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Abstract

Pilgrim is a program written in Python and designed to use direct dynamics in the calculation
of thermal rate constants of chemical reactions by the variational transition state theory (VTST),
based on electronic structure calculations for the potential energy surface. Pilgrim can also
simulate reaction mechanisms using kinetic Monte Carlo (KMC).

For reaction processes with many elementary steps, the rate constant of each of these steps
can be calculated by means of conventional transition state theory (TST) or of the VTST. In the
current version, Pilgrim can evaluate these thermal rates using the canonical version of reaction-
path VTST, which requires the calculation of the minimum energy path (MEP) associated with
each elementary step or transition structure. Multi-dimensional quantum effects can be incor-
porated through the small-curvature tunneling (SCT) approximation. These methodologies are
available both for reactions involving a single structure of the reactants and the transition state
and also for reactions involving flexible molecules with multiple conformations of the reactant
and/or of the transition state. For systems with many conformers, the program can evaluate each
of the elementary reaction rate constants by multipath canonical VTST or multi-structural VTST.
Moreover, the reactant can be unimolecular or bimolecular.

Torsional anharmonicity can be incorporated through either the MSTor or the Q2DTor pro-
grams. Dual-level calculations are also available in Pilgrim: automatic high-level single-point
energies can be used to correct the energy of reactants, transition states, products, and MEP
points using the interpolated single-point energies (ISPE) algorithm.

When the rate constants of all the chemical processes of interest are known, by means of their
calculation using Pilgrim or alternatively through analytical fits to the rate constants as functions
of temperature, it is possible to simulate a multistep mechanism under specified laboratory condi-
tions using KMC. This algorithm allows performing a kinetic simulation to monitor the evolution
of each chemical species with time and obtain the product yields.
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PROGRAM SUMMARY
Program Title: Pilgrim
Licensing provisions: MIT
No. of lines in distributed program, including test data, etc.:
Computer code: 21088 lines;
Computer code + tests: 2356172 lines;
Distribution format: tar.gz and zip

Program obtainable at: https://github.com/cathedralpkg/pilgrim/releases
Programming language: Python 3
Operating system: Linux or Unix
Computer: No computer-specific
Nature of problem: Calculation of thermal rate constants for bimolecular and unimolecular chemical reac-
tions and simulation of reaction mechanisms
Solution method: The program uses variational transition state theory to calculate thermal rate constants
and kinetic Monte Carlo to simulate reaction mechanisms.
Restrictions and unusual features: The program cannot treat reactions without saddle points. Unimolecular
reactions are calculated only in the high-pressure limit. Direct dynamics calculations with Pilgrim require
an electronic structure package to be supplied by the user; currently, Pilgrim supports the Gaussian [1–3]
and Orca [4] electronic structure packages. Pilgrim has an especially powerful suite of options for handling
torsional anharmonicity and multistructural effects.
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1. Introduction

Pilgrim is a program for direct dynamics calculations of chemical reaction rates by varia-
tional transition state theory (VTST) [5–11] including transmission coefficients to account for
multidimensional tunneling. In direct dynamics, instead of using an analytic potential energy
function, all required energies, forces, and force constants (a force constant is an element of the
Hessian matrix) needed for each step of dynamics are obtained directly from electronic structure
calculations [12–14], and for this purpose Pilgrim interfaces with an electronic structure program
supplied by the user. VTST is an efficient method for the calculation of thermal rate constants of
chemical reactions, and its accuracy has been validated both by applications to accurate quantum
dynamics for small systems and by applications to many larger systems for which experimental
rate constants and/or kinetic isotope effects are available [15–17].

The success of VTST is due to the fact that, as compared to conventional [18] transition state
theory (TST), it improves the treatment of two key aspects of TST. Those two aspects are [19]
(1) the no-recrossing assumption and (2) the treatment of quantum effects. The no-recrossing
assumption considers that when the system passes though the transition state (which is a hyper-
surface in phase space dividing reactants from products) toward products, it always proceeds to
products without recrossing the dividing surface and without having crossed it previously. VTST
improves over conventional TST for this aspect by optimizing the location of the transition state
dividing surface; the optimized dividing surface is called the variational transition state. The
second aspect is that quantum effects are important not only for the partition functions of bound
modes but also for the transmission coefficient, which should include quantum effects on the
reaction-coordinate motion. Although conventional TST without a transmission coefficient in-
cludes the former (by quantizing the vibrations of the reactant and the vibrational degrees of free-
dom transverse to the reaction coordinate at the transition state), it does not have adequate meth-
ods for including tunneling in the reaction-coordinate motion. In particular, although tunneling is
sometimes added to conventional transition state theory by a transmission coefficient [20–23], it
is hard to do this consistently in the general case, because the correct way to calculate tunneling
is to use the vibrationally adiabatic potential [24], and since this does not necessarily have its
maximum at the saddle point, one needs to add tunneling to variational transition state theory to
get a consistent result [25]. In contrast, VTST includes a multiplicative transmission coefficient
κ that accounts for multidimensional tunneling and nonclassical reflection by a multidimensional
dynamics calculation that uses an effective barrier whose determination involves all degrees of
freedom.

The present article is limited to presenting the Pilgrim computer program, and space does not
permit reviewing the details of all the methods and other aspects of aspects of VTST. The reader
may consult the reviews already given for general background [5, 7–9] and for full details of the
methods [6, 10, 11]. In many cases we also give the original references for methods as part of
the discussion in the rest of this article.

When vibrations of the reactant and the vibrational degrees of freedom transverse to the
reaction coordinate at the transition state are quantized, the calculation is called quasiclassical.
All calculations carried out by Pilgrim are quasiclassical. Pilgrim also assumes that the Born-
Oppenheimer approximation is valid so that the potential energy V for nuclear motion is given by
the electronic energy (which, by convention, includes nuclear repulsion) at the given geometry.
Pilgrim also assumes that nonreactive energy-transfer processes are faster than chemical reaction
steps so that reactants maintain their internal states in thermal equilibrium even while the reaction
proceeds.
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The quantum mechanical thermal rate constant at a given temperature T for a gas-phase
elementary process can be written as:

k(T ) = γ(T ) · k‡(T ) (1)

where k‡(T ) is the rate constant calculated by quasiclassical conventional TST.1 The complete
(or overall) transmission coefficient is a product of two factors:

γ(T ) = Γ(T ) · κ(T ) (2)

where Γ(T ) accounts for recrossing effects and κ(T ) for quantum effects on the reaction coordi-
nate.2 Note that Γ(T ) ≤ 1 and that κ(T ) is usually ≥ 1. A practical way to estimate these two
coefficients is to use VTST since it effectively evaluates Γ(T ), by finding a dividing surface with
less recrossing than the conventional transition state, and it evaluates κ(T ) by using semiclassical
methods.3

Pilgrim calculates Γ(T ) as the ratio between canonical variational transition state theory
(CVT) [26, 27] and conventional TST [18] thermal rate constants,

ΓCVT(T ) =
kCVT(T )

k‡(T )
(3)

whereas the tunneling transmission coefficient κCVT/SCT is calculated using the semiclassical
small-curvature tunneling (SCT) approximation [28–30]. Therefore, the thermal rate constant
of Eq. (1) is given by:

kCVT/SCT = γCVT/SCT · k‡ = κCVT/SCT · ΓCVT · k‡ (4)

In Eq. (4) we have omitted the temperature dependence for simplicity. The factor κCVT/SCT is
called the tunneling transmission coefficient, ΓCVT is called the recrossing transmission coeffi-
cient, and γCVT/SCT is the (overall) transmission coefficient. The deviation of ΓCVT from unity
is called a variational effect. The calculation of k‡ involves optimization of the reactant and
conventional transition state structures (the latter are saddle points) and the calculation of their
energies and partition functions.4 The calculation of the transmission coefficients involves calcu-
lating a minimum-energy path (MEP) through each considered saddle point and the calculation
of energies and partition functions along each path.

Pilgrim can perform TST and CVT/SCT for elementary reactions having species with sev-
eral conformational isomers of the reactant(s) and/or transition state. These conformers, which
are usually rotamers (i.e., conformers connected by torsions, which are also called internal ro-
tations), are called structures. The program can take into account the contributions of all the
conformers to the thermal rate constant. If all reactant and transition state structures are included

1Hereafter, the symbol ‡ denotes conventional TST or the conventional transition state, which is a dividing surface
that passes through the saddle point that corresponds to the highest-energy point on the lowest-energy path from reactants
to products.

2Technically, since we use a multidimensional tunneling calculation, it accounts not only for quantum effects on the
reaction coordinate but also for the coupling of the quantum mechanical reaction coordinate to the other coordinates.

3Pilgrim always treats quantum effects on the reaction coordinate motion semiclassically (by a multidimensional
extension of the Wentzel-Kramers-Brillouin approximation), but it is still correct to refer to them as quantum effects.

4The optimizations are done externally as described below.

4



Table 1: Required input files for the methods implemented in Pilgrim. MS and MP versions of the rate constant require
the same input files.

Input files Methods
(MS)-TST (MS)-CVT,(MS)-CVT/SCT KMC

pif.temp × × ×

pif.chem × × ×

pif.struc × ×

pif.path ×

pif.calcs ×

pif.kmc ×

in the partition functions, and if variational and quantum effects are calculated using only the
reaction path associated with the transition state with the lowest energy or lowest free energy, the
calculated rate constant is called multi-structural CVT/SCT (MS-CVT/SCT) [31, 32]. When –
at greater cost – variational and quantum effects are calculated taking into account the reaction
paths associated with multiple transition state structures, the calculated thermal rate constant is
called multipath CVT/SCT (MP-CVT/SCT) [33, 34]. Pilgrim can also incorporate torsional an-
harmonicity, calculated by the Q2DTor [35] program or the MSTor [36, 37] program, to evaluate
these thermal rate constants. Moreover, Pilgrim also allows handling several elementary reac-
tions at the same time as part of a given reaction mechanism, which can be simulated by means
of kinetic Monte Carlo (KMC) [38, 39].

A schematic structure of the main features of Pilgrim is shown in Figure 1. The basic in-
struction for executing Pilgrim is:

pilgrim.py −−option

where --option is indicated in red in Figure 1. All of the input files can be generated or modi-
fied by typing:

pilgrim.py −−input

Figure 1 shows three alternative routes to the product yields. The solid arrows indicate the
route to perform a full MP-CVT/SCT calculation, the dotted path marks an alternative route
where only TST or MS-TST rate constants are requested, and the dashed path indicates a direct
route to perform KMC calculations using reaction mechanisms for which the rate constants of
all the elementary steps are already available from an analytical expression. All three routes are
discussed below. The number of input files required depends on the type of calculation requested
(see Table 1). A full account of the capabilities of Pilgrim, the keywords, and several worked
examples are given in the manual of the program; however, here we want to establish a direct
connection between the theory behind VTST and KMC methods and the input/output of the
program.

In order to illustrate some of the rate constant features of Pilgrim, for instance the calcu-
lation of MS-TST and MP-CVT/SCT thermal rate constants, Section 2 considers the following
elementary reactions:
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pif.temppif.chem
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Figure 1: Flow diagram showing the main options of Pilgrim (in red), the input files needed in each case (in blue), and the
output provided by the program (yellow rectangles). The --software option is used to specify the electronic structure
software. Gaussian is the default but Orca can be specified with this option.

CH3CH2OH + H→ CH3CH2O + H2 (R1h)

CH3CH2OD + D→ CH3CH2O + D2 (R1d)

Selected Pilgrim outputs are collected in A. Section 3 considers the decomposition reactions of
the 1-propanol radical of Ref. 40 (Table 2) with the purpose of exemplify the KMC simulations.
Selected Pilgrim outputs are presented in E.

2. Study of elementary reactions using Pilgrim

A chemical reaction is considered elementary if one or a pair of reactants lead to a particular
chemical product or pair of products in a single reaction step. The elementary reaction may be
barrierless or it may have a saddle point. Currently, Pilgrim can only carry out direct dynam-
ics for elementary reactions that have a saddle point. For barrierless reactions we recommend
PolyRate [41]. Notice that despite this limitation, Pilgrim can perform the KMC calculations
incorporating barrierless reactions if the rate constants are provided by the user, as discussed in
Section 3 of this article. The program can also handle cases where the single step leads to multi-
structural products (a given chemical species or pair of species where one or both of the species
has multiple conformations).
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Table 2: Reactions considered to test the KMC algorithm of Pilgrim.

Name Reaction
R1 CH3CH2CH2O• → CH2O + •CH2CH3
R2 CH3CH2C•HOH→ HOCHCH2 + •CH3
R3 CH3CH2C•HOH→ H• + OCHCH2CH3
R4c CH3CH2C•HOH→ H• + cis-HOCHCHCH3
R4t CH3CH2C•HOH→ H• + trans-HOCHCHCH3
R5 CH3CH2CH2O• → H• + OCHCH2CH3
R6 •CH2CH2CH2OH→ •CH2OH + CH2CH2
R7 CH3CH2CH2O• 
 •CH2CH2CH2OH
R8c CH3C•HCH2OH→ H• + cis-HOCHCHCH3
R8t CH3C•HCH2OH→ H• + trans-HOCHCHCH3
R9 CH3CH2CH2O• 
 CH3CH2C•HOH
R10 CH3CH2CH2O• 
 CH3C•HCH2OH
R11 CH3C•HCH2OH→ H• + OHCH2CHCH2
R12 CH3CH2C•HOH 
 CH3C•HCH2OH
R13 CH3C•HCH2OH 
 •CH2CH2CH2OH
R14 CH3CH2C•HOH 
 •CH2CH2CH2OH
R15 •CH2CH2CH2OH→ H• + HOCH2CHCH2
R16 CH3C•HCH2OH→ •OH + CH2CHCH3

This section describes the setup of the input files and the output provided by Pilgrim, as well
as the theory to calculate the MS-TST and MP-CVT/SCT thermal rate constants for reactions
R1h and R1d. Pilgrim performs direct-dynamics calculations [12–14], that is, the energies,
forces, and force constants on the potential energy surface (PES) are calculated ‘on the fly’
by an external electronic structure software package, which is denoted as the ESSO. Pilgrim
requires the user to supply the ESSO; currently, it supports only the Gaussian [1–3] and Orca [4]
electronic structure packages.

Notice that other ESSO can be also incorporated to Pilgrim by creating a new Python mod-
ule inside the modpilgrim library, similar to itf orca.py (for Orca) and itf gau.py (for
Gaussian) modules. These Python functions read the energy, gradient, and Hessian of Orca or
Gaussian, and users can adapt Pilgrim to use another electronic structure program by writing a
similar script for that program. Once created, the user just needs to include this new module in
the dsoft dictionary defined inside the itf.py module. In this way one can use other electronic
structure programs.

For the examples considered here, all the electronic structure calculations were performed at
the HF/STO-3G level [42]. This is too low of a level to be quantiatively useful for practical rate
calculations, but we chose a low level to make the illustrative calculations inexpensive in case a
user wants to use them as a learning experience.

2.1. Preliminaries

The location of the ESSO executable(s) must be specified in the .bashrc file. For instance,

# P a t h t o $ G a u s s i a n $ e x e c u t a b l e s
7



export GauExe ="/home/ programs /g09/g09"
export GauFchk ="/home/ programs /g09/ formchk "

# P a t h t o $Orca$ e x e c u t a b l e
export OrcaExe ="/home/ programs / o r c a 4 0 1 2 /orca"

where GauExe and GauFchk are the variables that export the routes of the Gaussian executable
and formchk utility, respectively. For Orca users, the route of the executable is exported through
OrcaExe.

To start the calculation of the thermal rate constants, Pilgrim requires the optimized structures
of the stationary points involved in the reaction. For instance, to study reaction R1h, we create
a working directory called EtOHabs/. Inside this directory, the subdirectory UDATA/ should
be created. Notice that UDATA/ should contain the electronic structure files (ESFILs) with the
stationary points (minima and transition structures) of all species of all reactions that the user
wishes to study.5 Every ESFIL should contain the optimized geometry of a structure and the
corresponding Hessian matrix.6

For a species with more than one conformer, all the ESFILs should be included in the same
directory inside UDATA/. The name given to this directory is used by Pilgrim as the label that
identifies that species. In the case of species without conformers the ESFIL may hang directly
from UDATA/. In that case, the label that identifies the species is the name of the ESFIL without
its extension.

Hereafter, those labels are called by the generic name of spname. The names of the ESFILs
and of the spname (in blue) are displayed in Figure 2. The generic label tsname designates a
spname structure that is a transition structure. For reaction R1h, ethanol, the hydrogen atom,
the ethoxy radical and the hydrogen molecule were labeled as CH3CH2OH, H, CH3CH2O, and H2,
respectively. The transition state for the hydrogen abstraction from the hydroxyl group was
labeled as TSoh.

The ethanol molecule has three conformations, one conformation with the methyl and hy-
droxyl groups in anti and two conformations with these two groups in gauche. The two gauche
conformers are conformational enantiomers with the same electronic structure properties; there-
fore only one of the two needs to be specified. Similarly, the transition state has three con-
formations, and the two gauche conformations are conformational enantiomers. In the case of
ethanol the ESFILs of the two structures (one anti and one gauche) are placed in the CH3CH2OH/
directory, whereas those of the transition state go inside TSoh/.

When Pilgrim is executed with option --gather,

pilgrim.py −−gather

5Notice that a transition structure is a saddle point between reactants and products, and it should not be confused
with a transition state, which is a hypersurface in phase space separating reactants from products. A transition state may
be associated with zero, one, or multiple transition structures, but Pilgrim is not designed to handle the case with zero
transition structures.

6A structure may be a stable structure, which is a local or global minimum on the potential energy surface, or it may
be a transition structure. A chemical species may be a stable species or a transition state; it is associated with one or
more stable structures or one or more transition structures, respectively. Structures that are connected to other structures
of the same species by internal rotation are called conformers or rotamers.
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etoh_g.out
etoh_t.out

H/

tsOH_g.out
tsOH_t.out

ch3ch2o.fchk

H2/

UDATA/

CH3CH2OH/

TSoh/

CH3CH2O/

spname:

1-GTS/
CH3CH2OH.001.gts
CH3CH2OH.002.gts
H.001.gts
TSoh.001.gts
TSoh.002.gts
CH3CH2O.001.gts
H2.001.gts

CH3CH2OH, H, TSoh, CH3CH2O, H2
tsname: TSoh

start_ctc CH3CH2OH
root CH3CH2OH
conformer 001 * 1
conformer 002 * 1
…

end_ctc
start_ctc H
root H
…

end_ctc
start_ctc CH3CH2O
root CH3CH2O
…

end_ctc

pif.struc
start_ctc H2
root H2
…

end_ctc
start_ctc TSoh
root TSoh
conformer 001 * 1
conformer 002 * 1
…

end_ctcEtOHabs/

5-MOLDEN/
CH3CH2OH.001.molden
CH3CH2OH.002.molden
H.001.molden
TSoh.001.molden
TSoh.002.molden
CH3CH2O.001.molden
H2.002.molden

tracking
etoh_g.fchk
etoh_t.fchk
H.fchk
tsOH_g.fchk
tsOH_t.fchk
ch3ch2o.fchk
h2.fchk

Labels given by the user inside UDATA/:

ctcsp: CH3CH2OH, H, TSoh, CH3CH2O, H2
ctcts: TSoh

Labels used by Pilgrim (pif.struc):

Input Output

H.gts

h2.fchk

ESFILs

Figure 2: Structure of the files for reaction R1h after executing the --gather option.

the program generates two files and two directories. The two directories are: 1-GTS/ and
5-MOLDEN/. The former contains the same information as that in the ESFILs placed in UDATA/,
but with a uniform format more suitable for Pilgrim calculations. The files inside 1-GTS/ are
named using the format spname.idx.gts, where idx is an index that runs from 001 to the number
of conformers for the species with label spname. The conformers are sorted by Pilgrim in the
1-GTS/ directory by increasing energy.

At this stage we need to introduce the concept of a cluster of torsional conformers (CTC). For
a given reaction, we first find all the structures of the transition state. If all the structures of the
reactants can be interconverted among one another by internal rotations, and all the structures of
the transition state can be converted into one another by internal rotation, then a reaction is said
to have one CTC. If however, the structures divide into NT groups that cannot be interconverted
among one another by internal rotation, then that reaction has NT CTCs. The final rate must
be summed over contributions from each CTC. Within a given CTC, there may be multiple
conformers of the reactant and/or of the transition state, and these should all be included by
MS-CVT/SCT or MP-CVT/SCT.

The program creates two files: tracking and pif.struc. The former correlates the files of
UDATA/ with the files in 1-GTS/ (see Figure 2); the latter contains information about each of the
stationary points given inside UDATA/. The pif.struc file contains CTC blocks beginning with
start ctc and ending with end ctc. The generic names ctcsp and ctcts are used instead
of spname and tsname, respectively. The former pair is used to refer to molecules which may
be affected by isotopic subtitutions, whereas the latter pair is isotope independent. Thus, for the
R1d reaction, new ctcsp and ctcts blocks can be defined using the information of the root
species (spname and tsname).
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2.2. Input for conventional TST calculations
With the exception of the pif.struc file, which was created at a previous stage, the rest of

Pilgrim input files can be generated through the interactive menu (Listing A.1), accesible via:

pilgrim.py −−input

Depending on the file to be addressed, there are various options available, and they can be
chosen as follows:

> $cmd $var [$values]

where (>) is the prompt.
For reaction R1h, both ethanol and the transition state have two conformational enantiomers

(the two gauche structures). The list of all species can be accessed inside the menu by typing:

> ls struc

leading to the output of Listing A.2. It indicates that for ethanol, labeled as CH3CH2OH, there are
a total of two conformations in the same CTC, although there should be three of them because
one of the structures has a conformational isomer. The reason is that the gauche conformer
is endowed with a weight of 1. In general, inside a CTC block the user should include all
the distinguishable structures with their conformational weight but excluding conformational
enantiomers. The conformational weight is two for a structure with a conformational enantiomer
and is unity otherwise. We denote the total number of structures of a minimum as Nc and, in
the case of a saddle points as J‡c . Therefore the total number of distinguishable conformers of a
given minimum is

Nc =
∑

n

wn (5)

and of a saddle point
J‡c =

∑
j

w‡j (6)

where wn and w‡j are the conformational weights of the n-th and the j-th conformer of the corre-
sponding minimum and transition structure, respectively (see Listing A.3).

Table 1 provides a list of the input files that are needed in order to calculate the thermal rate
constants by a given method. The MS-TST calculations operate with the pif.struc, pif.temp, and
pif.chem input files. The add command inside the input menu can be used to create (if it does not
exist) the file associated with the variable listed in Listing A.1. A working temperature of 298.15
K for the calculation of the rate constants can be specified with the command

> add temp 298.15

which creates the pif.temp file with the corresponding temperature. The chemical reaction is
specified with:

> add chem R1h : CH3CH2OH+H −−> TSoh −−> CH3CH2O + H2
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which creates the file pif.chem. No further input files are required for the calculation of MS-TST
rate constants.

2.2.1. Adding isotopically substituted reactions
In addition to reaction R1h, we want to study reaction R1d. In that case the pif.struc needs to

be modified (using the --input option) to accommodate the isotopically substituted species.
In Pilgrim the isotopically substituted species are created from existing root species. Thus,
CH3CH2OD can be created from CH3CH2OH by typing:

> mod struc CH3CH2OH
>> copywith D(9) as CH3CH2OD

The first line enters the CH3CH2OH block inside pif.struc and the second line copies that struc-
ture as a new structure (a ctcsp) called CH3CH2OD where atom number 9 has been substituted
by a deuterium. In the same manner:

> mod struc H
>> copywith D(1) as D
> mod struc H2
>> copywith D(all H) as D2
> mod struc TSoh
>> copywith D(9,10) as TSod

All species are given in Listing A.4, and the resulting pif.struc file is schematized in Figure 3.
After those modifications, reaction R1d should be incorporated into pif.chem in the same manner
as reactionR1h.

> add chem R1d : CH3CH2OD+D −−> TSod −−> CH3CH2O + D2

2.3. Partition functions

With the information collected from the ESFILS, Pilgrim can calculate the total partition
function of each species, in which the translational and electronic partition functions (Qtrans and
Qel, respectively) are assumed to be separable from the rovibrational partition function, QX

rv:

QX = Qtrans Qel QX
rv (7)

where X indicates the approximation to evaluate the rovibrational partition function. The trans-
lational partition function is defined as

Qtrans = Φtrans Vo =

(
M

2π~2β

)3/2

Vo (8)

where M is the mass of the system, Vo is the volume per particle in the standard state, ~ is the
Planck’s constant divided by 2π, and β = (kBT )−1, with kB being the Boltzmann constant, and T
being the temperature.
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start_isomass
D = 2.0141

end_isomass
start_ctc CH3CH2OH
root CH3CH2OH
conformer 001 * 2
conformer 002 * 1
…

end_ctc
…

start_ctc TSoh
root TSoh
conformer 001 * 2
conformer 002 * 1
…

end_ctc
… (continues in 
the next column)

start_ctc CH3CH2OD
root CH3CH2OH
conformer 001 * 2
conformer 002 * 1
…

iso D(9)
end_ctc
start_ctc TSod
root TSoh
conformer 001 * 2
conformer 002 * 1
…

iso D(9,10)
end_ctc
start_ctc D
root H
…

iso D(1)
end_ctc
start_ctc D2
root H2
…

iso D(all_H)
end_ctc

Section added to pif.struc after isotopic substitutions
New ctcsp labels : CH3CH2OD, D, D2 and TSod
New ctcts label: TSod

Mass of atoms 9 and 10 changed to the mass 
labelled as D in start_isomass

New ctcts label
Root species from which TSod was created 

Figure 3: Extract of the pif.struc file after including the isotopically substituted species. The TSod transition state was
highlighted with explanation of some of the keywods associated with isotopes.

The electronic partition function is given by

Qel = g0 +
∑
i=1

gie−β εi (9)

where g0 is the degeneracy of the electronic ground state, and gi and εi are the degeneracy and
relative energy of the i-th electronic excited state. Equation 9 includes all electronic states, but by
default the file pif.struc generated by Pilgrim only includes the ground electronic state obtained
from the electronic structure calculations. However, low-lying electronic excited states can be
included in the pif.struc file with the elestate keyword.

In Pilgrim, if one uses the single-structure rigid-rotor (RR) harmonic-oscillator (HO) ap-
proximation or the single-structure rigid rotor quasiharmonic (QH) approximation (X = RRHO
or RRQH), the rovibrational partition function is considered to be a product of a rotational factor
and a vibrational factor. These two approximations are implemented for the one-structure (one
conformation) or the multi-structural (multiple conformations) cases.

For one structure, the rovibrational RRHO partition function is given by:

QRRHO
rv = Qrot QHO (10)

The rotational partition function for nonlinear molecules is given by

Qrot =
8π2

σrot

(
1

2π~2β

)3/2 √
Irot
1 Irot

2 Irot
3 (11)

where σrot is the symmetry number of rotation [43], which is automatically calculated by the
program by recognizing the point group symmetry of the species, and Irot

i (i = 1, 2 or 3) is the
12



i-th principal moment of inertia. In the case of a linear molecule the rotational partition function
is:

Qrot =
1
σrot

2I
~2β

(12)

where I is the moment of inertia. Pilgrim calculates the rotational partition function of a nonlin-
ear molecule by Eq. (11) and for a linear molecule by Eq. (12), so it includes the permutational
symmetry of the wave function due to quantum statistics in an average way. A more subtle issue
concerning the fermionic nature of the protons is the antisymmetrization of nuclear motion wave
functions. The deviation of the an accurate treatment of the fermionic character of the proton
motion from that afforded by the use of symmety numbers is a very small effect (1 % or less) at
most practical temperatures, although the effect may be larger for the ortho-para H + H2 reaction
at low temperature [44–46].

The vibrational partition function in the HO approximation is given by the product of its
individual normal mode partition functions

QHO =

F∏
m=1

e−β~ωm/2

1 − e−β~ωm
(13)

where F is the number of vibrational modes (3N − 6 for a non-linear molecule and 3N − 5 for
a linear molecule, N being the number of atoms); ωm is the HO frequency of the m-th normal
mode. Sometimes, it is convenient to separate the HO zero-point energy (ZPE, EHO),

EHO =

F∑
m=1

1
2
~ωm (14)

so Eq. (13) can be rewritten as
QHO = Q̃HOe−βE

HO
(15)

where Q̃HO is the HO vibrational partition function calculated by taking the ZPE as the reference
energy

Q̃HO =

F∏
m=1

1
1 − e−β~ωm

(16)

The QH approximation includes a multiplicative scale factor λZPE that was previously param-
etrized (for a given level of electronic structure theory) by using a set of experimental ZPE [47,
48]. Specifically,

EQH = λZPEEHO (17)

and
QQH = Q̃QHe−βE

QH
(18)

where

Q̃QH =

F∏
m=1

1
1 − e−β~λZPEωm

(19)

Notice that in the literature there are scale factors for harmonic frequencies λH, for funda-
mentals λF, and for zero-point energies λZPE. The accuracy of the ZPE is most important for
partition functions at low and moderate temperatures and for the tunneling effect (Section 2.7).
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Therefore λZPE is the recommended parameter to use in order to reproduce the correct ZPE. The
keyword to introduce the value of λZPE in Pilgrim is called freqscale, and it can be specified
for each species inside pif.struc. In such a way, minima and transition states may have differ-
ent values of λZPE. This may be convenient because the standard scale factors are parametrized
using equilibrium structures, and one may want to use them only for reactants (with a transition-
state-specific nonstandard value for transition states). Actually, for some systems, the calculation
of λZPE for transition states using degeneracy corrected second-order perturbation theory leads
to substantially different values from that for minima, and this may have an important effect on
the kinetics of the process [49, 50].

The partition functions of all species are calculated with the command

pilgrim.py −−pfn

and an output file is created for each ctcname species defined in pif.struc. For example, List-
ing A.5 shows the output file for species H2.
For species with multiple conformations, Pilgrim calculates multi-structural harmonic oscillator
(MS-HO) or multi-structural quasi-harmonic (MS-QH) partition functions. For simplicity, here-
after, we refer to HO or MS-HO partition functions, although the same arguments are valid for
QH and MS-QH partition functions by specifying a value of λZPE different than the unity. The
MS-HO partition function for a system with Nc distinguishable conformational minima is given
by

QMS−HO =

Nc−1∑
nc=0

QRRHO
nc

e−βUnc (20)

where Unc is the energy of conformer nc relative to the global minimum. Pilgrim evaluates a
similar equation to Eq. (20) but incorporating the weight of each conformation as specified in
Section 2.2:

QMS−HO =

N−1∑
n=0

wnQRRHO
n e−βUn (21)

where N runs over all conformations to which we have discounted the enantiomers. The contri-
bution, χn, of the n-th structure to the total MS-HO partition function is also calculated:

χn = wn e−βUn
QRRHO

n

QMS−HO (22)

The results of applying Eq. (21) to ethanol are shown in Listing A.6.
Pilgrim can also include torsional anharmonic corrections to the partition functions by read-

ing the output files of either the Q2DTor [35] or the MSTor [36, 37] program. Q2DTor can be
used to calculate anharmonic hindered rotor partition functions for systems with two coupled
torsions by the extended two-dimensional torsional (E2DT) method [51, 52]. The corresponding
E2DT anharmonic coefficient, which is temperature dependent, is given by

λE2DT(T ) =
QE2DT(T )

QMS−HO(T )
(23)

Similarly, MSTor can be used to include torsional anharmonicity in molecular systems hav-
ing many torsions. The multi-structural torsional (MS-T) method implemented in MSTor only
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requires, as input, information about the equilibrium structures [53]. The MS-T anharmonic
coefficient is given by

λMS−T(T ) =
QMS−T(T )

QMS−HO(T )
(24)

Both E2DT and MS-T treat torsions in a more sophisticated and accurate way than is afforded by
1D treatments because they incorporate couplings in the kinetic and potential energies. Pilgrim
can use the anharmonic partition functions provided by these programs by specifying the anhar
keyword in the pif.struc file and the location of the output files of the Q2DTor or MSTor programs.

2.4. Output for conventional TST calculations

The calculation of TST or MS-TST thermal rate constants can be carried out right after the
calculation of the partition functions. Notice that the former is a special case of the latter in
which the reactants and the transition state do not have torsional conformers. The TST or MS-
TST thermal rate constant is given by

k‡ =
1

hβ
Q‡

QR
e−βU‡0 (25)

where Q‡ and QR are the total partition functions [Eq. (7)] of the transition state and of reac-
tants, respectively, and U‡0 is the energy difference between the transition state and the reactants.
Equation (25) can be rewritten as

k‡ = B
Q‡rv

Qrv,R
e−βU‡0 (26)

where Q‡rv and Qrv,R are the rovibrational partition functions of the transition state and reactants,
and

B =
1

hβ

Q‡el

Qel,R

1
Φrel

(27)

is a coefficient that includes the electronic partition functions (Qel) of the transition state (‡) and
of the reactants (R) and the relative translational motion of the reactants per unit volume, Φrel,
given by

Φrel =

(
µ

2πβ~2

)3/2

(28)

where µ is the reduced mass of reactants. For unimolecular reactions, Φrel is replaced by unity.
For the case of multiple conformations the rovibrational partition functions are multi-structural,
and U‡0 in Eq. (26) is the difference in electronic energy between the transition state structure
with the lowest energy and the most stable reactant.

In the thermodynamic formulation Eq. (25) is given by

k‡ =
1

hβco exp
(
−∆G‡,o/RT

)
(29)

where co is the standard state concentration taken to be 1 molecule/cm3 for bimolecular reactions
and the unity (dimensionless) for unimolecular reactions; R is the gas constant; and ∆G‡,o is the
standard state free energy of activation between the reactants and the transition state. Notice that
Pilgrim also lists free energies using po = 1 bar standard state.
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The thermal rate constants for the reactions specified in the pif.chem file can be calculated by
typing

pilgrim.py −−rcons

In the case of reaction R1h, both the reactants and the transition state have conformers and,
therefore, the program calculates the MS-TST thermal rate constant. The output file is displayed
in Listing A.7. If products are also specified, Pilgrim calculates the equilibrium constant as

Keq =
QP

QR
e−βUr (30)

where QR and QP are the total partition functions of reactants and products, respectively; Ur is the
difference in potential energy between the most stable product and the most stable reactant. The
backward reaction rate constant is calculated from the forward rate constant and the equilibrium
constant.

The calculation of recrossing transmission coefficient requires the specification of a reac-
tion path. In Pilgrim this path is the minimum energy path (MEP) [24, 54–56]. The following
sections describe the algorithms implemented to calculate the MEP and how this information is
used to evaluate the variational effects and the quantum effects by the small-curvature tunneling
approximation.

2.5. The minimum energy path

The MEP can be defined as the steepest-descent path in isoinertial coordinates that goes from
the transition state toward reactants and toward products. The progression along the MEP, s (zero
at the transition state), is less than zero in the reactant region and greater than zero in the product
region. An infinitesimal progression along this path is given by:

ds =

 N∑
i=1

∑
α=x,y,z

dx2
iα


1/2

(31)

where N is the number of atoms, xiα are mass-scaled coordinates [α = (x, y, or z)], which are
related to the Cartesian coordinates Riα by:

xiα =

(
mi

µ

)1/2

Riα (32)

with µ being the scaling mass. The most common value for this mass is 1 amu,7 although for
bimolecular reactions it is also common to use the reduced mass of reactants. The differential
equation that defines the MEP is

dx
ds

= −Ĝ(x) = v(x) (33)

where x is the mass-scaled Cartesian coordinates vector, Ĝ is the normalized gradient and v is
the vector with opposite direction to the gradient.

7Default value in Pilgrim ; keyword mu.
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Due to the fact that the gradient at the transition state structure is zero, the first geometry along
the MEP, x (s1), can be defined in the direction of the eigenvector of the mode with imaginary
frequency, LF

(
x‡

)
, using a step size of δs:

x (s1 = ±δs) = x‡ ± δsLF

(
x‡

)
(34)

The LF

(
x‡

)
eigenvector is obtained by diagonalization of the Hessian matrix in isoinertial coor-

dinates F
(
x‡

)
at the transition state:

L
(
x‡

)†
F

(
x‡

)
L

(
x‡

)
= Λ

(
x‡

)
(35)

where x‡ is the geometry at the transition state; † denotes a transpose; and L
(
x‡

)
is a orthonor-

mal square matrix composed 3N columns that are the normal mode eigenvectors. There are F
eigenvectors corresponding to vibrations where F is 3N − 6 for a nonlinear molecule and 3N − 5
for a linear molecule, with N being the number of atoms. The 3N × 3N diagonal matrix, Λ

(
x‡

)
,

contains the 3N eigenvalues λm

(
x†

)
, of which 3N − F should be zero (translations and rotations)

and the remaining F eigenvalues are related to the normal mode frequencies of the transition
state ωm(s = 0) by

ωm(s = 0) =
[
λm

(
x†

)
/µ

]1/2
(36)

Because we are discussing a first-order saddle point, F − 1 eigenvalues are real and λF

(
x†

)
is

imaginary.
A more accurate method to obtain the first point along the MEP, although more expensive,

was proposed by Page and McIver in which the potential energy surface around the saddle point
is expanded to cubic or higher order terms. For the case of cubic expansion, the curvature vector
at the saddle point c

(
x‡

)
is given by

c
(
x‡

)
=

[
2L†FF

(
x‡

)
LF

(
x‡

)
I − F

(
x‡

)]−1 [
C

(
x‡

)
LF

(
x‡

)
− L†F

(
x‡

)
C

(
x‡

)
LF

(
x‡

)
LF

(
x‡

)]
(37)

and the first point along the reaction path is given by:

x (s1 = ±δs) = x‡ ± δsLF

(
x‡

)
±

1
2

(δs)2c
(
x‡

)
(38)

where the calculation of C
(
x‡

)
involves the computation of two additional Hessian matrices, one

on each side of the saddle point and away from it by δ3 in the direction of LF

(
x‡

)
C

(
x‡

)
=

dF
ds
≈

F
(
x‡ + δ3LF

(
x‡

))
− F

(
x‡ − δ3LF

(
x‡

))
2δ3

(39)

The first step using Eq. 38 can be turned on by adding the cubic keyword in the pi f .path file.
After the first point along the MEP, the remaining steps can be calculated by a first-order

approximation (the Euler algorithm [56]) where the (n + 1)-th geometry along the MEP, xn+1, is
calculated from the gradient Gn and the geometry of the previous step, xn:

xn+1 = xn − δs Ĝn = xn + δs vn (40)
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A higher-order method to follow the MEP, which corrects the path by means of Hessian calcula-
tions, was proposed by Page and McIver [57, 58] (see B).

The information stored along the MEP can be used to calculate the reaction-path curvature
coupling elements Bm,F between the reaction coordinate and a mode m perpendicular to it [55].
They are obtained at every point along the MEP at which a Hessian is calculated and are given
by:

Bm,F = −[sign(s)]
dv̂(s)

ds
Lm(s) = −[sign(s)]

3N∑
i=0

dv̂i(s)
ds

Li,m(s) (41)

where, as already noted, v̂(s) = −Ĝ(s) and the eigenvectors Lm(s) are obtained from the diago-
nalization of the Hessian matrix at s. The derivative of v(s) is obtained by finite differences

dv̂i(s)
ds

=
v̂i[s + δs sign(s)] − v̂i[s − δs sign(s)]

2 δs
(42)

A different way of evaluating the coupling elements was given by Page and McIver in which the
derivatives of the gradient are not needed:

Bm,F = −[sign(s)]L†m(s)F(s)v̂(s) (43)

We highlight that performing Hessian calculations at every point along the MEP can be very
expensive. A common practice is to employ the same Hessian for NH steps before recalculating
it. A recommended value for NH is 9 [56]. Consequently, the resulting distance between Hessian
evaluations is:

δsH = NH δs (44)

Currently, both the Euler [56] and the Page-McIver [57] algorithms are implemented in Pil-
grim to follow the MEP. We highlight that the calculation of VTST coefficients requires Hessian
calculations along the MEP. Interestingly, the Page-McIver algorithm makes use of the Hessian
matrices for a better estimation of the MEP points, whereas the Euler algorithm ignores them.
Consequently, both algorithms will require equivalent computational cost but the Page-McIver
MEP will be undoubtedly closer to the real MEP. For this reason, Pilgrim uses the Page-McIver
algorithm by default.

2.6. Input files for calculating the MEP
The basic input for the MEP calculation can be generated by typing:

> add path ctcts

which for the case of R1h is

> add path TSoh

After execution of this command, the program creates two files: (1) pif.path, which contains
some of the parameters associated with the MEP; and (2) pif.calcs, which contains the template
for the ESSO. A complete list of the keywords that can be used in the pif.path file is given in
Pilgrim’s manual.

Pilgrim has two criteria to decide whether the MEP has reached a minimum. The first one is
an energy criterion in which the MEP calculation stops if the difference in energy between two
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consecutive points along the MEP is smaller than 10−8Eh, Eh being a hartree. The second one
stops the MEP calculation if the magnitude of the gradiend, |G|, is smaller than 10−8Eh/ao. The
two thresholds can be modified using the epse and epsg keywords.

The electronic structure calculations required along the MEP are carried out using a ESSO.
Listing A.8 shows the default template for Gaussian package as the ESSO. This template can be
modified in the same way as a standard Gaussian input file, the only exception being the key-
words between square brackets, which are for Pilgrim’s internal use and should not be modified.

2.7. Variational and tunneling effects
For reactions with several conformational structures of the transition state, full multipath

VTST calculations involve the evaluation of the MEP for each of the distinguishable conforma-
tions excluding conformational enantiomers. With that information at hand, Pilgrim calculates
variational effects by using canonical variational transition state theory (CVT) and calculates
quantum effects in the reaction coordinate by using the small-curvature tunneling approxima-
tion. Equation (2) for each transition state structure j becomes

γCVT/SCT
j = ΓCVT

j κCVT/SCT
j (45)

A rate constant as a function of the position of the transition state along the reaction path is called
a generalized transition state (GT) rate constant and it is given by

kGT
j (T, s) = B(T )

QGT
rv, j(T, s)

Qrv,R(T )
e−βUMEP, j(s) (46)

The value of ΓCVT
j at a given temperature is calculated by finding the minimum of kGT

j (T, s) as a
function of s:

kCVT
j (T ) = min

s

[
kGT

j (T, s)
]

(47)

which is equivalent to finding the maximum of the generalized free energy of activation along
the reaction path. With sCVT

? being the value of s that minimizes the GT rate constant at a given
temperature, we can write:

kCVT
j (T ) = B(T )

QGT
rv, j(T, s

CVT
? )

Qrv,R(T )
e−βUMEP, j(sCVT

? ) (48)

where QGT
rv, j(T, s

CVT
? ) is the GT rovibrational partition function at sCVT

? assuming the same rota-
tional symmetry number in the calculation of the rotational partition function as the transition
state. Equation (48) can also be written as:

kCVT
j (T ) =

1
hβco exp

(
−∆GCVT,o

j (T )/RT
)

(49)

where ∆GCVT,o
j is the standard-state free energy of activation at s = sCVT

? , which is the loca-
tion where the generalized standard-state free energy of activation along the MEP has a maxi-
mum [27].

Taking into account that the variational effects for each of the transition states are obtained
from Eq (3), then

ΓCVT
j (T ) =

kCVT
j (T )

k‡j (T )
(50)
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Because kCVT
j (T ) is given by Eq. (48) and k‡j (T ) by the same equation but at the saddle point

(s = 0), we have that

ΓCVT
j (T ) =

QGT
rv, j(T, s

CVT
? )

Q‡rv, j(T )
e−[β∆U j(sCVT

? )] (51)

where
∆U j(sCVT

? ) = UMEP, j(sCVT
? ) − U0, j (52)

Equation (51) is independent of the reactants and it only depends on the properties of the transi-
tion state. The difference in generalized free energy of activation between the variational transi-
tion state and the conventional transition state at s = 0 is

∆∆Go
var, j(T ) = ∆GCVT,o

j (T ) − ∆G‡,oj (T ) = −RT log
[
ΓCVT

j (T )
]

(53)

In the MP version of the theory, multidimensional tunneling effects are incorporated for each
transition structure and associated reaction path, through a multiplicative tunneling transmission
coefficient that includes the coupling between the reaction coordinate and the F − 1 degrees
of freedom perpendicular to it. This coefficient is given by the ratio between the Boltzmann
averaged semiclassical adiabatic ground-state probability, PSAG, and the classical one. 8 The
resulting expression after integration of the classical probability is

κSAG =
β
∫ ∞

0 dE exp(−βE)PSAG(E)

exp
(
−βVAG) (54)

where

PSAG(E) =


0, E < E0
{1 + exp[2θ(E)]}−1, E0 ≤ E ≤ VAG

1 − PSAG
(
2VAG − E

)
, VAG ≤ E ≤ 2VAG − E0

1, 2VAG − E0 < E

(55)

For each tunneling energy on a grid of energies, Pilgrim calculates two SAG action integrals,
θ(E), and therefore two SAG tunneling probabilities: the zero-curvature tunneling (ZCT) [59]
and the small-curvature tunneling (SCT) [28–30] probabilities (see C for details). The semi-
classical probability of Eq. (55) includes tunneling effects (usually the main contribution to the
transmission coefficient) for energies below the maximum, VAG, of the vibrationally adiabatic
ground-state potential and nonclassical reflection using a parabolic extension for energies above
that maximum. In the harmonic approximation, the vibrationally adiabatic ground-state potential
is calculated along the MEP as

VG
a (s) = VMEP(s) +

F−1∑
m

~ωm(s)
2

(56)

where ωm(s) are the projected frequencies at a given value of s.
The transmission coefficient given by Eq. (54) and based on the transmission probability of

Eq. (55) is calculated for an effective potential with a maximum located at the highest value of the

8Note that in the present context, “ground-state” refers to the ground vibrational state of the transverse vibrational
modes along a given reaction path.
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vibrationally adiabatic potential, VAG. If one treats the transmission probability classically with
this effective potential, the classical step function would rise at VAG, but this threshold may not
coincide with that implied by TST or CVT thermal rate constants for the case where tunneling
is neglected. The former has its threshold at V‡Ga = VG

a (s = 0), and the latter has its threshold at
VG

a [sCVT
? (T )]. To make the transmission coefficient consistent with the theories to which they are

being added, the transmission coefficient for conventional TST should be multiplied by

κTST/CAG = exp
[
β
(
V‡Ga − VAG

)]
(57)

and that for CVT should be multiplied by

κCVT/CAG = exp
{
β
[
VG

a

(
sCVT
? (T )

)
− VAG

]}
(58)

These are called classical adiabatic ground-state (CAG) coefficients. Due to these factors the
tunneling transmission coefficient that multiplies the conventional TST thermal rate constant is:

κTST/SAG = κTST/CAGκSAG (59)

and the one that multiplies the CVT thermal rate constant is

κCVT/SAG = κCVT/CAGκSAG (60)

Notice that κTST/SAG and κCVT/SAG may be smaller than the unity due to the threshold correction
since κTST/CAG and κCVT/CAG are always smaller or equal to the unity. However, κSAG ≥ 1, and it
can be shown that

κSAG = 1 + 2β
∫ VAG

E0

PSAG(E) sinh
[
β
(
VAG − E

)]
(61)

Although Pilgrim calculates SAG probabilities for both ZCT and SCT, rest of the discussion will
refer mainly to the SCT approximation, because is more accurate than the ZCT approximation.

2.8. Quantized-reactant-states tunneling calculations
For unimolecular reactions at low temperatures, the continuum of energy states in the inte-

gration of Eq. (54) is better represented by a discrete sum over energy levels for energies below
VAG [60, 61]. In this situation the semiclassical adiabatic ground-state transmission coefficient
is given by

κSCT =
β
∑K

v=0
dER

v
dv PSCT(ER

v ) exp(−βER
v ) + β

∫ ∞
VAG dE exp(−βE)PSCT(E)

exp
(
−βVAG) (62)

where K is the maximum value that the quantum number v can reach when exciting the discrete
levels of the reaction coordinate motion ER

v up to VAG. The reaction coordinate levels are

ER
v =

(
1
2

+ v
)
~ωR

F (63)

where ωR
F is the reaction coordinate frequency. Notice that

dER
v

dv
= ~ωR

F (64)

Pilgrim offers the possibility of using Eq. (62) for unimolecular reactions.
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2.9. Redundant internal coordinates
At stationary points, normal-mode vibrational frequencies do not depend on the choice of

coordinates, but when calculated at non-stationary points, the frequencies are coordinate de-
pendent [62]. Because the generalized free energies of activation and vibrationally adiabatic
potentials have strong dependences on the vibrational frequencies, it is important to transform
the Hessian matrices calculated along the MEP to a physical set of coordinates in order to obtain
physical frequencies. It is known that internal coordinates [63], which are curvilinear, provide a
more physical description of the vibrations than Cartesian coordinates, [64, 65] which are recti-
linear.9 Furthermore, using rectilinear coordinates for the vibrational analysis along the reaction
path can give physically unreasonable results [62]. When using internal coordinates, one must
choose between a nonredundant set, which is sufficient, or a redundant set, which is often more
convenient because sometimes it is difficult to find a set of nonredundant internal coordinates
that adequately describes the vibrational space.

Calculating the transverse vibrational frequencies along a reaction path requires to project
the reaction coordinate out of the Hessian [6]. Methods have been developed for calculating
vibrational frequencies along a reaction path in both nonredundant [65–67] and redundant [68]
internal coordinates, and Pilgrim can evaluate the vibrational frequencies in both cases. The
transformation of the Cartesian coordinates, gradient G, and Hessian F into internal coordinates
is well established [65, 68–74]. See D for details.

Pilgrim provides a set of internal coordinates to each ctcts, although it is also possible to
generate a different set of coordinates for each transition structure within the ctcts. The internal
coordinates can be generated by the command

pilgrim.py −−ics [mode [target[.idx]]]

where the values for mode are:

• 1: for standard generation of a redundant set

• 2: for the generation of a smaller redundant set (default)

• 3: for the generation of a non-redundant set

• -1: to check a previously generated set

• -2: to delete the current set

and target is the label of the species (i.e., a ctcts) containing all the transition structures. If
idx is also specified, the internal coordinates are exclusively generated for that particular transi-
tion structure. For instance,

pilgrim.py −−ics 1 TSoh.001

generates a redundant set of internal coordinates for the lowest-energy conformer of Tsoh,
whereas

9Rectilinear coordinates are any coordinates that can be obtained by a linear transformation from atomic Cartesians,
whereas curvilinear coordinates are related nonlinearly to atomic Cartesians.
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pilgrim.py −−ics 1 TSoh

generates a redundant set of internal coordinates common to all the conformers (i.e., all the
structures) of TSoh. The resulting internal coordinates are included in the pif.struc file as shown
in Listing A.9.

2.10. Output of MEP calculations

The information provided in the pif.struc, pif.path and pif.calcs input files allows
Pilgrim to calculate the MEP after the command

pilgrim.py −−path

is executed. Pilgrim calculates the MEP by successive calls to the ESSO until the values of sbw
and sfw for each ctcts are reached or until the MEP convergence criteria are fulfilled. In the
example here presented, both ctcts (TSoh and TSod) are run between −2.00 · ao and 2.00 · ao
with a stepsize of 0.01 · ao and Hessian calculations every NH = 10 steps. 10 Once the MEP is
obtained, Pilgrim prints a table with the energy of each point (see Listing A.10 for the case of
TSoh.001).

The vibrationally adiabatic ground-state potential is calculated from the Cartesian-coordinate
Hessian, although this is not the recommended procedure. If internal coordinates are available,
the program also produces the vibrationally adiabatic potential based on them, and it is recom-
mended to use this for the rate constant calculations. If both vibrationally adiabatic potentials are
available, the program always uses the one obtained with internal coordinates (see Listing A.11).

The variational coefficients and the TST/CAG and CVT/CAG transmission coefficients are
obtained from Eqs. (53), (57) and (58), respectively (Listing A.12).

Tunneling effects are included by plugging the ZCT and SCT tunneling probabilities into
Eq. (54). Listing A.13 includes information listed by Pilgrim after performing a tunneling cal-
culation. Pilgrim also lists the contribution in percentage to the transmission coefficient of two
energy intervals

κSAG =

∫ VAG

0 dEe−βE PSAG(E) +
∫ ∞

VAG dEe−βE PSAG(E)

β−1 exp
(
−βVAG) (65)

where the first integral represents the contribution due to tunneling and the second integral is
the contribution due to nonclassical reflection. In Listing A.13 the contribution due to tunneling
in the case of the SCT approximation at T = 298.15 K is 97.75%, and the κSCT transmission
coefficient is 27.68. Pilgrim also lists the representative tunneling energy (RTE), that is, the
energy at which the product of the tunneling probability and the Boltzmann factor is a maximum.
This product is the integrand in the above integral, and so its maximum gives the energy at which
the greatest number of particles tunnel. Finally, the program prints a summary with the ΓCVT,
κZCT, κSCT, κTST/CAG and κCVT/CAG coefficients. Notice that the final CVT/SCT coefficient is
given by Eq. (45).

Although we have dropped the subscript j during the discussion of tunneling, the reader
should note that in multipath calculations the variational, tunneling, and CAG coefficients have
to be calculated for each transition structure.

10All distances are in the mass-weighted coordinates of Eq. 32
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2.11. Multi-structural and multipath CVT/SCT rate constants
The multi-structural CVT/SCT thermal rate constant (MS-CVT/SCT) is given by the prod-

uct of the MS-TST rate constant and the CVT/SCT coefficient, γCVT/SCT
0 , calculated using the

transition structure with the lowest energy (indicated by the subscript 0) within a given CTC.
Specifically,

kMS−CVT/SCT = γCVT/SCT
0 k‡ (66)

where k‡ is the MS-TST thermal rate constant and

γCVT/SCT
0 = ΓCVT

0 κCVT/SCT
0 (67)

The MP-CVT/SCT thermal rate constant, kMP−CVT/SCT, is calculated as the sum of the individ-
ual CVT/SCT rate constants, defined as the product between the CVT/SCT coefficient and the
individual convencional TST thermal rate constant, k‡j , calculated for each of the transition struc-
tures:

kMP−CVT/SCT(T ) =

J‡−1∑
j=0

γCVT/SCT
j (T ) k‡j (T ) (68)

k‡j (T ) = B(T )
Q‡rv, j(T )

QMS−HO
rv,R (T )

e−βU‡0 (69)

An average CVT/SCT coefficient 〈γCVT/SCT(T )〉 for the multipath thermal rate constant can
be calculated as the ratio

〈γCVT/SCT(T )〉 =
kMP−CVT/SCT(T )

k‡(T )
(70)

where k‡(T ) is the MS-TST rate constant. Notice that 〈γCVT/SCT(T )〉 does not depend on the
properties of reactants, and from Eq. (70), we obtain that

〈γCVT/SCT(T )〉 =

∑
j γ

CVT/SCT
j (T ) w‡j QRRHO,‡

j (T ) e−βU‡j

QMS−HO,‡
rv (T )

(71)

where
QMS−HO,‡

rv (T ) =
∑

j

w‡j Q
RRHO,‡
j (T ) e−βU‡j (72)

which is analogous to Eq. (21).
Pilgrim also calculates the contribution of each transition state conformer (i.e., each transition

structure) to the MP-CVT/SCT rate constant, given by:

χMP−CVT/SCT
j =

γCVT/SCT
j k‡j

kMP−CVT/SCT (73)

or, generalized for any method X:

χMP−X
j =

γX
j k‡j

kMP−X (74)

Using Eq. (70) each contribution can be expressed as:

χMP−X
j =

γX
j

〈γX〉

k‡j
k‡

=
γX

j

〈γX〉
χMS−TST

j (75)
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where χMS−TST
j is the contribution of the j-th transition state conformer to the MS-TST rate

constant, which matches with its contribution to the MS-HO partition function shown in Eq. (22).
As in the case of MS-TST, the VTST rate constants are calculated by typing

pilgrim.py −−rcons

Pilgrim lists the 〈γCVT/SCT(T )〉 coefficient as shown in Listing A.14. Pilgrim also lists the con-
tribution of each of the transition structures to the MP-TST/ZCT, MP-TST/SCT, MP-CVT, MP-
CVT/ZCT and MP-CVT/SCT thermal rate constants. The thermal rate constants corresponding
to the passage from reactants to products (forward) are shown in Listing A.15. If products have
been defined in the pif.chem file, the backward thermal rate constants are also calculated using
microscopic reversibility.

2.12. Kinetic isotope effects
Pilgrim can evaluate the contribution of each of the transition structures to the kinetic isotope

effect (KIE). For the case of a deuterium KIE, the KIE in the MP-CVT/SCT approximation,
ηMP−CVT/SCT, is given by

ηMP−CVT/SCT =
kMP−CVT/SCT

H

kMP−CVT/SCT
D

(76)

where kMP−CVT/SCT
H is the thermal rate constant for the protium species, and kMP−CVT/SCT

D is
that for the deuterated species. In the example presented here, it is the ratio between the MP-
CVT/SCT thermal rate constants calculated for the R1h and R1d reactions. Equation (76) can
also be written as a weighted sum of individual contributions [75]

ηMP−CVT/SCT =

J‡−1∑
j=0

PMP−CVT/SCT
j,D ηCVT/SCT

j (77)

where the weight depends exclusively on the properties of the transition structures of the deuter-
ated species

PMP−CVT/SCT
j,D =

w‡jγ
CVT/SCT
j,D QRRHO,‡

j,D∑J‡−1
j=0 w‡jγ

CVT/MT
j,D QRRHO,‡

j,D

(78)

and the individual contributions are partitioned into

ηCVT/SCT
j = ηtor ηtrans η

‡

rv, j η
CVT/SCT
vtun, j (79)

where ηtor and ηtrans are the torsional anharmonic and translational contributions to the KIE.
Notice that both contributions are independent of the number of conformations within the CTC
and

ηtor =
αH

αD
(80)

where α is the ratio between the torsional anharmonic and torsional harmonic multistructural par-
tition functions (in the numerator for the case of the protium species and in the denominator for
the deuterated species). The translational contribution (which is present only for a bimolecular
reaction) is the ratio

ηtrans =
Φrel,D

Φrel,H
(81)
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The contribution of each of the transition state structures to the rovibrational partition func-
tion is

η‡rv, j =
QMS−HO

R,D

QMS−HO
R,H

QRRHO,‡
j,H

QRRHO,‡
j,D

(82)

whereas the variational and tunneling contributions are given by

ηCVT/SCT
vtun, j =

γCVT/SCT
j,H

γCVT/SCT
j,D

=
ΓCVT

j,H

ΓCVT
j,D

κCVT/SCT
j,H

κCVT/SCT
j,D

(83)

Equation (77) can be rewritten as:

ηMP−CVT/SCT =

J‡−1∑
j=0

η̃CVT/SCT
j (84)

which is a sum of the weighted individual KIEs:

η̃CVT/SCT
j = PMP−CVT/SCT

j,D ηCVT/SCT
j (85)

The ratio between the weighted individual KIE and the total KIE provides the contribution of
each transition structure to the final KIE:

PMP−CVT/SCT
j,H =

η̃CVT/SCT
j

ηCVT/SCT (86)

When a transition state has only a single transition structure, the KIE reduces to Eq. (79).

When executed with --kies, Pilgrim lists the available reactions and asks the user for the
unsubstituted and isotopically substituted reactions, as shown in Listing A.16. After the two
reactions are selected, the program prints the method-independent contributions (Listing A.17),
as well as the total variational–tunneling contribution and the total KIE (Listing A.18) and the
different individual contributions obtained by each method (Listing A.19).

3. Study of reaction mechanisms

In this section we discuss the simulation of a reaction mechanism composed of M elementary
reactions {R1, . . . ,Ri, . . . ,RM} involving a set of K reagents {S 1, . . . , S k, . . . , S K}.11 For each of
the reactions Ri the thermal rate constant ki is assumed to be known. The initial population of
the K species is also assumed to be known and is given by

x0 = x(t = 0) = (x1(0), . . . , xk(0), . . . , xK(0)) (87)

The objective is to monitor the time evolution of the populations as a function of time t:

x = x(t) = (x1(t), . . . , xk(t), . . . , xK(t)) (88)

The population vector x is also called the state vector.

11A reagent is a stable chemical species.
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3.1. The kinetic Monte-Carlo algorithm
Pilgrim determines this time evolution by a stochastic method, in particular by kinetic Monte

Carlo (KMC) [38, 39]. The fundamental assumption of KMC is that, for each of the elementary
reactions, Ri, there is a function, called the propensity function, ai(x), such that ai(x)dt, represents
the probability at time t that reaction Ri will occur inside a given volume V in the infinitesimal
time interval [t, t + dt]. Here we have indicated that ai(x) depends on x, where we use x to denote
the set xk, where xk is the number of molecules (or atoms if the species is monatomic) of species
S k. Depending on the type of reaction, the propensity ai(x) is related to a reaction parameter ci in
such a way that cidt provides the probability that a given molecule of species S k will react in the
next infinitesimal time dt. The number of molecules of species S k that undergo reaction in time
dt is xkcidt and therefore ai = xkci. The relation between ai(x), ci and ki for the three possible
types of unimolecular and bimolecular reactions is shown in Table 3.

Table 3: Relation between the kinetic equations for elementary reactions, propensities, reaction parameters and rate
constants.

Reaction Kinetic equation Relation ki, ci Relation ci, ai

S k → P d[P]
dt = ki[S k] ci = ki

dxP
dt = ai = cixk

S k + S k+1 → P d[P]
dt = ki[S k][S k+1] ci = ki/V dxP

dt = ai = cixk xk+1

2S k → P d[P]
dt = ki[S k]2 ci ' 2ki/V dxP

dt = ai = 1
2 cixk(xk − 1)

' 1
2 cix2

k

The reaction probability density function, p(τ, i) is derived from the fundamental assumption
of KMC and gives the probability at time t that the next reaction in the system will be reaction
Ri and that it will occur in the infinitesimal time between t + τ and t + τ + dt. It is given by

p(τ, i) = ai exp[−a0τ] (89)

where

a0 =

M∑
i=1

ai (90)

The values of τ and i in Eq. (89) are generated by two random numbers r1 and r2, both in the
interval between zero and one:

τ =
1
a0

log
(

1
r1

)
(91)

i−1∑
i′=1

ai′ < a0r2 ≤

i∑
i′=1

ai′ (92)

The time τ obtained from Eq. (91) is used to update the time variable, and the value of i is
used to identify the reaction that takes place. Because reaction Ri is identified with a one or
more reagents, their populations are also updated. The algorithm stops when the population of
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the initial reactive species is extinguished or when that population remains stationary due to the
reaction system reaching equilibrium. When the algorithm stops, Pilgrim prints the total time
and the populations of reagents. The KMC algorithm is depicted schematically in Figure 4.

INPUT
• Reactions !" and their rate constants #" ($ =1,...,M)
• Reactive species %& and their initial population '( = (+, 0 , … , +& 0 ,… +0 0 ) at t = 0 

• Calculate propensities 2" from 3" and ' 4
• Calculate 2( = ∑"6,7 2"

• Generate random numbers r1 and r2

• 8 = ,
9:
log ,

>?
• Take $ so that ∑"@6,"A, 2"@ < CD2( ≤ ∑"@6," 2"@

• Advance in time 4 ⟻ 4 + 8
• Adjust +&(4) according to !"
• Update ' 4

t
'((4) = 0 or
at equilibrium?

NO
END

YES OUTPUT
• Total time ttotal ⟻ 4
• Final populations x(ttotal)

Obtain the reaction parameters 3" from #" (i =1,...,M)

Figure 4: Flow diagram for the KMC algorithm

3.2. Application of KMC
We will consider the chemical reactions involved in a decomposition mechanism of the rad-

icals that can be generated by hydrogen abstraction from 1-propanol [40], as listed in Table 2.
These reactions have been defined in the pif.chem file and the MP-CVT/SCT thermal rate con-
stants for each channel have been fitted to the following expression [76]:

k = A
(

T
TR

)n

exp
− E(T + T0)

R(T 2 + T 2
0 )

 (93)

where TR is a reference temperature given by TR ≡ 300 K, and A, E, n, and T0 are fitting pa-
rameters (Listing E.1). These parameters were fitted to the MP-CVT/SCT thermal rate constants
obtained in the temperature range 1000–2000 K. Pilgrim can also fit calculated rate constants to
expressions other than Eq. (93), which in the pif.kmc file is referred as analytic4. The program
can also use the numerical value of the thermal rate constants instead of analytical expressions.
For more details we refer to the manual of the program.

The thermal rate constants can be specified in the forward direction (fw), in the backward
direction (bw), or in both. Thus, for the H-migration reactions (R7, R9, R10, R12, R13 and
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R14), the expressions for both the forward and backward rate constants are needed. Addition-
ally, the KMC input file (pif.kmc) allows specifying the volume of the reaction vessel and the
time units (microseconds in the example), as well as the initial populations of the reagents that
are initially present. The default initial population is zero; therefore the user only needs to spec-
ify the nonzero initial populations. In the example, the only nonzero population is one million
molecules of the CH3CH2C•HOH radical. The command

pilgrim.py −−kmc anaC1

runs the KMC algorithm for the simulation, where anaC1 is the name given by the user to this
case. An extract of the output is shown in Listing E.2.

It is possible to specify more that one simulation in the pif.kmc file. For instance, to run a
simulation with the initial population just in the CH3C•HCH2OH radical and at the temperatures
indicated in the pif.temp file, the user should execute

pilgrim.py −−kmc anaC2

If the label of the simulation is not included in the command, Pilgrim runs all the simulations
included in the pif.kmc file.

4. Additional examples

In addition to the examples described above, a total of 11 fully commented worked examples
are included in the manual of Pilgrim. These examples allow the user to explore most of the
capabilities of the program. The corresponding output files for these examples are included with
the documentation. Additional information is available in the manual.

5. Final remarks and future directions

Pilgrim can calculate thermal rate constants of reactions involving multiple conformations of
reactants, transition states, and products by means of variational transition state theory (VTST)
including multidimensional tunneling. Pilgrim can deal with more than one reaction in the same
working directory, i.e., many elementary steps can be considered together. Pilgrim can also
simulate the temporal evolution of the system with many elementary steps through a Kinetic
Monte Carlo (KMC) simulation. Thus, it is possible to estimate the final product branching
ratios of a proposed chemical mechanism.

An additional feature of the program not mentioned so far, but explained in the manual, is
the possibility to perform dual-level calculations automatically. First, low-level calculations are
carried out for the reaction of interest. Then single-point energy calculations of the reactants,
transition structures, points along the MEP, and (optionally) products are performed at a higher
level. Finally the low-level calculations are corrected with the high-level single point energies
using the interpolated single-point energies (ISPE) algorithm [77].

Possibilities for future versions include pressure dependence, version 4 of the large curva-
ture tunneling (LCG4) [78–80], approximation, the microcanonically optimized multimensional
tunneling method (µOMT) [14], and the least-action tunneling path method (LAT) [81–83].
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APPENDIXES

A. Selected program outputs of reactions R1h and R1d

Listing A.1: Extract of the help of the interactive menu of Pilgrim, which can be accessed by the --input option.

List of commands ($cmd) and variables ($var):

----------------------------------------------------------------

$cmd\$var | struc | isomass | temp | chem | path | kmc | dlevel

----------------------------------------------------------------

help | x | x | x | x | x | x | x

ls | x | x | x | x | x | x | x

add | | x+ | x+ | x+ | x+ | x+ | x

mod | x+ | | | | x+ | x+ |

rm | x+ | x | x+ | x+ | x+ | x | x

----------------------------------------------------------------

x: the combination $cmd $var is available

+: the combination $cmd $var requires $values

Information about variables ($var):

-----------------------------------------------------------------

$var | addresses ... | which contains ...

-----------------------------------------------------------------

struc | pif.struc | structures & isot. masses

isomass | pif.struc | structures & isot. masses

temp | pif.temp | temperatures

chem | pif.chem | reactions

path | pif.path & pif.calcs | MEP parameters

kmc | pif.kmc | variables in the KMC

dlevel | pif.dlevel | structures for high -level

-----------------------------------------------------------------

Listing A.2: Species participating in reaction R1h; m.form. is the molecular formula; num.ifreqs. is the number
of imaginary frequencies; ch is charge; mtp is multiplicity; num.confs. is the total number of conformations and
total number of conformations discounting the conformational enantiomers (in parentheses); iso.mod. indicates if the
species has a isotopic substitution; num(minimum) and num(saddle) refer to the number of minimum and transition
state structures, respectively.

----------------------------------------------------------------------------

species name | m.form. | num.ifreqs. | ch | mtp | num.confs. | iso.mod.

----------------------------------------------------------------------------

CH3CH2O | C(2)H(5)O | 0 | 0 | 2 | 1 (1) | none

CH3CH2OH | C(2)H(6)O | 0 | 0 | 1 | 2 (2) | none

H | H | 0 | 0 | 2 | 1 (1) | none

H2 | H(2) | 0 | 0 | 1 | 1 (1) | none

----------------------------------------------------------------------------

TSoh | C(2)H(7)O | 1 | 0 | 2 | 2 (2) | none

----------------------------------------------------------------------------

* num(minimum) = 5 (5)

* num(saddle ) = 2 (2)

Listing A.3: Same as Listing A.2. It should be notice that the number of total conformers was corrected after modifying
the weights of the gauche conformers.

----------------------------------------------------------------------------

species name | m.form. | num.ifreqs. | ch | mtp | num.confs. | iso.mod.

----------------------------------------------------------------------------
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CH3CH2O | C(2)H(5)O | 0 | 0 | 2 | 1 (1) | none

CH3CH2OH | C(2)H(6)O | 0 | 0 | 1 | 3 (2) | none

H | H | 0 | 0 | 2 | 1 (1) | none

H2 | H(2) | 0 | 0 | 1 | 1 (1) | none

----------------------------------------------------------------------------

TSoh | C(2)H(7)O | 1 | 0 | 2 | 3 (2) | none

----------------------------------------------------------------------------

* num(minimum) = 6 (5)

* num(saddle ) = 3 (2)

Listing A.4: List of all species as displayed by typing ‘ls struc’. Species with isotopic substitutions are now included.

----------------------------------------------------------------------------

species name | m.form. | num.ifreqs. | ch | mtp | num.confs. | iso.mod.

----------------------------------------------------------------------------

CH3CH2O | C(2)H(5)O | 0 | 0 | 2 | 1 (1) | none

CH3CH2OH | C(2)H(6)O | 0 | 0 | 1 | 3 (2) | none

H | H | 0 | 0 | 2 | 1 (1) | none

H2 | H(2) | 0 | 0 | 1 | 1 (1) | none

CH3CH2OD | C(2)H(6)O | 0 | 0 | 1 | 3 (2) | D(9)

D | H | 0 | 0 | 2 | 1 (1) | D(1)

D2 | H(2) | 0 | 0 | 1 | 1 (1) | D(all_H)

----------------------------------------------------------------------------

TSoh | C(2)H(7)O | 1 | 0 | 2 | 3 (2) | none

TSod | C(2)H(7)O | 1 | 0 | 2 | 3 (2) | D(9 ,10)

----------------------------------------------------------------------------

* num(minimum) = 11 (9)

* num(saddle ) = 6 (4)

Listing A.5: Output from the pfn.H2.slevel.txt file. The translational, electronic, rotational, and vibrational partition
functions were calculated using Eqs. (8), (9), (12), and (16), respectively. The total partition function was calculated
using Eq. (7) with the HO approximation (λZPE = 1).

-----------------------

Analysis of STRUC: H2

-----------------------

Pilgrim output file: 3-PLG_OUTPUT/pfn.H2.slevel.txt

Number of conformers: 1

V0 = electronic energy

V1 = electronic energy + zero -point energy (ZPE)

ZPE is calculated using scaled frequencies

Frequency scale factor: 1.00000

min(V0) = -1.11750590 hartree

min(V1) = -1.10501868 hartree

Relative energies (in kcal/mol):

------------------------------------------------------------------------

name | V0 -min(V0) | V1-min(V1) | ZPE | mass (amu) | weight | PGS

------------------------------------------------------------------------

001 | 0.00 | 0.00 | 7.84 | 2.02 | 1 | Dinfv

------------------------------------------------------------------------

weight: equals 2 if the structure has a conformational enantiomer ,

equals 1 otherwise

PGS : point group of symmetry
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------------------

Conformation: 001

------------------

| Molecular formula : H(2)

| Number of atoms : 2

| Number of electrons : 2

| Vibrational DOFs : 1

| Charge : 0

| Multiplicity : 1

| Electronic energy (V0): -1.11750590 hartree

| Total mass [root] : 2.0156 amu

| Total mass : 2.0156 amu

| Point group symmetry : Dinfv

| Rotational sym num : 2

| Cartesian coordinates (Angstrom ):

| H -0.356115 +0.000000 +0.000000 [ 1.008 amu]

| H +0.356115 +0.000000 +0.000000 [ 1.008 amu]

| Moments and product of inertia (au):

| +1.664E+03

| Vibrational frequencies [1/cm] (scaled by 1.000):

| 5481.25

| Vibrational zero -point energies [kcal/mol]:

| 7.84

| Vibrational zero -point energy: +0.01248722 hartree =

| +7.84 kcal/mol =

| +0.34 eV =

| +2740.63 cm^-1

| V0 + zero -point energy V1 = -1.10501868 hartree

|

| Partition functions (pfns):

| ---------------------------------------------------------------------

| T (K) | Qtr | Qrot | Qvib | Qel | Qtot

| ---------------------------------------------------------------------

| 298.15 | 4.103E-01 | 1.571E+00 | 1.000E+00 | 1.000E+00 | 6.446E-01

| ---------------------------------------------------------------------

| Qtr : translational pfn (in au)

| Qrot: rotational pfn (rigid -rotor)

| Qvib: vibrational pfn (harmonic -oscillator) relative to V1

| Qel : electronic pfn

| Qtot: total pfn per unit volume (in au)

|

| Both Qrot and Qtot include rotational symmetry number

|

| Gibbs free energy (hartree ):

| --------------------------------------

| T (K) | V = 1 cm^3 | V = kbT/p0

| --------------------------------------

| 298.15 | -1.15858443 | -1.11643907

| --------------------------------------

| V : volume per molecule

| p0: 1bar

|

Listing A.6: Extract of the output from the pfn.CH3CH2OH.slevel.txt file showing the section associated with the MS-
HO partition function.

Number of conformers: 3
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V0 = electronic energy

V1 = electronic energy + zero -point energy (ZPE)

ZPE is calculated using scaled frequencies

Frequency scale factor: 1.00000

min(V0) = -152.13306610 hartree

min(V1) = -152.03827812 hartree

Relative energies (in kcal/mol):

---------------------------------------------------------------------

name | V0 -min(V0) | V1-min(V1) | ZPE | mass (amu) | weight | PGS

---------------------------------------------------------------------

001 | 0.00 | 0.00 | 59.48 | 46.04 | 2 | C1

002 | 0.25 | 0.19 | 59.42 | 46.04 | 1 | Cs

---------------------------------------------------------------------

weight: equals 2 if the structure has a conformational enantiomer ,

equals 1 otherwise

PGS : point group of symmetry

...

...

...

Total multi -structural HO pfn (QMS_HO) and Gibbs free energies (GFE):

-----------------------------------------------------------

T (K) | QMS_HO | GFE [V = 1 cm^3] | GFE [V = kbT/p0]

-----------------------------------------------------------

298.15 | 4.402E+06 | -152.10670228 | -152.06455692

-----------------------------------------------------------

QMS_HO is calculated with regard to min(V1)

Individual contributions to the partition function:

-------------------------

T (K) | 001 | 002

-------------------------

298.15 | 0.726 | 0.274

-------------------------

Listing A.7: Extract of the output rcons.R1h.slevel.txt file showing the energetics of the R1h reaction, its forward and
backward equilibrium constants, TST thermal rate constants and free energies of activation.

Relative energies (kcal/mol):

V0(i) is the electronic energy of the i-th conformer

V1(i) = V0(i)+ZPE(i)

ZPE(i) is the harmonic oscillator ZPE of the i-th conformer

min{V0(i)} of reactants ==> V0 = -152.59964800 hartree

min{V1(i)} of reactants ==> V1 = -152.50486002 hartree

---------------------------------------------------

SP | V0(i)-V0 | V1(i)-V1 | weight

---------------------------------------------------

CH3CH2OH .001+H.001 | 0.00 | 0.00 | 2

CH3CH2OH .002+H.001 | 0.25 | 0.19 | 1

---------------------------------------------------

TSoh .001 | 8.78 | 7.04 | 2

TSoh .002 | 8.83 | 7.02 | 1

---------------------------------------------------

CH3CH2O .001+H2.001 | -39.07 | -41.56 | 1
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---------------------------------------------------

SP: stationary point

----------------------

EQUILIBRIUM CONSTANT

----------------------

- Keq : the equilibrium constant

- GFER : the Gibbs free energy of reaction (kcal/mol)

- R2P : from reactant(s) to product(s)

- P2R : from product(s) to reactant(s)

Keq(P2R) = 1/Keq(R2P)

GFER(P2R) = - GFER(R2P)

--------------------------------------------------

| for V=1cm^3 per molecule

--------------------------------------------------

T (K) | Keq (R2P) | Keq (P2R) | GFER (R2P)

--------------------------------------------------

298.15 | +4.202E+30 | +2.380E-31 | -41.778

--------------------------------------------------

--------------------------------------------------

| for V=kB*T/p0 per molecule , p0=1bar

--------------------------------------------------

T (K) | Keq (R2P) | Keq (P2R) | GFER (R2P)

--------------------------------------------------

298.15 | +4.202E+30 | +2.380E-31 | -41.778

--------------------------------------------------

----------------------------------

TRANSITION STRUCTURE CONTRIBUTIONS

----------------------------------

The contribution of the j-th transition state conformer

to the MS -TST rate constant is calculated as:

chi_j^TST = w_j * (Q^{RR-HO}_j / Q^{MS -HO}) * exp(-U_j/kB/T)

where

w_j : weight of j-th conformer (1 or 2)

Q^{RR-HO}_j: rigid -rotor harmonic -oscillator partition function

Q^{MS-HO} : multi -structural harmonic -oscillator partition function

U_j : relative energy with regard to the most stable conformer

(considering the ZPE)

---------------------------

T (K) | Conf | chi_j

| | TST

---------------------------

298.15 | 001 | 0.63749

| 002 | 0.36251

---------------------------

-----------------------
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FORWARD RATE CONSTANTS

-----------------------

- units: cm^3/ molecule/s

---------------------------------

T (K) | TS | MS-TST

---------------------------------

298.15 | total | 1.087E-16

| 001 | 6.930E-17

| 002 | 3.941E-17

---------------------------------

-------------------------------------------------

FORWARD GIBBS FREE ENERGIES OF ACTIVATION (GFEA)

-------------------------------------------------

* GFEA = -R T ln(h k V^-1 / kB T)

- units: kcal/mol

- reference volume: 1 cm^3 per molecule

-----------------------

T (K) | MS -TST

-----------------------

298.15 | 39.232

-----------------------

* GFEA = -R T ln(h k V^-1 / kB T)

- units: kcal/mol

- reference volume: kB*T/p0 per molecule , with p0 = 1 bar

-----------------------

T (K) | MS -TST

-----------------------

298.15 | 12.785

-----------------------

-----------------------

BACKWARD RATE CONSTANTS

-----------------------

- units: cm^3/ molecule/s

---------------------------------

T (K) | TS | MS-TST

---------------------------------

298.15 | total | 2.587E-47

| 001 | 1.649E-47

| 002 | 9.378E-48

---------------------------------

-------------------------------------------------

BACKWARD GIBBS FREE ENERGIES OF ACTIVATION (GFEA)

-------------------------------------------------

* GFEA = -R T ln(h k V^-1 / kB T)

- units: kcal/mol

36



- reference volume: 1 cm^3 per molecule

-----------------------

T (K) | MS -TST

-----------------------

298.15 | 81.010

-----------------------

* GFEA = -R T ln(h k V^-1 / kB T)

- units: kcal/mol

- reference volume: kB*T/p0 per molecule , with p0 = 1 bar

-----------------------

T (K) | MS -TST

-----------------------

298.15 | 54.563

-----------------------

Listing A.8: Gaussian template inside the pif.calcs file, automatically generated from the input menu for TSoh species.

start_meppoint TSoh gaussian

%nproc=1

%mem=1GB

%chk=[ Pilgrim_name ].chk

#p hf/sto -3g

scf=verytight

NoSymm

[Pilgrim_gradhess]

Input file for MEP calculation

0 2

[Pilgrim_geometry]

end_meppoint

Listing A.9: Extract of the pif.struc file showing the specification of the internal coordinates for the R1h reaction.

start_ctc TSoh

root TSoh

# conformers & anharmonicity

conformer 001 * 2 # 0.000 kcal/mol , C1

conformer 002 * 1 # 0.058 kcal/mol , Cs

# basic data

mformu C(2)H(7)O

ch 0

mtp 2

type 1

freqscal 1.000

elestate 2 0.0000000000E+00

# internal coordinates

ics 1-2 2-3 2-4 2-5 3-6

ics 3-7 3-8 6-9 9-10

ics 1-2-3 1-2-4 1-2-5 2-3-6 2-3-7

ics 2-3-8 3-2-4 3-2-5 3-6-9 4-2-5

ics 6-3-7 6-3-8 7-3-8

ics 6=9=10

ics 1_3_4_2 1_3_5_2 1_4_5_2 2_6_7_3 2_6_8_3
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ics 2_7_8_3 3_4_5_2 6_7_8_3

ics 1-2-3-6 1-2-3-7 1-2-3-8 2-3-6-9 4-2-3-6

ics 4-2-3-7 4-2-3-8 5-2-3-6 5-2-3-7 5-2-3-8

ics 7-3-6-9 8-3-6-9

end_ctc

Listing A.10: Extract of the path.TSoh.001.slevel.txt file listing the reference energy, the progression along the MEP, the
total energy and the relative energy with respect to the reference energy.

Reference energy (Eref) set to: -152.599648 hartree

-------------------------------------------------------------------

s (bohr) | E (hartree) | E-Eref (hartree) | E-Eref (kcal/mol)

-------------------------------------------------------------------

-2.0000 | -152.5992080 | +0.0004400 | +0.276

-1.9000 | -152.5990964 | +0.0005516 | +0.346

...

-0.2000 | -152.5879146 | +0.0117334 | +7.363

-0.1000 | -152.5864887 | +0.0131593 | +8.258

-0.0000 | -152.5856639 | +0.0139841 | +8.775

+0.1000 | -152.5872737 | +0.0123743 | +7.765

+0.2000 | -152.5930760 | +0.0065720 | +4.124

...

+1.9000 | -152.6572472 | -0.0575992 | -36.144

+2.0000 | -152.6579748 | -0.0583268 | -36.601

-------------------------------------------------------------------

Listing A.11: Extract of the path.TSoh.001.slevel.txt file listing the potential along the MEP and the ZPE in Cartesian
(cc) and internal (ic) coordinates; The vibrational adiabatic potential VG

a and the reference energy plus VG
a are also listed.

-----------------------------------------------------------------------

s (bohr) | V_MEP | ZPE(cc) | ZPE(ic) | VaG || Eref + VaG (au)

-----------------------------------------------------------------------

-2.000 | +0.276 | 59.478 | 59.662 | +59.938 || -152.50413097

-1.900 | +0.346 | 59.475 | 59.683 | +60.029 || -152.50398513

...

-0.200 | +7.363 | 58.221 | 59.469 | +66.832 || -152.49314487

-0.100 | +8.258 | 57.723 | 58.611 | +66.869 || -152.49308555

-0.000 | +8.775 | 57.742 | 57.742 | +66.517 || -152.49364627

+0.100 | +7.765 | 57.945 | 57.473 | +65.238 || -152.49568502

+0.200 | +4.124 | 58.011 | 57.475 | +61.599 || -152.50148312

...

+1.900 | -36.144 | 58.047 | 58.781 | +22.637 || -152.56357374

+2.000 | -36.601 | 57.913 | 58.552 | +21.952 || -152.56466598

-----------------------------------------------------------------------

-0.145 | Maximum of VaG (VAG) | +66.907 || -152.49302569

-----------------------------------------------------------------------

Listing A.12: Extract of the path.TSoh.001.slevel.txt file indicating the location of sCVT
? , and the values of ΓCVT and

∆∆Go
var (DDGFE); the TST/CAG and the CVT/CAG transmission coefficients are also listed.

-----------------------------------------------

T (K) | s_CVT | Gamma^CVT | DDGFE

-----------------------------------------------

298.15 | -0.1316 | 5.7945E-01 | 0.3233

-----------------------------------------------

...

--------------------------------------------------------------------

T (K) | VAG -VaG(s=0) | TST/CAG || VAG -VaG(s_CVT) | CVT/CAG
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--------------------------------------------------------------------

298.15 | 0.3894 | 5.183E-01 || 0.0035 | 9.941E-01

--------------------------------------------------------------------

Energy differences in kcal/mol

Listing A.13: Extract of the path.TSoh.001.slevel.txt file listing data related to the tunneling calculations; see text.

Summary table

- Progress along the path (s) in bohr

- Vibrationally adiabatic potential (VaG) in kcal/mol

- kappa (curvature) in bohr^-1

- Turning point (turnpoint) in bohr

- Effective mass (mueff) in a.u.

----------------------------------------------------------------------

s | VaG | kappa | turnpoint | mueff | mueff/mu

----------------------------------------------------------------------

-2.000 | +59.938 | +3.43E-01 | 0.25599 | 1525.3355 | 0.8368

-1.900 | +60.029 | +3.34E-01 | 0.24867 | 1538.6496 | 0.8441

...

-0.200 | +66.832 | +2.09E+00 | 0.19125 | 713.1338 | 0.3912

-0.100 | +66.869 | +3.60E+00 | 0.21423 | 228.1790 | 0.1252

-0.000 | +66.517 | +2.23E+00 | 0.23910 | 674.8725 | 0.3702 **

+0.100 | +65.238 | +8.55E-01 | 0.26396 | 1121.5660 | 0.6153

+0.200 | +61.599 | +5.56E-01 | 0.26498 | 1330.8187 | 0.7301

...

+1.900 | +22.637 | +5.24E-01 | 0.56890 | 931.1407 | 0.5108

+2.000 | +21.952 | +7.43E-01 | 0.58078 | 647.0376 | 0.3550

----------------------------------------------------------------------

** kappa , turnpoint and mueff were interpolated

Transmission probabilities will be calculated between E0 and VAG:

E0 = 59.4804 kcal/mol

VAG = 66.9065 kcal/mol

Transmission probabilities for Kappa^SAG calculation:

--------------------------------------------------------------

E [kcal/mol] | P^ZCT(E) | P^SCT(E) | Classical turning

| | | points [bohr]

--------------------------------------------------------------

59.4804 | 7.797e-09 | 1.128e-07 | [ -2.000 ,+0.239] L

59.4820 | 7.847e-09 | 1.135e-07 | [ -2.000 ,+0.239] L

59.4891 | 8.060e-09 | 1.163e-07 | [ -2.000 ,+0.239] L

...

66.8851 | 4.912e-01 | 4.960e-01 | [ -0.175 , -0.111]

66.8978 | 4.964e-01 | 4.984e-01 | [ -0.164 , -0.124]

66.9049 | 4.993e-01 | 4.997e-01 | [ -0.153 , -0.136]

--------------------------------------------------------------

Number of tunneling energies: 81

WARNING! Some tunneling probabilities are not converged:

* ’L’ --> at the left -side of VaG(s).

* ’R’ --> at the right -side of VaG(s).

* ’B’ --> at both sides of VaG(s).

This fact may lack of importance if the temperature

is high enough so these probabilities do not play

any role.
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ZCT transmission coefficient:

----------------------------------------------------

T (K) | %I1 | %I2 | Kappa^ZCT | RTE

----------------------------------------------------

298.15 | 91.72 | 8.28 | 8.320E+00 | 64.690

----------------------------------------------------

RTE: Representative Tunneling Energy (in kcal/mol)

%I1: contribution of tunneling

%I2: contribution of non -classical reflection

++ : indicates that QRC was used at the given temperature

** : indicates that RTE is close to E0 (less than 1.5 kcal/mol)

SCT transmission coefficient:

----------------------------------------------------

T (K) | %I1 | %I2 | Kappa^SCT | RTE

----------------------------------------------------

298.15 | 97.75 | 2.25 | 2.768E+01 | 63.568

----------------------------------------------------

RTE: Representative Tunneling Energy (in kcal/mol)

%I1: contribution of tunneling

%I2: contribution of non -classical reflection

++ : indicates that QRC was used at the given temperature

** : indicates that RTE is close to E0 (less than 1.5 kcal/mol)

...

SUMMARY OF CALCULATED COEFFICIENTS:

-------------------------------------------------------------------------

T (K) | Gamma | Kappa | Kappa | Kappa | Kappa

| CVT | ZCT | SCT | TST/CAG | CVT/CAG

-------------------------------------------------------------------------

298.15 | 5.7945E-01 | 8.3199E+00 | 2.7682E+01 | 5.1827E-01 | 9.9408E-01

-------------------------------------------------------------------------

Listing A.14: Extract of the rcons.R1h.slevel.txt file listing various multipath transmission coefficients which correct the
MS-TST thermal rate constant.
-------------------------------

TOTAL TRANSMISSION COEFFICIENTS

-------------------------------

The averaged transmission coefficient

for a given method (X) is:

<gamma >^X = k^X / k^TST

...

---------------------------------------------------------------------------

T (K) | Conf | gamma | gamma | gamma | gamma | gamma

| | TST/ZCT | TST/SCT | CVT | CVT/ZCT | CVT/SCT

---------------------------------------------------------------------------

298.15 | all | 4.265E+00 | 1.403E+01 | 5.870E-01 | 4.750E+00 | 1.563E+01

| 001 | 4.312E+00 | 1.435E+01 | 5.794E-01 | 4.792E+00 | 1.595E+01

| 002 | 4.183E+00 | 1.348E+01 | 6.002E-01 | 4.676E+00 | 1.507E+01

---------------------------------------------------------------------------

Listing A.15: Extract of the rcons.R1h.slevel.txt file with the forward rate constants calculated by different methods. Rate
constants based on the ZCT transmission coefficient have been omitted in this listing for a better presentation of data.
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-----------------------

FORWARD RATE CONSTANTS

-----------------------

- units: cm^3/ molecule/s

---------------------------------------------------------------------------

T (K) | TS | MS-TST | MS-TST/SCT | MS-CVT | MS-CVT/SCT

---------------------------------------------------------------------------

298.15 | total | 1.087E-16 | 1.560E-15 | 6.299E-17 | 1.733E-15

| 001 | 6.930E-17 | 9.942E-16 | 4.015E-17 | 1.105E-15

| 002 | 3.941E-17 | 5.653E-16 | 2.283E-17 | 6.283E-16

---------------------------------------------------------------------------

---------------------------------------------------------------------------

T (K) | TS | MS-TST | MP-TST/SCT | MP-CVT | MP-CVT/SCT

---------------------------------------------------------------------------

298.15 | total | 1.087E-16 | 1.525E-15 | 6.381E-17 | 1.699E-15

| 001 | 6.930E-17 | 9.942E-16 | 4.015E-17 | 1.105E-15

| 002 | 3.941E-17 | 5.311E-16 | 2.365E-17 | 5.937E-16

---------------------------------------------------------------------------

Listing A.16: Pilgrim menu for the --kies option. In blue, information provided by the user.

Available reactions

---------------------

Nmethods: the number of methods the rate constant was calculated with

------------------------------------------

reaction | dir | keyword | Nmethods

------------------------------------------

R1d | fw | R1d.fw | 11

R1d | bw | R1d.bw | 11

------------------------------------------

R1h | fw | R1h.fw | 11

R1h | bw | R1h.bw | 11

------------------------------------------

Reactions are selected as in the ’keyword ’ column ($reaction.$dir)

Introduce reactions without/with isotopic substitution(s)

Type ’end()’ or ’exit()’ to finish

>> without: R1h.fw

>> with : R1d.fw

Listing A.17: Translational, rovibrational and torsional anharmonic contributions to the KIE.

Contributions to the total KIE (method -independent ):

---------------------------------------------

T (K) | kie_tr | kie_rv | kie_tor

---------------------------------------------

298.15 | 2.741 | 1.718 | 1.000

---------------------------------------------

Listing A.18: Variational-tunneling contribution to the KIE and the total KIE.
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Total KIE and vtun contribution (method -dependent ):

------------------------------------------------

T (K) | method | kie_vtun | kie_tot

------------------------------------------------

298.15 | MS-TST | - | 4.709

| MS-TST/ZCT | 1.556 | 7.329

| MS-TST/SCT | 1.879 | 8.848

| MS-CVT | 0.673 | 3.170

| MS-CVT/ZCT | 1.659 | 7.811

| MS-CVT/SCT | 2.002 | 9.430

| MP-TST/ZCT | 1.547 | 7.286

| MP-TST/SCT | 1.871 | 8.809

| MP-CVT | 0.679 | 3.197

| MP-CVT/ZCT | 1.652 | 7.782

| MP-CVT/SCT | 1.998 | 9.408

------------------------------------------------

Listing A.19: Individual transition-structure contributions to the KIE. Notice that kie# j refers to η̃ j.

Contribution of each transition structure to KIE using MP -CVT/SCT:

----------------------------------------------------------------

T (K) | SP | rv,j | vtun ,j | P_j ,D | P_j ,H | kie_j | kie#_j

----------------------------------------------------------------

298.15 | 001 | 1.713 | 2.002 | 0.651 | 0.650 | 9.401 | 6.120

| 002 | 1.728 | 1.990 | 0.349 | 0.350 | 9.421 | 3.288

----------------------------------------------------------------

B. Page-McIver algorithm

This method uses a local quadratic approximation at a given point and starts from an equation
equivalent to Eq. (33):

dx
dζ

= −Ĝ(x) (B.1)

where ζ is a progress variable along the path, which is related to s by

ds
dζ

=

√
dx†

dζ
dx
dζ

(B.2)

A local quadratic approximation at a given point xn of the MEP at which the gradient and the
Hessian are available allows us to write

Ĝ(x) = Ĝ(xn) + F(xn)(x − xn) (B.3)

By substituting Eq. (B.3) into Eq. (B.1) the following equation is obtained:

dx
dζ

= −Ĝ(xn) − F(xn)(x − xn) (B.4)

whose integration gives the steepest descent path. Thus, the next step along the MEP is given by:

xn+1 = xn + An(ζ)vn (B.5)
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where
An(ζ) = UnMn(ζ)U†n (B.6)

and Mn(ζ) is a diagonal matrix whose elements are:

Mii(ζ) =
[
exp

(
−αn,iiζ

)
− 1

)
]/αn,ii (B.7)

and the values αn,ii are the eigenvalues obtained from the diagonalization of the Hessian at xn:

αn = U†nFnUn (B.8)

Taking into account these equations, Eq. (B.2) is rewritten as:

ds
dζ

=

 3N∑
i=1

h2
i exp

(
−2αn,iiζ

)
−1

(B.9)

where
hn = U†nGn (B.10)

The value of ζ can be found iteratively by integration of Eq. (B.9)

δs =

∫ ζ

0
dζ′

 3N∑
i=1

h2
i exp

(
−2αn,iiζζ

′
)
−1

(B.11)

where δs = sn+1 − sn is the step size.

C. Details on the SCT approximation

In the small-curvature approximation (SCT) the action integral θ(E) is

θ(E) = h−1
∫ s>(E)

s<(E)
ds

{
2µeff(s)

[
VG

a (s) − E
]} 1

2 (C.1)

where s<(E) and s>(E) are the left and right classical turning points at which

VG
a (s) = E (C.2)

In some cases (when the VG
a curve has more than one local maximum) there are more than two

classical turning points, so we have to find all the roots of Eq. (C.2). For instance in the case that
there are two additional roots s1 and s2 between s< and s> where s< < s1 < s2 < s> the action
integral is

θ(E) = h−1
{∫ s1(E)

s<(E)
ds

{
2µeff(s)

[
VG

a (s) − E
]} 1

2
+

∫ s>(E)

s2(E)
ds

{
2µeff(s)

[
VG

a (s) − E
]} 1

2

}
(C.3)

The action integral is evaluated over the classically forbidden region(s), that is, for regions
in which the total energy is lower than the effective potential, which is VG

a . The coupling be-
tween the reaction coordinate and the rest of degrees of freedom is included in the effective mass
µeff(s); if the coupling is neglected, i.e., µeff(s) = µ, we have the zero-curvature tunneling (ZCT)
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approximation, which approximates the tunneling path as coinciding with the MEP and neglects
its curvature. When coupling is included µeff(s) ≤ µ, so the action integral is smaller and the
tunneling probability is larger. In SCT, the effective mass is written as

µSC
eff /µ = min

{
exp

{
−2a(s) − [a(s)]2 + (dt/ds)2

}
1

(C.4)

where
a = |κ(s)t(s)| (C.5)

in which κ(s) is the reaction-path curvature

κ(s) =

F−1∑
m=1

[BmF(s)]2


1/2

(C.6)

and t(s) is the turning point

t =

[
~

µω(s)

] 1
2

=

F−1∑
m=1

[
Bm,F(s)
κ(s)

]2

[tm(s)]−4


− 1

4

(C.7)

of a harmonic potential of frequency

ω =

F−1∑
m=1

[
Bm,F(s)
κ(s)

ωm(s)
]2


1
2

(C.8)

which leads to a harmonic expansion of the potential about the MEP

V = VMEP(s) +
1
2
µ[ω(s)]2u2

1 (C.9)

in which one axis of coordinates u1 coincides with the vector that includes the couplings between
the reaction coordinate and the rest of degrees of freedom BF(s), so the coupling is zero along
the other axes u2 . . . uF−1. In Eq (C.7), the individual turning points tm(s) are given by

tm(s) = ±

[
~

µωm(s)

] 1
2

(C.10)

and the last term in the rhs of Eq. (C.4) is calculated using central-finite differences(
dt
ds

)2

=

F−1∑
m=1

(
dtm(s)

ds

)2

=

F−1∑
m=1

(
tm(s + δsH) − tm(s − δsH)

2δsH

)
(C.11)

with a step size given by δsH = NHδs, where NH is the steps along the MEP between a Hessian
calculations, as specified in Eq. 44.

The effective mass at the transition state, µeff(s = 0), is linearly interpolated using the two
closest locations that have a Hessian available:

µeff(s = 0) =
1
2

[
µeff(s = −δsH) + µeff(s = +δsH)

]
(C.12)
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The tunneling transmission probabilities are calculated by Eq. (55) for energies between E0
and VAG and the action integral is evaluated from Eq. (C.1) using Gauss-Legendre quadrature.
For the ZCT transmission probabilities, µeff(s) is set equal to µ, whereas for the SCT ones the
effective mass is the one calculated by Eqs. (C.4) and (C.12). The classical turning points are
also indicated; these are the points that satisfy Eq. (C.2) at the energy for which the tunneling
probability is being calculated.

D. Use of internal coordinates along the MEP

Curvilinear coordinates q can be written as a power series of displacements in Cartesian
coordinates

qi '

3N∑
j

Bi j

(
R j − R0

j

)
+

1
2

3N∑
j

3N∑
k

Ci
jk

(
R j − R0

j

) (
Rk − R0

k

)
(D.1)

where higher-order terms than the second are neglected. The superscript zero denotes a reference
geometry, which in this case would be a point on the MEP at location s. In this section we
suppress the dependence of all quantities on s to simplify the equations.

The subscript i runs over the Fcurv internal coordinates, which in the redundant case is greater
than 3N − 6. The elements of the B and C Wilson matrices are given by:

Bi j =

(
∂qi

∂R j

)∣∣∣∣∣
{R j}=

{
R0

j

} (D.2)

and

Ci
i j =

(
∂qi

∂R j ∂Rk

)∣∣∣∣∣
{Rk}={R0

k}
(D.3)

Once those elements are calculated, the next step is to obtain the GW Wilson matrix

GW = BuB† (D.4)

where u is a 3N × 3N diagonal matrix having as elements the reciprocal of the atomic masses.
Next the GW− matrix is obtained

GW− =
(
KK′

) ( Γ−1 0
0 0

) (
K†

(K′)†
)

(D.5)

where K and K′ contain the eigenvectors associated with the nonzero and zero eigenvalues,
respectively, and Γ contains the nonzero eigenvalues. The inverse of the B matrix is built as

A = uB†GW− (D.6)

Using Eq. (D.6) it is possible to obtain the gradient and the Hessian in redundant internal
coordinates (g and f, respectively):

g = A†G (D.7)

f = A†FA −
Fcurv∑

i

giA†CiA (D.8)
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From GW and GW− the projector
P = GWGW− (D.9)

transforms the redundant internal gradient and Hessian into the non-redundant gradient (g̃) and
Hessian (f̃)

g̃ = Pg (D.10)

f̃ = PfP (D.11)

The reaction coordinate is projected using the projector

p =
g̃g̃†

g̃>
[
BuB†

]
g̃

(D.12)

leading to the orthogonal (3N − 7) × (3N − 7) Hessian matrix

f̃p =
{
1 − p

[
BuB†

]}
f̃
{
1 −

[
BuB†

]
p
}

(D.13)

Finally, this Hessian matrix is diagonalized:

GW f̃pLW = LWΛ (D.14)

and the transverse vibrational frequencies are given by

ωm =
√

Λmm (D.15)

The eigenvectors LW are transformed into mass-scaled Cartesian displacement eigenvectors
L because the latter are needed to calculate the curvature coupling elements needed for the SCT
calculation. To accomplish this we first normalize LW by:

L̂W = LWW (D.16)

where
Wi j =

√
ci jδi j (D.17)

c =
(
LW

)−1
GW

[(
LW

)−1
]†

(D.18)

The L̂W eigenvectors are used to obtain the Cartesian displacement normal-mode eigenvectors
by

χ = AL̂W (D.19)

and the elements of the mass-scaled Cartesian displacement eigenvectors are given by

Li, j =
(mi/µ)1/2 χi j[∑
k (mk/µ) χ2

k j

]1/2 =
m1/2

i χi j[∑
k mkχ

2
k j

]1/2 (D.20)
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E. Selected program outputs for the decomposition of 1-propanol

Listing E.1: Extract of the kmc.pif file showing the input for the decomposition mechanism of the radicals produced by
hydrogen abstraction from 1-propanol.

start_kmc anaC1

# KMC Parameters

psteps 10000 # print data each nstp steps

volume 1.00E+00 # simulation volume (cm^3)

timeunits mcs # units for time variable

# Initial (non -zero) populations (number of molecules)

pop0(nPrOH_C1) 1.00e+06

# Selection of the rate constant to use. Parameters: A, E, n, TR, T0

k(R01.fw) analytic4 2.7907E+14 1.1039E+04 -4.6290E-01 3.00E+02 1.3069E-03

...

k(R16.fw) analytic4 9.9840E+12 1.4452E+04 -2.3272E-03 3.00E+02 6.6047E-03

end_kmc

start_kmc anaC2

# KMC Parameters

psteps 10000 # print data each nstp steps

volume 1.00E+00 # simulation volume (mL)

timeunits ps # units for time variable

# Initial (non -zero) populations (number of molecules)

pop0(nPrOH_C2) 1.00e+06

# Selection of the rate constant to use. Parameters: A, E, n, TR, T0

k(R01.fw) analytic4 2.7907E+14 1.1039E+04 -4.6290E-01 3.00E+02 1.3069E-03

...

k(R16.fw) analytic4 9.9840E+12 1.4452E+04 -2.3272E-03 3.00E+02 6.6047E-03

end_kmc

...

Listing E.2: Extract of the kmc.anaC1.slevel.txt file which lists the total simulation time and the ratio of the final popu-
lation of each species to the initial population of CH3CH2C•HOH

------------------------

Simulation time in mcs

------------------------

---------------------

T (K) | sim. time

---------------------

1000.00 | 1.83E+00

1500.00 | 3.59E-03

2000.00 | 1.49E-04

---------------------

----------------------------

Final ratios (pop(i)/POP0)

----------------------------

--------------------------------------------------------------

T (K) |CH2CH2 | CH2CH3 | CH2CHCH3 | CH3 | H

--------------------------------------------------------------

1000.00 | 0.001 | 0.035 | 0.002 | 0.734 | 0.188

1500.00 | 0.002 | 0.028 | 0.005 | 0.656 | 0.268
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2000.00 | 0.002 | 0.023 | 0.006 | 0.587 | 0.332

--------------------------------------------------------------

...

--------------------------------------------------------------

T (K) | OCH2 | OCHCH2CH3 | OH | nPrOH_C1 | nPrOH_C2

--------------------------------------------------------------

1000.00 | 0.035 | 0.160 | 0.002 | 0.040 | 0.000

1500.00 | 0.028 | 0.216 | 0.005 | 0.041 | 0.001

2000.00 | 0.023 | 0.258 | 0.006 | 0.044 | 0.005

--------------------------------------------------------------

...
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