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1.  ABSTRACT

RMPROP is a computer program for solving the quantum mechanical scattering
problem for single-arrangement collisions using the R matrix propagation
algorithm.  The program yields the scattering matrix for a particular total
energy and total angular momentum.  Special features of the algorithm are that
it vectorizes very efficiently, closed channels are treated without numerical
difficulty, the integration stepsize can be large in regions where the
interaction and centrifugal potentials are slowly varying functions of the 
propagation coordinate, and in many cases much of the computational effort
can be reused for various types of calculations.  RMPROP can solve the 
scattering problem subject to homogeneous or nonhomogeneous boundary conditions
at small values of the scattering coordinate (the scattering boundary 
conditions are always nonhomogeneous at large values of the scattering 
coordinate).

Version 2.1.2 executes in single-processor mode, except for certain matrix
operations where multitasking may be invoked, and it is optimized for a vector
pipeline computer.  It is distributed with a test suite and this on-line manual.

1.1 ACKNOWLEDGMENT

Acknowledgment of support: Development of this program was supported in part
by the National Science Foundation, the Minnesota Supercomputer Institute, and
Cray Research, Inc.
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3.  DISTRIBUTION

RMPROP is copyrighted and is distributed by the authors and by Modern
Techniques in Computational Chemistry Club, a non-profit educational
organization, Enrico Clementi, President.

Users are requested not to distribute any portion of the RMPROP software or
any derivative works based upon the RMPROP software without prior authorization 
by the authors.

Use of the RMPROP program should be appropriately acknowledged in
publications, e. g., by the following two references.

M. S. Reeves, M. J. Unekis, D. W. Schwenke, N. M. Harvey, and D. G. 
Truhlar, RMPROP-Version 2.1.2, University of Minnesota, Minneapolis, 1994.

M. J. Unekis, D. W. Schwenke, N. M. Harvey, and D. G. Truhlar, 
"RMPROP-Version 2: A Computer Program for Quantum Mechanical Close
Coupling Calculations for Inelastic Collisions", in "Modern Techniques
in Computational Chemistry: METECC-94 Vol. C", edited by E. Clementi,
STEF, Cagliara, Italy, 1993, pp. 1-46.
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4.  PROGRAM DOCUMENTATION AND HISTORY

The documentation for this code consists of two parts: this on-line manual
and Ref. 6 of Section 2 of this manual.  The other general references of Section
2 also provide important background information.  See Section 7 of this on-line
manual for a section-by-section discussion of the contents of this manual.

4.1 VERSION HISTORY

Version    Date             Summary of Features

1.0       6/1/91            Refer to MOTECC-91

2.0       9/1/93            Refer to METECC-94 (Note:  Version 2.0 was never
distributed.)

2.1       8/9/94            1.  Meaning of EPSRED changed.
2.  Fixed bug with closed channels in asymptotic

analysis (only in 2.0).
3.  Test suite expanded and altered.
4.  Several other bug, input, and documentation

fixes.

2.1.1     8/30/94           1.  One-line change made in flambda.f and jsymbol.f
2.  Function FCOEF5 enabled (had been disabled in 

2.1)

2.1.2    12/21/94           1.  IBM 3090 no longer supported by distribution
package.

2.  Manual was improved.
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5.  INTRODUCTION

RMPROP is a general program utilizing the R matrix propagation algorithm for
the solution of the quantum mechanical close coupling equations as applied to
atomic and molecular collisions to obtain the scattering matrix.  It has been
used for electron-atom scattering, three-dimensional electron-diatom scattering,
collinear atom-diatom scattering, three-dimensional atom-diatom scattering, and
three-dimensional diatom-diatom scattering.  Earlier versions have also been 
applied to collinear diatom-diatom scattering and to collisions of electrons,
atoms, or rigid rotators with rigid rotators, and the code is general enough to
be applied to any single-arrangement close coupling calculations in which the 
kinetic energy operator does not couple different channels.  Since the error 
per step of the integration is determined by the rate of change of the 
potential rather than the rate of oscillation of the wavefunction, the program
is especially well suited for treating heavy-body collisions or systems with 
long-range potentials.

In order to apply this program to a system not included in the test suite,
the user must supply either subroutines to compute the coupling matrix 
elements or a subroutine which gives the interaction potential as a function 
of nuclear coordinates.  Note however that the distributed version of RMPROP 
can only be interfaced to interaction potential subroutines for the systems 
(atom-diatom and diatom-diatom) for which routines are included to compute 
the coupling matrix elements.  Depending on the system, a significant
amount of resources can be spent in potential energy subroutines,
so they should be optimized as much as possible.  The requirements for user-
supplied subroutines for coupling matrix elements are given in Section
10 of this manual, while the requirements for the user-supplied interaction 
potential are detailed in Section 11. 

5.1  The distribution package

RMPROP Version 2.1.2 is distributed as a directory system with the following
structure:

RMPROP2.1.2
runtest.csh
rmprop.doc
script/
src/
test/

Executable file runtest.csh is a C shell script which will run elements of
the test suite.

File rmprop.doc contains this on-line manual.
Subdirectory script contains all the scripts used to run the test suite

elements and the makefile for the code.
Subdirectory src contains all the source code for all the versions of
RMPROP 2.1.2.
Subdirectory test contains the input files, copies of the short output, and the

include files for the test suite elements.  The short output files contained
here can be compared against results obtained on the user’s machine.
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5.2  Running RMPROP 2.1.2:  An overview

A.  The Test Suite.  The distribution package includes 16 test runs, with 
all the necessary input decks, interaction potential functions, potential 
matrix element routines, and shell scripts to run them. These are discussed in 
more detail in Section 19.  To access the test suite, type 

runtest.csh
in the top directory of the distribution package.  You will be queried
about your choice of test suite elements. Then the script will attempt to 
determine what type of machine you are running on and choose the appropriate
machine-specific codes and compiler commands.  If RMPROP does not recognize
your machine type, you may need to supply certain codes for timing and then 
alter the scripts in the distribution package to run on your machine (see 
Section 6.1 of the manual for details).  If RMPROP recognizes your machine (or 
after you have performed the necessary tasks), the scripts will compile the 
portable version of RMPROP and run the test suite element.  The output for the 
test suite run will be in the top directory, labeled {testname}.out.  A short 
output file, labeled {testname}.15 can be compared to the distributed copy of 
this file in subdirectory test.

CAUTION:  RMPROP Version 2.1.2 uses a makefile to compile the codes, but
the makefile does not check to see if the include files have been updated.  If
you wish to run different test suite elements, you must remove the object files
created between the test runs.  This feature will be altered in the next
version of RMPROP.

B.  User-defined calculations.  To run a calculation with a potential not 
distributed with RMPROP, the user should examine Sections 10 and 11 for 
the necessary coding requirements.  When utilizing the modular potential
matrix routines described in Section 11, the input file fort.4 must be 
supplied.  It is suggested that the user copy and modify one of the 
distributed copies given in subdirectory test.  For any calculation not in 
the test suite, the user must supply the main input file fort.5.  Again, it 
is suggested that the user modify one of the distributed copies of this file,
given in subdirectory test.  Complete documentation of the two input files 
fort.4 and fort.5 is given in Sections 11 and 12, respectively.  For a user-
defined problem, the include file parameter.inc must be supplied for 
dimensioning of the large arrays in RMPROP.  This file is discussed in 
detail in Section 15.  Utilization of the modular potential matrix 
routines may also require that the user provide the file expand.inc.
The form of this file is described in detail in Section 11.  The scripts for 
the test suite in subdirectory script serve the purpose of executing 
test suite elements as well as providing templates for users to run 
their own problems.

5.3  OVERVIEW OF MATRIX UTILITIES

The most intensive computations in RMPROP are matrix-matrix multiplication,
solving linear systems, solving eigenvalue-eigenvector problems, and performing
matrix inversions.  These operations are common matrix operations, and we have
selected routines from the BLAS and LAPACK libraries to perform them in RMPROP.
The exception to this is the eigensystem analysis, which is done by modified
versions of EVVRSP (see reference 7 in Section 2), or on the Cray computers
by RS (originally from EISPACK, but modified in the Cray SCILIB library).
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Many computers have optimized versions of the BLAS and LAPACK routines with the
same calling sequence;  linking to these machine-optimized versions rather than
the FORTRAN source versions in the RMPROP distribution package will probably
provide significant speed-up of RMPROP.  Here we give a brief overview of the 
BLAS and LAPACK libraries.

The BLAS libraries contain Basic Linear Algebra Subroutines which perform
vector-vector (Level 1), matrix-vector (Level 2), and matrix-matrix (Level 3) 
linear algebra operations.   For background on these routines, refer to the
references 8-11 in Section 2.  The specific routines used in RMPROP are given
in Section 17.

Matrix inversions and linear system solutions have been taken from LAPACK.
For complete information on LAPACK, refer to reference 12 in Section 2.  The 
specific routines used in RMPROP are given in Section 17.  
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6.  COMPUTER AND OPERATING SYSTEM

The program RMPROP is a very portable code, and it has been tested on a
number of different computers.  We expect that any UNIX computer with a FORTRAN 
compiler should have no difficulty running RMPROP as distributed, except for 
minor incompatibilities in machine-specific subroutines described in the next 
subsection.  For users interested in high performance, we have also included in
our distribution package the code to run versions highly optimized for an 
IBM RS-6000, Cray-2, and Cray Y-MP C90 (hereafter referred to as a Cray C90).  
These optimized versions can be accessed by modifying the file Makefile.mak, 
as detailed in sections 6.5 and 6.7.  In the following section we will detail 
the differences among these versions, as well as our recommendation for specific
versions on specific machines.

RMPROP is written in FORTRAN 77.  The code is explicitly written to run in
64-bit precision, i. e., REAL*8, using DOUBLE PRECISION declarations and
intrinsic functions.  The explicit use of double precision coding facilitates
usage on machines (e. g., the IBM RS/6000 workstation or the DEC Alpha) where
single precision is 32 bits.  On Cray computers, single precision arithmetic is
64 bits, but this may be adjusted for by the use of compiler options; in
particular use of the -dp compiler option ("disable precision") on Cray
computers causes the code to execute in REAL*8 precision on a Cray computer as
well.  

RMPROP is intended for use with static memory allocation.  The compiler
options in the distribution package explicitly choose static memory allocation,
and users of other computers should be aware that this is necessary.

The code has been well optimized for a Cray vector pipeline computer.  This
version has been successfully tested on a Cray-2 and Cray C90 with the UNICOS  
operating system, version 6.1, and on an IBM RS/6000 Model 550 computer with the
AIX operating system, versions 3.1.5 and 3.2.1.  Version 2.0 was also 
successfully tested on a Cray X-MP with UNICOS operating system version 6.1,
Sun SPARCStation IPX, using SunOS version 4.1.2, and on a DEC 3000/500 ("Alpha")
workstation, using the OSF/1 version T1.2-2 operating system.  

6.1 MACHINE-SPECIFIC CODES

There are a number of subroutines which cannot be standardized from
machine to machine, specifically those subroutines needed to determine
machine epsilon and date and timing routines.  We have placed most of these 
codes in files which begin with the suffix "sdr."  These files are

File                             Machine
sdralpha.f                     DEC 3000/500AXP OSF/1
sdrcray.f                      Cray-2, Cray C90
sdrrs6000.f, dateclock.c       IBM RS/6000
sdrsun.f                       Sun 

It should be noted that the individual shell scripts which run the elements
of the test suite automatically choose the appropriate file(s) from the above 
list.  The machine is identified by either of the commands

"’uname’" 
or "’uname -m’"
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where the quotes are present in the shell script.

If the machine and operating system are not among those recognized
by RMPROP, the user must supply routines which perform the tasks in 
the sdr files and also modify the shell scripts for the test suite.  The
following subroutines must be supplied:

SUBROUTINE DATTIM(IO,TIMDAT):    This subroutine should call routines 
on the local machine which will return the date and time.  IO is an integer 
variable containing the fortran unit to which the date and time should be 
written.  TIMDAT is a CHARACTER*80 variable which should contain the date and 
time as called in this routine.

SUBROUTINE SECOND(T):    This subroutine should call routines on the 
local machine which give the cpu time since the start of execution of the code.
T is a double precision variable which should, on return, contain the cputime 
in seconds since the code began execution.  

6.2 SUMMARY OF VERSIONS OF RMPROP 2.1.2

The distribution package for RMPROP-Version 2.1.2 contains files for a
portable version of the code, called version 2.1.2, which has been run 
successfully on a Cray C90, a Cray-2, and an IBM RS/6000 Model 550. 
The distribution package also contains several machine-specific versions 
optimized for a Cray-2, Cray C90, and IBM RS/6000.

In the rest of this manual, the portable version, which may be used on all 
machines, is called 2.1.2, the Cray-2 version with RS is called 2.1.2cs, the 
Cray-2 version with EVCRSP is called 2.1.2ce, the Cray C90 version with RS is
called 2.1.2xs, the Cray C90 version with EVCRSP is called 2.1.2xe, and the 
IBM RS/6000 version (which includes EVIRSP) is called 2.1.2i.

The differences among these machine-specific versions lie in the choice of 
subroutines used for the N**3 matrix operations such as matrix- matrix 
multiplication, solution of linear systems, and eigensystem analysis.  These 
operations are the most time-consuming parts of the propagation method, and 
choosing the optimal subroutine for a specific machine greatly enhances the 
speed of RMPROP on that machine.

The table below lists the different machine-specific versions of the program
and indicates the major matrix utility routines used by each version.  Detailed
descriptions of each version of the program are given in Sections 6.3-6.8 below.
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Version      2.1.2    2.1.2cs    2.1.2ce  2.1.2xs      2.1.2xe     2.1.2i

Machine      All      Cray-2     Cray-2   Cray C90     Cray C90    IBM RS/6000

Eigensystem  EVDRSP   SCILIB     EVCRSP   SCILIB       EVCRSP      EVIRSP
Analysis              RS                  RS
Routine

Matrix       FORTRAN  SCILIB     SCILIB   SCILIB       SCILIB      IBM
Multiply     source   MXMA       MXMA     SGEMM        SGEMM       library
Routine      DGEMM                                                 DGEMM

Linear       FORTRAN  SCILIB     SCILIB   SCILIB       SCILIB      FORTRAN
Equation     source   MINV       MINV     LAPACK       LAPACK      source
Solution     DGETRS/                      SGETRS/      SGETRS/     DGETRS/

DGETRF                       SGETRF       SGETRF      DGETRF

6.3 VERSION 2.1.2: PORTABLE VERSION

In order to run the portable version of the program, the list of object
files to be compiled in the file "Makefile.mak" should read

OBJ= rmprop2.o exscat2.o gnscat2.o verp.o 
The version with these files compiled and linked is called version 2.1.2.  The
distribution package is preset with this line in Makefile.mak.  No changes need
to be made.

The distribution version of RMPROP-Version 2.1.2 uses FORTRAN source 
subprograms from both the LAPACK library and the Basic Linear Algebra
Subroutines (BLAS) to perform most matrix operations.  In order to solve 
the complete eigensystem of a real symmetric matrix, the portable version 
of the program uses subroutine EV2RSP, which is a modification of subroutine 
EVVRSP written by Stephen T.  Elbert of Iowa State University.  This routine 
runs much more quickly than the FORTRAN 77 version of subroutine RS from 
EISPACK which had been used in RMPROP-Version 1.0.  All of the matrix utility 
routines including EV2RSP are ANSI standard FORTRAN 77.  These matrix utilities
are discussed in more detail in Section 16 of this manual, and in Section 9 
of the METECC-94 book chapter.

6.4 TIMING OF PORTABLE VERSION 2.1.2

The running time of RMPROP varies considerably, depending mainly on the
system studied, the complexity of the potential, the stepsizes, the size of the
basis sets used in the close coupling expansion of the Schroedinger equation,
and the use of the inhomogeneous option (see Section {8.6} below).  This option 
allows the program to solve the scattering problem for systems where some or all
of the channel orbital angular momenta are zero, so that the collision partners
approach arbitrarily close to one another.  However this option is not necessary
for most applications.  The test runs below, except for test run ehydr1, were
performed with the inhomogeneous option turned off, which reduces both the CPU
and memory requirements of the program.  However, all such elements of the test 
suite have been tested with the inhomogeneous option both ON and OFF, and final 
transition probabilities calculated using each option were in good agreement.  
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The table below gives sample timings for version 2.1.2 of the program on the
Cray-2, Cray C90, and IBM RS/6000.  The results in the table show that the 
Cray-2 is roughly comparable to the IBM RS/6000 for most runs of the test
suite.  There are two main reasons for this.  The first is the small size of 
the elements of the test suite.  The Cray vector pipeline architecture does not
handle these small matrices efficiently, but the scalar architecture of the IBM
RS/6000 does not require a minimum matrix size for optimum performance.  The 
second reason is optimization of the program by the compilers.  The FORTRAN 
source codes for matrix multiplication and eigensystem analysis included in the
portable version of the program are not well-optimized by the Cray compiler, so
it does not run as efficiently on the Cray vector pipeline architecture as the 
Cray SCILIB library routines.   However the optimizing flag on the IBM RS/6000
compiler produces executable programs which run efficiently on the IBM scalar
architecture.  Sections 6.4 - 6.6 below show the results of using machine-
optimized (i. e., system-specific FORTRAN and library routines) on the Cray and
IBM architectures.

Test
run no.  Test run name   CPU Time (seconds) for portable version 2.1.2
-------  -------------   -------------------------------------------------

IBM RS/6000  Cray-2   Cray C90
-----------  -------  -------------

1       hfhfstr1            278.2   317.9     114.2
2       hfhfstr2            452.2   434.1     152.8
3       hfhfstr3*            82.0    75.5      26.9
4       hfhfstr4             26.1    41.4      14.2
5       hfhfstr5             93.4   112.3      39.4
6       hehfr1                1.0     1.3       0.6
7       heh2cdr1              1.7     2.5       1.2
8       heh2cdr2              1.2     1.7       0.7
9       hfhfpbsr1             8.1    11.8       4.6
10       hfhfadr1              3.7     3.6       2.0
11       hfhfadr2*             1.8     2.2       1.1
12       atdir1                0.8     1.2       0.5
13       ehydr1                0.6     0.6       0.3
14       hei2r1               25.4    29.2      10.8
15       heh2tkr1              6.0     9.8       3.3
16       heh2tkr2              5.0     8.2       2.8
* (reads in restart information from previous run) 

6.5 VERSIONS 2.1.2cs, 2.1.2ce, 2.1.2xs, 2.1.2xe: CRAY UNICOS VERSIONS

6.5.1 Version 2.1.2cs
On the Cray-2, optimized subroutines for matrix multiplication and 

eigensystem analysis are available in the Cray SCILIB library.  Version
2.1.2cs makes full use of the SCILIB library by calling MXMA for matrix
multiplication, MINV for linear equation solutions, and RS for 
eigensystem analysis.  The use of these subroutines will greatly enhance
performance of RMPROP on the Cray-2. 

In order to use Version 2.1.2cs, the list of object files to be compiled 
in the file "Makefile.mak" should read

"OBJ= rmprop2.o exscat2.o gnscat2.o vercs.o" 

6.5.2 Version 2.1.2ce
Also for use on the Cray-2 running UNICOS is version 2.1.2ce, which differs
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from 2.1.2cs only in that it calls EV2RSP for eigensystem analysis instead of
RS. For runs in the test suite included with this manual, the Cray SCILIB
version of SUBROUTINE RS is the faster of the two.  However, for larger runs, we
have found that EVVRSP is more efficient.  For example, for runs on the HF-HF
system used in test runs 1-4 of this manual, EVCRSP gives comparable
performance to SCILIB RS for matrices of dimension 236 x 236, and outperforms it
by 36% for the same HF-HF system for matrices of dimension 1058 x 1058.  See 
Section 17 of this manual for more information.

In order to run the program on the Cray-2 with the Cray SCILIB version of
the matrix multiplication routine MXMA, and of linear solution routine MINV, and
with the modified eigensystem analysis routine, EVCRSP, the list of object
files to be compiled in the file "Makefile.mak" should read

"OBJ= rmprop2.o exscat2.o gnscat2.o verce.o" .
The version with these files compiled and linked is called version 2.1.2ce.

In order to run the program on the Cray C90 with the Cray SCILIB version of
the matrix multiplication subroutine SGEMM and linear equation solution 
routines SGETRF/SGETRS, and with the Cray SCILIB version of the eigensystem 
analysis routine, RS, the list of object files to be compiled in the file 
"Makefile.mak" should read

"OBJ= rmprop2.o exscat2.o gnscat2.o verxs.o" .
The version with these files compiled and linked is called version 2.1.2xs.

In order to run the program on the Cray C90 with the Cray SCILIB version of
the matrix multiplication routine SGEMM, and of linear solution routines 
SGETRF/SGETRS, and with the modified eigensystem analysis routine, EVCRSP, 
the list of object files to be compiled in the file "Makefile.mak" should read

"OBJ= rmprop2.o exscat2.o gnscat2.o verxe.o" .
The version with these files compiled and linked is called version 2.1.2xe.

6.6 TIMING OF CRAY UNICOS VERSIONS 2.1.2cs, 2.1.2ce, 2.1.2xs, 2.1.2xe

Below we list the timings for the test suite using the distributed version
of the program with the SCILIB matrix multiplication routine MXMA and linear
equation solver MINV, and with either the SCILIB eigensystem analysis routine 
RS, or the alternative eigensystem analysis routine EVCRSP:
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CPU Time (seconds) for Cray UNICOS versions
TEST     TEST              Cray-2         Cray C90
run no.  run name    2.1.2cs  2.1.2ce  2.1.2xs  2.1.2xe
-------  --------    -------- -------- -------- --------
1      hfhfstr1      149.9    144.3    40.4     50.6
2      hfhfstr2      188.8    171.1    54.7     65.0
3      hfhfstr3*      27.4     26.1     7.9     10.2
4      hfhfstr4       32.7     33.5    10.8     11.2
5      hfhfstr5       62.0     64.9     9.3     22.4
6      hehfr1          0.8      0.7     0.4      0.4
7      heh2cdr1        5.7      4.6     2.6      1.0
8      heh2cdr2        1.2      0.8     0.3      0.4
9      hfhfpbsr1       8.0      5.7     2.4      2.5
10      hfhfadr1        4.9      2.8     1.7      1.7
11      hfhfadr2*       1.9      1.8     1.0      1.0
12      atdir1          1.0      0.6     0.2      0.2
13      ehydr1          0.3      0.3     0.2      0.2
14      hei2r1         13.8     12.8     4.4      5.0
15      heh2tkr1        8.3      8.3     2.7      2.8
16      heh2tkr2        6.8      6.8     2.2      2.3

* (reads in restart information from previous run)

6.7 VERSION 2.1.2i: IBM RS/6000 VERSION

On the IBM RS/6000, the matrix multiplication and linear equation solutions
which are carried out by calls to FORTRAN 77 versions of the BLAS routines
contained in module "matrix.f" may instead call the BLAS routines contained in
the directory "/lib/libblas.a".  The IBM RS/6000 version of the program also
calls a version of Stephen Elbert’s eigensystem analysis routine, which has been
optimized for the IBM by the process of rewriting important FORTRAN DO-LOOPs in
terms of calls to the BLAS.  This routine is called EVIRSP to distinguish it
from the distribution version and the Cray-specific version of the subroutine.  
Finally, many of the FORTRAN DO LOOPs within RMPROP itself are replaced by calls
to the BLAS.  The use of the BLAS and of EVIRSP greatly improves performance on 
the IBM RS/6000.  

It should be noted that although many of the BLAS routines (e. g. DGEMM) are
present in "/lib/libblas.a" on the IBM RS/6000, the LAPACK routines (e. g. 
DGETRF/DGETRS) are not present with this directory, and so must be included as
ANSI standard FORTRAN 77 modules.  However, even in these cases, the total
execution time of these subroutines may be decreased by allowing calls to the
BLAS subroutines within these subprograms to be handled by the BLAS whenever
possible.   

In order to run the program on the IBM RS/6000 with the IBM version of the
BLAS routines, and with the IBM-optimized version of Stephen Elbert’s
eigensystem analysis routine, EVIRSP, the list of object files to be compiled 
in the shell script "Makefile.mak" should read

"OBJ= rmprop2.o exscat2.o gnscat2.o veri.o".
The version with these files compiled and linked is called version 2.1.2i.
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6.8 TIMING OF IBM RS/6000 VERSION 2.1.2i

Below we list the timings for the test suite using the IBM RS/6000 version
of the program with the LAPACK routines and the modified alternative 
eigensystem analysis routine EVIRSP:

Test run no.   Test run name    CPU Time (seconds) for version 2.1.2i
------------   -------------    ------------------------------------------ 

1           hfhfstr1                       202.8 
2           hfhfstr2                       318.4 
3           hfhfstr3*                       56.9 
4           hfhfstr4                        26.0 
5           hfhfstr5                        71.2
6           hehfr1                           1.2
7           heh2cdr1                         1.9 
8           heh2cdr2                         1.0
9           hfhfpbsr1                        7.8
10          hfhfadr1                         3.5
11          hfhfadr2*                        1.7 
12          atdir1                           0.8
13          ehydr1                           0.7 
14          hei2r1                          19.8 
15          heh2tkr1                         6.0 
16          heh2tkr2                         5.0 

* (reads in restart information from previous run)
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7.  ORGANIZATION OF THE MANUAL

The theoretical background for the dynamical calculations is described in a 
chapter by the authors of this program that has been published in 
"Modern Techniques in Computational Chemistry: METECC-94", edited by Enrico 
Clementi.  Section 8 of details necessary to understand the input data.  Section
9 gives a brief summary of the units used in the program.  Section 10 describes
the argument list for the subroutine which passes potential matrix elements to 
the main program when the matrix elements are known explicitly or can be 
calculated analytically from the interaction potential function directly.  
Section 11 describes the argument list for a user-supplied potential energy 
surface and subroutines required by energy surface.  Section 12 lists input and 
output files used by the program. Section 13 gives the input to the main code 
from FORTRAN unit 5.  Section 14 discusses array dimensions and memory 
considerations.  Section 15 gives a list of the labeled common blocks used.
Section 16 contains an alphabetical description of all the subroutines in the
program, and a description of the system-dependent subroutines used to perform
non-computational tasks.  Section 17 discusses the matrix utilities and their
subsidiary routines.  Section 18 contains a summary of fatal error messages 
issued by the main program.  Section 19 contains sample runs which illustrate
various options allowed by the program; these may be useful in understanding 
the input or in testing the program. Section 20 lists the files in the program
distribution.  Section 21 is the bibliography, Section 22 contains known errata
in the on-line manual for RMPROP-Version 1.0, and Section 23 contains known 
bugs in the FORTRAN program for RMPROP-Version 1.0.

7.1 MANUAL CONVENTIONS, BRACES, BRACKETS

Subprogram names, input variables, and variable names from the RMPROP
program are in all capital letters.  File names are in all lower case letters.
References to the theoretical discussion in Section 8 are made by paragraph
numbers given in curly brackets, (e.g., {8.3} refers to paragraph 3 in Section
8).  References to equations from the METECC-94 chapter are made in brackets 
(e.g., [5] refers to Equation 5.  Greek letters used as variables are always
spelled out (i.e., alpha), and capitalized if a capital Greek letter is implied
(i.e., Beta).
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8.  THEORETICAL BACKGROUND FOR DYNAMICAL CALCULATIONS

8.1 This section provides a brief overview of the dynamical theory underlying
the calculations, with the emphasis on relating the theoretical formulation to
the program input data.  Thus input variable names are used directly in the
discussion.  The paragraphs are numbered to facilitate cross references.  A 
complete list of input variables is given in Section 13 below.  A discussion of
manual conventions, braces, and brackets is given above in Section 7.1.

8.2 For concreteness we consider the collision of two molecules, A and B.  The
coordinate r is the distance between the centers of mass of A and B, and x is
the collection of all other coordinates describing the system.  It is assumed
that a set of r-independent primitive orthonormal basis functions X (x), 

n
n = 1, ..., NDIM, have been chosen, that these functions are eigenfunctions of
the total angular momentum with eigenvalue JTOT(JTOT+1) in atomic units, and 
that the wavefunction has been scaled so that the full Hamiltonian has the form

2
1     d        0 

H = - ------- -----  + H (r,x)  + scriptV(r,x)                         (1)
2

2 MUABC  dr

where

0                            L(n) ( L(n) + 1 )
H (r,x) X (x) = (epsilon  + -------------------   ) X (x).             (2)

n              n                 2          n
2 MUABC r

Here epsilon  is the internal energy of eigenfunction X , and each L(n) is the
n                                          n

orbital angular momentum for relative translational motion associated with the
corresponding eigenfunction X . It is also assumed that the interaction between 

n
the collision partners, V(r,x), which is included in scriptV(r,x), decreases
faster at large r than 1/r.  Unlike RMPROP-Version 1.0, however, it is not
required that V(r,x) become much larger than the scattering energy as r goes to 
zero.  The program can now handle this case, as well as the opposite situation,
by the use of the inhomogeneous option, governed by the input logical variable
LR4MT {8.5, 8.6}.  Each primitive function X (x) defines what is called a

n 
channel.
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8.3 Then the problem is to determine the coefficients in the large-r boundary
conditions for the radial functions f   (r) in the wavefunction expansion  

nn
0

NDIM
---

1  \     
Psi  (r, x) = -   >    X (x) f   (r).                                  (3)

n          r  /      n     nn 
0            ---            0

n=1          

The large-r boundary conditions take the form

lim         f   (r) = delta    j (r) + n (r) K                          (4) 
r-->infinity  nn            nn   n       n     nn

0             0                  0

where j and n  are matching functions, and the K    are the unknown elements of
n     n                                  nn

0
the reactance matrix.  The scattering matrix is determined from the reactance 
matrix by well known equations.

8.4 We proceed by dividing the propagation coordinate r into sectors with
centers RABC(i).  The width of sector i is H(i) (not to be confused with the H

0  
or the H  of {8.2}).  The center of the first sector is RSTART, and propagation
proceeds according to either of two options selected by the user by a variable
LR4MT {8.5, 8.6} set in FORTRAN unit 5.  For i greater than 2, the width of the
next sector is determined automatically.  First a trial width is determined
using epsilon = EPSA, EPSB, or EPSC and h    = HMAXA, HMAXB, or HMAXC in [47].  

max
The trial width is set to the minimum of the width determined using the
appropriate epsilon and h   .  The trial width is then compared to the input

max
parameter HMINA, HMINB, or HMINC, and the final stepsize is the maximum of the
trial width and the HMINA/HMINB/HMINC parameter.  The choice between HMINA,
HMINB, or HMINC for the minimum value and between HMAXA, HMAXB, or HMAXC for the
maximum value is made as follows: HMINA and HMAXA are used if r is less than
REPSA, HMINC and HMAXC are used if r is greater than REPSB, and HMINB and HMAXB
are used otherwise.  This width is used unless one of the NCUSP values of RCUSP
lies within this distance of RABC(i).  In that case, the width is determined by
setting RABC(i+1) to the next value of RCUSP.  The propagation continues either
until the scattering matrix converges with respect to r, until a value of
RABC(i) + H(i)/2 exceeds the limit RMAX, or until the number of sectors exceeds
the dimension NSECT set in the program.            

8.5 The option set by the variable LR4MT is known as the (in)homogeneous option.
If LR4MT = .TRUE., then it is assumed that f     is negligible at RSTART-H(1)/2.

nn
0

This is called the homogeneous option, since it implies that the coupled
equations are solved subject to homogeneous boundary conditions (f    --> 0) at

nn
0
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the origin.  In this case, just the R  submatrix of the global R matrix is
4

propagated, and the program may both drop uncoupled channels from propagation
{8.7} and from the final asymptotic analysis {8.12}.  This option is preferred
for heavy-particle collisions, since much of the work at small r becomes
unnecessary.  In addition, some of the time-saving options {8.10} are only
allowable with this option. 
8.6 If LR4MT = .FALSE., then the program will propagate the full R matrix at
each sector.  This options requires more memory (the storage of the full matrix
and takes more time (propagation of the full R matrix takes at least one-third
longer than propagation of just the R  submatrix, depending on the value of the

4
option NPROP {8.10} used to propagate R ).  In particular, NPROP = 2, which

4
gives a significant speedup for the homogeneous option, is invalid for the
inhomogeneous option.  In addition, the inhomogeneous option requires that the
propagation be started closer to the origin.  Finally, use of the inhomogeneous
option means that no channels may be dropped from the propagation {8.7}, even
though they may be removed prior to the asymptotic analysis.  The use of the
inhomogeneous boundary conditions is only recommended for physical systems where
the collision partners may approach arbitrarily close to one another, such as
electron-atom scattering.  In such cases the radial functions do not become
regular at the origin.   For neutral heavy particle scattering, the
inhomogeneous boundary conditions may still be used, but they are not necessary
for an accurate solution (Section 3.5 of METECC-94 chapter and discussion
following [87]).   

8.7 At the center of each sector, we determine the matrix representation of
scriptV in the primitive basis by a call to subroutine POT.  This matrix is
called D.  It is assumed that the coupling between the radial functions is
independent of r in each sector.  We then can determine a local adiabatic basis 
by diagonalizing D to yield eigenvalues and eigenvectors.  The matrix which
diagonalizes D is used to form the overlap matrix [50], which is called TAUE in 
the program.  Only the functions with the lowest PDIM eigenvalues are used in 
propagating across the sector.  The initial value of PDIM is set to the input
variable PD.  When RABC(I) is greater than the input variable RBIG, then the
program tries to reduce PDIM using the input tolerance EPSRED (discussed after
[71] in the METECC-94 chapter). Only functions which would not be energetically
allowed asymptotically are dropped from the propagation.  It is also important
to note that PDIM will remain constant (no channels dropped from propagation)
if the inhomogeneous option {8.6} is used.

8.8 It should be noted that the eigenvectors of D are unchanged by adding a
multiple of the unit matrix to D.  Thus if another calculation is to be carried 
out which only changes D in this manner, the eigenvectors can be reused if they 
have been saved.  In practice we save the overlap matrix rather than the
eigenvectors.  Such saving can be very advantageous because the computation of 
D and its diagonalization can be expensive. The program allows this information 
to be reused in four situations: (1) the total energy E changes, (2) the initial
value PD of PDIM {8.7} changes, (3) the initial integration distance RSTART 
{8.4} changes, or (4) the value of the orbital angular momentum OAM for each
channel changes.  (OAM is used for spherically symmetric potentials where the
orbital angular momentum is identical in all channels.)  Currently E, RSTART,
and OAM can all change with PD fixed, or PD can change with E, RSTART, and OAM
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fixed.  For succinctness, these are all called second-case runs {8.9}. 

8.9 The program can perform second-case runs in two modes.  In type-1
second-case runs, the propagation is completed for the first case before the
second case is begun. This requires that the TAUE matrix {8.7}, and perhaps its 
inverse, which is called TINVE in the program, be saved on disk files at each
sector {8.10}.  This is done by setting the number of energies, NE, to a
positive number, or by utilizing the IROWS options.  In type-2 second-case runs,
all cases are propagated across each sector together, and the TAUE and TINVE
matrices need not be stored.  This option is accessed by setting the number of
energies to a negative number.  For type-2 second-case runs, it is
necessary to know at what energies the second and subsequent cases are to be
run, while for type-1 second-case runs it is possible to save the disk files and
perform second-case calculations at some later date.  Type-2 second-case runs do
not require disk storage, but do require additional memory since the R  matrix

4
{8.5} or the full R matrix {8.6} for each case must be stored.
8.10 To perform the actual propagation from one sector to the next, several
propagation formulas can be used.  If NPROP is 0, [58e] is used exactly as it is
written in the chapter.  If NPROP is 1, then [58e] is used, except that the
calculation of the sector r matrices r  - r  [53]-[56] which are used in [58e]

1    4
is performed using the transpose of the TAUE {8.7} matrix rather than its
inverse.  If NPROP is 2, then [58e] is used, except that the local r matrices
(r - r ) are not stored explicitly.  If PDIM {8.7} = NDIM {8.2}, in the absence 
1   4

of roundoff error, all formulas should give the same result.  If PDIM is not
equal to NDIM, then NPROP = 0 or 2 is more rigorous, although NPROP = 1 will
always give a unitary scattering matrix while the other options will not.  The
NPROP = 2 formulas require less work than the other formulas.  If type-1
second-case runs {8.9} are performed, NPROP = 1 and 2 do not require that the
inverse of the TAUE matrix be stored on disk.  If the inhomogeneous option {8.6}
is used then NPROP = 2 is invalid, and [58a-e] are used throughout the
propagation with explicit storage of the matrices (r - r ).  In general the 

1   4
usage of NPROP = 2 is the most efficient.

8.11 As the propagation proceeds, there can be many crossings of the eigenvalues
of the D matrix {8.7}.  When two or more eigenvalues are degenerate in the
current sector, then the eigenvectors will be mixed.  At intermediate distances,
this is of no consequence, however, it poses a problem when carrying out the
asymptotic analysis. This mixing can be resolved and the R matrix transformed
from the local adiabatic (mixed) basis to the unmixed primitive basis [75].
This option is enabled by setting the input logical variable LTASY to .TRUE..

8.12 When carrying out the asymptotic analysis, it is possible to neglect closed
channels.  For the homogeneous option {8.5}, this is done by comparing the
coupling between open and closed channels in the R  matrix {8.4} to the

4
parameter EPSDR, as described after [86c].  For the inhomogeneous option {8.6},
this is done by comparing the coupling between open and closed channels in the
M matrix [86b] as described after [86c].

8.13 When the asymptotic analysis is performed, several options are available
for the matching functions. If LBES is true, Ricatti-Bessel functions are used;
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otherwise sine/cosine functions are used. The wave vectors for each channel used
in the matching functions can be determined in any one of three ways, specified 
by the variable IMATCH.  If IMATCH is 0, then the wavevectors are determined
from the eigenvalues of D {8.7} evaluated at r = RASYE. If IMATCH is 1, then the
eigenvalues of D at r = RABC(i) {8.4}, where i is the current sector number,
determine the wavevectors.  Finally, if IMATCH is 2, then the eigenvalues of D
at r = RABC(i) + H(i)/2 are used.

8.14 For situations where the reactance matrix is not symmetric because PDIM
{8.7} was not large enough, it can be symmetrized by one of three options set by
the input variables LGS(9) and IOPT3.  The reactance matrix will only be
symmetrized if LGS(9) is .TRUE..  If IOPT3 is 1, then the lower left triangle of
the reactance matrix will be imposed upon the upper right.  If IOPT3 is 2, then
the upper right triangle of the reactance matrix will be imposed on the lower
left.  If IOPT3 is 3 then the reactance matrix will be symmetrized by using the 
arithmetic mean of the original pair of off-diagonal elements.  IF IOPT3 is 4
then each of the methods will be employed in turn, but the scattering matrix 
will be calculated from the reactance matrix symmetrized using the arithmetic
mean of the off-diagonal elements.

8.15 The asymptotic analysis will be performed either at the intermediate
distances defined by RPSM, when the maximum propagation distance RMAX is
exceeded, or when the maximum number of sectors, NSECT is exceeded.  If possible
the program attempts to stop the calculation before RMAX is reached.  This is
done by comparing the results of the current asymptotic analysis to the one
performed previously.  For type-2 second-case runs, this is done only for the
first case. If the difference is small enough, the calculation stops. If EPSMAG 
is nonzero, then the NIND matrix elements of the scattering matrix specified by 
the array IND are compared, and if the relative differences in the magnitudes of
all NIND matrix elements are less than EPSMAG, then convergence is assumed.  If
in addition, EPSPH is also nonzero, then the relative differences in the phases
of the NIND matrix elements are also compared to EPSPH, and convergence is
assumed only if both the EPSMAG and EPSPH tests are passed.  If both EPSMAG and
EPSPH are zero, the calculations are not stopped until RMAX is reached.  In
addition, the program contains a trap which prevents the asymptotic analysis
from being performed at a given RPSM if the asymptotic analysis for the previous
RPSM was performed in the previous sector; the program will not perform the
asymptotic analysis for the RPSM for two adjacent sectors.  This is to prevent
the user from assuming convergence with respect to increasing the propagation
coordinate by comparing the asymptotic analysis at too closely spaced distances.
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9.  UNITS

The code is set up to be valid for any consistent set of units for which the
Hamiltonian has the form of the equations in {8.2}. This is most conveniently
accomplished by using Hartree atomic units, given below.  All test runs utilize
these units.

length            bohr             5.2918E-10 m
energy            hartree          4.3592E-18 J
angular momentum  h/(2 * pi)       1.0546E-34 J*s
mass              electron mass    9.1095E-31 kg
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10.   CALCULATIONS WITH A MODULAR POTENTIAL MATRIX ELEMENT ROUTINE

This section discusses the subroutines required by RMPROP to integrate the
close coupling equations when the user supplies a FORTRAN source code to
generate the scriptV(r, x) matrix.  It includes a listing of the files,
argument lists, and a description of each argument.  Numbers in {} refer to
paragraphs in Section 8 above.  

The program is distributed with potential function subprograms for the test
runs, but most users will need to supply other potential function subprograms
corresponding to their own problems.  This section of the manual describes
specifications necessary for the user to run this program with his or her own
potential matrix element subprogram.  The subprogram is required to supply to 
RMPROP a matrix which contains in location (I,J) the interaction potential
integrated between asymptotic basis functions I and J at the current value of
the radial separation, described in {8.7}.  For certain forms of the interaction
potential and collision partners, these integrals are known analytically, or
they may be evaluated numerically by specific quadrature methods.  If the
interaction potential is already in such a form that the integrals are known 
analytically, then the modular potential matrix element routine should be used
to supply the interaction potential matrix elements to the main program.  (The
case of a general interaction potential is discussed below, in Section 11 of
this manual.) 

Examples of "standalone" potential matrix element generation routines are in
Test Suite elements hfhfstr1-5, heh2cdr1-2, hfhfpbsr1, and ehydr1 (see Section
19).

USER REQUIRED:
SUBROUTINE PREPOT              See Sections 10.1 and 11.
SUBROUTINE POT                 See Sections 10.1 and 11.
parameter.inc                  See Sections 10.2, 11.3.2,

14, and 15.
fort.5 (Main input.)           See Section 13.

10.1  DESCRIPTIONS OF SUBPROGRAMS

The call to PREPOT is 

CALL PREPOT(LSTAP,NDIM,JIN,ID,L,JTOT,B,IS,EI,EFASY)

PREPOT is designed to set variables, read information, and write messages 
pertaining to the potential.  These are tasks which it is assumed need only be 
performed once for any particular potential.  Messages should be written to 
units 6 (long output) and 15 (short output).  Information may be read from unit
4, which has been reserved for potential-defining input.

The call to PREPOT occurs after FORTRAN unit 5 has been read.  In 
particular PREPOT is called once if only one scattering potential is used and 
once for each potential if more than one is used.  The only input
information read in for second and subsequent potentials is that read in by
subroutines PREPOT (to define the potential) and by PRSCAT (to govern the
printing of scattering output for that potential).
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PREPOT must set the array EI, and if LTASY is true, it must also 
set the array EFASY.  The arrays B, JIN, and IS are used only by PREPOT and POT,
typically to store rotational and vibrational quantum numbers, respectively.
For correct dimensioning, PREPOT must also incorporate the FORTRAN statements

INCLUDE ’parameter.inc’
DIMENSION EI(IDX),B(IDX,IDX,NVIB1X),JIN(IDX,NANX),IS(IDX,NVIBX)
DIMENSION L(IDX),EFASY(IDX,IDX)

Note: some options require that the channels are ordered by energy (e. g. LTASY
{8.11}). To facilitate this it is permissible for PREPOT to reorder the
elements of L, JIN, IS, and EI.   

Calling Parameters:

LSTAP: a logical variable.  By default, RMPROP sets LSTAP to .TRUE.,
so that RMPROP will stop after the propagation is complete for that potential.  
If LSTAP is reset to .FALSE. in PREPOT,  PREPOT will be called again to 
define a new potential, and another scattering calculation will begin. 
RMPROP will continue to complete propagations and read in new potentials
from PREPOT until LSTAP is set to .FALSE. at the beginning of the final
scattering calculation.  The records read in again for the new scattering
calculations are records 33 and following from FORTRAN unit 5, read in by 
subroutine PRSCAT, and any records required by the potential subroutine, 
read in from FOTRAN unit 4.

NDIM: an integer variable set by the main program (read in from FORTRAN
unit 5); it is the number of primitive basis functions in the calculation {8.2}.

JIN: an integer array dimensioned JIN(IDX,NANX), set by PREPOT. IDX
and NANX are parameters set in the include file parameter.inc.  Only PREPOT 
and POT use the array, which is typically used to store angular momentum 
quantum numbers other than the orbital angular momentum for relative 
translational motion. In test suite elements, JIN stores the rotational 
quantum numbers of diatoms for each channel and the coupling of rotational 
quantum numbers for the diatoms in each channel.

ID: an integer variable set by RMPROP (read in from FORTRAN unit 5).  It
is usually equal to IDX in the file parameter.inc, and is no longer used.

L: an integer array dimensioned L(IDX) set by RMPROP when read in from
FORTRAN unit 5.  It is the quantum number specifying the orbital angular
momentum quantum number for relative translational motion {8.2}.  The
elements of L may be reordered by PREPOT if necessary (e.g., channels
are sorted by energy in PREPOT).

JTOT: an integer variable set by RMPROP after being read in from FORTRAN
unit 5.  It is the total angular momentum quantum number {8.2}.

B: a double precision array dimensioned (IDX,IDX,NVIB1X).  This array is 
never used by the main program and may be used to supply scratch space for
PREPOT and POT. 



RMPROP 2.1.2
Page 10-3

IS: an integer array dimensioned IS(IDX,NVIBX), set by PREPOT.  
Normally, the vibrational quantum numbers of the collision partners are 
stored here. 

EI: a double precision array of dimension EI(IDX) set by PREPOT which
must contain the asymptotic channel eigenenergies in atomic units for the 
collision partners. 

EFASY: a double precision array dimensioned EFASY(IDX,IDX) and set by
PREPOT.  EFASY is required only if LTASY (read in from FORTRAN unit 5) is .TRUE.
and in that case should contain the eigenvectors of the asymptotic basis in the 
primitive basis {8.11}.  Normally this would be the unit matrix.   

The call to POT is 

CALL POT(RABC,NDIM,ID,B,UPCDMT)

POT is expected to calculate the potential matrix UPCDMT.  POT should 
incorporate the FORTRAN statements

INCLUDE ’parameter.inc’
DIMENSION B(IDX,IDX,NVIB1X),UPCDMT(IDX,IDX)

CALLING PARAMETERS:
RABC: a double precision variable set by RMPROP.  This is the value of

the scattering coordinate r for which the potential matrix is to be calculated.

NDIM: see PREPOT above.

ID: see PREPOT above.

B: see PREPOT above.

UPCDMT: a double precision array of dimension UPCDMT(IDX,IDX) calculated
by POT.  UPCDMT contains the matrix elements of the potential scriptV(r, x)
{8.2, 8.7} in the primitive basis, evaluated at r.  

10.2 INCLUDE file

The file parameter.inc must be present in the source code directory when
the code is compiled.  The contents of the file should be the fortran source
code statement:

PARAMETER(IDX=ii1,NSECTX=ii2,NANX=ii3,NSAVEX=ii4,NVIBX=ii5,NVIB1X=ii6,
& NNEX=ii7,NBARX=(IDX*(IDX+1)/2))

where ii1, ii2, ... represent integers which are constant within each run but
which may vary from run to run.  These values are used to dimension many of the 
arrays within the program.  The file parameter.inc and the parameter list are
discussed in more detail in Sections 14 and 15.
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11. CALCULATIONS WITH A USER-SUPPLIED POTENTIAL ENERGY SURFACE SUBPROGRAM

11.1 DESCRIPTION OF GENERAL POTENTIAL MATRIX ROUTINES

In RMPROP-Version 2.1.2 it is possible (for some types of systems) for the
user to supply a general form for the interaction potential between the
collision partners and to allow RMPROP to numerically evaluate the matrix
elements of the interaction potential between asymptotic basis functions {8.2,
8.7} which it needs at each sector of the propagation.  

The user can supply one of three types of potential surfaces, and RMPROP
will form the scriptV(r, x) matrix from the surface, as follows:

1) Atom-rigid rotor surface, with potential expanded in Legendre functions
times radial functions.  This will be discussed in more detail in
Section 11.2.

2) General Atom-(vibrating) rotor surface.  This will be discussed in more
detail in Section 11.3.

3) Diatom-diatom surface, when diatoms are identical.  This will be
discussed in more detail in Section 11.4.

The numerical evaluation of the integrals is carried out in several steps which
are described below.

The first step is the expansion of the user-supplied potential in a set of
convenient angular functions.  The type of angular functions used will depend
upon the system being studied.  For an atom-diatom system there are two options.
If the diatom is being treated as a rigid rotor, and the interaction potential
is already expressed solely as a summation of Legendre functions times radially-
dependent coefficients, then vgr1.f should be used.  See Section 11.2 (the
discussion of vgr1.f) and Sections 19.5 and 19.11 (test runs hehfr1 and atdir1)
for examples of this.  If the diatom is a vibrating rotor or the atom-diatom 
potential is not expanded in Legendre functions, then vgr2.f should be
used.  See Section 11.3 (the discussion of vgr2.f) and Sections 19.13-15, (test
runs hei2r1, heh2tkr1, and heh2tkr2) for examples of the vibrating rotor, and
Section 19.16 (test run heh2tkr3) for an atom-rigid rotor calculation.  For a 
diatom-diatom system where the two diatoms are identical, the interaction
potential is expanded in Launay functions, using vgr3.f.  Depending upon the
input options, either rigid rotors or vibrating rotors may be treated.  See
Section 11.4 (for a discussion of vgr3.f) and Sections 19.9 and 19.10 (test runs
hfhfadr1 and hfhfadr2) for examples of the use of vgr3.f with a rigid rotor).

The second step is the integration of the angular functions used in the
expansion of the interaction potential with the angular-dependent factors of the
appropriate asymptotic channel basis functions.  The choice of the angular
functions used to expand the interaction potential allows these integrals to be 
evaluated analytically.  (These angular integrals may be saved to disk on
FORTRAN unit 2 if desired; however it should be noted that this requires a large
amount of storage).
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The third step is the evaluation (if necessary) of the vibrational
quadratures [A.28] contributing to the potential matrix elements at each sector.
This is performed in two steps.  The vibrational contribution to the potential
matrix elements are found by Gaussian quadrature in prevgr2.f or prevgr3.f, and 
so the weights and nodes for the quadrature must first be determined.  This
choice of weights and nodes is performed in SUBROUTINE WEIGH, discussed in
Section 11.3.3 below.  First, weights and eigenvalues are found for the
integration of the vibrational wave function for the diatom in the system under 
study.  This is done by expanding the wave functions in terms of a harmonic
oscillator basis set, and doing all integrals required in the harmonic basis.  
The nodes may be found in one of four ways: semi-classical nodes, scaled Gauss-
Hermite nodes, Gaussian nodes for the weight (which is the square of the
vibrational wave function), or calling a user-supplied routine SDATA to supply
the nodes.  After the determination of the weights and nodes, the Gaussian
quadrature is performed at each step of the propagation to determine the
vibrational contribution to the interaction potential matrix (the scriptV (r, x)
matrix of {8.2, 8.7}).   

The last step is the combination of the angular and the vibrational
contributions [A.26] to the interaction potential matrix at each sector of the 
propagation to supply the overall interaction matrix.  There are two additional
features of the expansion/quadrature of an arbitrary interaction potential which
should be noted.  First, the program allows the number of angular terms used
in the angular expansion of the potential, and the order of quadrature of the 
vibrational contribution to the interaction potential, to be decreased as a
function of the radial separation.  This is useful for systems where the
anisotropy of the interaction potential decreases strongly with increasing
radial separation, since then a fewer number of terms may be needed for an
accurate description of the interaction potential.  Second, the order of the
angular expansion and of the vibrational quadrature may be varied independently 
at the discretion of the user.

It should also be pointed out that both the expansion of the interaction 
potential in a set of known angular functions and the quadrature over the
vibrational contribution to the interaction potential matrix are numerical.
Therefore, any scattering matrix elements elements obtained from the run should 
be checked for convergence both with respect to the number of known angular
functions in which the interaction potential has been expanded and with respect
to the angular quadratures which determined the expansion coefficients of the
interaction potential.
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11.2 POTENTIAL MATRIX ELEMENT ROUTINE vgr1.f 

This section of the manual describes the usage of the subroutine vgr1.f,
which is intended for use with 3-dimensional atom-rigid diatom systems where
the interaction potential is already explicitly written in terms of Legendre
functions.  Subroutine vgr1.f differs from both vgr2.f and vgr3.f in that vgr1.f
can ONLY be used with rigid rotors, so that there is no provision for the
vibrational contribution to the scriptV (r, x) matrix.  The test suite runs
hehfr1 and atdir1 are examples of the use of vgr1.f.

The user-supplied form of the interaction potential for vgr1.f is unique in
that vgr1.f assumes that the interaction potential is already written in terms
of Legendre functions times radial-dependent coefficients.  Therefore, any
atom-diatom interaction potential in which the interaction is not expressed as a
Legendre expansion should be used with vgr2.f (see Section 11.3 below).

Examples of the use of prevgr1.f and vgr1.f are in the Test Suite elements
hehfr1 and atdir1, with the code in pothehf.f and potatdi.f, respectively.

USER REQUIRED:
SUBROUTINE HEADER                   see below
SUBROUTINE FUN1                     see below
DOUBLE PRECISION FUNCTION EIGEN     see below
parameter.inc                       see Section 10.2, Sections 14, 15
fort.4                              see below
fort.5 (main input)                 see Section 13

11.2.1 List of User-supplied subroutines for use with vgr1.f

The calling sequence for SUBROUTINE HEADER is 

SUBROUTINE HEADER

The body of this subroutine should include all write statements
concerning the potential used in the calculation, with the appropriate
units being unit 6 for the long output and unit 15 for any short
output.

The calling sequence for the user-supplied potential energy surface is

SUBROUTINE FUN1(R,LMAXP1,VL)

R: Double precision variable, input. This is the propagation coordinate
in bohrs.

LMAXP1: Integer variable, input.  This is the maximum order of legendre
function in the potential expansion plus one; LMAXP1= LAMMAX + 1,
where LAMMAX is described in Section 11.2.2 above. 

VL: Double precision vector, length LMAXP1, output. Upon return, this
vector should hold the radial-dependent coefficients of the Legendre 
functions used to describe the interaction potential.  For the case of a
homonuclear diatomic, only even values of legendre functions will have
nonzero coefficients.  Subroutines vgr1.f and prevgr1.f expect that
for this case, VL will hold only these nonzero coefficients in the first
LAMMAX/2 +1 positions of the vector.
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The calling sequence for function EIGEN is
EIGEN(IV,J)   

IV: Input, integer dummy variable.  This variable indicates the
vibrational quantum number when this function operates for vibrating
rotors (as in conjunction with vgr2.f, vgr3.f).  This variable is set
to zero by PREPOT in prevgr1.f and should have no affect on the value
of EIGEN.

J: Input, integer variable.  This is the rotational quantum number of
the diatom for the channel of interest.

EIGEN:  Output, double precision.  The function should assign to 
EIGEN the energy in hartrees of the asymptotic channel with the diatom in 
rotational state J.

11.2.2 INPUT TO FORTRAN UNIT 4

CARD    Variable name                                   Format

1      LSTAP                                           L1

2      JIN(I,1)                                        10I5

3      IHOM,LAMMAX                                     10I5

LSTAP is a logical variable ordinarily set equal to .TRUE..  It is 
used to tell RMPROP whether to do more than one approximation to the 
interaction potential during a run, i. e., if LSTAP .EQ. .TRUE., then the 
current potential is the only one used.

(JIN(I,1),(I=1,NDIM)) contains the internal rotational angular momentum 
quantum numbers for the diatom. 

IHOM should equal 2 for homonuclear and 1 for heteronuclear diatoms.

LAMMAX is the maximum index of the Legendre functions in the potential.
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11.3 POTENTIAL MATRIX ELEMENT ROUTINE vgr2.f

For users with an atom-diatom potential energy surfaces but little 
interest in writing matrix-element generating routines, vgr2.f and prevgr2.f 
offer a modular interface to RMPROP 2.1.2.  

This section describes the usage of the subroutines in vgr2.f, which is 
intended for use with atom-vibrating diatom systems in 3 dimensions.  The 
subroutines in vgr2.f allow for vibrational contributions to the scriptV (r, x)
matrix {8.2,8.7}, by calls to SUBROUTINE WEIGH and SUBROUTINE WDATA, which 
calculate weights and nodes to solve the vibrational integrals by quadrature.  
It is also possible to use prevgr2.f and vgr2.f for rigid rotor systems (see 
variable NSAVE on RECORD 14 of input to UNIT 4 below).  

The test suite elements which employ prevgr2.f and vgr2.f are hei2r1,
heh2tkr1, and heh2tkr2, with source codes in pothei2.f and tkrpot.f.

USER REQUIRED:

SUBROUTINE HEADER                   see 11.2.1
SUBROUTINE FUN1                     see below
SUBROUTINE PTNTL                    see below
DOUBLE PRECISION FUNCTION EIGEN     see below
parameter.inc                       see below, 14, 15
expand.inc                          see below
fort.4                              see below
fort.5                              see 13

11.3.1 USER-SUPPLIED SUBROUTINES FOR vgr2.f

The call to HEADER was described in the previous section.

The calling sequence for subroutine FUN1, which returns the value of the
interaction potential as a function of atom, diatom coordinates, is

SUBROUTINE FUN1(R,R1,COSC,FN,NPTS)

R: Double precision variable, input. This is the value of the propagation
coordinate of the atom and diatom in bohr.

R1: Double precision variable, input. This is the bond length of the 
diatom in bohr.

COSC: Double precision vector of length NPTS, input.  This vector 
contains the cosine of the orientation angle chi at the angular quadrature
points. Chi is the angle between R and R1.

FN:  Double precision vector of length NPTS, output. FN(I) is the 
interaction potential in hartrees evaluated at the coordinates R, R1, COSC(I).

NPTS: Integer variable, input.  This is the number of points at which 
the potential should be evaluated.  (It is equal to the current order of the 
angular quadrature.)
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The calling sequence for the (user-supplied) diatomic potential curve is

PTNTL(X)

X:  Double precision variable, input.  X is the value of R - RE, where R 
is the bond length of the diatom in bohr.  

PTNTL: Double precision, output.  The function should assign to PTNTL
the energy of the diatomic potential at X in hartrees, and should return a 
value of 0 for X = 0.

The calling sequence for the function EIGEN is

EIGEN(IV,J)

IV:  Integer variable, input.  The vibrational quantum number of the
diatom for the channel of interest.

J:  Integer variable, input.  The rotational quantum number of the diatom
for the channel of interest.

EIGEN:  Double precision, output.  The asymptotic channel eigenenergy
in hartrees.

Note:  The user may utilize the asymptotic eigenergies of diatom v,j states
from SUBROUTINE WEIGH and WDATA by using the input variable IEIGN of
RECORD 11 on UNIT 4 (see below).  This is not permitted for rigid rotors or
for vibrational states calculated without rotational coupling (IVIBJ.NE.0,
JSAVE.EQ.0 on UNIT 4).

Finally it should be noted that if the value of INODE read in from FORTRAN
unit 4 (see Section 11.3.3 above) is 1, 2, or 3, the user should supply a
dummy SUBROUTINE SDATA(NPTS,XS) to avoid warning messages on loading.

11.3.2 INCLUDE FILES

The user must supply the file parameter.inc in the source code directory
during compilation of the code.  The contents of this file must be the fortran
statement

PARAMETER(IDX=ii1,NSECTX=ii2,NANX=ii3,NSAVEX=ii4,NVIBX=ii5,NVIB1X=ii6,
& NNEX=ii7,NBARX=(IDX*(IDX+1)/2))

where ii1, ii2, ... represent integers which are constant within each run but
which may vary from run to run.  These values are used to dimension many of the 
arrays within the program.  The variables within parameter.inc are described
in more detail in Sections 14 and 15 below, but we note here that NANX should be
at least 1, NVIBX should be at least 1, and NVIB1X should be set large
enough that the array BPOT(IDX,IDX,NVIB1X) is large enough to hold the angular
integrals required by the program.  The number of words needed by BPOT may vary
considerably, since only nonzero values of the integrals are stored.  An upper
limit on the value of NVIB1X is 3*NUMT, where NUMT is the number of terms in
the angular potential expansion (see RECORD 16 input to FORTRAN UNIT 4 below).
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The exact number required within a given run is written to standard output 
with the legend 

...  working precision words of bpot used in pot

where ... is an integer representing how many words of storage were required
by the angular integrals.  If the angular integrals would have required 
too much space, the program instead prints the message

Dimensions exceeded in angint. IBMX= ...

where ... is the current value of IDX*IDX*NVIB1X.

The second include file, expand.inc, should contain the fortran statement 

PARAMETER (NQAMAX=...,NQVMAX=...,MAXV=...,MAXJJ=...,NUMBT=...)

where the ... indicates an integer, and where the terms have the following 
meanings:

NQAMAX must be greater than or equal to the maximum order of angular 
quadrature.  It is used to dimension arrays concerned with the Legendre 
expansion.

NQVMAX must be greater than or equal to the maximum order of vibrational
quadrature.  It is used to dimension arrays concerned with the vibrational 
quadrature.  

MAXV must be greater than or equal to the maximum vibrational quantum
number + 1.  It is used to dimension the array of eigenvalues returned from 
SUBROUTINE WEIGH.  

MAXJJ must be greater than or equal to the maximum rotational quantum
number +1 of the diatom.  It is used to dimension the array containing the 
weights for the vibrational quadrature.  

NUMBT must be greater than or equal to the maximum number of Legendre 
functions used in the potential expansion (NUMT input in UNIT 4).
It is used to dimension several arrays related to the expansion of the 
interaction potential in Legendre functions.  
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11.3.3 SUMMARY OF INPUT TO FORTRAN UNIT 4

A record-by-record summary of the input to the RMPROP code from FORTRAN unit
4 when module vgr2.f and its associated subroutines are used follows.  Note that
the number of fields within each record may not match the FORMAT given because
some of the FORMAT statements are used for other purposes with the subprograms.

Record number          Input variables                       Format
-------------       ---------------------                    ------

1             RE                                       9E15.8

2             NUMQ                                     10I5

3             (NQUAD(I),I=1,NUMQ)                      10I5

4             (NQUADA(I),I=1,NUMQ)                     10I5

5*            (RQUAD(I),I=1,NUMQ-1)                    9E15.8

6             LSTAP                                    L1

7             NLINE                                    10I5

8             MES                                      80A8

9             (ISJ(I,1),I=1,NDIM)                      10I5

10             (JIN(I,1),I=1,NDIM)                      10I5

11             IHOM,IVIBJ,IEIGN                         10I5

12             RMS,OMEGA,RCENT,OMEGGH,LRCENT,SCAL2      4E15.7,L1,E15.7

13             NHQD,NBASIS,NPTSM,IPRINT,INODE,IWGHT     6I5

14             NINT,NL,NSAVE,JSAVE,IROTN                5I5

15%            NPTS                                     6I5

16@            NUMT                                     I5

*Only if NUMQ.GT.1
%Only if NSAVE.NE.0; Then card repeated until a value of zero given for NPTS
@Card repeated NUMQ times
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11.3.4 EXPLANATION OF INPUT VARIABLES TO FORTRAN UNIT 4

Record 1: RE: (9E15.8)

This variable is the equilibrium bond length of the diatom in bohr. 

Record 2: NUMQ: (10I5)

This variable is the number of different orders of quadrature (vibrational
and/or angular) to be used during the propagation.  

Record 3: (NQUAD(I),I=1,NUMQ): (10I5)

This variable is the number of points to be used in the vibrational
quadrature for R less than RQUAD(I), where RQUAD (I) is discussed in Record 5
below.  If one wishes to use a rigid rotor, NQUAD is set to 1, and the flag
governing the use of a rigid rotor is set by NSAVE in Record 14 (see below).

Record 4: (NQUADA(I),I=1,NUMQ): (10I5)

This variable is the number of points to be used in the angular quadrature
for R less than RQUAD(I), where RQUAD(I) is discussed in Record 5 below.  Note
that the separate specification  of NQUAD and NQUADA allows the orders of the
two quadratures to be varied independently.

Record 5: (RQUAD(I),I=1,NUMQ-1): (9E15.8)  (Only if NUMQ > 1)

This variable governs the value of the propagation coordinate R such that
the order of the vibrational and/or rotational quadrature will change for 
R .GT. RQUAD(I).  See also Section 23.  Only given if NUMQ > 1.

Record 6: LSTAP: (L1)

This variable governs whether just one interaction potential is used.  It is
a logical variable ordinarily set equal to .TRUE..  It is used to tell RMPROP
whether to do more than one approximation to the interaction potential during a 
run, i. e., if LSTAP .EQ. .TRUE., then the current potential is the only one
used.  If LSTAP .EQ. .FALSE., then following the end of the first run, RMPROP
will cycle back and attempt to read parameters for a new potential from FORTRAN
unit 4.

Record 7: NLINE: (10I5)

This variable is a control variable used to define the number of lines of
text to be read from FORTRAN unit 4 in Record 8.  

Record 8: MES: (A80)  

This variable consists of NLINE lines of text.  These lines of text are
ordinarily used to record details about the individual test run or the
potential surafce being used.

Record 9: (ISJ(I,1),I=1,NDIM)): (10I5)

This variable contains the internal vibrational quantum numbers of the 
diatom.
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Record 10: (JIN(I,1),I=1,NDIM)):  (10I5)

This variable contains the internal rotation angular momentum quantum number
of the diatom.

Record 11: IHOM,IVIBJ,IEIGN: (10I5)

These variables have the following meanings:

IHOM is a switch governing whether the diatom is heteronuclear(=1) or
homonuclear(=2), for the purposes of calculating the indices of the Legendre
functions used to expand the potential.  If IHOM=1, IROTN (RECORD 14) must be 
zero.  If IHOM=2, IROTN must be either 1 or 2, and NUMT (RECORD 16)
represents the number of even terms in the Legendre expansion.

IVIBJ is a switch which determines whether rotational coupling is included
in the calculation of of the vibrational quadrature.

IVIBJ .EQ. 0 means use j-dependent vibrational states (rotational coupling).
IVIBJ .NE. 0 means use j-independent vibrational states (no rotational

coupling).  For this case, JSAVE (RECORD 14) must be zero.

IEIGN governs whether or not the eigenenergies are calculated during the
calculation of the vibrational weights and nodes or are calculated using the
(user-supplied) FUNCTION EIGEN.

IEIGN .EQ. 0 means get channel eigenenergies from EIGEN.
IEIGN .NE. 0 means get channel eigenenergies from the vibrational weights

and nodes computation (NOT POSSIBLE FOR RIGID ROTORS OR IF IVIBJ .NE. 0).

Record 12: RMS,OMEGA,RCENT,OMEGGH,LRCENT,SCAL2: (4E15.7,L1)

These variables are used by SUBROUTINE WEIGH which calculates the weights
and nodes for the vibrational quadratures which compute the vibrational portion
of the interaction potential matrix.  This routine calculates the weights for
the quadrature given the (user-supplied) diatomic potential curve (e. g. a
harmonic oscillator or a Morse), by transforming the wave function into a 
harmonic oscillator basis and performing the integrals in that basis.

RMS is the reduced mass of the diatom in atomic units.

OMEGA is the angular frequency of the harmonic oscillator used in the basis.

RCENT is the equilibrium bond length of the oscillator.  The (user supplied)
diatomic potential function.

OMEGGH is the frequency used to find scaled Gauss-Hermite nodes.  If OMEGGH
is zero, OMEGA is used instead.

LRCENT is a logical variable.  
If LRCENT .EQ. .TRUE. calculate the value of the wave function at -RCENT.

Record 13: NHQD,NBASIS,NPTSM,IPRINT,INODE,IWGHT: (6I5)

These variables are used by SUBROUTINE WEIGH which calculates the weights
and nodes for the vibrational quadratures which compute the vibrational portion
of the interaction potential matrix.



RMPROP 2.1.2
Page 11-11

NHQD is the order of the Gauss-Hermite quadrature used to evaluate matrix
elements in the harmonic oscillator basis. 

NBASIS is the number of harmonic oscillator states to include in the
expansion.

NPTSM is the maximum size of the vibrational quadrature to be found.  This
must be greater than or equal to all values of NQUAD (RECORD 3).

IPRINT is an inputinteger control variable.  Set IPRINT .GE. 0 for various
debugging output to standard output.  This should be used cautiously because it 
can generate large quantities of output.

INODE determines the type of nodes used:

INODE= 1 use semi-classical nodes.
INODE= 2 use scaled Gauss-Hermite nodes.
INODE= 3 use Gaussian nodes for the weight function PSI(IWGHT)**2.
INODE= 4 call SDATA to get other (user-supplied) nodes.

It should be noted in passing that although SUBROUTINE WEIGH has been tested
with all values of INODE, the elements of the test suite included in
RMPROP-Version 2.1.2 only include the values 1 and 3.  In addition, the user
should supply a dummy version of SDATA to prevent error messages on loading.

IWGHT runs from 1 upwards, and is used in conjunction with INODE .EQ.3.

Record 14: NINT,NL,NSAVE,JSAVE,IROTN: (4I5)

These variables are used by SUBROUTINE WEIGH which calculates the weights
and nodes for the vibrational quadratures which compute the vibrational portion
of the interaction potential matrix.

NINT and NL only have meaning when INODE .EQ. 1 (semiclassical nodes).

NINT is the number of integration intervals to be used by SUBROUTINE NODE,
which calculates semi-classical nodes.

NL is the order of Legendre interpolation used by SUBROUTINE NODE, which
calculates semiclassical nodes.

NSAVE is the maximum vibrational quantum number + 1 for which weights and
nodes are to be saved on FORTRAN unit 1.  If NSAVE is 0, special output is
generated for a rigid rotor.  In addition, then, for NSAVE=0, NQUAD (RECORD
3) must be 1, JSAVE must be zero, IVIBJ (RECORD 11) must not be zero, and 
IEIGN (RECORD 11) must be zero. (The User must supply DOUBLE PRECISION FUNCTION
EIGEN.)  Also, for NSAVE=0, RECORD 15 cannot exist.

JSAVE is the maximum rotational quantum number + 1 of rotational  states in 
the calculation of the vibrational states. If no rotational-vibrational coupling
is desired, use JSAVE=0.  IVIBJ cannot be zero for JSAVE=0.

IROTN is zero for heteronuclear diatoms (or homonuclear with all J states), one for homon
+ uclear with odd J states, and two for homonuclear diatoms with 
even J states.  When IROTN=1 or 2, IHOM (RECORD 11) must be 2.
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Record 15: NPTS: (6I5) (ONLY if NSAVE.NE.0, see RECORD 14)

This card is repeated until a value of zero is given for NPTS. Each value
of NPTS given is a vibrational quadrature order which will be used by 
SUBROUTINE WEIGH to generate weights and nodes written to UNIT 1.  Each value
of quadrature order in NQUAD must be repeated here.  If NSAVE=0, this card
cannot exist.

Record 16: NUMT: (10I5) (NUMQ times)

NUMT is the number of terms in the Legendre expansion for the potential.
If IHOM (RECORD 11) is 2, NUMT should be the number of even terms in the 
expansion of the potential (odd terms do not contribute for a homonuclear 
diatomic).  This variable is read in NUMQ times by SUBROUTINE ANGINT in vgr2.f,
first when called by PREPOT in prevgr2.f, and NUMQ-1 times when called by POT 
in vgr2.f, whenever a value of RQUAD(I) (see Record 5 above) is passed during 
the propagation.  NUMT is then the new number of terms in the Legendre 
expansion for values of the propagation coordinate between RQUAD(I) and 
RQUAD(I+1) (for I less than NUMQ -1 ), and for values of the propagation 
coordinate greater than RQUAD(I) (for I = NUMQ).  Note that the angular 
integral matrix discussed in Section 11.3.1 above will be re-written to allow 
for the new value of NUMT.
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11.4 POTENTIAL MATRIX ELEMENT ROUTINE vgr3.f

This section describes the usage of the routines in prevgr3.f and vgr3.f, 
which provide a modular interface to RMPROP 2.1.2 when a User has an interaction
potential surface for a diatom-diatom system where the diatoms are identical.
These routines may be employed for vibrating rotors or rigid rotors
(see Section 19.?, test runs hfhfadr1 and hfhfadr2).  At this time only
identical diatoms can be used since the functions EIGEN and PTNTL are the same
for each.

USER REQUIRED:
SUBROUTINE FUN1                         see below
DOUBLE PRECISION FUNCTION EIGEN         see 11.3.1
DOUBLE PRECISION FUNCTION PTNTL         see 11.3.1
parameter.inc                           see below, 14, 15
expand.inc                              see below
fort.4                                  see below
fort.5 (Main input)                     see 13

11.4.1 USER-SUPPLIED SUBPROGRAMS

This section gives the required calling sequence for user-supplied
potential energy subroutines required in conjunction with the use of vgr3.f.
These routines return the interaction potential between the collision partners,
and the diatomic potential curve for the diatom.  The user-supplied potential
energy subroutine is required to return the value of the interaction potential
for the collision partners in Hartree atomic units given a specific choice of
the coordinate system, in order to expand the interaction potential in Launay 
functions.  The diatomic potential curve is required to calculate quadrature
nodes used to deterimine the vibrational contribution to the interaction
potential matrix at each sector.

The calling sequence for the user-supplied potential energy surface is

SUBROUTINE FUN1(R,R1,R2,C1,S1,C2,S2,CP,SP,V,NPTS)

R: double precision, input.  The value of the propagation coordinate of 
the diatoms in bohr.

R1: double precision, input. The bond length of the first diatom in bohr.

R2: double precision, input. The bond length of the second diatom in bohr.

C1: double precision array of length NPTS, input.  Used to hold 
the NPTS cosines of the angular quadrature nodes in angle THETA1.

S1: double precision array of length NPTS, input.  Used to hold 
the NPTS sines of the angular quadrature nodes in angle THETA1.

C2: double precision array of length NPTS, input.  Used to hold 
the NPTS cosines of the angular quadrature nodes in angle THETA2.

S2: double precision array of length NPTS, input.  Used to hold 
the NPTS sines of the angular quadrature nodes in angle THETA2.



RMPROP 2.1.2
Page 11-14

CP: double precision array of length NPTS, input.  Used to hold 
the NPTS cosines of the angular quadrature nodes in angle PHI (= PHI2 - PHI1).

SP: double precision array of length NPTS, input.  Used to hold 
the NPTS sines of the angular quadrature nodes in angle PHI (= PHI2 - PHI1).

V: double precision array of length NPTS, output.  V(I) should 
contain the value of the interaction potential at the geometries specified by 
R1, R2, THETA1(I), THETA2(I), PHI(I).  Note that THETA1, THETA2, and PHI are
only implicitly specified by the arrays C1, S1, C2, S2, CP, and SP.  There
should only be NPTS nonzero results in V upon return.

NPTS: integer, input.  This is the current number of angular quadrature 
points at which to determine the potential.

11.4.2 INCLUDE FILES

The user must supply the file parameter.inc in the source code directory
during compilation of the code.  The contents of this file must be the fortran
statement

PARAMETER(IDX=ii1,NSECTX=ii2,NANX=ii3,NSAVEX=ii4,NVIBX=ii5,NVIB1X=ii6,
& NNEX=ii7,NBARX=(IDX*(IDX+1)/2))

where ii1, ii2, ... represent integers which are constant within each run but
which may vary from run to run.  These values are used to dimension many of the 
arrays within the program.  The variables within parameter.inc are described
in more detail in Sections 14 and 15 below, but we note here that NANX should be
set equal to at least 3, NVIBX should be set to at least 2, and NVIB1X
should be set large enough that the array BPOT(IDX,IDX,NVIB1X) is large enough
to hold the angular integrals required by the program.  (Both the calculation
and the storage of the angular integrals in vgr3.f differ from that in vgr2.f). 
The number of words needed by BPOT may vary considerably since only nonzero
integrals are stored, but an upper limit for NVIB1X should be 3*NUMT, where
NUMT is the maximum number of terms in the Launay expansion of the potential.
The exact number required within a given run is written to standard output with
the legend  

....   working precision words of BPOT used in POT

where .... is an integer representing how many words of storage were required 
by the angular integrals.

If the angular integrals would have required too much space, the program 
instead prints the message

Dimensions exceeded in angint. IBMX= ...

where ... is the current value of IDX*IDX*NVIB1X, and stops with the message

STOP Try making NVIB1X larger in parameter.inc

which is the appropriate remedy.

The second include file should contain the statement



RMPROP 2.1.2
Page 11-15

PARAMETER(NUMBT=IA, NQAMAX=IB, NQVMAX=IC, MAXJJ=ID, MAXV=IE)

where the IA-E indicates an integer, and the terms have the following meanings: 

NUMBT is greater than or equal to the maximum number of terms in the 
expansion of the interaction potential in Launay functions.  It is used to 
dimension arrays which hold the indicies of the Launay functions, and to 
dimension an array which holds the expansion coefficients at each point in the 
vibrational quadrature for each term in the Launay expansion.

NQAMAX is greater than or equal to the maximum order of the angular 
quadrature.  It is used to dimension arrays containing the sines and cosines of
the nodes for the angular quadrature.

NQVMAX is greater than or equal to the maximum order of the vibrational 
quadrature.  It is used to dimension arrays containing the nodes of the 
vibrational quadrature, the weights of the vibrational quadrature, and arrays 
relating the channel index to the position of the weight for that channel.

MAXJJ must be greater than or equal to the maximum rotational quantum
number+1. It is used to dimension the array containing the weights for the 
vibrational quadrature.

MAXV must be greater than or equal to the maximum vibrational quantum
number+1.  
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11.4.3 SUMMARY OF INPUT TO FORTRAN UNIT 4

A record-by-record summary of the input to the RMPROP code from FORTRAN unit
4 when module vgr3.f and its associated subroutines are used.  Note that the
number of fields within each record may not match the FORMAT given because
some of the FORMAT statements are used for other purposes with the subprograms.

Record number          Input variables                       Format
-------------       ---------------------                    ------

1             RE                                       E15.8

2             NUMQ                                     I5

3             (NQUAD(I),I=1,NUMQ)                      10I5

4             (NQUADA(I),I=1,NUMQ)                     10I5

5*            (RQUAD(I),I=1,NUMQ-1)                    9E15.8

6             LSTAP                                    L1

7             NLINE                                    I5

8             MES                                      A80

9             (IS(IJ,1),IJ=1,NDIM)                     10I5

10             (IS(IJ,2),IJ=1,NDIM)                     10I5

11             (JIN(IJ,1),IJ=1,NDIM)                    10I5

12             (JIN(IJ,2),IJ=1,NDIM)                    10I5

13             (JIN(IJ,3),IJ=1,NDIM)                    10I5

14             IETA,IVIBJ,ISYMU,ICALC                   10I5

15             NUMT1                                    I5

16             (IQ1(I),I=1,NUMT)                        10I5

17             (IQ2(I),I=1,NUMT)                        10I5

18             (IMU(I),I=1,NUMT)                        10I5

19             RMS,OMEGA,RCENT,OMEGGH,LRCENT,SCAL2      4E15.7,L1,E15.7

20             NQWT,NBASIS,NPTSMX,IPRINT,INODE,IWGHT    6I5

21             NINT,NL,NSAVE,JSAVE,IHOM                 5I5

22%            NPTS                                     I5

23@            NUMT2                                    I5
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*Only if NUMQ=1
%Card repeated until NPTS=0, Only if NSAVE.NE.0
@Repeated NUMQ-1 times; not needed if NUMQ=1

11.4.4 EXPLANATION OF INPUT VARIABLES TO FORTRAN UNIT 4

Record 1: RE: (E15.8)

This variable is the equilibrium bond length of the diatom. 

Record 2: NUMQ: (I5)

This variable is the number of different orders of quadrature (vibrational
and/or angular) to be used during the propagation.  

Record 3: (NQUAD(I),I=1,NUMQ): (10I5)

This variable is the number of points to be used in the vibrational
quadrature for R less than RQUAD(I), where RQUAD (I) is discussed in Record 5
below.  If one wishes to use a rigid rotor, NQUAD is set to 1, and the flag
governing the use of a rigid rotor is set by NSAVE in Record 14 (see below).

Record 4: (NQUADA(I),I=1,NUMQ): (10I5)

This variable is the number of points to be used in the angular quadrature
for R less than RQUAD(I), where RQUAD(I) is discussed in Record 5 below.  Note
that the separate specification  of NQUAD and NQUADA allows the orders of the
two quadratures to be varied independently.

Record 5: (RQUAD(I),I=1,NUMQ-1): (9E15.8) ONLY NEEDED IF NUMQ > 1

This variable governs the value of the propagation coordinate R such that
the order of the vibrational and/or rotational quadrature will change for 
R .GT. RQUAD(I).  See also Section 23.

Record 6: LSTAP: (L1)

This variable governs whether just one interaction potential is used.  It is
a logical variable ordinarily set equal to .TRUE..  It is used to tell RMPROP
whether to do more than one approximation to the interaction potential during a 
run, i. e., if LSTAP .EQ. .TRUE., then the current potential is the only one
used.  If LSTAP .EQ. .FALSE., then following the end of the first run, RMPROP
will cycle back and attempt to re-run subroutine PREPOT.  Usually this means
that the program will attempt to read parameters for a new potential from
FORTRAN unit 4.

Record 7: NLINE: (I5)

This variable is a control variable used to define the number of lines of
text to be read from FORTRAN unit 4 in Record 8.  

Record 8: MES: (A80)

This variable consists of NLINE lines of text.  These lines of text are
ordinarily used to record details abount the individual test run or the
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potential surfce being used.

Record 9: (ISJ(IJ,1),IJ=1,NDIM)): (10I5)
This variable contains the internal vibrational quantum numbers of the first

diatom.

Record 10: (ISJ(IJ,2),IJ=1,NDIM)): (10I5)

This variable contains the internal vibrational quantum numbers of the
second diatom.

Record 11: (JIN(IJ,1),IJ=1,NDIM)): (10I5)

This variable contains the internal rotation angular momentum quantum number
of the first diatom.

Record 12: (JIN(IJ,2),IJ=1,NDIM)): (10I5)

This variable contains the internal rotation angular momentum quantum number
of the second diatom.

Record 13: (JIN(IJ,3),IJ=1,NDIM)): (10I5)

This variable contains the internal angular momentum quantum number which is
the vector sum of the internal rotational angular momenta of the first and the
second diatoms.

Record 14: IETA,IVIBJ,ISYMU,ICALC: (4I5) 

These variables have the following meanings:

IETA is the eigenvalue of the operator for exchange of identical diatoms
with eigenvalue -1**(IETA). 

IVIBJ is a switch which determines whether rotational coupling is included
in the calculation of of the vibrational quadrature.

IVIBJ .EQ. 0 means use j-dependent vibrational states (rotational coupling).
IVIBJ .NE. 0 means use j-independent vibrational states (no rotational

coupling).

ISYMU .EQ. 0 means use exchange symmetry; ISYMU .NE. 0 means do not use it.

ICALC governs the calculation of angular integrals.
ICALC .EQ. 0 means calculate angular integrals and continue.
ICALC .EQ. 1 means calculate angular integrals, and write them to UNIT 2
ICALC .EQ. 2 means read pre-existing angular integrals from UNIT 2 and 

continue program execution.
It is important to note that if the number of terms in the expansion of the

interaction potential is decreased as a function of the propagation coordinate,
then the existing angular integral matrix in FORTRAN unit 2 will be overwritten
when the number of terms in the expansion is decreased.  A subsequent run which
tries to use the original size of the potential expansion will crash with a
warning message

In ANGINT, the dimensions have changed ... , ...
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when it tries to read from a copy of FORTRAN unit 2 which has been overwritten,
where ... and ... are the number of words currently in FORTRAN unit 2 and the
number of words requested by vgr3.

Record 15: NUMT1: (I5)

This variable gives the initial number of terms in the expansion
of the interaction potential in Launay angular functions.  If NUMQ on
record 1 is greater than one, then after propagating past each RQUAD(I), new
values for the number of terms in the angular expansion are read from
record 23.  

Record 16: (IQ1(I),I=1,NUMT): (10I5)

This variable gives the first index of the I’th Launay function in which
the interaction potential is to be expanded.

Record 17: (IQ2(I),I=1,NUMT): (10I5)

This variable gives the first index of the I’th Launay function in which
the interaction potential is to be expanded.

Record 18: (IMU(I),I=1,NUMT): (10I5)

This variable gives the first index of the I’th Launay function in which
the interaction potential is to be expanded.

NOTE: The IQ1, IQ2 and IMU arrays will be reordered by the program
in order to put the sum IQ1 + IQ2 in increasing order. This facilitates the
dropping of terms later in the propagation, if NUMQ > 1.

Record 19: RMS,OMEGA,RCENT,OMEGGH,LRCENT,SCAL2: (4E15.7,L1,E15.7)

These variables are used by SUBROUTINE WEIGH which calculates the weights
and nodes for the vibrational quadratures which compute the vibrational portion
of the interaction potential matrix.  This routine calculates the weights for
the quadrature given the (user-supplied) diatomic potential curve (e. g. a
harmonic oscillator or a Morse), by transforming the wave function into a 
harmonic oscillator basis and performing the integrals in that basis.

RMS is the reduced mass of the diatom in atomic units.

OMEGA is the angular frequency of the harmonic oscillator used in the basis.

RCENT is the equilibrium bond length of the oscillator.

OMEGGH is the frequency used to find scaled Gauss-Hermite nodes.  If OMEGGH
is zero, OMEGA is used instead.

LRCENT is a logical variable.  
If LRCENT .EQ. .TRUE. calculate the value of the wave function at -RCENT.

SCAL2 governs scaling of the Gauss Hermite nodes.
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Record 20: NQWT,NBASIS,NPTSMX,IPRINT,INODE,IWGHT: (6I5)

These variables are used by SUBROUTINE WEIGH which calculates the weights
and nodes for the vibrational quadratures which compute the vibrational portion
of the interaction potential matrix.

NQWT is the order of the quadrature used to evaluate matrix elements in the
harmonic oscillator basis. 

NBASIS is the number of harmonic oscillator states to include in the
expansion.

NPTSMX is the maximum size of the vibrational quadrature to be found.  
This must be greater than or equal to the largest value of NQUAD on card
3.

IPRINT .GE. 0 for various debugging output to standard output.  This should
be used cautiously because it can generate large quantities of output.

INODE determines the type of nodes used:

INODE= 1 use semi-classical nodes.
INODE= 2 use scaled Gauss-Hermite nodes.
INODE= 3 use Gaussian nodes for the weight function PSI(IWGHT)**2.
INODE= 4 call SDATA to get other (user-supplied) nodes.

It should be noted in passing that although SUBROUTINE WEIGH has been tested
with all values of INODE, the elements of the test suite included in
RMPROP-Version 2.1.2 only include the values 1 and 3.  In addition, the user
should supply a dummy version of SDATA for INODE = 1, 2, or 3 to prevent error
messages on loading.

IWGHT runs from 1 upwards, and is used in conjunction with INODE .EQ.3.

Record 21: NINT,NL,NSAVE,JSAVE,IHOM: (5I5)

These variables are used by SUBROUTINE WEIGH which calculates the weights
and nodes for the vibrational quadratures which compute the vibrational portion
of the interaction potential matrix.

NINT and NL only have meaning when INODE .EQ. 1 (semiclassical nodes).

NINT is the number of intervals to be used by SUBROUTINE NODE, which
calculates semi-classical nodes.

NL is the order of Legendre interpolation used by SUBROUTINE NODE, which
calculates semiclassical nodes.

NSAVE is the maximum vibrational quantum number + 1 for which weights and
nodes are to saved on FORTRAN unit 1.  If NSAVE is 1, special output is
generated for a rigid rotor.

JSAVE is the maximum rotational quantum number - 1 of rotational  states in 
the calculation of the vibrational states. If no rotational-vibrational coupling
is desired, use JSAVE=0.  
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IHOM should be zero for a heteronuclear diatom, 1 for a homonuclear 
diatom with only odd rotational states or 2 for a homonuclear diatom with
only even rotational states.

Record 22: NPTS: (I5)  Only if NSAVE.NE.0; CARD REPEATED AT LEAST 
FOR EACH VALUE OF NQUAD UNTIL 0 READ IN

This variable is used by SUBROUTINE WEIGH which calculates the weights and
nodes for the vibrational quadratures which compute the vibrational portion of
the interaction potential matrix.  No value of NPTS can be larger than NPTSMX,
and each value of NQUAD (see record 3) must be a value of NPTS.  The final NPTS
value must be zero.

Record 23: NUMT2: (I5) CARD REPEATED NUMQ-1 TIMES

This variable is read in NUMQ-1 times by POT in vgr3.f, whenever a value of
RQUAD(I) (see Record 5 above) is passed during the propagation. NUMT2 is the 
new number of terms in the Launay expansion for values of the propagation 
coordinate between RQUAD(I) and RQUAD(I+1) (for I less than NUMQ - 1), and for 
values of the propagation coordinate greater than RQUAD(I) (for I equal to 
NUMQ).  Note that the angular integral matrix discussed in Section 11.4.1 
above will be re-written to allow for the value of NUMT.
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12. DESCRIPTION OF INPUT/OUTPUT FILES

This section describes the various input/output files used by the main
program.  The files are accessed in the FORTRAN program by means of OPEN and
CLOSE statements, which refer to the files as ’fort.X’ where X is the unit
number given in the first column below.  However, depending on the options used,
not all of the files may be required for a given run.  In addition to these
units, in our test suite, subprograms PREPOT and POT utilize FORTRAN units 1, 2,
and 4.  If the user wishes to assign logical names to these files, this must be 
done in the command stream used to submit the job.  For example, the command
stream for test run 19.13, "hei2r1.csh", assigns FORTRAN unit 4 and FORTRAN unit
5 as follows:

/bin/cp ${TDIR}/hei2r1.4 fort.4
/bin/cp ${TDIR}/hei2r1.5 fort.5

Unit   Input or Output  Usage
----   ---------------  -----
3        I or O       Contains date and time of current run

5          I          Input to main program.

6          O          Standard output.

7          O          Symmetrized reactance matrix.

8        I or O       TAUE matrix and perhaps its inverse {8.7, 8.9}.
(nonASCII)

10          O          Transition matrix elements.

11          O          Eigenphase sum of reactance matrix and r for each
asymptotic analysis (individual eigenphases and 
eigenvectors are not written to this file, but are 
written to FORTRAN unit 16).

12        I or O       Sector midpoints and stepsizes.

14        I or O       Data saved by first case of type-1 second-case runs
(needed to begin second case of type-1 second-case
runs at a later date {8.9}).  (nonASCII)

15          O          Short output of diagonal elements and first row of
scattering matrix for each energy/basis either at 
convergence or RMAX, as appropriate.

16          O          RABC(IS) values and eigenphases and eigenvectors of
reactance matrix for each asymptotic analysis.

17        I or O       Restart information to continue current propagation
at later date. (nonASCII)

18        I or O       Alternate restart information to continue current 
propagation at later date. (nonASCII)

> or =19    O          Diagnostic information at a specific sector selected
by the value of the input variable ISAVV.
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13. INPUT TO MAIN CODE

13.1 SUMMARY 

A record-by-record summary of the input to the RMPROP code from FORTRAN unit
5.  Note that the number of fields within each record may not match the FORMAT
given because some of the FORMAT statements are used for other purposes with the
subprograms.

Record number          Input variables                       Format
-------------       ---------------------                    ------

1             TITLE1                                   A72

2             TITLE2                                   A72

3             LJRI, LR4MT                              2L1

4             ID, NSECT, NAN, NSAVE, NVIB, NVIB1, NNE  7I5

5             IREST, ISAVE, ISAVV, IUNXX, IFTXX        10I5

6             MUABC, NDIM, JTOT                        G15.6,2I5

7             L(I), I = 1, NDIM                        10I5

8             NPD, NE, IROWS                           3I5

9             PD(I), I = 1, NPD                        10I5

10             E(I), RSTART(I), OAM(I), I = 1, ABS(NE)  2G15.6,I5

11             H(1), H(2), RMAX                         3G15.6

12             NEPS                                     I5

13             EPSA(I), I = 1, NEPS                     5G15.6

14             EPSB(I), I = 1, NEPS                     5G15.6

15             EPSC(I), I = 1, NEPS                     5G15.6

16             HMINA(I), I = 1, NEPS                    5G15.6

17             HMINB(I), I = 1, NEPS                    5G15.6

18             HMINC(I), I = 1, NEPS                    5G15.6

19             HMAXA(I), I = 1, NEPS                    5G15.6

20             HMAXB(I), I = 1, NEPS                    5G15.6

21             HMAXC(I), I = 1, NEPS                    5G15.6

22             REPSA(I), I = 1, NEPS                    5G15.6
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23             REPSB(I), I = 1, NEPS                    5G15.6

24             NCUSP                                    I5

25             RCUSP(I), I = 1, NCUSP                   5G15.6

26             EPSRED, RBIG, NPROP                      2G15.6,I5

27             LPSINF, LPSYM(I), I = 1, 8, LOPUT        10L1

28             LPR(I), I = 1, 10                        10L1

29             EPSDR, RASYE                             2G15.6

30             LBES, LTASY, LPEPS, IMATCH, ITPRNT,      3L1,3I5
ITCOL

31             IPMX                                     I5

32             RPSM(I), I = 1, IPMX                     5G15.6 

33             LGS(I), I = 1, 15                        20L1

34             LBGS(I), I = 1, 15                       20L1

35             IOPT2, IOPT3                             2I4

36             EPSMAG, EPSPH                            2G16.5

37             NIND                                     3I4

38             IND(I,1), I = 1, MIN(NIND,10)            10I4

39             IND(I,2), I = 1, MIN(NIND,10)            10I4

13.2 EXPLANATION OF INPUT VARIABLES 

Record 1: TITLE1: (A72)

This variable is a line read in to describe the attributes of the specific
run (molecular system, potential, total angular momentum, energy).  Only the
first 72 characters are used. 

Record 2: TITLE2: (A72)

This variable is a line read in to describe the purpose of the specific run
(e. g. test suite, convergence with respect to stepsize, etc.).  Only the first
72 characters are used.

Record 3: LJRI, LR4MT: (2L1)

LJRI: if this variable is .TRUE. the run will just read and echo the
contents of FORTRAN unit 5 and stop with message 5099.  If it is .FALSE. the run
continues normally.
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LR4MT: this variable controls the (in)homogeneous option {8.5, 8.6}.  If
it is .TRUE., then the homogeneous option {8.5} has been selected (preferable
for heavy-body collisions).  If it is .FALSE., then the inhomogeneous option
has been selected.

Record 4: ID, NSECT, NAN, NSAVE, NVIB, NVIB1, NNE: (7I5)

These variables are set to the input values for the current run.  These 
variables correspond to the contents of the PARAMETER statement which is 
contained in the file "parameter.inc" which is discussed in Sections 14 and
15 below.  The values in parameter.inc are values used to dimension arrays in
many subroutines of the program, and may be larger than the values given here.

Record 5: IREST, ISAVE, ISAVV, IUNXX, IFTXX: (10I5)

These variables control the usage of restart information. For large
calculations, it may be advisable to save intermediate information which can be 
used to restart the calculation with minimal loss of resources in the event of
computer failure.  These options are also useful to break up a large calculation
into smaller pieces and to check intermediate results.

IREST: if nonzero, this becomes a restart run.  The program will attempt 
to read in restart information (written by an earlier run with the same size
basis set and energy) from either FORTRAN unit 17 or FORTRAN unit 18 depending
upon the value of IREST.  If IREST = 17 then the program reads from FORTRAN unit
FORTRAN unit 17; if IREST = 18 then the program reads from FORTRAN unit 18, and
if IREST has any other nonzero vale then the program issues a warning message
and attempts to read from FORTRAN unit 17.  In order to restart successfully,
ISAVE must have been nonzero in the original run.

ISAVE: restart information will be saved every ISAVE sectors alternating
between FORTRAN unit 17 and FORTRAN unit 18 if ISAVE is greater than zero.

ISAVV:  This is the maximum number of sectors to propagate in this run.
That is, when sector number ISAVV is reached, diagnostic information is saved
and the program stops.  The program cannot be restarted from this information.
The output generated by this option is only meant to be diagnostic in order to 
make sure that the program is running correctly before proceeding with a large
run.  If ISAVV is read in as 0, this option is disabled.

IUNXX: used in conjunction with ISAVV.  IUNXX denotes the logical unit to
which diagnostic information should be written when IS (the sector number)
equals ISAVV (not ISAVE!).  If an invalid unit number is chosen (less than 19)
then IUNXX is set to 19; if IUNXX is set to 0 then information is written to 
standard output (FORTRAN unit 6).   

IFTXX: used in conjunction with IUNXX and ISAVV.  If nonzero the output 
is written in binary (unformatted) form, if zero the output is written in 
formatted form.  (If output is written to FORTRAN unit 6, this is overridden,
and output will be written in formatted form regardless of IFTXX).

Record 6: MUABC, NDIM, JTOT: (G15.6,2I5)

MUABC: the reduced mass for the system {8.2}.
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NDIM: the number of close coupled equations to be solved {8.2}.  NDIM
must be less than or equal to the PARAMETER ID.

JTOT: the total angular momentum for the run. {8.2}

Record 7: L(I), I = 1, NDIM: (10I5)

L(I): the orbital angular momentum for the I’th channel {8.2}.

Record 8: NPD, NE, IROWS: (3I5)

NPD: the number of contracted basis set dimensions to run. NPD must be
less than or equal to 10.  Note that only one of NPD, NE, or NEPS can be greater
than 1 in a given run.

NE: indicates the number of multiple energy/multiple orbital angular
momentum/multiple starting point runs to be performed {8.9}. If positive then NE
energies will be run using type-1 second energies. If negative, -NE energies
will be run using type-2 second-case runs.  Note that only one of NE, NPD, and
NEPS can be different from 1 at any time.

IROWS: a flag to control reading or writing propagation information {8.9}
and type-1 second-case data.

IROWS = -1 to perform a type-1 second-case run used data files generated
in a separate run.  This requires the files FORTRAN unit 8, and FORTRAN UNIT 14,
which is produced using IROWS = 1 or IROWS = 4.  In this case NE should be 
greater than 1 and the first energy, first RSTART and first OAM read in will be 
ignored (see record 7).

IROWS = 0 to perform a single energy run or a multiple energy run in
which no data is saved for later-date second-case runs.

IROWS = 1 to save the necessary data on FORTRAN unit 8 and FORTRAN unit 
14 for a later-date second-case run.

IROWS = 2 to write the sector midpoints and stepsizes to FORTRAN unit 12.

IROWS = 3 to read the sector midpoints and stepsizes from FORTRAN unit 12
and use them from the 3rd sector onwards.

IROWS = 4 reads stepsizes like IROWS = 3 and writes second-case 
information like IROWS = 1.

Record 9: PD(I), I = 1,NPD: (10I5)

PD(I) is the starting size of the I’th contracted basis set {8.7}.  The
program  does a scattering calculation for I = 1, NPD.  Note that PD(I) must be
at least 1 and at most NDIM.

Record 10: E(I), RSTART(I), OAM(I), I = 1, ABS(NE): (2G15.6,I5)

E(I): the total energy of the I’th multiple-case run {8.8}.  Recall that 
if IROWS = -1, then E(1) is not used.
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RSTART(I): the center of the first sector for the I’th multiple-case run
{8.4}.  The smallest value of RSTART(I) must be RSTART(1).  Also note that
RSTART(I)-H(1) must be greater than zero.  If IROWS = -1, RSTART(1) is not used.

OAM(I): the orbital angular momentum in every channel for the I’th 
multiple-angular-momentum run {8.8}.  If any of the OAM(I) are nonzero, then all
of the L(I) (see input record 7 above) must be zero. If IROWS = -1, OAM(1) is 
not used.

Record 11: H(1), H(2), RMAX: (3G15.6)

H(1): the stepsize in the first sector {8.4}.

H(2): the stepsize in the second sector {8.4}.

RMAX: the maximum integration distance {8.4, 8.15}.

Record 12:  NEPS: (I5)

NEPS: the number of stepsize criteria to be used.  The program does a
separate scattering calculation using each of the NEPS values of the stepsize
parameters.  NEPS must not be greater than 5 and if it is greater than 1, only
single-energy and single-basis-set runs are possible.  Note that only one of
NPD, NE, or NEPS can be greater than 1 in a given run.

Record 13: EPSA(I), I = 1, NEPS: (5G15.6)

EPSA(I): the variable stepsize criterion for r less than REPSA(I) {8.4}.
A typical value is 0.1. 

Record 14: EPSB(I), I = 1, NEPS: (5G15.6)

EPSB(I): the variable stepsize criterion for r greater than or equal to
REPSA(I) but less that REPSB(I) {8.4}.  A typical value is 0.1.

Record 15: EPSC(I), I = 1, NEPS: (5G15.6)

EPSC(I): the variable stepsize criterion for r greater than or equal to
REPSB(I) {8.4}.  A typical value is 0.1.

Record 16: HMINA(I), I = 1, NEPS: (5G15.6)

HMINA(I): the minimum stepsize for r less than REPSA(I) {8.4}.  A typical
value is 0.001 to 0.1 bohr.   

Record 17: HMINB(I), I = 1, NEPS: (5G15.6)

HMINB(I): the minimum stepsize for r less than REPSB(I) {8.4}.

Record 18: HMINC(I), I = 1, NEPS: (5G15.6)

HMINC(I): the minimum stepsize for r less than REPSA(I) {8.4}.

Record 19: HMAXA(I), I = 1, NEPS: (5G15.6)
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HMAXA(I): the maximum stepsize for r less then REPSA(I) {8.4}.  Typically
HMAXA is large enough so that the stepsize is unlimited; or is set equal to 
HMINA(I) to ensure fixed stepsizes.

Record 20: HMAXB(I), I = 1, NEPS: (5G15.6)

HMAXB(I): the maximum stepsize for r less then REPSB(I) {8.4}. Typically
HMAXB is large enough so that the stepsize is unlimited; or is set equal to 
HMINB(I) to ensure fixed stepsizes.

Record 21: HMAXC(I), I = 1, NEPS: (5G15.6)

HMAXC(I): the maximum stepsize for r less then REPSA(I) {8.4}.  Typically
HMAXC is large enough so that the stepsize is unlimited; or is set equal to 
HMINC(I) to ensure fixed stepsizes.

Record 22: REPSA(I), I = 1, NEPS: (5G15.6)

REPSA(I): the distance which demarcates the end of the first stepsize
criterion region {8.4}.

Record 23: REPSB(I), I = 1, NEPS: (5G15.6)

REPSB(I): the distance which demarcates the end of the second stepsize
criterion region {8.4}.

Record 24: (NCUSP): (I5)

NCUSP: the number of cusps in the potential {8.4}.  A cusp is a place
where the potential is continuous but has discontinuous first derivatives.

Record 25: RCUSP(I), I = 1, NCUSP : (5F15.6) (Include even if NCUSP = 0)

RCUSP: the location of the I’th cusp {8.4}.

Record 26: EPSRED, RBIG, NPROP: (2G15.6,2L1)

EPSRED: the criterion to drop uncoupled channels from the propagation
{8.7}.  The program will drop channels only when r is greater than RBIG.  Only
asymptotically closed channels are dropped.  A typical value is 10^-6.

RBIG: the distance where the program will first test to see if it can
drop channels from propagation {8.7}.  The program will only drop channels for
the homogeneous option {8.5}.

NPROP: governs mode of propagation {8.10}.

If NPROP = 0 then explicitly calculate sector r matrices and use inverse of
overlap matrix.

If NPROP = 1 then explicitly calculate sector r matrices and use transpose 
of overlap matrix.

If NPROP = 2 then do not explicitly calculate sector r matrices and use
inverse of overlap matrix. 
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NPROP = 2 is the fastest of the options, and NPROP = 1 (the transpose of the
overlap matrix) is not rigorous for PDIM less than NDIM, i. e. where channels
are dropped from propagation.  NPROP = 2 is valid only for the homogeneous
option {8.5}.

Record 27: LPSINF, LPSYM(I), I = 1, 8, LOPUT: (10L1)

LPSINF: if .TRUE., for r greater than RBIG, in every sector the sector
number, sector midpoint and EFACT (the sum of the elements of the first row of
the potential matrix, less the diagonal, if available) will be printed.

LPSYM(1): if .TRUE., test the symmetry of the R  matrix at each sector
4

for each energy just before entering subroutine RPROP.

LPSYM(2): if .TRUE., test the orthogonality of the TAUE matrix {8.7} 
for each energy just after initial call to subroutine TAUMTS, for all r > RBIG.
This option only works for LTYPE2 second case runs.

LPSYM(3): if .TRUE., test the symmetry of the R  matrix at each sector
4

after call to subroutine TAUMTS and before stepsize determination. 

LPSYM(4): if .TRUE., upon entrance to subroutine GNSCAT, calculate the
maximum relative difference and the average relative difference of the
off-diagonal elements, and print out the R matrix in the mixed basis {8.11}.

LPSYM(5): if .TRUE., print out the R  matrix transformed to the 
asymptotic basis {8.11}, and print out the maximum relative difference and
average relative difference of the off-diagonal elements.

LPSYM(6): if .TRUE., print out the maximum relative difference and the
average relative difference of the off-diagonal elements of the reactance
matrix, and print out the reactance matrix itself.

LPSYM(7): if .TRUE., in subroutine RPROP, check the symmetry of the R
matrix every five sectors and print out the sum of the first row and trace.

LPSYM(8): if .TRUE, in subroutine GNSCAT, print out the matrix EFASY from
subroutine POT, the matrix of eigenvectors at the most recent sector, and
the matrix which transforms from the current sector basis to the asymptotic
basis.  It also prints out the sums of the squares of all elements of these
matrices, and information such as the current number of channels propagated, and
the number of asymptotically open channels at the current energy.  This
generates a great deal of output and should only by used if necessary to help
debug a new potential energy surface.

LOPUT: if .TRUE., some information concerning the output is printed.

Record 28: LPR(I), I = 1, 10: (10L1)

LPR(1): if .TRUE., print execution times of various tasks.

LPR(2): if .TRUE., print asymptotically diagonalized D {8.7} matrix at
all energies.
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LPR(3): is not used.

LPR(4): if .TRUE., print the interaction matrix at each sector at the
first energy. 

LPR(5): if .TRUE., print the eigenvalues at the center of each sector at
all energies.

LPR(6): if .TRUE., print the eigenvectors at the center of each sector 
at all energies.

LPR(7): if .TRUE., print the TAUE {8.7} matrix and its inverse (TINVE)
at each sector.

LPR(8): if .TRUE., print the sector r matrices at each sector.

LPR(9): if .TRUE., print the global R  matrix at each sector for the
4

homogeneous option {8.5}, and print the global R matrix at each sector for the
inhomogeneous option {8.6}.

LPR(10): if .TRUE., print the sector midpoints and stepsizes.

Record 29: EPSDR, RASYE: (2G15.6)

EPSDR: the criterion to drop closed channels in the asymptotic analysis
{8.12}.  A typical value is 0.001.

RASYE: a distance where the potential has reached its asymptotic value,
the distance at which various quantities needed for the large-R boundary
conditions will be evaluated {8.13}.

Record 30: LBES, LTASY, LPEPS, IMATCH, ITPRNT, ITCOL: (3L1,3I5)

LBES: if .TRUE., the program will match to Ricatti-Bessel functions 
{8.13}.   Otherwise, sine/cosine functions will be used.

LTASY: if TRUE., prior to performing the asymptotic analysis, the
channels are transformed into the asymptotic basis using the array EFASY
supplied by (the user-supplied subroutine) POT {8.11}.  This procedure requires
that all of the open channels occur before all of the closed channels.

LPEPS: if .TRUE., the eigenphase sum will be calculated and the results 
written to FORTRAN unit 6.

IMATCH: specifies the wavevectors used in the asymptotic analysis
{8.13}.  One normally uses IMATCH = 0.

IMATCH = 0: use the asymptotic wave vectors, evaluated at RASYE.

IMATCH = 1: use the eigenenergies calculated at the middle of the current
sector.

IMATCH = 2: use the eigenenergies calculated at the outer edge of the
current sector.
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ITPRNT: the number of rows of the T matrix to write to FORTRAN unit 10.

ITCOL: the number of columns of the T matrix to write to FORTRAN unit 10.
ITPRNT and ITCOL are separate options from LGS(14) which also saves the T matrix
on FORTRAN unit 10.

Record 31: IPMX: (I5)

IPMX: the number of intermediate distances at which the asymptotic 
analysis is carried out.  IPMX must be less than or equal to 20.  Depending on
the values of LGS(2) and IOPT2, the asymptotic analysis at some intermediate
distances may not print out any information, but the real and imaginary portions
of the scattering matrix at the first energy {8.15} will be saved for
comparison. 

Record 32: RPSM(I), I = 1, IPMX: (5G15.6) (Include even if IPMX = 0)

RPSM(I): an intermediate distance at which the asymptotic analysis will
be performed {8.15}.  RPSM(I) should be greater than RBIG.  The program performs
the asymptotic analysis at the first sector for which RABC(IS).GE.RPSM(I),
except if the previous asymptotic analysis (RPSM(I-1)) was performed at the
previous sector (I-1).  In the latter case, the present intermediate distance
asymptotic analysis is skipped.

Record 33: LGS(I), I = 1, 15: (20L1)

LGS(1): if .TRUE., then each time the scattering matrix is printed the 
program will also print RABC(i), the midpoint of the sector, and EFACT, which is
the sum of the off-diagonal elements of the first row of the potential matrix.

LGS(2): if .TRUE., print the scattering matrix one or more times based on
the following options by setting the integer input variable IOPT2 = j.

j      option chosen                                                
(1)   each time it is calculated                              
(2)   for the previous and current sectors after the calculations

converge: this choice will lead to errors unless the asymptotic
analysis is performed at least twice, for example once when 
RABC(IS) is less than RMAX and at the first sector for which
RABC(IS) is greater than or equal to RMAX.

(3)   in the last sector only (determined by the value of NSECT or
of RMAX).                                 

LGS(3): if .TRUE., check unitarity and print checks each time the 
scattering matrix is printed.

LGS(4): if .TRUE., in the last sector calculate and print the phase
shifts.

LGS(5): if .TRUE., in the last sector calculate and print the cross
sections. (These need to be summed over JTOT {8.2} to yield the observable
integral cross sections).
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LGS(6): if .TRUE., in the last sector calculate and print the transition
probabilities.

LGS(7): if .TRUE., in the last sector print the reactance matrix.

LGS(8): if .TRUE., in the last sector try to calculate and print the
quantities requested in LGS(4), LGS(5), and LGS(6) even if the calculations
calculations are terminated before convergence is reached: this option will also
work if the asymptotic analysis is not performed at any intermediate distances.

LGS(9): if .TRUE., calculate the symmetrized reactance matrix select one
of the following options by setting the integer input variable IOPT3 equal to j.

option (j)                                                      
(1)   symmetrize the reactance matrix by imposing the lower left

triangle on the upper right.                 
(2)   symmetrize the reactance matrix by imposing the upper right 

triangle on the lower left.                 
(3)   symmetrize the reactance matrix by setting rscat(i,j) = 

rscat(j,i) equal to the arithmetic mean of the originally
calculated off diagonal elements.

(4)   each of the above in turn

LGS(9) must be true if any of the following are true:           

LGS(10): if .TRUE., in the last sector print the symmetrized reactance
matrix.

LGS(11): if .TRUE., in the last sector print the symmetrized scattering
matrix and check unitarity.

LGS(12): if .TRUE., from the symmetrized matrices calculate and print the
quantities requested in LGS(4), LGS(5),and LGS(6).

LGS(13): if .TRUE., write the symmetrized reactance matrix onto FORTRAN
unit 7.

LGS(14): if .TRUE., write JTOT (the total angular momentum), the energy 
and the transition matrix to FORTRAN unit 10 using (1X,I5,1PE15.8) and 
(1X,1PE13.6) format.  Subroutine EXSCAT will do this.

LGS(15): if .TRUE., calculate and write the eigenphases.  The eigenphases
as a function of r will be written with r on FORTRAN unit 11, and the
eigenphases, r and the eigenvectors will be written on FORTRAN unit 16.

Record 34: LBGS(I), I = 1,15: (20L1)

LBGS specifies what is printed when a value of RPSM is reached.  The
LBGS(I) have the same meaning as the LGS(I).

Record 35: IOPT2, IOPT3: (3I5)

IOPT2: used to determine if and when the scattering matrix will be
printed out during the asymptotic analysis.  The options are as follows:
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IOPT2:   Scattering matrix will be printed:

(1)     each time it is calculated                              
(2)     for the previous and current sectors after the calculations

converge: this choice will lead to errors unless the asymptotic
analysis is performed at (at least) one intermediate distance.

(3)     in the last sector only                                 

IOPT3 determines the method used to symmetrize the reactance matrix
{8.14}.  The allowed values for IOPT3 are:

IOPT3:  Method of symmetrization employed

(1)   symmetrize the reactance matrix by imposing the lower left 
triangle on the upper right.                 

(2)   symmetrize the reactance matrix by imposing the upper right
triangle on the lower left.                 

(3)   symmetrize the reactance matrix by setting rscat(i,j) =
rscat(j,i) equal to the arithmetic mean of the originally
calculated off diagonal elements.  

(4)   each of the above in turn

Record 36: EPSMAG,EPSPH: (2G16.5)

EPSMAG: The convergence criterion for the magnitude of the relative
convergence of the scattering matrix elements {8.15}, if it is nonzero.  If it
is zero then the magnitudes are not tested.

EPSPH: The convergence criterion for the magnitude of the relative
convergence of the phase of the scattering matrix elements {8.15}, if it is
nonzero.  If it is zero then the phases are not tested.

The remaining records are read in if and only if either EPSMAG or EPSPH or
both are nonzero. 

Record 37: NIND      : (3I4)

NIND: the number of individual elements of the scattering matrix which
will be tested for convergence with respect to increasing rmax {8.15}.

Record 38: IND(I,1), I = 1, MIN0(NIND,10): (10I4)

IND(I,1): an array containing the channel numbers for the initial states
of the scattering matrix elements to be tested for convergence with respect to 
increasing rmax {8.15}.

Record 39: IND(I,2), I = 1, MIN0(NIND,10): (10I4)

IND(I,2): an array containing the channel numbers for the final states of
the scattering matrix elements to be tested for convergence with respect to
increasing rmax {8.15}.  It should be emphasized that IND(I,1) and IND(I,2)
refer to channels and not to internal quantum numbers.  For example, if NIND
were 1, and IND(1,1) = 3 and IND(1,2) = 4, then the only element of the
scattering matrix to be tested for convergence would be (3,4).
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14. ARRAY DIMENSIONS AND MEMORY CONSIDERATIONS

There are seven parameters specifying the amount of memory allocated in this
program. They are:

IDX: must be greater than or equal to the maximum number of primitive 
basis functions {8.2}.

NSECTX: must be greater than or equal to the maximum number of sectors 
{8.4}.

NANX: must be greater than or equal to the maximum number of angular 
momentum quantum numbers per channel, excluding the orbital angular momentum 
for relative motion.

NSAVEX: must be greater than or equal to the number of TAUE {8.7} 
matrices and their inverses saved in memory for type-1 second-case runs {8.9}.

NVIBX: must be greater than or equal to the maximum number of vibrational
quantum numbers per channel.

NVIB1X: must be greater than or equal to the average amount of space per
channel pair to allocate for the array BPOT for use by SUBROUTINE POT.

NNEX: must be greater than or equal to the maximum number of second 
energies for type-2 second-case runs {8.9}.

NBARX: has the value IDX*(IDX+1)/2.  Used to dimension the array PCDMT 
used by the alternative eigensystem analysis routine EV2RSP.

All parameters are set in "parameter.inc" which is passed to all subroutines
where needed by the FORTRAN statement INCLUDE "parameter.inc".

The memory of the program is primarily composed of "big" arrays: those on
the order of (IDX,IDX).  A summary of the largest arrays and a brief description
of the contents of each follows:  

EFCNM1(IDX,IDX): stores transpose of the eigenvectors of the D matrix 
{8.11}.

BPOT(IDX,IDX,NVIB1X): stores data for SUBROUTINE POT.

R1MT(IDX,IDX,NNEX): global R  matrix for each type-2 second-case run.
1

R2MT(IDX,IDX,NNEX): global R  matrix for each type-2 second-case run.
2

R3MT(IDX,IDX,NNEX): global R  matrix for each type-2 second-case run.
3

R4MT(IDX,IDX,NNEX): global R  matrix for each type-2 second-case run.
4

EFASY(IDX,IDX): stores eigenvectors in asymptotic basis.

TEMPBC(IDX,IDX*2): temporary storage array. 

TEMP2(IDX,IDX): temporary storage array.
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TEMP3(IDX,IDX): temporary storage array.

TAUE(IDX,IDX,NSAVEX): stores overlap matrix {8.7}.

TINVE(IDX,IDX,NSAVEX): stores inverse of overlap matrix.

SPRRE(IDX,IDX): stores real elements of scattering matrix at previous
intermediate distance.

SPRIM(IDX,IDX): stores imaginary elements of scattering matrix at
previous intermediate distance.

PCDMT(NBARX): packed interaction matrix for subroutine EV2RSP.

The arrays R4MT, EFCNM1, and BPOT must exist at all times.
The arrays R1MT, R2MT, and R3MT must exist if the inhomogeneous option {8.6}

is selected (LR4MT = .FALSE.).
The array EFASY must exist at all times if LTASY is .TRUE. (it usually is).
The arrays SPRRE and SPRIM must exist at all times if convergence with

respect to distance is being performed according to EPSMAG and EPSPH.
If NPROP = 1 or 2, TINVE may be the same as TAUE.
If no more than one reactance matrix symmetrization option is used in

subroutine GNSCAT, then TEMP3 can be the same as TEMP2.
If NPROP = 2, and TYPE2 second energies are used, TEMP2 can be the same as

TAUE.  NPROP will be set to zero for LR4MT = .FALSE..
If LR4MT = .TRUE. and NPROP = 2, then R1MT, R1MTM1, R2MT, R2MTM1, R3MT, and

R3MTM1 can be set equal to R4MT.
For large runs, use NSAVE=1.
Set NNEX = 1 unless the current run is a second-case run.
For large IDX, the current memory requirements are essentially

IDX*(26+NANX+NSECTX+2*NNEX+2*NVIBX+IDX*(10+NVIB1X+2*NNEX+2*NSAVEX))

if the homogeneous option {8.5} is selected, and 

IDX*(26+NANX+NSECTX+2*NNEX+2*NVIBX+IDX*(10+NVIB1X+8*NNEX+2*NSAVEX))

if the inhomogeneous option {8.6} is selected.
The program is efficient in its use of memory, striving to attain a balance

between low memory requirements and ease of usage.  The memory requirements for 
the executable images of the test suite vary between 168707 and 203796 64 bit 
words on the Cray-2, including the code (120080 - 1718032 words), the
initialized data (7488 - 9603 words), and the uninitialized data (58951 -
261075 words).

The figures below include the modules matrix.f, evdrsp.f, and sdrcray.f.

code      initialized data    uninitialized data       total

hfhfstr1:    1718032   7518                311246                   2036796

hehfr1:      120592    7488                58951                    187031

heh2r1:      140048    7488                111285                   258821
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hfhfpbsr1:   143120    9603                163554                   316277

hfhfadr1:    1580752   7526                101183                   1689461

atdir1:      120080    7490                103913                   231483

ehydr1:      120240    7488                40979                    168707

hei2r1:      1579760   7564                261075                   1848399

where the code is comprised of the machine-language version of the source deck,
the initialized data is the data assigned values before run-time (e. g. in BLOCK
DATA or PARAMETER statements), and the uninitialized data is data which is only
assigned a value during execution.
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15. DESCRIPTION OF LABELED COMMON BLOCKS AND PARAMETER LISTS

The program uses four labeled common blocks and one parameter statement to
facilitate the passing of information. They are

COMMON/PTIMCM/PARTIM(10)

COMMON/LCM/LEFACT,LBES,LCONV,LEARLY,LENTER,LR4MT,LSTOP1,LSTOP2

COMMON/TIMCOM/TIMC(50)                                            

COMMON/PRNTCM/IUNITS,IFTXX    

PARAMETER(IDX=ii1, NSECTX=ii2, NANX=ii3, NSAVEX=ii4,NVIBX=ii5,NVIB1X=ii6,
1 NNEX=ii7,NBARX=(IDX*IDX+1)/2))

where the letters ’ii1, ii2, ...’ in the PARAMETER statement are used to
indicate integers which may vary from one test run to another according to the
system studied.

Of potential interest to the user are the provision of timings to be passed 
through TIMCOM, and the elements of the PARAMETER statement.  The entries in
the parameter statement are used to provide run-specific dimensions to arrays so
that the arrays are only as large as required for a given element of the test
suite.

In the PARAMETER list above, the values passed have the following functions:

IDX is used to dimension many of the arrays in the program including 
R4MT, JIN, TEMPBC and others.  IDX is the size of the close coupling expansion
of the individual run.

NSECTX is used to dimension arrays such as RABC whose size depends upon
the maximum number of sectors allowed by the program.

NANX is generally used to dimension arrays containing internal rotational
quantum numbers for the collision partners.  

NSAVEX is described in Section 14 of this manual.

NVIBX denotes the maximum number of the collision partners which are
allowed to vibrate.  If NVIB = 1 in FORTRAN unit 5, or if NVIBX is 1 in
parameter.inc, then subroutine SUMS is inoperative.

NVIB1X is used to increase the size of array BPOT if necessary.  BPOT is
dimensioned (IDX,IDX,NVIB1X).

NNEX is the maximum number of second-case runs.  For the test suite as
supplied, this is two.  If the user wishes to do a second-case run with more
than two energies/angular momenta/starting points then this value should be 
increased in the PARAMETER statement; this may be done by modifying the
file parameter.inc (or the file which is copied to parameter.inc by the C shell
script executing the user’s program).

NBARX - the dimension of the array PCDMT used by the alternative 
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eigensystem analysis routine EV2RSP; it has the value IDX*(IDX+1)/2

In COMMON/TIMCOM/, the values passed have the following functions:

TIMC(50) is an array used to hold timings of various tasks performed by
the program.  If LSTAP is .FALSE. then all the elements of the array TIMC are
reset to zero before each new potential. 

TIMC(1) is a timing of reading input from FORTRAN unit 5.

TIMC(2) is a timing of calls to subroutine POT.

TIMC(3) is a timing of the rephasing (if desired) of the eigenfunctions
of the transformation matrix.  This rephasing should not occur if LTASY is
.TRUE..

TIMC(4) is a timing of calculating stepsizes for each sector.

TIMC(5) is a timing of saving the previous sector’s D matrix.

TIMC(6) is a timing of dropping channels from the asymptotic analysis.

TIMC(7) is a timing of calculating the S matrix.

TIMC(8) is a timing of subroutine EXSCAT. 

TIMC(9)-TIMC(16) are timings of the checks of LPSYM(1)-LPSYM(8)
respectively.  (The WRITE statement for these is commented out.)

TIMC(17) is a timing of the matrix utility routine DGETRF (MINV).

TIMC(18) is a timing of the matrix utility routine DGEMM.
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16. SUBPROGRAM DESCRIPTIONS

This portion of the manual contains a description of the main program and of
subroutines called by the main program and its subroutines (except subroutines
PREPOT, POT, and HEADER, which are described in Section 10, and the matrix
utility routines, which are described in Section 17).  This section is divided
into three subsections.  The first subsection contains a description of the main
program and of those FORTRAN subroutines called by the main program to perform
arithmetical tasks, regardless of the version of the program.  The remaining
subsections contain descriptions of the system dependent utility routines,
"sdrcray.f", "sdrrs6000.f", "sdrsun.f", and "sdralpha.f".

16.1 MAIN PROGRAM AND FORTRAN SUBPROGRAMS

PROGRAM RMPROP: driver or main program, reads in control data for the run
and physical information concerning the system and calls other subroutines.
Execution stops here on normal completion.

SUBROUTINE DROP: drops channels which are uncoupled from all other
channels from the propagation and closed channels from the asymptotic analysis 
{8.7, 8.12}.

SUBROUTINE EXSCAT: calculates phase shifts, contributions to the state-
to-state cross sections from the value of the total angular momentum being
considered, transition matrix elements and transition probabilities. 

SUBROUTINE GNSCAT: calculates scattering and reactance matrices, and from
these calculates other variables according to contents of logical array LGS.

SUBROUTINE MATCH: calculates the square of the local wave vector and the
number of open channels at the local r {8.13}.

SUBROUTINE PRNTM2: called by many other routines to print out elements of
square matrices in a particular fashion.

SUBROUTINE PRNTSU: prints out complex valued scattering matrix and tests
its unitarity.

SUBROUTINE PRSCAT: reads in logical and control variables used in the 
asymptotic analysis (subroutine GNSCAT).

SUBROUTINE RBES: calculates regular and irregular Ricatti-Bessel
functions and their derivatives. 

SUBROUTINE RPROP: calculation of sector r matrices, and global R  matrix
4

for the homogeneous option {8.5}, and global R matrix for inhomogeneous option
{8.6}.

SUBROUTINE SUMS: takes 1 row of transition probability matrix and sums
the results first by m ’s and then by j   ’s. This assumes that the channel 

j                sum
quantum numbers are appropriate for diatom-diatom scattering.

SUBROUTINE TAUMTS: calculates TAUE matrix {8.7} and perhaps its inverse.
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SUBROUTINE TDUMP: writes TAUE {8.7} and perhaps its inverse to FORTRAN
unit 8 for type-1 {8.9} second-case runs.

SUBROUTINE TITLES: prints description of sector-by-sector output or
prints the sector-by-sector output itself.

SUBROUTINE TLOAD: reads TAUE {8.7} and perhaps its inverse from FORTRAN
unit 8 for type-1 {8.9} second-case runs.

16.2 UTILITY ROUTINES

16.2.1 UTILITY ROUTINES FOR THE CRAY-2

The module "sdrcray.f" contains the following subroutines:

SUBROUTINE DATTIM: a utility subroutine which is called by the main
program to return the calendar date and time.  It calls a Cray system routines
DATE(CDATE) and CLOCK(CTIME) where CDATE and CTIME are each CHARACTER * 10
variables, to obtain the date and time, and returns a character string 
CHARACTER*80 TIMDAT containing the date and time.

SUBROUTINE SECOND: a utility subroutine which is called by the main
program and a number of other subroutines.  It calls the Cray system subroutine
to calculate CPU seconds taken by a task.

16.2.2 UTILITY ROUTINES FOR THE IBM RS/6000

The module "sdrrs6000.f" contains the following subroutines:

SUBROUTINE SECOND: a utility subroutine which is called by the main
program and a number of other subroutines.  It calls an IBM system subroutine,
MCLOCK, to calculate CPU seconds taken by a task.  

SUBROUTINE DATTIM: a utility subroutine which is called by the main
program to return the calendar date and time.  It calls a UNIX C Shell routine 
(included with the program) to obtain the date and time, and returns a character
string CHARACTER*80 TIMDAT containing the date and time.  It should be noted
that the C Shell routine, "dateclock.c", must be compiled with the c compiler.
The shell scripts included with the program do this automatically.

16.2.3 UTILITY ROUTINES FOR THE SUN SPARCSTATION:

The module "sdrsun.f" contains the following subroutines:

SUBROUTINE SECOND: a utility subroutine which is called by the main
program and a number of other subroutines.  

SUBROUTINE DATTIM: a utility subroutine which is called by the main
program to return the calendar date and time.  It calls the Sun version of the
routine FDATE to find the date and time, and returns a character string
CHARACTER*80 TIMDAT containing the date and time.
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16.2.4 UTILITY ROUTINES FOR THE DEC ALPHA:

The module "sdralpha.f" contains the following subroutines:

SUBROUTINE SECOND: a utility subroutine which is called by the main
program and a number of other subroutines.  It should be noted that this routine
is not consistently reliable in the current version.

SUBROUTINE DATTIM: a utility subroutine which is called by the main
program to return the calendar date and time.  It calls the DEC version of the
routine FDATE to find the date and time, and returns a character string
CHARACTER*80 TIMDAT containing the date and time.
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17. MATRIX UTILITIES

The matrix utilities used in RMPROP have been taken from other sources. 
For complete documentation, the user is referred to references 7-12 in 
Section 2.   In the table that follows, we list all the subroutines from
other sources used to perform matrix and vector operations.  Note that
different versions of the code (see Sections 6.2-6.8 for more information
on the versions of RMPROP) use different subroutines as well as different
sources for the same subroutines.  In the table, F refers to FORTRAN source
codes distributed with the RMPROP distribution package, S referes to the
Cray SCILIB library, and IB refers to the IBM RS/6000 libblas.a library.

Routines not called from the RMPROP distribution package are given a 
"-", although they may be called by other called library routines.

Routine   Type            2.1.1   2.1.1i  2.1.1ce  2.1.1cs  2.1.1xe  2.1.1xs
MINV      -                 -       -        S        S        -        -
MXMA      -                 -       -        S        S        -        -
EVDRSP    -                 F       -        -        -        -        -
EVIRSP    -                 -       F        -        -        -        -
EVCRSP    -                 -       -        F        -        F        -
RS        -                 -       -        -        S        -        S
D/SDOT    BLAS Level 1      F       IB       S        S        S        S
D/SNMR2   BLAS Level 1      F       IB       S        S        S        S
D/SASUM   BLAS Level 1      F       IB       S        S        S        S
D/SAXPY   BLAS Level 1      F       IB       S        S        S        S
D/SSCAL   BLAS Level 1      F       IB       S        S        S        S
D/SCOPY   BLAS Level 1      F       IB       S        S        S        S
D/SSWAP   BLAS Level 1      F       IB       -        -        -        -
ID/SAMAX  BLAS Level 1      F       IB       -        -        -        -
D/STRMV   BLAS Level 2      F       IB       -        -        -        -
DGER      BLAS Level 2      F       IB       -        -        -        -
D/SGEMV   BLAS Level 2      F       IB       -        -        -        -
D/SGEMM   BLAS Level 3      F       IB       -        -        S        S
D/STRSM   BLAS Level 3      F       IB       -        -        -        -
D/STRMM   BLAS Level 3      F       IB       -        -        -        -
D/STRTRI  BLAS Level 3      F       IB       -        -        -        -
D/SGETRF  LAPACK            F       F        -        -        S        S
D/SGETRS  LAPACK            F       F        -        -        S        S
D/SGETRI  LAPACK            F       F        -        -        S        S
D/SGETF2  LAPACK A          F       F        -        -        -        -
D/SLASWP  LAPACK A          F       F        -        -        -        -
D/STRTI2  LAPACK A          F       F        -        -        -        -
ILAENV    LAPACK A          F       F        -        -        -        -
LSAME     LAPACK A          F       F        -        -        -        -
XERBLA    LAPACK A          F       F        -        -        -        -

17.1 TIMINGS OF MATRIX UTILITY KERNELS

In order to decide on the optimal set of matrix utilities for RMPROP-version
2.0, it was necessary to compare the performance of various utilities on the
Cray-2, Cray X-MP, and IBM RS/6000.  The matrix operations for Version 2.1.2
have remained the same as in Version 2.0, so we will leave the following 
discussion intact for reference (NOTE: the Cray C90 is most similar in 
architecture to the Cray X-MP, although it is about four times as fast as a
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Cray-2.  These tests were performed before the Cray C90 was available.)
The matrix operations which are required by RMPROP-Version 2.1.2 are 
matrix-matrix multiplication, solution of a real linear system of equations, 
inversion of a real matrix, and the determination of the eigensystem of a real 
symmetric matrix.  We discuss the subroutines tested for each of the
computational tasks listed above in turn.  (Since the inversion of a real 
matrix is only performed during the asymptotic analysis at the end of a run by 
RMPROP, and the majority of the work in finding the inverse of a matrix is 
performed by one of the subroutines used to solve a system of linear equations,
we have not performed timings of the inversion routines.)

The Cray-2 and Cray X-MP (and Cray C90) have 64-bit architectures, so that 
data which is single precision on the Cray machines are double precision on the
other machines (see Section 6.3 above).  This is reflected in the names of the 
utilities: subroutine DGEMM is called SGEMM on the Cray machines.  However, for
simplicity we refer to the routines by their double-precision names below.

For matrix-matrix multiplication, we have compared the two utilities MXMA,
taken from the Cray SCILIB scientific subroutine library, and DGEMM, a Level-3
BLAS subroutine from the SCILIB subroutine library.  Both MXMA and DGEMM exist
as ANSI-standard FORTRAN 77 files, and as library subroutines on the
Cray-2.

For the solution of a real linear solution of equations, the utilities we
have compared include LUSOLV, which is a FORTRAN routine with unrolled DO LOOPs,
SUBROUTINE LUBLAS, which is a version of SUBROUTINE LUSOLV with calls to the
BLAS routines in place of the DO LOOPs, SUBROUTINE DGEFA and SUBROUTINE DGESL
from the LINPACK linear algebra library, SUBROUTINE DGETRF and SUBROUTINE DGETRS
from the LAPACK subroutine library, and SUBROUTINE MINV, from the Cray SCILIB
scientific subroutine library.  Of these routines, all but SUBROUTINE MINV exist
as ANSI-standard FORTRAN 77 files.  All of the routines except LUBLAS exist as
library subroutines on the Cray-2 (again where 64 bit precision is SINGLE
PRECISION on the Cray-2), and SUBROUTINE DGEFA and DGESL exist as library
routines on the IBM RS/6000.  SUBROUTINE LUBLAS, the LINPACK routines, and the
LAPACK routines all contain calls to the BLAS, which exist as both ANSI-standard
FORTRAN 77 files and library routines.  We have compared FORTRAN versions of
each of the routines where available, with both FORTRAN and library versions of
the BLAS, and library versions of these routines as well.

For the determination of the eigensystem of a real symmetric matrix, we
have compared SUBROUTINE RS, from the EISPACK scientific subroutine library,
and SUBROUTINE EVVRSP, written by Stephen Elbert of Iowa State University.
SUBROUTINE RS exists both as an ANSI-standard FORTRAN file and as an element of
the Cray SCILIB library.  SUBROUTINE EVVRSP contains calls to the BLAS, and we
compare timings for various versions of EVVRSP with calls to both FORTRAN and
library versions of the BLAS on both machines.  We also consider versions of
EVVRSP where the BLAS routines were replaced by FORTRAN DO LOOPs, and where
FORTRAN elements of the subroutines ELAU and FREDA were replaced by calls to
the BLAS.

Below we present comparisons of timings for each of the kernels above, for
matrices of dimension 47 by 47, 236 by 236, and 1058 by 1058, taken from actual
runs of RMPROP.  The time given is the average of 10 executions of each routine,
except for the 1058 by 1058 matrix, which is the average of 2 executions.  The
actual version of each kernel selected for the final program is described below 
the comparisons.
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Timings of Matrix Multiplication (seconds)

Cray-2                Cray X-MP         IBM RS/6000
---------------      ---------------      ---------------

size of matrix -->  47   236   1058      47   236   1058      47   236   1058

FORTRAN MXMA    0.0046  0.41   29.5   0.0032 0.29  26.5   0.011  1.51  141.8

Cray SCILIB     0.0022  0.071   6.0   0.0036 0.14  11.4    N/A    N/A   N/A
MXMA

FORTRAN DGEMM   0.0023  0.068  23.3   0.0037 0.30  26.0   0.012  1.52  142.8

Library DGEMM   0.0098  0.076   6.6   0.0014 0.13  11.9   0.0034 0.36   32.5

Timings of Linear Equation Solutions

Cray-2                Cray X-MP         IBM RS/6000
---------------      ---------------      ---------------

size of matrix -->  47   236   1058      47   236   1058      47   236   1058

LUSOLV          0.0088  1.2    58.1   0.082  0.44  33.8    0.010 1.39  243.5
(Fortran BLAS)

LUBLAS          0.037   2.1   146.9   0.031  1.16  59.3    0.022 1.93  154.7
(Fortran BLAS)

LUBLAS          0.016   0.67   36.1   0.015  0.64  44.3    0.22  1.91  150.7
(Library BLAS)

LINPACK         0.023   2.2   109.2   0.019  0.89  50.3    0.019 2.76 2707.0
(FORTRAN)

LINPACK         0.014   1.73   87.1   0.012  0.75  48.3    0.019 2.83 2747.6 
(Library)

LAPACK          0.017   0.87   50.2   0.133  0.66  48.2    0.022 2.43  212.0 
(FORTRAN,
with FORTRAN
BLAS)

LAPACK          0.0045  0.27   10.5   0.0045 0.24  16.0   0.0078 0.54   43.9
(FORTRAN,
with Library
BLAS)

LAPACK          0.0045  0.30   11.5   0.0042 0.26  16.8    N/A     N/A    N/A
(SCILIB
Library) 

MINV            0.0017  0.12    9.2   0.0047 0.64  62.8    N/A     N/A    N/A
(SCILIB Library)
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Timings of Eigensystem Analysis of Real Symmetric Matrix (seconds)

Cray-2                Cray X-MP         IBM RS/6000
---------------      ---------------      ---------------

size of matrix -->  47   236   1058      47   236   1058      47   236   1058

LAPACK DSYEV     0.300  1.94  103.2     N/A  N/A   N/A    0.480  47.2   4132.7
(FORTRAN,
with FORTRAN
BLAS)

LAPACK DSYEV      N/A    N/A   N/A      N/A   N/A   N/A   0.350  33.3   2922.2
(FORTRAN,
with Library
BLAS)

EVVRSP           0.055  2.02  100.4    0.049  1.49  71.3  0.035  2.13    164.1
(FORTRAN,
with FORTRAN
BLAS)

EVVRSP           0.030  1.02   47.8    0.030  0.99  49.7  0.025  2.14    157.9
(FORTRAN,
with Library
BLAS)

EVVRSP           0.028  1.05   47.8    0.025  0.88  49.4  0.030  2.58    207.4
(FORTRAN,
DO LOOPs
replace BLAS) 

EVVRSP           0.08   2.98  152.2    0.071  2.10  102.0 0.040  2.34    163.7
(FORTRAN,
with FORTRAN
BLAS in ELAU
and FREDA)

EVVRSP           0.035  1.16   48.4    0.035  1.29   62.3 0.040  2.20    158.7
(FORTRAN,
with Library
BLAS in ELAU
and FREDA)

RS               0.031  2.09  132.6    0.036  1.55  134.7 0.448  53.4   6122.9 
(FORTRAN)

RS               0.029  1.42  102.1    0.025  1.28   98.7  N/A   N/A    N/A
(SCILIB)  
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Examination of the tables above reveals the following trends.  For matrix-
matrix multiplication, the FORTRAN version of DGEMM is superior to the FORTRAN
version of MXMA on both the Cray and the IBM RS/6000.  The library version of
MXMA is slightly faster than the library version of DGEMM on the Cray, and the
library version of DGEMM is vastly superior to either the FORTRAN version of 
DGEMM or MXMA on the IBM RS/6000.  Therefore, for matrix-matrix multiplication,
version 2.1.2 uses the FORTRAN version of DGEMM, versions 2.1.2cs and 2.1.2ce
use the SCILIB version of SUBROUTINE MXMA, and versions 2.1.2xs, 2.1.2xe, and  
2.1.2i use the machine-appropriate library versions of DGEMM.

For the solution of systems of linear equations, the fastest FORTRAN code
is taken from LAPACK, on both the Cray-2 and the IBM RS/6000.  However, when
library modules are included, the fastest routine on the Cray-2 is SUBROUTINE
MINV, from the Cray SCILIB library, while the fastest routine on the IBM RS/6000
is taken from LAPACK, including calls to the IBM library BLAS.  The portable
version 2.1.2 uses the FORTRAN LAPACK routines, while the library LAPACK 
routines are used in versions 2.1.2i, 2.1.2xs, and 2.1.2xe. The SCILIB version
of MINV is used in versions 2.1.2cs and 2.1.2ce. 

For the solution of the eigensystem of a real symmetric analysis, the choice
of the optimal subroutine is more complex.  Among the FORTRAN modules, the
fastest subroutine on the Cray-2 is a version of Stephen Elbert’s EVVRSP where
all of the BLAS routines are replaced by equivalent FORTRAN DO LOOPs (this
version is called EVCRSP).  The fastest version on the IBM RS/6000 is a version
of Stephen Elbert’s EVVRSP where elements of the subroutines ELAU and FREDA are
replaced by calls to the FORTRAN BLAS (this version is called EVIRSP).  When
library modules are included, the fastest subroutine on the Cray-2 varies with
the size of the matrix concerned.  SUBROUTINE RS from the SCILIB routine is the 
fastest for matrices of size 236 by 236 or smaller, but EVCRSP with calls to
the library BLAS is the fastest routine for the largest matrix tested.  On the
IBM RS/6000, the fastest routine which includes any library routines is EVIRSP
with calls to the library BLAS.

In order to make the version 2.1.2 as fast as possible, we have selected from
the routines described above to perform matrix manipulations within RMPROP-
Version 2.1.2.  In summary, these matrix routines include three routines for the
solution of systems of linear equations (DGETRF and DGETRS/DGETRI), a routine
for matrix-matrix multiplication (DGEMM), and a routine for the eigensystem
analysis of a real symmetric matrix (EV2RSP).  Version 2.1.2cs, 2.1.2ce, 
2.1.2cx, 2.1.2ce, and 2.1.2i include specialized versions of these routines 
intended to improve the program’s performance.   

In addition, version 2.1.2ce and 2.1.2cx of the program allows calls to the
Cray Research Inc. scientific library (SCILIB) routines for the eigensystem
analysis of a real matrix, SUBROUTINE RS, for matrix-matrix multiplication,
MXMA, and for the solution of a linear system of equations, SUBROUTINE MINV, and
version 2.1.2i also includes subroutine calls to library versions of the BLAS
subroutines to speed up execution.

We first discuss the subroutines above (DGETRF, DGETRS, DGETRI, DGEMM, and
EV2RSP) which are common to versions 2.1.2, 2.1.2xs, 2.1.2xe, and 2.1.2i of the
program, and then discuss those routines from the LAPACK and the BLAS libraries
which are called by these matrix utilities used in the distribution version of
the program, whether or not these subsidiary routines are concerned with matrix 
manipulations.  Next, we supply the names of the routines which are unique to
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version 2.1.2cx and 2.1.2ce of the program, their subsidiary subroutines where
applicable, and the source from which we have obtained them.  Finally, we do the
same for the IBM RS/6000 version of the program. 
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18. FATAL ERROR MESSAGES

The program attempts to detect run time errors and input errors whenever
possible. If an error is detected, the program ceases execution with an error
message of the form STOP N, where N is an integer, and it writes this message to
FORTRAN unit 6.  The list below gives the messages by number for each routine
in which they occur.

In program RMPROP:

’STOP 5099’    Is not an error message but is issued for runs with LJRI equal to
.TRUE. when reading and echoing of FORTRAN unit 5 is complete. 

’STOP 5100’    NDIM {8.2} has exceeded the dimension ID.

’STOP 5200’    The number of type-2 second energies {8.9} exceeded the dimension
NNE.

’STOP 5300’    Is a flag when the user tries to run with both L(I) and OAM(I)
not equal to zero.  The L(I) should be used for general
potentials only, and the OAM(I) for spherically symmetric
potentials only.

’STOP 5400’    Occurs when the left-hand side of the first sector would have
been less that zero.

’STOP 5500’    Is a flag when the user tries to run more than one set of 
stepsize criteria and more than one energy at the same time.

’STOP 5600’    Occurs when, for type-2 {8.9} second-case runs, the left hand
sides of the first sector for each energy are not lined up with
one another.

’STOP 5700’    Occurs when there are problems with diagonalizing the D matrix
in the asymptotic region before beginning the propagation.

’STOP 5800’    When there is an error in the diagonalization of the D matrix
at the first sector.

’STOP 5900’    Occurs when reading in restart information from FORTRAN unit 17
or FORTRAN unit 18 and the variable ’LTHREW’ is true.  This error
message is also triggered when the program tries to read data
from a non-existent FORTRAN unit 17 or FORTRAN unit 18. LTHREW is
set to true by the main program when convergence with respect to 
the number of sectors has been reached, or RMAX has been exceeded
{8.4,8.15}.

’STOP 6000’    Is not an error, but is triggered when the program is finished
writing to FORTRAN unit IUNXX: writing to FORTRAN unit IUNXX is
an infrequently used option and occurs when the sector number,
IS, equals the input value of ISAVV.

’STOP 6100’    Is the error message whenever there is a problem diagonalizing
the D matrix at finite distance.
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’STOP 6200’    Is the flag if in program rmprop the symmetry check of off-
diagonal elements of R is failed.

4
’STOP 6300’    Is the message for normal, successful completion for single

energy, single basis set, single stepsize criterion runs.

’STOP 6400’    Occurs when the number of sectors exceeds the dimension NSECT
before convergence for single energy runs.

’STOP 6500’    Occurs when the number of sectors exceeds the dimension NSECT
before convergence for second-case runs.

In SUBROUTINE GNSCAT:

’STOP 981’     Refers to testing the channel ordering at intermediate distances
or during the final asymptotic analysis.  If a closed channel
occurs during the ordering of the open channels or if an open
channel is among the closed channels the code stops with this
error message.

In SUBROUTINE RPROP:

’STOP 13’      Occurs in SUBROUTINE RPROP when a zero eigenvalue is encountered.

’STOP 133’     Occurs in SUBROUTINE RPROP when the average value of the relative
error of off-diagonal elements of the R  matrix is greater than

4 
or equal to the tolerance set by the program.

In SUBROUTINE TAUMTS:

’STOP 111’     Occurs when there is an error in the inversion of the TAUE
matrix.
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19. TEST RUNS AND COMPILATION

This section of the manual contains some sample input data sets for RMPROP
and copies of selected subsets of the output data.  The systems involved in the
examples are:

HF-HF R-R,T transitions 
(see references 5, 9, and 10 in Section 21)

He-HF R-R,T transitions 
(see references 6 and 7 in Section 21)

He-H  collinear V-V,T transitions
2

(see reference 8 in Section 21)

General atom-rigid rotor diatom R-R,T transitions
(see reference 11 in Section 21 and the Appendix of the METECC-94
Chapter)

Electron-H atom scattering
(see reference 12 in Section 21)

He-I  three-dimensional R-R,T scattering
2

(see references 13 and 14 in Section 21)

He-H  three-dimension V,R-T scattering
2

(see references A, B, and C in Section 21)

Various options were used for each of these systems to test many different
available options.  The HF-HF runs use several different potentials - the 
Schwenke-Truhlar potential energy surface (reference 5 in Section 21), the
Poulsen-Billing-Steinfeld surface (reference 9 in Section 21), and the surface
of Alexander and DePristo (reference 10 in Section 21).

The He-HF runs use the potential of Collins and Lane (reference 6 in
Section 21), and the potential for the He-H  system, for the collinear approach

2                                    
of He to H  is from reference 8 of Section 21. 

2

The generalized atom-rigid rotor diatomic scattering runs follow the
treatment of Lester and Bernstein (reference 11 of Section 21).  This test run
is of particular interest since the coupled equations were originally solved by 
a different method (de Vogelaere’s algorithm) and using a different set of
units.  Lester and Bernstein used reduced (dimensionless) units, which were
converted to atomic units for this program.

The He-I  rotational scattering illustrates the expansion of the diatomic
2

potential of Schwenke and Truhlar (reference 13 in Section 21) in Legendre
functions, in order that the angular integrals in the potential matrix elements 
[A12] become analytic.
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We adopt the following names for test runs:

hfhfstr1, hfhfstr2, hfhfstr3, hfhfstr4, hfhfstr5
hehfr1
heh2cdr1, heh2cdr2
hfhfpbsr1
hfhfadr1, hfhfadr2
atdir1
ehydr1
hei2r1
heh2tkr1, heh2tkr2

The convention followed is that the first group of 4 letters refers to the
system under study, for example hfhf or heh2.  If there is more than one
potential surface being used for a given system, the initials of the authors of
the potential surface are given after the name of the system, e. g. "hfhfpbs" is
the Poulsen-Billing-Steinfeld surface for HF-HF but "hehf" has no author’s
initials following since we only study one surface for He-HF.  Finally the r1,
r2, etc. suffix refers to the number of the run for a given system and potential
surface. Therefore by this convention "hfhfstr2" is the second test run on the
HFHF system on the ST surface.

A convenient C Shell script is provided for running the test runs.  To use
this script, called runtest.csh. In addition the file runtest.csh should be 
executable (if it is not executable one may make it executable with the command
chmod 750 runtest.csh).

All sixteen test runs have been tested on a Cray-2, a Cray C90, and an
IBM RS/6000.  In order to maintain portability, version 2.1.2 of the code 
was run in all cases.  This differs from RMPROP-Version 1.0, where the Cray-2 
ran the Cray UNICOS version for all elements of the test suite except hfhfstr2 
and hfhfstr3, which ran the distribution version.

The compilation of the runs in the test suite is performed separately for
each run in the test suite by the UNIX make utility.  The make utility is a
general purpose utility which may be used to update and to maintain files within
a UNIX directory.  By default, the make utility assumes that files ending in
".f" are FORTRAN modules and that files ending in ".o" are object modules.  When
the make utility is invoked by the C Shell script, the date of creation of the
executable image for that test run is compared to the latest modification date
of each of the FORTRAN subprograms which, when compiled and linked, comprise
that image.  Compilation of an individual subprogram to create a new object
module and linkage of the new module with existing object modules to create a
new executable image is performed only if the last modification date for that
subprogram is later than that of the executable image, or if the object module
corresponding to the FORTRAN subprogram is missing from the current working
directory.   

The file which we use to access the make utility is called "Makefile.mak".  
This file contains a number of UNIX environment variable assignments.  These
environment variables are defined either by the C Shell script which drives 
the specific test run (hereafter referred to as {TEST}.csh) or by runtest.csh.
The file runtest.csh chooses the environment variables which vary by machine 
and operating system (UNICOS for the Cray, and AIX for the IBM RS/6000) 
and sets variables which denote the directories files are
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located for the benefit of {TEST}.csh. The files {TEST}.csh for individual
test runs set environment variables specific to the test run.  The file 
"Makefile.mak" uses the following environment variables:

Variable           Set by              Meaning
FTN            runtest.csh         command for FORTRAN compiler step
LOAD           runtest.csh         command for FORTRAN linking step
FFLAGS         runtest.csh         options to FORTRAN compiler step
SDR            runtest.csh         machine-dependent source code
PSSC           {TEST}.csh          potential-surface source code
CMD            {TEST}.csh          executable name

NOTE:  All of the {TEST}.csh files can be modified simply to run without
the use of runtest.csh.  Comments within each of these scripts aid the user
in modifying these to run individually.  The file {TEST}.csh should be moved
from directory script to the top directory of the distribution package.  Then
the script must be altered to set the environement variables

FTN                    (see above)
LOAD                   (see above)
FFLAGS                 (see above)
DIR                    top directory of distribution package
TDIR                   directory test (or where input files are kept)
FDIR                   directory src (or where source code is kept)
SDIR                   directory script (or where Makefile.mak is kept)

The file "Makefile.mak" assumes that any FORTRAN subprograms other than
those of the elements of RMPROP-Version 2.1.2 (rmprop2.f, gnscat2.f, and 
exscat2.f) or machine-dependent routines (sdrcray.f, sdrrs6000.f, etc) will
be defined by the variable PSSC.  Therefore, if the user wishes to use the 
supplied C Shell scripts and Makefile.mak to run this program with his or her 
own potential routines, then he or she must define PSSC in the new script
before calling Makefile.mak.

In order to compile and link the programs listed in the test suite, ensure 
that "runtest.csh" is in the top directory of the distribution package.  All
other files should be in the directories specified in Sections 5 and 20.
Enter the command

runtest.csh TESTNAME

where TESTNAME is a name of an element of the test suite, such as hfhfstr1, 
hehfr1, etc.  The compilation and linking are performed automatically when the
make utility is called by the C Shell script, and as explained above, will only
need to be repeated if one of the FORTRAN modules is modified or an object file
deleted.  CAUTION: a change to the PARAMETER statement in the file parameter.inc
or xxx.param (see Section 15 of this manual) will necessitate removal of
existing object files (those with a suffix of ’.o’) and re-compilation of the
program.  The rest of this section gives detailed INPUT and OUTPUT for the
elements of the test suite.
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19.1 TEST RUN hfhfstr1

HF(v = 0,j = 0) + HF(v = 0,j = 0) -> HF(v = 0,j = j’) + HF(v = 0,j = j’)

This sample run solves the close coupling equations for fully 3-dimensional
scattering of a vibrating rotor from another vibrating rotor at non-zero total 
angular momentum.  The run is performed at a single energy, with 47 channels,
and uses the "fast" propagator, NPROP = 2 {8.10}.

The run uses fixed stepsizes throughout the propagation, and it saves 
restart information alternating between FORTRAN units 17 and 18.  The asymptotic
analysis is performed at 2 intermediate distances, and comparison is made of the
phases and magnitudes of the scattering matrix elements coupling the first
channel to the second, third, and fourth channels, using the input tolerances
EPSMAG = 0.001 and EPSPH = 0.001 {8.15} respectively.  The asymptotic boundary 
conditions are enforced by matching to Bessel functions using the asymptotic 
(r = 5000.0 bohr) wave vectors.

In order to run this test program, perform the following steps:      

1) Ensure that the following files are all present:

test/hfhfstr1.4       (input data for FORTRAN unit 4)
test/hfhfstr1.5       (input data for FORTRAN unit 5)
test/hfhfstr1.param   (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/hfhfstr1.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command 

runtest.csh hfhfstr1

3) Output files generated

hfhfstr1.out          standard output (UNIT 6)
hfhfstr1.3            date and time of the run (UNIT 3)
hfhfstr1.15           short output (UNIT 15)

It should be noted that, even though the input file (FORTRAN unit 5) calls for
the asymptotic analysis to be performed at two intermediate distances (380.0 and
390.0 bohr, respectively) as well as at RMAX (400.0 bohr), FORTRAN unit 15 only
contains the scattering matrix at 390.0 bohr.  This is because IOPT = 3 so that
the scattering matrix is only printed at the "last" sector.  In the present run,
the last sector is at 390.0 because when the program compared the magnitude and
the phase of the S-matrix elements between the initial and final states given in
the input arrays IND(NIND,1) and IND(NIND,2), at the two intermediate distances,
(380.0 bohr and 390.0 bohr), all of the S-matrix elements agreed within the 
tolerances set by the input values EPSMAG and EPSPH, and so the program ceased
execution instead of continuing the propagation to 400.0 bohr.  The use of these
convergence tests is helpful but can lead to unwarranted indications of
convergence if used in an inappropriate fashion (see hfhfstr3 and {8.15} above).
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The output to FORTRAN unit 6 also includes timing information on the various
routines and a listing of the center of each sector and the stepsize at each
sector: FORTRAN unit 6 is the only other file with user-readable output created 
by this run.

Input to FORTRAN unit 4 (for potential routine): 

1.733 
1 
10 
1 

T 
3 

TEST RUN FOR ROTATIONAL-ROTATIONAL TRANSFER AT 76 meV.
SCHWENKE-TRUHLAR INTERACTION POTENTIAL PLUS VIBRATIONAL DEPENDENCE.
JSUM =4

1 
0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0
0    1    1    1    1    1    1    2    2    2
2    2    2    2    2    2    2    2    3    3
3    3    2    2    2    2    2    2    2    2
2    3    3    3    3    3    3    3    3    3
3    3    4    4    4    4    4
0    0    0    1    1    1    1    0    0    0
1    1    1    1    1    1    1    1    0    0
0    0    2    2    2    2    2    2    2    2
2    1    1    1    1    1    1    1    1    1
1    1    0    0    0    0    0
0    1    1    0    2    2    2    2    2    2
1    1    2    2    3    3    3    3    3    3
3    3    0    2    2    2    4    4    4    4
4    2    2    2    3    3    3    4    4    4
4    4    4    4    4    4    4
0    0    0    0
23    4
0    0    1    0    2    1    1    0    3    1
2    1    2    3    1    2    2    2    2    3
2    3    3
0    1    0    2    0    1    1    3    0    2
1    2    1    1    3    2    2    2    3    2
3    2    3
0    0    0    0    0    0    1    0    0    0
0    1    1    0    0    0    1    2    0    0
2    2    0

1744.604       0.01889699     1.733          0.0            T 1000.0            1
60   40   10    0    3    1  
7    4    7   12    0 
10 
0 
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Input to FORTRAN unit 5 (for RMPROP): 

SCHWENKE-TRUHLAR SURFACE HF-HF J=100 AND E = 76 meV       
TEST SUITE RUN 1
FT

47 4000   13    1    2   10    1
0  300    0   30    0

1.823454D+4       47  100 
100   99  101  100   98  100  102   98  100  102
99  101   99  101   97   99  101  103   97   99
101  103  100   98  100  102   96   98  100  102
104   98  100  102   98  100  102   96   98  100
102  104   96   98  100  102  104
1   -1    0
47 

0.021444753            4.00       0
0.1200        0.1200        400.0        h1,h2,rmax

1
1.0D-1 
0.0129
1.2D-2 
0.1200
0.1D-5 
0.1D-5 
0.1200
3.4D+3 
3.4D+3 
4.0D+2 
9.0D+3

0 
0.0

1.D-03       400.0       2               epsred,rbig,nprop
FTFFFFFFFF
TTFFFFFFFT

1.D-03     5000.0                        epsdr,rasye
TTF    0    2    0

2
380.0          390.0          
TTFFTTFTFFFFFFFF
TTFFTTFTFFFFFFFF

3   3 
1.D-3           1.D-3
3
1   1   1
2   3   4
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19.2  TEST RUN hfhfstr2

HF(v = 0,j = 0) + HF(v = 0,j = 0) -> HF(v = 0,j = j’) + HF(v = 0,j = j’)

This test run differs from the previous test run ONLY in that the slow form
of the propagator (NPROP = 0) is used, to compare the timing.

In order to run this test program, perform the following steps:      

1) Ensure that the following files are available:

test/hfhfstr2.4       (input data for FORTRAN unit 4)
test/hfhfstr2.5       (input data for FORTRAN unit 5)
test/hfhfstr2.param   (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/hfhfstr2.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command 

runtest.csh hfhfstr2

3) Output files generated

hfhfstr2.out          standard output (UNIT 6)
hfhfstr2.2            angular integrals (saved for restart in hfhfstr3)
hfhfstr2.3            date and time of the run (UNIT 3)
hfhfstr2.15           short output (UNIT 15)
hfhfstr2.17           restart information (UNIT 17, nonASCII)
hfhfstr2.18           restart information (UNIT 18, nonASCII)

As can be seen from the discussion of timings in Section 4 of this manual,
the NPROP = 2 option (using the distribution version) resulted in a speedup of
25% on the Cray-2, and 50% on the IBM RS/6000, while giving the same final
answers.  
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Input to FORTRAN unit 4 (for potential routine): 

Identical to that for hfhfstr1

Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

SCHWENKE-TRUHLAR SURFACE HF-HF J=100 AND E = 76 meV       
TEST SUITE RUN 2
FT

47 4000   13    1    2   10    1
0  300    0   30    0

1.823454E+4       47  100 
100   99  101  100   98  100  102   98  100  102
99  101   99  101   97   99  101  103   97   99
101  103  100   98  100  102   96   98  100  102
104   98  100  102   98  100  102   96   98  100
102  104   96   98  100  102  104
1   -1    0
47 

0.021444753            4.00       0
0.1200        0.1200        400.0    

1
1.0E-1 
0.0129
1.2E-2 
0.1200
0.1E-5 
0.1E-5 
0.1200
3.4E+3 
3.4E+3 
4.0E+2 
9.0E+3

0 
0.0

1.E-03      400.0        0
FTFFFFFFFF
TTFFFFFFFT

1.E-03     5000.0
TTF    0    2    0

2
380.0          390.0          
TTFFTTFTFFFFFFFF
TTFFTTFTFFFFFFFF

3   3   3 
1.E-3           1.E-3
3
1   1   1
2   3   4
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19.3 TEST RUN hfhfstr3

HF(v = 0,j = 0) + HF(v = 0,j = 0) -> HF(v = 0,j = j’) + HF(v = 0,j = j’)

This run continues the propagation begun by hfhfstr2 and shows that the
program runs correctly when reading restart information.  This run reads restart
information from FORTRAN unit 17 (written by hfhfstr2) and uses NPROP = 2.  The
asymptotic boundary conditions are again imposed by matching to Ricatti-Bessel
functions using the asymptotic wave vectors.  The asymptotic analysis is
performed at one intermediate distance, 390.0 bohr, and rmax, 400.0 bohr, so
the elements of the scattering matrix written to hfhfstr3.15 differ slightly
from those of hfhfstr2.15.  This test run also reads the angular integrals
written to UNIT 2 by hfhfstr2 instead of recalculating them.

In order to run this test program, perform the following steps:      
1) Ensure that the following files are available:

hfhfstr2.3            (time and date of previous run)
hfhfstr2.2            (integral file from previous run)
hfhfstr2.17           (restart information from previous run)
test/hfhfstr3.4       (input data for FORTRAN unit 4)
test/hfhfstr3.5       (input data for FORTRAN unit 5)
test/hfhfstr3.param   (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/hfhfstr3.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command

runtest.csh hfhfstr3

3) Output files generated:

hfhfstr3.out          standard output (UNIT 6)
hfhfstr3.3            date and time of the run (UNIT 3)
hfhfstr3.15           short output (UNIT 15)

Investigation of the output of FORTRAN unit 6 for hfhfstr3 shows that the
scattering matrix element linking channel 2 to channel 2 is not converged to the
input tolerance, 0.001 relative error, when comparing the results at r = 390.0
bohr to those at r = 400.0 bohr.  The program then stops execution because the
distance is greater than the input rmax.  This occurrence suggests that, even
though the results of the first test run indicated that the results of the
calculation at r = 380.0 bohr agreed with those at r = 390.0 bohr, in reality,
not all of the scattering matrix elements are converged to the same tolerance.  
This illustrates the need for caution when allowing the program to converge the
scattering matrix elements: intelligent direction of the program on the part of 
the user is still required.
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Input to FORTRAN unit 4 (for potential routine): 

Identical to that for hfhfstr1

Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

SCHWENKE-TRUHLAR SURFACE HF-HF J=100 AND E = 76 meV       
TEST SUITE RUN 3
FT

47 4000   13    1    2   10    1
17  300    0   30    0

1.823454E+4       47  100 
100   99  101  100   98  100  102   98  100  102
99  101   99  101   97   99  101  103   97   99
101  103  100   98  100  102   96   98  100  102
104   98  100  102   98  100  102   96   98  100
102  104   96   98  100  102  104
1   -1    0
47 

0.021444753            4.00       0
0.1200        0.1200        400.0    

1
1.0E-1 
0.0129
1.2E-2 
0.1200
0.1E-5 
0.1E-5 
0.1200
3.4E+3 
3.4E+3 
4.0E+2 
9.0E+3

0 
0.0

1.E-03      400.0        0
FTFFFFFFFF
TTFFFFFFFT

1.E-03     5000.0
TTF    0    2    0

0 
380.0
TTFFTTFTFFFFFFFF
TTFFTTFTFFFFFFFF

3   3   3 
1.E-3           1.E-3
3
1   1   1
2   3   4



RMPROP 2.1.2
Page 19-11

19.4 TEST RUN hfhfstr4

HF(v = 0,j = 0) + HF(v = 0,j = 0) -> HF(v = 0,j = j’) + HF(v = 0,j = j’)

The purpose of this test run is to give a run for the Schwenke-Truhlar
surface which is not so time consuming as the other test runs for this
potential.  All of the parameters have the same values as those for hfhfstr1,
except that the total angular momentum is 50 instead of 100, and ID is only 10
instead of 47.

In order to run this test program, perform the following steps:      
1) Ensure that the following files are available:

test/hfhfstr4.4       (input data for FORTRAN unit 4)
test/hfhfstr4.5       (input data for FORTRAN unit 5)
test/hfhfstr4.param   (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/hfhfstr4.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command

runtest.csh hfhfstr4

3) Output files generated

hfhfstr4.out          standard output (UNIT 6)
hfhfstr4.3            date and time of the run (UNIT 3)
hfhfstr4.15           short output (UNIT 15)
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Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

SCHWENKE-TRUHLAR SURFACE HF-HF J= 50 AND E = 76 meV       
TEST SUITE RUN 4
FT

47 4000   13    1    2   10    1
0  300    0   30    0

1.823454D+4       10   50 
50   49   51   50   48   50   52   48   50   52
1   -1    0
10 

0.021444753            4.00       0
0.1200        0.1200        400.0    

1
1.0D-1 
0.0129
1.2D-2 
0.1200
0.1D-5 
0.1D-5 
0.1200
3.4D+3 
3.4D+3 
4.0D+2 
9.0D+3

0 
0.0

1.D-03       400.0       2
FTFFFFFFFF
TTFFFFFFFT

1.D-03     5000.0
TTF    0    2    0

2
380.0          390.0          
TTFFTTFTFFFFFFFF
TTFFTTFTFFFFFFFF

3   3 
1.D-3           1.D-3
3
1   1   1
2   3   4
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Input to FORTRAN unit 4 (for potential routine): 

1.733 
1 
10 
1 

T 
3 

TEST RUN FOR ROTATIONAL-ROTATIONAL TRANSFER AT 76 meV.
SCHWENKE-TRUHLAR INTERACTION POTENTIAL PLUS VIBRATIONAL DEPENDENCE.
JSUM = 2

1 
0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    0    0    0
0    1    1    1    1    1    1    2    2    2
0    0    0    1    1    1    1    0    0    0
0    1    1    0    2    2    2    2    2    2
0    0    0    0
23    4
0    0    1    0    2    1    1    0    3    1
2    1    2    3    1    2    2    2    2    3
2    3    3
0    1    0    2    0    1    1    3    0    2
1    2    1    1    3    2    2    2    3    2
3    2    3
0    0    0    0    0    0    1    0    0    0
0    1    1    0    0    0    1    2    0    0
2    2    0

1744.604       0.01889699     1.733          0.0            T 1000.0            1
60   40   10    0    3    1  
7    4    7   12    0 
10 
0 
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19.5 TEST RUN hfhfstr5

HF(v = 0,j = 0) + HF(v = 0,j = 0) -> HF(v = 0,j = j’) + HF(v = 0,j = j’)

The purpose of this test run is to demonstrate the multiple step-size
region options of RMPROP.  The calculation is identical to the one performed
in hfhfstr1, but now the step-size is varied by the parameter EPSA, EPSB,
and EPSC in three regions of the radial coordinate denoted by REPSA and REPSB.
The transition probabilities greater than 10E-4 in the first column of  the
transition probability matrix are converged to 1% of those in hfhfstr1, but
since the stepsize is permitted to vary, this testrun takes less than 1/3
the number of steps.  This also means that the work for this run is 1/3 less 
than for hfhfstr1.

In order to run this test program, perform the following steps:      
1) Ensure that the following files are available:

test/hfhfstr5.4       (input data for FORTRAN unit 4)
test/hfhfstr5.5       (input data for FORTRAN unit 5)
test/hfhfstr5.param   (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/hfhfstr5.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command

runtest.csh hfhfstr5

3) Output files generated

hfhfstr5.out          standard output (UNIT 6)
hfhfstr5.3            date and time of the run (UNIT 3)
hfhfstr5.15           short output (UNIT 15)
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Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

SCHWENKE-TRUHLAR SURFACE HF-HF J=100 AND E = 76 meV       
TEST SUITE RUN 1
FT

47 4000   13    1    2   10    1
0  300    0   30    0

1.823454D+4       47  100 
100   99  101  100   98  100  102   98  100  102
99  101   99  101   97   99  101  103   97   99
101  103  100   98  100  102   96   98  100  102
104   98  100  102   98  100  102   96   98  100
102  104   96   98  100  102  104
1   -1    0
47 

0.021444753            4.00       0
0.0120        0.0120        400.0    

1
8.0D-2    epsa
0.4129    epsb
9.2D-1    epsc
0.0120    hmina
0.0120    hminb
0.0120    hminc
0.2200    hmaxa
3.4D+0    hmaxb
9.4D+1    hmaxc
5.0D+1    repsa
8.0D+1    repsb

0 
0.0

1.D-03       400.0       2
FFFFFFFFFF
TTFFFFFFFT

1.D-03     5000.0
TTF    0    2    0

2
380.0          390.0          
TTFFTTFTFFFFFFFF
TTFFTTFTFFFFFFFF

3   3 
1.D-3           1.D-2
6
1   1   1   1   1   2
2   3   4   5   6   3

Input to FORTRAN unit 4 (for potential routine): 
Same as for hfhfstr1.
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19.6 TEST RUN hehfr1

He  +  H-F (rigid rotor in state j)  ->  He  +  H-F (rigid rotor in state j’)

This test run is for a much simpler physical system than the first four test
runs: instead of a collision of two vibrating diatoms, it is the collision of a 
structureless particle with a non-vibrating diatom.  This test run shows how the
program can run multiple energies simultaneously, and it allows for the step-
size to vary beginning at the third sector.  The logical variable LPSYM(3) is
turned on, which prints symmetry checks on the R4MT matrix at each energy and 
sector.  The T matrix is written to FORTRAN unit 10, and the lower triangle
symmetrized reactance matrix is written to FORTRAN unit 7.  This test also
illustrates two important features of the convergence tests on elements of the
scattering matrix: first, that if closed channels are included in the indices of
scattering matrix elements to be tested for convergence, they are ignored; and
that if multiple energies are performed, then only scattering matrix elements
at the first energy are tested for convergence with respect to RMAX.  Finally,
this test run shows that if asymptotic analyses are desired at more than one
intermediate distance, they must be at distances sufficiently removed that they
will not be performed in adjacent sectors.  This is to help avoid the illusion
of convergence when comparing scattering matrix elements at closely spaced
separations.  This test uses prevgr1.f and vgr1.f.

In order to run this test program, perform the following steps:      
1) Ensure that the following files are available:

test/hehfr1.4         (input data for FORTRAN unit 4)
test/hehfr1.5         (input data for FORTRAN unit 5)
test/hehfr1.param     (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/hehfr1.csh     (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command

runtest.csh hehfr1

3) Output files generated:

hehfr1.out            standard output (UNIT 6)
hehfr1.3              date and time of the run (UNIT 3)
hehfr1.7              symmetrized reactance matrix (UNIT 7)
hehfr1.10             transition matrix (UNIT 10)
hehfr1.15             short output (UNIT 15)

Input to FORTRAN unit 4 (for potential routine): 

T
0    1    2    2    3    3
6    4  120    5

128.275   2.494     3.42        6
10.356   2.151     6.78        7
29.253   2.379     1.55        6
10.739   2.173     1.41        7
3.875   2.115     1.23        8
6  5.0
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Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

COLLINS, LANE COLLINEAR He-HF 2 ENERGIES 
TEST SUITE RUN 5
FT

6 4000    1    1    1    1    2
0  100    0    0    0 

0.612000E+4        6    4 
4    3    2    4    1    3 
1   -2    0
6 

0.00062472          3.50          0
0.0018374           3.50          0
0.0010         0.0010         26.58

1
0.0300
0.0300
0.0300
0.1E-6 
0.1E-6 
0.1E-6 
0.5000 
0.5000 
0.5000 
0.1000 
1.0E+1

0 
0.0

1.E-03          20.0     2
TFFTFFFFFF
TTFFFFFFFT

1.E-03        1000.0
TTF    0    2    2

2
24.0           24.2

TTTFFTFFTFFFTTFTFFF
TTTFFTFFTFFFTTFTFFF

3   2   3 
1.E-3
3
3   4   5
3   4   5 
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19.7 TEST RUN heh2cdr1 

He  +  H-H (harmonic oscillator in state j) 
-> He + H-H (harmonic oscillator in state j’)

This test run is for the collinear collision of a structureless atom with a
harmonic oscillator.  It tests the multiple basis set option of the program.  It
should be noted that the files FORTRAN unit 8 and of FORTRAN unit 14 created by
this test run are non-ASCII files and so are not presented in the write-up.  In
addition the option LPSINF is read in as .TRUE. so that a description of the
sector output is written to standard output. 

In order to run this test program, perform the following steps:      
1) Ensure that the following files are available:

test/heh2cdr1.4       (input data for FORTRAN unit 4)
test/heh2cdr1.5       (input data for FORTRAN unit 5)
test/heh2cdr1.param   (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/heh2cdr1.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command

runtest.csh heh2cdr1

3) Output files generated

heh2cdr1.out          standard output (UNIT 6)
heh2cdr1.3            date and time of the run (UNIT 3)
heh2cdr1.8            restart information (UNIT 8)
heh2cdr1.14           restart information (UNIT 14)
heh2cdr1.15           short output (UNIT 15)
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Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

HELIUM-HARMONIC OSCILLATOR COLLISION 4 BASIS SET RUN
TEST SUITE RUN 6
FT

15  800    1    1    2   10    1
0  100    0    0    0 

0.245080E+4       14    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0 
4   -1    0  
14   12   10    8 

0.16016000      1.20              0
0.0010        0.0010          6.50

1
0.1500
0.1500
0.1500
0.1E-6 
0.1E-6 
0.1E-6 
3.0000 
3.0000 
3.0000 
0.1500 
1.0E+1

0 
0.0

1.E-30        5.0        2 
FFFFFFTFFF
TTFFFFFFFT

1.E-02     200.0     
TFT    0    2     2

0
6.2

TTFFFTFFFFFFFFFF
TTFFFTFFFFFFFFFF

3   3   3 
1.E-3           1.E-3
3
1   1   1
2   3   4

Input to FORTRAN unit 4 (for potential routine): 

TT
9.480               0.16485           2.6938         0.500     0.02002
0.99459             0.18619           0.36836
123456789012345                    67890     67890     67890     67890
CLARK-DICKINSON He-H2 AT 4 HBAR-OMEGA



RMPROP 2.1.2
Page 19-20

19.8 TEST RUN heh2cdr2

He  +  H-H (harmonic oscillator with vibrational quantum number v) 

->  He + H-H (harmonic oscillator with vibrational quantum number v’)

This test run illustrates various other options available to the program.
The input value of NPROP is 1, which means that the transpose of the overlap
matrix is used rather than its inverse.  This ensures a unitary scattering
matrix.  The use of LGS(15) to calculate eigenphase sums is used, which results 
in output to FORTRAN unit 11 and FORTRAN unit 16.

In order to run this test program, perform the following steps:      
1) Ensure that the following files are available:

test/heh2cdr2.4       (input data for FORTRAN unit 4)
test/heh2cdr2.5       (input data for FORTRAN unit 5)
test/heh2cdr2.param   (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/heh2cdr2.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command

runtest.csh heh2cdr2

3) Output files produced:

heh2cdr2.out          standard output (UNIT 6)
heh2cdr2.3            date and time of the run (UNIT 3)
heh2cdr1.7            Symmetrized Reactance Matrix (UNIT 7)
heh2cdr1.11           eigenphases at r (UNIT 11)
heh2cdr2.15           short output (UNIT 15)
heh2cdr2.16           eigenvectors (UNIT 16)

Input to FORTRAN unit 4 (for potential routine): 

Identical to that of heh2r1



RMPROP 2.1.2
Page 19-21

Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

HELIUM-HARMONIC OSCILLATOR COLLISION NPROP = 1
TEST SUITE RUN 7
FT

15  800    1    1    2   10    1
0  100    0    0    0 

0.245080E+4       14    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0 
1   -1    0  
14

0.16016000      1.20              0
0.0010        0.0010          6.50

1
0.1500
0.1500
0.1500
0.1E-6 
0.1E-6 
0.1E-6 
3.0000 
3.0000 
3.0000 
0.1500 
1.0E+1

0 
0.0

1.E-30        5.0        1 
FFFFFFFFFF
TTFFFFFFFT

1.E-02     200.0     
TFT    0    2     2

0
6.2

TTFFFTFFFFFFTFT
TTFFFTFFFFFFTFT

3   3 
1.E-3           1.E-3
3
1   1   1
2   3   4
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19.9 TEST RUN hfhfpbsr1

H-F (Morse oscillator with vibrational quantum number v1)
+
H-F (spherically averaged Morse oscillator with vibrational quantum number v2)

-> H-F (Morse oscillator with vibrational quantum number v1’)  
+
H-F (spherically averaged Morse oscillator with vibrational quantum number v2’)

This test run is presented to show that the program can also do simultaneous 
second-case runs in cases where the potential is spherically symmetric, so that 
all of the L(I) read in are zero, and the individual orbital angular momenta
all have the identical numerical value and are read in from FORTRAN unit 5 as
elements of the input array OAM(I).

In order to run this test program, perform the following steps:      
1) Ensure that the following files are all available:

test/hfhfpbsr1.4      (input data for FORTRAN unit 4)
test/hfhfpbsr1.5      (input data for FORTRAN unit 5)
test/hfhfpbsr1.param  (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/hfhfpbsr1.csh  (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command

runtest.csh hfhfpbsr1

3) Output files generated

hfhfpbsr1.out         standard output (UNIT 6)
hfhfpbsr1.15          short output (UNIT 15)

Input to FORTRAN unit 4 (for potential routine): 

TF
1.1966302       0.216606    1731.74265        1.0

0    0    0
1    1    2    1    3    2    1    4    2    3
1    5    2    4    3
1    2    1    3    1    2    4    1    3    2
5    1    4    2    3
3
9    11    5

4.0           20.0
(this is only the first nine (10) lines of FORTRAN unit 4: there are over
two thousand (2000) lines of oscillator matrix elements not included here!)
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Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

SPHERICALLY AVERAGED HF HF LTYPE2 SECOND ENERGY FOR OAM
TEST SUITE RUN 8
FT

15 4000    3    1    2    1    2
0    0    0   30    0

1.823454E+4       15    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0    0
1   -2    0  
15 
0.05602128            3.0   72 
0.05602128            3.0   84 

0.0600        0.0600         100.0
1

1.0E-1 
1.0E-1 
1.0E-1 
0.06
0.1E-5 
0.1E-5 
0.06
3.4E+3 
3.4E+3 
1.0E+1
3.0E+2

0 
0.0

1.E-03            75.0   0
TFFFFFFFFF
TTFFFFFFFT

1.E-03      1000.0 
TTF    0    2    0
0
80.0
TTFFFTFTFFFFFFF
FFFFFTFTFFFFFFF

3   3   3 
1.E-3           1.E-3
3
1   1   1
2   3   4
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19.10 TEST RUN hfhfadr1
H-F (rigid rotor with rotational quantum number j1) 

+ H-F (rigid rotor with rotational quantum number j2)  -> 

H-F (rigid rotor with rotational quantum number j1’) 
+ H-F (rigid rotor with rotational quantum number j2’)          

The purpose of this test run is to write out information for the next
test run, which will act as a "later-date" second-case run.  The next run
will use exactly the same energy as this run, in order to demonstrate that
later date second-case runs do in fact run correctly.

In order to run this test program, perform the following steps:      

1) Ensure that the following files are available:

test/hfhfadr1.4       (input data for FORTRAN unit 4)
test/hfhfadr1.5       (input data for FORTRAN unit 5)
test/hfhfadr1.param   (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/hfhfadr1.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command 

runtest.csh hfhfadr1

3) Output files produced are

hfhfadr1.out          standard output (UNIT 6)
hfhfadr3.out          date and time of the run (UNIT 3)
hfhfadr1.8            restart information for hfhfadr2 (UNIT 8, nonASCII)
hfhfadr1.14           restart information for hfhfadr2 (UNIT 14, nonASCII)
hfhfadr1.15           short output (UNIT 15)
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Input to FORTRAN unit 4 (for potential routine): 

1.733
1 
1 
5

T 
3 
TESTING LATER DATE SECOND ENERGY RUNS: REFERENCE ENERGY RUN
JSUM=4
ALEXANDER-DEPRISTO DIPOLE-DIPOLE RIGID ROTOR HF-HF PES

0    0    0    0    0    0    0    0    0    0
0    0    0    0
0    0    0    0    0    0    0    0    0    0
0    0    0    0
0    1    1    1    2    2    2    3    2    2
2    3    3    4
0    0    1    1    0    1    1    0    2    2
2    1    1    0
0    1    0    2    2    1    3    3    0    2
4    2    4    4
0    1    0    0  
9 
1    2    2    0    1    1    0    1    1
0    1    1    0    1    1    1    2    2
0    0    1    0    0    1    0    0    1

1744.604       0.01889699     1.733          0.0            T 1000.0
1    1    1    0    3    1  
1    1    1    0    0 
1 
0 
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Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

HF-HF ALEXANDER-DEPRISTO INITIAL LATER DATE RUN
TEST SUITE RUN 9
FT

14 4000    3    1    2    1    1
0    5    0   30    0

1.823454E+4       14    0
0    1    0    2    2    1    3    3    0    2
4    2    4    4
1   -1    1  
14 
0.0027929250       2.0         0

0.0600        0.0600          15.0
1 

1.0E-1 
1.0E-1 
1.0E-1 
0.06 
0.1E-5 
0.1E-5 
0.06 
3.4E+3 
3.4E+3 
10.0 
300.0

0 
0.0

1.E-03       50.0        2
TFFFFFFFFF
TTFFFFFFFT

1.E-03    1000.0 
FTF    0    2    0

0 
9.0       13.0

TTTFFTFTFFFFFFFF
FTTFFTFTFFFFFFFF 

3   3 
1.E-3           1.E-3
4 
1   1   1   1
1   2   3   4
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19.11 TEST RUN hfhfadr2

H-F (rigid rotor with rotational quantum number j1) 
+ H-F (rigid rotor with rotational quantum number j2)  -> 

H-F (rigid rotor with rotational quantum number j1’) 
+ H-F (rigid rotor with rotational quantum number j2’)          

The purpose of this test run is to show that the later-date second-case
run option works correctly, reading in data from FORTRAN unit 8 and FORTRAN
unit 14 created by the previous run.  The potential, basis set, stepsize, and
energy are all identical to those of the previous run.

In order to run this test program, perform the following steps:      
1) Ensure that the following files are available:

test/hfhfadr2.4       (input data for FORTRAN unit 4)
test/hfhfadr2.5       (input data for FORTRAN unit 5)
test/hfhfadr2.param   (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/hfhfadr2.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)
hfhfadr1.8            (intermediate data written by hfhfadr2 to 

FORTRAN unit 8)
hfhfadr1.14           (first-energy information written by hfhfadr1 to 

FORTRAN unit 14)
runtest.csh           (C Shell script to run program)

2) Enter the command

runtest.csh hfhfadr2

3) Output files produced are

hfhfadr2.out          standard output (UNIT 6)
hfhfadr2.3            the date and time of the run (UNIT 3)
hfhfadr2.8            restart information (UNIT 8, nonASCII)
hfhfadr2.14           restart information (UNIT 14, nonASCII)
hfhfadr2.15           short output (UNIT 15)
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Input to FORTRAN unit 4 (for potential routine): 

Identical to that from hfhfadr1.4

Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

HF-HF ALEXANDER-DEPRISTO SECOND LATER DATE RUN
TEST SUITE RUN 10
FT

14 4000    3    1    2    1    2
0    5    0   30    0

1.823454E+4       14    0
0    1    0    2    2    1    3    3    0    2
4    2    4    4
1    2   -1  
14 
0.0027929250       2.0         0
0.0027929250       2.0         0

0.0600        0.0600          15.0
1 

1.0E-1 
1.0E-1 
1.0E-1 
0.06 
0.1E-5 
0.1E-5 
0.06 
3.4E+3 
3.4E+3 
10.0 
300.0

0 
0.0

1.E-03       50.0        2
TFFFFFFFTF
TTFFFFFFFT

1.E-03    1000.0 
FTF    0    2    0

0 
70.0

TTTFFTFTFFFFFFFF
FTTFFTFTFFFFFFFF 

3   3   3 
1.E-3           1.E-3
4 
1   1   1   1
1   2   3   4
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19.12 TEST RUN atdir1

Atom + rigid diatomic molecule (j=0)-> Atom + rigid diatomic molecule (j’ < 4)

This sample run solves the close coupling equations in three dimensions
for a general atom-rigid rotor diatomic system with the interaction potential
and basis set of Lester and Bernstein.  This is one of the first systems for
which published results were obtained for solution of the molecular close
coupling equations, and it provides a standard historical benchmark in the
field.  The units originally used were "reduced" units, where energy, mass
and distance were scaled with respect to the interaction potential and the
mass of the diatomic molecule.  The present subroutines have converted these to
atomic units.

This run is a sample of the use of prevgr1.f and vgr1.f.
The run is performed at a single energy, with a single basis, and it saves

restart information alternating between FORTRAN units 17 and 18.  The asymptotic
analysis is performed at 4 distances, and comparison is made of the magnitudes
of all transition probabilities between the first four channels.  The asymptotic
boundary conditions are enforced by matching to sine/cosine boundary conditions
using the asymptotic wave vectors, and the variable LTASY is .FALSE. (the
transformation to the asymptotic basis is NOT performed).

In order to run this test program, perform the following steps:

1) Ensure that the following files are available:

test/atdir1.4         (input data for FORTRAN unit 4)
test/atdir1.5         (input data for FORTRAN unit 5)
test/atdir1.param     (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/atdir1.csh     (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command

runtest.csh atdir1

3) Output files generated:

atdir1.out            standard output (UNIT 6)
atdir1.3              the date and time of the run (UNIT 3)
atdir1.15             short output (UNIT 15)

Input to FORTRAN unit 4 (for potential routine): 

T                                                          LSTAP
0    2    2    2    4    4    4    4    4    6         JIN
6    6    6    6    6    6                             JIN
2    2                                                 IHOM,LAMMAX
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Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

ATOM-DIATOM LESTER AND BERNSTEIN 
TEST SUITE RUN 11
FF

16 4000    1    1    1    1    2
0  100    0    0    0 

5.000000E+2       16    6 
6    4    6    8    2    4    6    8   10    0
2    4    6    8   10   12
1   -1    0
16 
1.10000          0.67          0

0.0008         0.0008            9.00
1

0.1300
0.1300
0.1300
8.0E-6
8.0E-6
8.0E-6
8.0E-0
8.0E-0
8.0E-0
1.4E+0
0.5E+1

0 
0.0

1.E-03         100.0     2
TFFFFFFFTF
TTFFFFFFFT

1.E-03        1000.0
FFF    0    2    0

4 
5.0            6.0            7.0            8.0

TTTFFTFFTFFFFFFTFFF
TTTFFTFFTFFFFFFTFFF

3   2   3 
1.E-3
10
1   1   1   1   2   2   2   3   3   4
1   2   3   4   2   3   4   3   4   4
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19.13 TEST RUN ehydr1

Electron + hydrogen atom scattering

The purpose of this test run is to illustrate the capability of the program
to perform atom-electron scattering.  In particular this run propagates the full
R matrix (inhomogeneous option).  It is important to note that the first sector
begins at r = 1.0 x 10**-6.  The run uses the inverse of the overlap matrix
rather than its transpose, so that the unitarity of the scattering matrix
provides a sensitive check of whether the overlap matrix is orthogonal.  The run
also performs calculations at a single energy with a single basis set, and it
prints out the full R matrix at each step (this generates a good deal of
output).  Note also that the energy of the run is included in FORTRAN unit 4 as 
well as in FORTRAN unit 5 (we have an energy-dependent potential).

In order to run this test program, perform the following steps:
1) Ensure that the following files are all available:

test/ehydr1.4         (input data for FORTRAN unit 4)
test/ehydr1.5         (input data for FORTRAN unit 5)
test/ehydr1.param     (include file of parameters copied to parameter.inc)
runtest.csh           (C Shell script to run program)
script/ehydr1.csh     (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command 

runtest.csh ehydr1 

3) Output files generated
ehydr1.out            standard output (UNIT 6)
ehydr1.15             short output (UNIT 15)

Input to FORTRAN unit 4 (for potential routine): 

1
FFTFF
T
2.0
1
THIS IS A TEST RUN FOR ELECTRON-HYDROGEN ATOM SCATTERING
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Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

ELECTRON-HYDROGEN ATOM TEST RUN 2 CHANNELS
TEST RUN FOR ALL 4 ELEMENTS OF R MATRIX R1MT R2MT R3MT R4MT
FF

2 4000   13    1    2   10    1
0  300    0   30    0

1.0                2    1
0    0
1   -1    0
2 

2.000000000            1.0E-6     1
1.0E-8         1.0E-8     19.5    

1
5.0D-2
0.0001
0.0001
0.1D-9
0.1D-9
0.1D-9 
2.0D+4
2.0D+4
2.0D+4 
1.0D+2
9.0D+3

0 
0.0

1.D-03        39.0       0
FFFFFTFFTT
TTFFFFFFFT

1.D-03      200.0
TFT    0    0    0 

0 
380.0          390.0          
TTFFTTTTFFFFFFFF
TTFFTTTTFFFFFFFF

3   3 
0.D-3           0.D-3
3
1   1   1
2   3   4
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19.14 TEST RUN hei2r1

He + I  (vibrating rotor with v=0, various j) 
2

-> He + I  (vibrating rotor with v=0, various j’)
2

The purpose of this run is to illustrate the expansion of an arbitrary
vibrational potential for an atom-diatom potential in a set of Legendre
functions with appropriate (R dependent) expansion coefficients.  In other
words this run differs from test run 11, atdir1, because of the dependence
of the potential on the bond length of the I  molecule.  This is a sample of

2
the use of prevgr2.f and vgr2.f.

This run is performed at a single energy and with a single basis, using
the homogeneous option.

In order to run this test program, perform the following steps:
1) Ensure that the following files are all available:

test/hei2r1.4         (input data for FORTRAN unit 4)
test/hei2r1.5         (input data for FORTRAN unit 5)
test/hei2r1.param     (include file of parameters copied to parameter.inc)
test/hei2r1.expand    (include file of parameters copied to expand.inc)
runtest.csh           (C Shell script to run program)
script/hei2r1.csh     (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command 

runtest.csh hei2r1 

3) Output files generated

hei2r1.out            standard output (UNIT 6)
hei2r1.15             short output (UNIT 15)
hei2r1.3              date and time of run (UNIT 3)
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Input to FORTRAN unit 4 (for potential routine): 

5.0387
3
3    3    3
23   13   11 

4.99            9.99
T

2
He + I2
USE CHEM PHYS LET POTENTIAL FUNCTION

0    0    0    0    0    0    0    0    0    0
0    0    0    0    0    0    0    1    1    1
1    1    1    1    1    1    1    1    1    1
1    1    2
0    2    2    4    4    6    6    8    8   10
10   12   12   14   14   16   16    0    2    2
4    4    6    6    8    8   10   10   12   12
14   14    0
0    1    0

115662.5447    0.0009773422867    5.0387          0.0       F 1000.0            1
70   40   10    7    3    1  
400    4    4    0    2
3 
5
6
0 
12
7 
6
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Input to FORTRAN unit 5 (for RMPROP 2.1.2): 

SCHWENKE-TRUHLAR SURFACE FOR He-I2 CPL LETT 
TEST OF RMPROP 2.1.2 FOR ATOM-VIBRATING ROTOR
FT

33 4000   13    1    2   10    1
0  300    0   30    0

7.183007D+3       33    1 
1    1    3    3    5    5    7    7    9    9
11   11   13   13   15   15   17    1    1    3
3    5    5    7    7    9    9   11   11   13
13   15    1
1   -1    0
33 

0.00150527503          3.00       0
0.0400        0.0400        200.0    

1
0.7E-1
0.7E-1
0.7E-1
4.0E-2
0.1E-5
0.1E-5
4.0E-2
1.0E+1
3.4E+0
1.0E+1
5.0E+2

0
0.0

1.D-32        40.0       1
FFFFFFFFFF
TTFFFFFFFT

1.D-02     1000.0
TTF    0    2    0

0
180.0          190.0          
TTFFTTFTFFFFFFFF
TTFFTTFTFFFFFFFF

3   3 
0.D-3           0.D-3
3
1   1   1
2   3   4
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19.15 TEST run heh2tkr1.

The He-H2 vibrating rotor calculation using the Tsapline-Kutzelnigg-
Raczkowski potential and the basis set from Raczkowski, Lester, and Miller.

This test run is a vibrating rotor utilizing the prevgr2.f and vgr2.f set
of modular potential routines.  The asymptotic eigenvalues are generated
by SUBROUTINE WEIGH.  No homonuclear symmetry is used for this run, to compare
with the heh2tkr2 test run which is identical except that homonuclear symmetry
is utilized.

This calculation has been repeated with entirely different codes and potential
matrix routines (de Vogelaere’s method and finite differencing are the two 
other close-coupling methods), and the final, well-checked transition 
probability matrix is given in Section 19.16, after the input for heh2tkr2.

In order to run this test program, perform the following steps:
1) Ensure that the following files are all available:

test/heh2tkr1.4       (input data for FORTRAN unit 4)
test/heh2tkr1.5       (input data for FORTRAN unit 5)
test/heh2tkr1.param   (include file of parameters copied to parameter.inc)
test/heh2tkr1.expand  (include file of parameters copied to expand.inc)
runtest.csh           (C Shell script to run program)
script/heh2tkr1.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command 

runtest.csh heh2tkr1 

3) Output files generated

heh2tkr1.out          standard output (UNIT 6)
heh2tkr1.15           short output (UNIT 15)
heh2tkr1.3            date and time of run (UNIT 3)

Input to fortran unit 4:

1.4016103                RE
1                    numq
5    9    9          nquad
12   13   11          nquada

T                        lstap
2                    nlin

He + H2
USE TSAPLINE-KUTZELNIGG-RACZKOWSKI POTENTIAL FUNCTION

0    0    0    0    0    1    1    1    1    2      v
2    2
0    2    4    6    8    0    2    4    6    0      j
2    4
1    0    1             ihom,ivibj,ieign

918.07575     0.01989366     1.4016103      0.0            F  100.0
70   40    5    0    3    1       nquad,nbasis,npts,iprint,inode,iwght
400    4    4    8    0            nint,nl,nsave,jsave,ihom
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5                                npts
0                                npts
5                                numt

Input to fortran unit 5:

raczkowski-lester SURFACE FOR He-H2 CPL LETT 
TEST OF RMPROP 2.1.2 FOR ATOM-VIBRATING ROTOR
FT

12 5000    1    1    1   10    1
0  300    0   30    0

0.245080D+4       12    0 
0    2    4    6    8    0    2    4    6    0
2    4
1   -1    0
12 

0.03307413000          1.00       0
0.0010        0.0010        018.0    

1
5.0E-2  epsa
0.7E-1  epsb
0.7E-1  epsc
1.0E-3  hmina
0.1E-5  hminb
0.1E-5  hminc
4.0E+0  hmaxa
1.0E+1  hmaxb
3.4E+0  hmaxc
2.5E+1  repsa
5.0E+2  repsb

0
0.0

1.D-32        40.0       1
FFFFFFFFFF
TTFFFFFFFT

1.D-02       50.0
TTF    0    2    2 

3
8.0           10.0           12.0

TTFFTTFTFFFFFFFF
TTFFTTFTFFFFFFFF

3   3 
1.D-3           0.D-3
7
1   1   1   1   1   1   1
1   2   3   4   5   6   7
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19.16 TEST run heh2tkr2.

This test run is identical to heh2tkr1, except that homonuclear symmetry is
exploited.  The only difference is in the input to fortran unit 4, given
below.  Transition probabilities should be the same as for heh2tkr1.

In order to run this test program, perform the following steps:
1) Ensure that the following files are all available:

test/heh2tkr2.4       (input data for FORTRAN unit 4)
test/heh2tkr2.5       (input data for FORTRAN unit 5)
test/heh2tkr2.param   (include file of parameters copied to parameter.inc)
test/heh2tkr2.expand  (include file of parameters copied to expand.inc)
runtest.csh           (C Shell script to run program)
script/heh2tkr2.csh   (C Shell script to manage files for this test run)
script/Makefile.mak   (file for UNIX make utility to perform compilation)

2) Enter the command 

runtest.csh heh2tkr2 

3) Output files generated

heh2tkr2.out          standard output (UNIT 6)
heh2tkr2.15           short output (UNIT 15)
heh2tkr2.3            date and time of run (UNIT 3)

Input to Fortran Unit 4:

1.4016103                RE
1                    numq
5    9    9          nquad
12   13   11          nquada

T                        lstap
2                    nlin

He + H2
USE TSAPLINE-KUTZELNIGG-RACZKOWSKI POTENTIAL FUNCTION

0    0    0    0    0    1    1    1    1    2      v
2    2
0    2    4    6    8    0    2    4    6    0      j
2    4
0    0    1             ihom,ivibj,ieign

918.07575     0.01989366     1.4016103      0.0            F  100.0
70   40    5    0    3    1       nquad,nbasis,npts,iprint,inode,iwght
400    4    4    8    2            nint,nl,nsave,jsave,ihom
5                                npts
0                                npts
3                                numt

Input to Fortran Unit 5:
Identical to that for heh2tkr1.
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Transition probabilities P(M,N) at total energy E = 0.03307413000 hartrees

M-N        1             2             3             4             5             6         
+ 7          

1   4.380764E-01  5.132297E-01  4.836745E-02  3.265070E-04  1.681079E-08  1.194160E-08  3
+ .631780E-10

2   5.132297E-01  2.686184E-01  2.146308E-01  3.520715E-03  3.042534E-07  4.995453E-08  7
+ .498562E-09

3   4.836745E-02  2.146308E-01  6.910074E-01  4.598611E-02  8.070278E-06  1.159049E-07  3
+ .608936E-08

4   3.265070E-04  3.520715E-03  4.598611E-02  9.495436E-01  6.229709E-04  1.359766E-08  6
+ .375251E-08

5   1.681079E-08  3.042534E-07  8.070278E-06  6.229709E-04  9.993686E-01  3.048231E-11  3
+ .734263E-10

6   1.194160E-08  4.995453E-08  1.159049E-07  1.359766E-08  3.048231E-11  9.179298E-01  8
+ .207002E-02

7   3.631780E-10  7.498562E-09  3.608936E-08  6.375251E-08  3.734263E-10  8.207002E-02  9
+ .179299E-01
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20. DESCRIPTION OF FILES IN VERSION 2.1.2

Version 2.1.2 of the RMPROP code consists of the files listed below.  The
files are organized by distribution package directories and also by certain
subclasses of filetype.  In addition, we have given notations to find the 
appropriate section of the manual for further documentation about files where
such notation would be appropriate.  The file rmprop2.doc is this on-line 
manual for the current version 2.1.2.  The RMPROP program source code and the 
necessary subroutines are contained in the files rmprop2.f, exscat2.f, and 
gnscat2.f.

RMPROP2.1.2/           Main directory of distribution package

rmprop2.doc            This online manual
runtest.csh            Main C SHELL script to run test suite elements
script                 Directory with scripts and Makefile.mak
src                    Directory with source code
test                   Directory with test suite input, sample output, and

include files

Contents of DIRECTORY script

Makefile.mak           Makefile for RMPROP 2.1.2 (see Section 19)
atdir1.csh             Scripts 
ehydr1.csh                 for
heh2cdr1.csh               the
heh2cdr2.csh               test
heh2tkr1.csh               suite
heh2tkr2.csh               elements
hehfr1.csh                 |
hei2r1.csh                 |              see Sections 19-19.16
hfhfadr1.csh               | 
hfhfadr2.csh               |
hfhfpbsr1.csh              |
hfhfstr1.csh               |
hfhfstr2.csh               |
hfhfstr3.csh              |
hfhfstr4.csh              |
hfhfstr5.csh             /

Contents of DIRECTORY src

Main program code: (See Section 16)

rmprop2.f              Main driver 
exscat2.f              Extra asymptotic routines 
gnscat2.f              Asymptotic analysis; other miscellaneous routines
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Machine-specific codes: (See Sections 6.1, 16.2-16.2.4)

sdralpha.f             DEC ALPHA AXP 3000/M500
sdrcray.f              Cray UNICOS
sdrrs6000.f            IBM RS/6000
sdrsun.f               Sun Sparcstation
dateclock.c            C Shell script to get date and time on IBM RS/6000

Version-specific codes: (See Sections 5.3, 6.2-6.8, and 17)

verce.f                For Version 2.1.1ce (Cray-2 MXMA, MINV, EVCRSP)
vercs.f                For Version 2.1.1cs (Cray-2 MXMA, MINV, RS)
veri.f                 For Version 2.1.1i (IBM RS/6000 DGEMM, DGETRF/S,

EVIRSP)
verp.f                 For Version 2.1.1 (Portable, DGEMM, DGETRF/S, EVDRSP)
verxe.f                For Version 2.1.1xe (Cray C90 SGEMM, SGETRF/S, EVCRSP)
verxs.f                For Version 2.1.1xs (Cray C90 SGEMM, SGETRF/S, RS)

Potential energy function routines and associated subroutines: 
(See Sections 10, 11, 19)

cleb2.f                Calculates Clebsch-Gordan coefficients by recursion
fcoef.f                Calculates angular integrals for st potential and vgr3.f 
fcoef5.f               Calculates angular integrals for st potential and vgr3.f              

+ JTOT=0 only
flambda.f              Calculates Percival-Seaton coefficients
gaussq.f               General routine to perform Gaussian quadratures over

angles and vibrational coordinates
hfmsptntl.f            "User-supplied" FUNCTION PTNTL to be used

with test runs in 19.1-19.5
hfwreigen.f            "User-supplied" FUNCTION EIGEN to be used

with test runs 19.1-19.5
i2gnptntl.f            "User-supplied" FUNCTION PTNTL to be used

with test runs 19.14
jsymbol.f              Calculates 3-J, 6-J, and 9-J symbols
leg.f                  Generates Legendre polynomials
potatdi.f              "User-supplied" subroutines test run 19.12
potehyd.f              Subroutines PREPOT and POT for test run 19.13
potheh2.f              Subroutine POT for test runs 19.7 - 19.8
pothehf.f              "User-supplied" Subroutine POT (test run 19.6)
pothei2.f              "User-supplied" Subroutines for (test run 19.14)
pothfhfad.f            "User-supplied" Subroutines for (test runs 19.10 - 19.11)
pothfhfpbs.f           Subroutine POT for test run 19.8
preheh2.f              Subroutine PREPOT for test runs 19.7 - 19.8
prehfhfpbs.f           Subroutine PREPOT for test run 19.9
prevgr2.f              Subroutine PREPOT for general 3-D atom-diatom

(test run 19.14 - 19.16) potential matrix routine
prevgr3.f              Subroutine PREPOT for general 3-D diatom-diatom

potential matrix routine (test runs 19.10 - 19.11)
rigptntl.f             "User-supplied" FUNCTION PTNTL; dummy routine to be 

used with weigh.f for vgr2.f and vgr3.f when the 
diatom is a rigid rotor

stpot.f                Subroutine PREPOT and POT for test runs 19.1-19.5
stpot1.f               Expansion coefficients for angular portion of

interaction potential matrix for test runs 19.1-19.5
stpot2.f               Vibrational portion of for test runs 19.1-19.5
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vgr1.f                  General 3-D atom-rigid diatom potential matrix routine
vgr2.f                  General 3-D atom-diatom potential matrix routine
vgr3.f                  General 3-D diatom-diatom potential matrix routine 
wdata.f                 Reads weights and nodes for vibrational quadratures

created by weigh.f
weigh.f                 Calculates weights and nodes for vibrational quadratures
xmat.f                  Harmonic oscillator matrix elements of x**p for heh2
yqqm.f                  Calculates normalized Launay functions for vgr3.f

Contents of DIRECTORY test

Input files:  See Sections 11.2.2, 11.3.3, 11.3.4, 11.4.3 and 11.4.4 for 
descriptions of *.4 files and Section 13 for descriptions of 
*.5 files.  Section 19 has descriptions of each input file for 
each test run.

atdir1.4
atdir1.5
ehydr1.4
ehydr1.5
heh2cdr1.4
heh2cdr1.5
heh2cdr2.4
heh2cdr2.5
heh2tkr1.4
heh2tkr1.5
heh2tkr2.4
heh2tkr2.5
hehfr1.4
hehfr1.5
hei2r1.4
hei2r1.5
hfhfadr1.4
hfhfadr1.5
hfhfadr2.4
hfhfadr2.5
hfhfpbsr1.4
hfhfpbsr1.5
hfhfstr1.4 
hfhfstr1.5
hfhfstr2.4
hfhfstr2.5
hfhfstr3.4
hfhfstr3.5
hfhfstr4.4
hfhfstr4.5
hfhfstr5.4
hfhfstr5.5



RMPROP 2.1.2
Page 20-4

Include files: See Sections 10.2, 11.3.2, 11.4.2, 14, and 15 for discussions
on *.param include files and Sections 11.3.2 and 11.4.2 for
discussions of *.expand files.

heh2tkr.expand
hei2r1.expand
hfhfadr1.expand
hfhfadr2.expand
atdir1.param
ehydr1.param
heh2cdr1.param
heh2cdr2.param
heh2tkr1.param
heh2tkr2.param
hehfr1.param
hei2r1.param
hfhfadr1.param
hfhfadr2.param
hfhfpbsr1.param
hfhfstr1.param
hfhfstr2.param
hfhfstr3.param
hfhfstr4.param
hfhfstr5.param

Sample Short Output files: from test suite for debugging purposes.  
These are from the distribution version run on the Cray C-90.

hfhfstr1.15        
hfhfstr2.15       
hfhfstr3.15     
hfhfstr4.15   
hfhfstr5.15
hehfr1.15        
heh2cdr1.15             
heh2cdr2.15         
hfhfpbsr1.15    
hfhfadr1.15    
hfhfadr2.15  
atdir1.15   
ehydr1.15 
hei2r1.15            
heh2tkr1.15
heh2tkr2.15
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22. ERRATA FOR MANUAL OF RMPROP VERSION 1.0

The following is a list of errata for the on-line manual for RMPROP 1.0
(a program for quantum inelastic scattering, found in MOTECC-91, edited
by Enrico Clementi).

1)  The discussion of LPSYM(1).  The manual for RMPROP 1.0 says,
"...if .TRUE., test the symmetry of the R matrix at each sector for
each energy just before entering subroutine RPROP."

This contains a typographical error.

The manual for RMPROP 1.0  should say,
"...if .TRUE., test the symmetry of the R  matrix at each sector for

4
each energy just before entering subroutine RPROP."

2)  The discussion of LPSYM(2).  The manual for RMPROP 1.0 says,
"...if .TRUE., test the orthogonality of the TAUE matrix {7.5}
at each sector for each energy just after initial call to subroutine TAUMTS."

This is inaccurate.

The manual for RMPROP 1.0 should say, 
"...if .TRUE., test the orthogonality of the TAUE matrix {7.5} at each
energy at each sector for all r > RBIG just after initial call to subroutine
TAUMTS.  This option will only work for LTYPE2 second-case runs."

3)  The discussion of LPSYM(4).  The manual for RMPROP 1.0 says,
"...if .TRUE., upon entrance to subroutine GNSCAT, calculate the
maximum relative difference and the average relative difference of the
off-diagonal elements, and print out the R matrix in the mixed basis {7.9}."

This is inaccurate.

The manual for RMPROP 1.0 should say,
"...if .TRUE., upon entrance to subroutine GNSCAT, calculate the
maximum relative difference and the average relative difference of the
off-diagonal elements of the raw R matrix, and print out the raw R matrix."

4                               4
4)  The discussion of LPSYM(5).  The manual for RMPROP 1.0 says,
"...if .TRUE., print out the R  matrix transformed to the 
asymptotic basis {7.9}, and print out the maximum relative difference and
average relative difference of the off-diagonal elements."

This contains a typographical error.

The manual for RMPROP 1.0 should say,
"...if .TRUE., print out the R  matrix transformed to the 

4
asymptotic basis {7.9}, and print out the maximum relative difference and
average relative difference of the off-diagonal elements."

5)  The instructions for performing elements of the test suite.  All except
the first element of the test suite say,
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" runtest ..." where the ... is the name of the individual test.

This is incorrect.

The manual is correct for the FIRST element of the test suite, which says,
"runtest.csh hfhfstr1".

The manual should be corrected to read similarly for the other elements of
the test suite.  That is, it should read,
"runtest.csh XXX" for ALL test runs where XXX is the name of the test run.
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23. ERRATA FOR RMPROP: VERSION 1.0 CODE

The following is a list of known FORTRAN errors in RMPROP 1.0.

1)  For LPR(4)= .TRUE., the legend written to FORTRAN unit 6 states that 
the accompanying matrix contains the "ELEMENTS OF PACKED INTERACTION 
MATRIX".  This is inaccurate.  It should print instead "ELEMENTS OF
UNPACKED INTERACTION MATRIX".  Note that the on-line manual does not 
specify whether the interaction matrix is in packed or unpacked form.
This bug has been corrected in RMPROP-Version 2.0.

2)  At the end of a run, the FORTRAN source code contains an instruction
to close FORTRAN unit 6.  This resulted in an error message on the
IBM 3090.  This statement has been deleted in RMPROP-Version 2.0.

3)  In the subroutine stpot.f, the index for the DO-LOOP labeled 6 in subroutine
PREPOT was mistyped as NVIB instead of NVIBX.  This routine is used in the test
runs hfhfstr1, hfhfstr2, hfhfstr3, and hfhfstr4.  This error will affect the
channel reordering according to energy in cases where the two channels whose
indices are to be exchanged have different values for v  and v  , but did not

1      2
affect any of the results in the test suite.  This bug has been corrected in
RMPROP-Version 2.0.

4)  In subroutine EXSCAT, the calculation of the eigenvectors associated with
the individual eigenphases used to calculate the eigenphase sum of the S matrix,
which was called by LPEPS/LGS(15), was performed incorrectly.  This bug has been
corrected in RMPROP-Version 2.0.

5)  The legends generated for execution times of various tasks generated by
LPR(1) in RMPROP-Version 1.0 wrote the names of the Cray SCILIB routines to
FORTRAN unit 6 for all versions of the program.  The names of the routines
printed out have been changed to reflect the new matrix utilities used in 
RMPROP-version 2.0.

6)  The call to SUBROUTINE HEADER has been removed from PROGRAM RMPROP, so that
it is only called by SUBROUTINE PREPOT for each test run.  As a result, the
information printed out by SUBROUTINE HEADER will only appear once in FORTRAN
unit 15 (the same information had been printed twice).

7)  The input variable EPSDR was not passed to subroutine GNSCAT to allow the
dropping of certain channels from the asymptotic analysis even if they had
been propagated.  This bug has been corrected in RMPROP-Version 2.0.

8)  The call to SUBROUTINE POT from within SUBROUTINE MATCH was incorrect.  This
did not affect the results of any of the test runs in RMPROP-Version 1.0.  This
bug has been corrected in RMPROP-Version 2.0.

9)  For several of the test runs in RMPROP: Version 1.0, the scattering matrix
elements obtained on the IBM differed slightly from those obtained on the
Cray-2.  This is because of the structure of IF...GO TO blocks within the
individual potential matrix routines.  In particular, the order of the 
numerical quadratures for the interaction potential matrix elements (Section 11)
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was selected by comparing the radial separation to an input value.  On the IBM,
the value stored by the computer for the radial separation differed by a 
very small amount (10**-20, "garbage") from that on the Cray, with the result
that the switch between the different orders of numerical quadrature happened
one sector before or later on the IBM than they did on the Cray-2.  This bug
has been corrected in RMPROP-Version 2.0, by re-writing the numerical
test of the IF...GO TO blocks involved.


