averaged tun-
neling correction factor, Eq. (27.19). For unimolecular processes tunneling does
not occur for a continuum of translational energies, but from discrete energy lev-
els in the bound wells of the adiabatic potential. In this case the integral in
Eq. (27.19) should be replaced by a sum over discrete states plus contributions
from continuum energies above the barrier {61, 62]

KA(T) = (kaT) exp(~VA%/kaT) 3 2 PAS ) exp(—2,/aT)

+ (D) "exp(-V*/lyT) [ 4B P (Bep(—E/ksT) (2736
VAC
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where the sum is over all bound states along the reaction coordinate motion in
the reactant well, ¢, is the energy of state v in the reactants, and P{C(E) for ener-
gies above the barrier are given by Eq. (27.22) up to 2VAG— E; and are set to one
above that energy. Equations (27.19) and (27.36) are equivalent for a sufficiently
large density of states in the reactant well.

We provide two examples of intramolecular hydrogen transfer reactions in
polyatomic systems to illustrate the convenience and value of VTST methods for
treating these types of reactions.

27.41
Intramolecular H-transfer in 1,3-Pentadiene

The [1,5] sigmatropic rearrangement reaction of cis-1,3-pentadiene proceeds via
hydrogen transfer from C-5 to C-1, and a primary kinetic isotope effect has been
observed experimentally [63]. The large number of degrees of freedom (33 vibra-
tional modes at the reactants) and types of motions involved in the rearrangement
process, including torsional motions and vibrations of the carbon skeletal modes,
as well as H atom motions, complicate theoretical treatment of this reaction. For
this reason, approaches based on reduced-dimensional models [64] have difficulty
capturing the correct dynamics of the rearrangement process. Variational transi-
tion state theory with multidimensional tunneling has been applied to this reac-
tion in its full dimensionality to provide a complete understanding of the
dynamics of the rearrangement process and the importance of tunneling in it
[24, 65]. These studies used the direct dynamics approach [33, 66] in which elec-
tronic structure calculations of energies, gradients, and Hessians are performed
as needed.

The reactant configuration of 1,3-pentadience is the s-trans conformer. Denoting
the dihedral angles for C1-C2-C3-C4 and C2-C3-C4-C5 as ¢, and ¢,, respec-
tively, motion along the MEP out of the reactant well corresponds to rotation of ¢,
around the C2-C3 single bond from 180° to a value of about 30°. The change in
energy for this motion along the reaction coordinate is relatively small compared
to the barrier height of 39.5 kcal moll. Once the ethylene group {C1-C2) ap-
proaches the C5 methyl group, the second dihedral angle changes in a concerted
manner with ¢,, that is, ¢, increases from a value of zero as ¢, continues to
decrease. The potential along the MEP is shown in Fig. 27.9, and the left most
extreme of the reaction coordinate (s = —3 @) is approximately the value of the
reaction coordinate where ¢, starts to change. Much doser to the saddle point
(within about 0.5 ag) the reaction coordinate motion is characterized by H-atom
motion (relative to C1 and C5) accompanied by rearrangement in the C-C dis-
tances, with the largest changes in the C1-C2 and C4-C5 distances. The saddle
point is a cyclic structure with C, symmetry; the transferring H atom is equidi-
stant from the C; and C; carbon atoms with a bent C-H-C configuration.

Analysis of the frequencies along the minimum energy path allows identifica-
tion of the modes that are most strongly coupled to the reaction coordinate and
have the largest participation in the tunneling process. Figure 27.9 shows all 32




27.4 Intramolecular Hydrogen Transfer in Unimolecular Gas-phase Reactions

Energy (kcal/mol)

Figure 27.9 (a) Potential energy and ground-state adiabatic
potential curves (solid curves) and SCT effective mass
(dashed curve) as a function of reaction coordinate for the
intramolecular H-tranfer in 1,3-pentadiene. (b) Harmonic
frequencies for modes orthogonal to the reaction coordinate.

frequencies and the one mode that shows the most rapid change near the saddle
point is that with the largest curvature coupling. This reactive mode starts as a
CH vibration in reactants and transforms into the C2-C3-C4 asymmetric stretch
near the saddle point. This mode accounts for the largest single component to the
reaction-path curvature at the saddle point, varying from about 1/3 to 2/3 of the
total contribution in the region between s = — 0.3 and 0.3 a,. The highest fre-
quency modes (those above 3000 cm™! at the saddle point) contribute less than a
couple of percent and the lowest frequency modes (those below about 700 cm™ at
the saddle point) only contribute between 15 and 20% to the reaction-path curva-
ture. This analysis shows the shortcomings of simple reduced-dimensional mod-
els of this complicated rearrangement and tunneling process. First, it is difficult
to guess, a priori, the mode or modes that are critical for an accurate description
of the multidimensional tunneling process [64]. Second, even when the dominant
mode is discovered, there are 20 other modes in the range 800 to 2000 cm™ that
do contribute significantly to the curvature, and an accurate treatment of tunnel-
ing needs to account for motion in those degrees of freedom.

For this reaction, both LCG3 and SCT methods were applied to calculate tunnel-
ing correction factors [24]. The SCT method gave larger tunneling probabilities,
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indicating that reaction-path curvature is small to intermediate for the region of
the reaction coordinate over which tunneling is important. The adiabatic potential
used in the SCT ground-state tunneling calculations is shown in Fig. 27.9. For
temperatures around 460 K (the bottom of the range for experimental measure-
ments) the maximum contribution to the tunneling integral occurs about
2.5 kcal mol! below the adiabatic barrier maximum. At this energy the turning
points in the adiabatic potential occur for s =+ 0.26 ay. These values are inside the
two places where the maximum curvature occurs (around s = 0.6 a,) and this is
reflected in the values of the effective mass (also shown in Fig. 27.9), which are in
the range 0.7-0.9 of the reduced mass in this region. Even with these moderate
values for the effective mass, the SCT tunneling factor at 460 K is over 70% larger
than the one neglecting reaction-path curvature.

27.4.2
1,2-Hydrogen Migration in Methylchlorocarbene

The 1,2-hydrogen migration in methylchlorocarbene converts it to chloroethene:
H3CCCl — H,CC(H)CL. Calculations were carried out using direct dynamics [67].
At 365 K, tunneling lowers the gas-phase Arrhenius activation energy from
10.3 keal mol! to 8.5 kcal mol!, and at 175 K the drop is even more dramatic,

from 10.2 kcal mol-! to 2.0 kcal mol-1.

275
Liquid-phase and Enzyme-catalyzed Reactions

Placing the reagents in a liquid or an enzyme active site involves new complica-
tions. Since it is not presently practical to treat an entire condensed-phase system
quanturn mechanically one begins by dividing the system into two subsystems,
which may be called solute and solvent, reactive system and bath, or primary sub-
system and secondary subsystem. The “primary/secondary” language is often pre-
ferred because it is most general. For example, in a simple liquid-phase reaction
the primary subsystem might consist of the reactive solute(s) plus one or more
strongly coupled solvent molecules, and the secondary subsystem would be the
rest of the solvent. In an enzyme-catalyzed reaction, the primary subsystem might
be all or part of the substrate plus all or part of a cofactor and possibly a part of
the enzyme and even one or a few solvent molecules, whereas the secondary sub-
system would be all the rest. The solvent, bath, or secondary subsystem is some-
times called the environment.

The secondary subsystem might be treated differently from the primary one
both in terms of the potential energy surface and the dynamics. For example, with
regard to the former aspect, the primary subsystem might be treated by a quan-
tum mechanical electronic structure calculation, and the secondary subsystem
might be treated by molecular mechanics [68] or even approximated by an electro-
static field or a continuum model, as in implicit solvation modeling [69). The par-
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tition into primary and secondary subsystems need not be the same for the poten-
tial energy surface step and the dynamics step. Since the present chapter is mainly
concerned with the dynamics, we shall assume that a potential energy function is
somehow available, and when we use the “primary/secondary” language, we refer
to the dynamics step. Nevertheless the strategy chosen for the dynamics may be
influenced by the methods used to obtain the potential function. This is of course
true even for gas-phase reactions, but the interface between the two steps often
needs to be tighter when one treats condensed-phase systems, because of their
greater complexity.

We will distinguish six levels of theory for treating environmental aspects of
condensed-phase reactions. These levels may be arranged as follows in a hierarchy
of increasingly more complete coupling of primary and secondary subsystems:

* separable equilibrium solvation VTST (SES-VTST)

 potential-of-mean-force VIST (PMF-VTST) based on a
distinguished reaction-coordinate, which is also called
single-reaction-coordinate PMF-VTST {SRC-PMF-VTST)

* equilibrium solvation path VTST (ESP-VTST)

* nonequilibrium solvation path VTST (NES-VTST)

*» ensemble-averaged VIST with static secondary zone

(EA-VTST-SSZ)

* ensemble-averaged VTST with equilibrium secondary zone

(EA-VTST-ESZ)

In practical terms, though, it is easier to consider these methods in terms of two
parallel hierarchies. The first contains SES, ESP, and NES; the second contains
PMF-VTST, EA-VTST-SSZ, and EA-VTST-ESZ. There is, however, a complication.
While the first five rungs on the ladder correspond to successively more complete
theories, the final rung (ESZ) may be considered an alternative to the fifth rung
(SSZ), which may be better or may be worse, depending on the physical nature of
the dynamics.

An example of a system in which both solute coordinates and solvent coordinates
must be treated in a balanced way is the autoionization of water. One way to
describe this process is to consider a cluster of at least a half dozen water molecules
as the solute, and the rest of the water molecules as the solvent. One requires solute
coordinates to describe the nature of the hydrogen bond network in the solute plus
at least one solvent fluctuation coordinate; the latter may describe the direction and
strength of the electric field on a critical proton or protons of the solute [70] as quan-
tified, for example, by the energy gap between arranging the solvent to solvate the
reactant and arranging it to solvate the product. Molecular dynamics simulations,
though, indicate that a conventional energy gap coordinate is not necessarily the
best way to describe the collective solvent re-organization. A detailed comparison
of different kinds of collective solvent coordinates is given elsewhere [71]. The
NES-VTST methed is well suited to using collective solvent coordinates whereas
EA-VTST is more convenient when explicit solvent is used. The SES, ESP, and
PMF methods can easily be used with either kind of treatment of the solvent.
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The PMF-VTST approach may be understood in terms of a general molecular
dynamics calculation of the equilibrium one-way flux from a reactant region of
phase space through a dividing surface [5-7, 72, 73]. When the no-recrossing
approximation is valid at the dividing surface and when one neglects quantum
effects, it may be viewed as the most efficient way to calculate the rate constant
from an ensemble of trajectories. However, for reactions involving hydrogenic
motion in the reaction coordinate, classical mechanics is not quantitatively accu-
rate, and the transition state formulation provides a much more convenient way
to include quantum effects than does a trajectory calculation. (Note that many
workers use the term “molecular dynamics” to refer to classical trajectory calcula-
tions.)

In the rest of this section we briefly review the six rungs of the condensed-phase
VTST ladder. In Section 27.6 we provide two examples that illustrate the applica-
tion of the general theory.

27.5.1
Separable Equilibrium Solvation

The simplest way to include solvation effects is to calculate the reaction path and
tunneling paths of the solute in the gas phase and then add the free energy of
solvation at every point along the reaction path and tunneling paths. This is
equivalent to treating the Hamiltonian as separable in solute coordinates and sol-
vent coordinates, and we call it separable equilibrium solvation (SES) [74]. Adding
tunneling in this method requires a new approximation, namely the canonical
mean shape (CMS) approximation [75}.

The gas-phase rate constant of Egs. (27.4) and (27.23) is replaced in the SES
approximation by

KSES/MT(TY — «(T)KSES(T) (27.37)

and

KSES(T) = %I K min exp{ - [AG‘T"”(s) +AAGS(s] T)] } (27.38)

where AAGS(s|T) is the difference between the standard-state free energy of solva-
tion of the generalized transition state at s and that of the reactants. The transmis-
sion coefficient is given by Eq. (27.25), and all that is done to extend the SCT, LCT,
and OMT approximations from the gas phase to liquid reactions is to generalize
V,and V,.

In the SES approximation, V, is taken as

Vi(RIT) = UR|T) (27.39)
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where R denotes the complete set of solute coordinates, and U(R|T) is the CMS
potential given by

IW(R|T)

URIT) = WRIT) + (/D) S5 7

(27.40)

and W(R|T) is the potential of mean force (PMF) on the primary subsystem,
which will be called the solute in the rest of this Subsection and in Subsection
27.5.3. The PMF is defined by

e VERIN/T — (/TSR — R')), (27.41)

where H is the total system Hamiltonian, 5(R — R’) is a multidimensional delta
function that holds the solute coordinates fixed at R’, and (L), denotes a normal-
ized average over the phase space of the entire system. Colloquially, W(R|T) is the
free energy surface of the solute. The function U(R|T) is the enthalpy-like compo-
nent of W(R|T). In practice the second term of Eq. (27.40) is harder to approxi-
mate than the first term, and we can use the zero-order CMS approximation
(CMS-0), which is

U(R|T) = W(R|T) (27.42)
In the SES approximation,
W(R|T) = V(R) + AG(R|T) (27.43)

where AG2(R|T) is the standard-state free energy of solvation. Since we will only
need differences of W, e.g., its R dependence, it is not a matter of concern that
different standard state choices correspond to changing the zero of W(R|T) by
R-independent amounts.

Finally, the SES approximation for the effective adiabatic potential is

Va(|T) = Upp(SIT) + &5 (G, 8) (27.44)

where Upp(s|T) is U(R|T) evaluated along the reaction path, and £5(G,s) is the
ground-state value of the second term of Eq. (27.8) for the solute modes. As for
V,, one can use any convenient zero of energy for Vy(s|T) since the results are in-
dependent of adding a quantity independent of s.

The final protocol for an SES calculation with the CMS-0 approximation reduces
to the following: Calculate a gas-phase MEP and carry out generalized normal
mode analyses along the MEP to obtain £51 (G, s) for the solute. (In an LCT calcu-
lation one also requires £51(n# G, 4 = G, 5).) Now add the free energy of solvation
along the MEP to find the variational transition state rate constant and tunneling
paths, and add the free energy of solvation along the tunneling paths to obtain an
effective potential that is used to calculate the tunneling probabilities.
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27.5.2
Equilibrium Solvation Path

In the equilibrium solvation path (ESP) approximation [74, 76), we first find a
potential of mean force surface for the primary subsystem in the presence of the
secondary subsystem, and then we finish the calculation using this free energy
surface. Notice a critical difference from the SES in that now we find the MEP on
U rather than V, and we now find solute vibrational frequencies using U rather
than V.

2753
Nonequilibrium Solvation Path

The SES and ESP approximations include the dynamics of solute degrees of free-
dom as fully as they would be treated in a gas-phase reaction, but these approxi-
mations do not address the full complexity of condensed-phase reactions because
they do not allow the solvent to participate in the reaction coordinate. Methods
that allow this are said to include nonequilibrium solvation. A variety of ways to
include nonequilibrium solvation within the context of an implicit or reduced-
degree-of-freedom bath are reviewed elsewhere [69). Here we simply discuss one

very general such NES method [76-78] based on collective solvent coordinates
{71, 79]. In this method one replaces the solvent with one or more collective sol-
vent coordinates, whose parameters are fit to bulk solvent properties or molecular
dynamics simulations. Then one carries out calculations just as in the gas phase
but with these extra one or more degrees of freedom. The advantage of this
approach is its simplicity (although there are a few subtle technical details).

A difficulty with the nonequilibrium approach is that one must estimate the
time constant or time constants for solvent equilibration with the solvent. This
may be estimated from solvent viscosities, from diffusion constants, or from clas-
sical trajectory calculations with explicit solvent. Estimating the time constant for
solvation dynamics presents new issues because there is more than one relevant
time scale [69, 80]. Fortunately, though, the solvation relaxation time seems to
depend mostly on the solvent, not the solute. Thus it is very reasonable to assume
itis a constant along the reaction path.

Another difficulty with the NES model is not knowing how reliable the solvent
model is and having no systematic way to improve it to convergence. Furthermore
this model, like the SES and ESP approximations, assumes that the reaction can
be described in terms of a reaction path residing in a single free energy valley or
at most a small number of such valleys. The methods discussed next are designed
1o avoid that assumption.

The ESP method was applied to the reaction mentioned in Subsection 27.4.2,
namely 1,2-hydrogen migration in chloromethylcarbene. Tunneling contributions
are found to be smaller in solution than in the gas phase, but solvation by 1,2-di-
chloroethane lowers the Arrhenius activation energy at 298 K from 7.7 kcal mol
to 6.0 kcal mol-! [67].




27.5 Liquid-phase and Enzyme-catalyzed Reactions

2754
Potential-of-mean-force Method

In the PMF method one identifies a reaction ‘coordinate on physical grounds
rather than by calculating an MEP. For example, the reaction coordinate might be

Z=TpH~TAH (27.45)

where rpy is the distance from the transferred hydrogen to the donor atom, and
ran is the distance from the transferred hydrogen to the acceptor atom. Then one
calculates a one-dimensional potential of mean force (W(z]T)), and the classical
mechanical rate constant for a unimolecular reaction in solution is given by
Eq. (27.4) with [81]

AGE™® = max [W(2|T) + Weu(2|T)] — G (27.46)

where W_,(2|T) is a kinematic contribution [81], usually small, at least when the
reaction coordinate is a simple function of valence coordinates as in Eq. (27.45),
and G} [82] is the free energy of the reaction-coordinate motion of the reactant.
Like the SES and ESP approximations, PMF-VTST involves a single reaction coor-
dinate.

Even within the equilibrium-solvation approximations and neglecting recross-
ing effects, the classical mechanical result of Eq. (27.46) needs to be improved in
two ways. First one needs to quantize the vibrations transverse to the reaction
coordinate. A method for doing this has been presented [83], and including this
step converts Eq. (27.46) to a quasiclassical result. Second, one must include tun-
neling. The inclusion of tunneling is explained in the next subsection, and it
involves partitioning the system into primary and secondary subsystems. Note
that any reasonable definition of the primary subsystem would include the three
atoms involved in the definition of the reaction coordinate given in Eq. (27.45).
Thus, in the present section, if one uses Eq. (27.45), the secondary subsystem
does not participate in the reaction coordinate.

2755
Ensemble-averaged Variational Transition State Theory

Ensemble-averaged VTST [82, 84] provides a much more complete treatment of
condensed-phase reactions. Originally developed in the context of enzyme
kinetics, it is applicable to any reaction in the liquid or solid state. First one carries
out a quasiclassical PMF-VTST calculation as explained in Subsection 27.5.4. This
is called stage 1, and it involves a single, distinguished reaction coordinate. Then,
in what is called stage 2, one improves this result with respect to the quality of the
reaction coordinate (allowing the secondary subsystem to participate), with respect
to averaging over more than one reaction coordinate, and by including tunneling.
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Stage 2 consists of a series of calculations, each one of which corresponds to a
randomly chosen member of the transition state ensemble. For this purpose the
transition state ensemble consists of phase points from the quasiclassical PMF
calculation with the value of z in a narrow bin centered on the variational transi-
tion state, which is the value of z that maximizes the quantized version of the
right-hand side of Eq. (27.46). In practice one uses the version of Eq. (27.46) in
which quantization effects of modes orthogonal to z {83] are added to W. For each
member of the transition state ensemble, one now optimizes the primary subsys-
tem to the nearest saddle point in the field of the frozen secondary subsystem,
and then one computes a minimum energy path through the isoinertial coordi-
nates of the primary subsystem, with the secondary subsystem frozen. Based on
this MEP one carries out a VIST/MT rate constant calculation, just as in the gas
phase except for three differences. First, one does not need the reactant partition
function. Second, one freezes the secondary subsystem throughout the entire cal-
culation. Third, the projection operator discussed below Eq. (27.1) is replaced by
one that just projects out the reaction coordinate because the frozen secondary
subsystem removes translational invariance, converting the overall translations
and rotations to librations. (The same simplified projection operator is also used
for treating solid-state reactions [61].)

The calculations described in the previous paragraph yield, for each ensemble
member £, a free energy of activation profile AGST(T, s) and a transmission coeffi-
cient k,(T), where £=1,2,..., L, and L is the number of MEPs computed. The stan-
dard EA-VTST/MT result, called the static-secondary-zone result, is then given by

KEA-VISTIMT _ ( T)LQPMF/(T) (27.47)

where kQPMF js the result from stage 1, based on the quantized PMF and identical
to the result of Subsection 27.5.4, and y is a transmission coefficient given by

=1 TlD(T) 27.48)
=1

where
Iy =exp{~[AG{T(T,s, ;) — AGST(T,50,)] /RT} (27.49)

where s , is the value of s that maximizes AGS(T,s), and sy, is the value of s
corresponding to the value of z that maximizes the PMF of stage 1. The physical
interpretation of I, is that, by using a more appropriate reaction coordinate for
each secondary-zone configuration, one is correcting for recrossing of the original,
less appropriate dividing surface defined by z = constant. An alternative, more
expensive way to do this is by starting trajectories at the dividing surface and
counting their recrossings, if any [6, 15, 72]. More expensive is not necessarily
more accurate though because the trajectories may lose their quantization before
they recross.




27.6 Examples of Condensed-phase Reactions

In the equilibrium-secondary-zone approximation [82, 85] we refine the effec-
tive potential along each reaction path by adding the charge in secondary-zone
free energy. Thus, in this treatment, we include additional aspects of the second-
ary subsystem. This need not be more accurate because in many reactions the sol-
vation is not able to adjust on the time scale of primary subsystem barrier crossing
[86].

27.6
Examples of Condensed-phase Reactions

27.6.1
H + Methanol

References for a large number of SES calculations are given in a previous review
[69], but there have been far fewer calculations using the ESP and NES approxi-
mations. The ESP and NES approximations based on collective solvent coordi-
nates have, however, been applied [78] to (R1) H + CH;0H - H, + CH,OH, (R2)
D + CH;0D — DH + CH,OD, and (R3) H + CD;0H — HD + CD,OH.

The resulting rate constants for reaction (R1) are shown in Table 27.1. In this
particular case the NES results are accidentally similar to the SES ones, but that is
not of major importance. What is more significant is that the true equilibrium
solvation results differ from the SES ones by about a factor of two, and nonequili-
brium solvation decreases the rate constants in solution by more than a factor of
two as compared to the equilibrium solvation effect. If the solute—solvent coupling
is decreased, the NES result becomes doser to the equilibrium solvation result,
and it is difficult to ascertain how realistic the best estimates of the coupling
strength actually are. Perhaps more interesting though is that if the coupling is
made four times stronger, the calculated rate constant drops by another factor of
three. Since ionic reactions might have much stronger solute-solvent coupling
than this free radical reaction, we conclude that nonequilibrium effects might be
larger for many reactions in aqueous solution.

Table 27.2 shows the kinetic isotope effects [78, 87]. Although the solvation
effects are smaller than for the rate constants themselves, they are not negligible.

Tab. 27.1 Rate constants (10-75 cm? molecule™! s7%) at various levels of
dynamical theory for H + CH30H — H; + CH,0H in aqueous solution at 298 K [78].

Gas SES ESP NES
CvT 0.7 09 19 0.81
CVT/SCT 83 87 16.6 6.5

CVI/OMT 129 12.7 259 124
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Tab. 27.2 Kinetic isotope effects for H + CH3;0H —> Hy + CH,OH at various
levels of dynamical theory in aqueous solution at 298 K (CVT/OMT [78, 87)).

Gas SES ESP

R1/R2 0.68 0.48 0.51 0.37

R1/R3 21.1 213 202 19.5

Although a more recent calculation [88] indicates a barrier height about
2 kcal mol! higher than that on the potential energy surface used for these stud-
ies, the qualitative conclusions still hold if they are regarded as based on a realistic
model reaction.

27.6.2
Xylose Isomerase

Xylose isomerase catalyzes a hydride transfer reaction as part of the conversion of
xylose to xylulose. This reaction has been calculated [32] by the EA-VIST/MT
method using Eq. (27.45) as the reaction coordinate and using L=>5 in Eq. (27.48).
The primary zone had 32 atoms, and the secondary zone had 25 285 atoms. The
average value of I', was 0.95. The fact that this is so close to unity indicates that
the reaction coordinate of Eq. (27.45) is very reasonable for this reaction, even
though the reaction coordinate is strongly coupled to a Mg-Mg breathing mode.
The transmission coefficient y was calculated to be 6.57, with about 90% of the
reactive events calculated to occur by tunneling.

Calculations were also carried out for deuteride transfer. The kinetic isotope
effect was calculated to be 1.80 without tunneling and 3.75 with tunneling. The
latter is within the range expected from various experimental [89] determinations.

27.6.3
Dihydrofolate Reductase

The ensemble-averaged theory has also been applied to several other enzyme reac-
tions involving transfer of a proton, hydride ion, or hydrogen atom, and the
results are reviewed elsewhere [84, 90]. More recently than these reviews, the
method has been applied to calculate [91] the temperature dependence of the rate
constant and kinetic isotope effect for the hydride transfer catalyzed by E. coli
dihydrofolate reductase (ecDHFR). In earlier work [92] we had calculated a pri-
mary KIE in good agreement with experiment [93] and also predicted a secondary
KIE that turned out to be in good agreement with a later [94] experiment. In both
studies [91, 92], we treated the dynamics of 31 atoms quanturn mechanically. The
primary KIE had also been calculated by Agarwal et al. [95], also in good agree-
ment with experiment, but they could not calculate the secondary KIE because
they treated the dynamics of only one atom quantum mechanically. In the new
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27.8 Concluding Remarks

work {91] we predicted the temperature dependence of the KIE and found that it
is small. In previous work by other groups, new mechanisms had been invoked
when temperature-independent or nearly temperature-independent KIEs had
been observed. The importance of the new work [91] is not so much the actual
predicted small temperature dependence of the KIE (because the quantitative
results may be sensitive to improving the calculation) but rather the demonstra-
tion that even nearly temperature-independent KIEs can be accommodated by
VTST/MT theory, and one need not invoke new theoretical concepts.

27.7
Another Perspective

For another perspective we mention a second approach of which the reader
should be aware. In this approach the dividing surface of transition state theory is
defined not in terms of a classical mechanical reaction coordinate but rather in
terms of the centroid coordinate of a path integral (path integral quantum TST, or
PI-QTST) {96-99] or the average coordinate of a quantal wave packet. In model
studies of a symmetric reaction, it was shown that the PI-QTST approach agrees
well with the multidimensional transmission coefficient approach used here
when the frequency of the bath is high, but both approaches are less accurate
when the frequency is low, probably due to anharmonicity [98] and the path
centroid constraint [97]. However, further analysis is needed to develop practical
PI-QTST-type methods for asymmetric reactions [99].

Methods like PI-QTST provide an alternative perspective on the quasithermody-
namic activation parameters. In methods like this the transition state has quan-
tum effects on reaction coordinate motion built in because the flux through the
dividing surface is treated quantum mechanically throughout the whole calcula-
tion. Since tunneling is not treated separately, it shows up as part of the free ener-
gy of activation, and one does not obtain a breakdown into overbarrier and tunnel-
ing contributions, which is an informative interpretative feature that one gets in
VTST/MT.

Other alternative approaches for approximating the quanturn effects in VIST
calculations of liquid-phase [4] and enzyme reactions [90] are reviewed elsewhere.

27.8
Concluding Remarks

In the present chapter, we have described a formalism in which overbarrier contri-
butions to chemical reaction rates are calculated by variational transition state the-
ory, and quantum effects on the reaction coordinate, especially multidimensional
tunneling, have been included by a multidimensional transmission coefficient.
The advantage of this procedure is that it is general, practical, and well validated.
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It is sometimes asked if a transmission coefficient is a “correction” and there-
fore less fundamental than other ways of including tunneling in the activation
free energy. In fact, this is not the case. The transmission coefficient is a general
way to include tunneling in the flux through the dividing surface. We can see this
by writing the exact rate constant as a Boltzmann average over the exact rate
constants for each of the possible initial states (levels) of the system, where these
initial levels are labeled as n(initial):

k= (k,,(i,,iﬁ,,,> (27.50)

We can then replace this average by an average over systems that cross the transi-
tion state in various levels of the transition state, each labeled by n(VTS):

k= <k,,ms)> 2751)
‘We can write this as
kn(vrs)
k= %E“T) (k") (27.52)

where we have multiplied and divided by an average over transition-state-theory
rates for each n{VTS). The VTST rate constant can easily be written [15] in the
form of the average that we have inserted into Eq. (27.52), so (KIST) is just kV™™L
The fraction in Eq. (27.52) is easily recognized as the transmission coefficient x,
and therefore we have the following expression, which is exact:

k=xk'™T (27.53)

In practice, we approximate the exact transmission coefficient by a mean-field-
type of approximation; that is we replace the ratio of averages by the ratio for an
“average” or effective potential. For gas-phase reactions with small reaction-path
curvature, this effective potential would just be the vibrationally adiabatic ground-
state potential. In the liquid phase and enzymes we generalize this with the cano-
nical mean-shape approximation. In any event, though, the transmission coeffi-
cient should not be thought of as a perturbation. The method used here may be
thought of as an approximate full-dimensional quantum treatment of the reaction
rate.

At the present stage of development, we have well validated methods available
for calculating reactive rates of hydrogen atom, proton, and hydride transfer reac-
tions in both gaseous and condensed phases, including reliable methods for mul-
tidimensional tunneling contributions. The accuracy of calculated rate constants
is often limited more by the remaining uncertainties in potential energy surfaces
and practical difficulties in including anharmonicity than by the dynamical form-
alism per se.
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