
Manual

MCSI – version 2010-1

Osanna Tishchenko, Masahiro Higashi, Titus V. Albu, Jose C. Corchado,
Yongho Kim, Jordi Vill, Jianhua Xing, Hai Lin, and Donald G. Truhlar

Department of Chemistry and Supercomputing Institute,
University of Minnesota, Minneapolis, MN 55455-0431

mcsi is a computer program for generating full-dimensional potential energy surfaces for poly-
atomic reactions for subsequent dynamics calculations (classical trajectories, full quantum dynamics,
or variational transition state theory with multidimensional tunneling).

Program version: 2010-1
Program version date: October 30, 2010
Manual version date: October 30, 2010
Copyright 2002-2010

Note: Please consider the environment before printing

this document. Please use recycled paper if printing is nec-
essary.

CONTENTS

I. Required references 2

II. Introduction 2
A. Short description of the multi-configuration

molecular mechanics method 2
B. Usage of the internal coordinates in MCSI 4

1. Special case of the internal coordinates
for an atom transfer reaction 4

C. Handling of nuclear permutation symmetry 4
D. Zero of energy in the multi-configuration

Shepard interpolation method 4
E. Short description of the electrostatically

embedded molecular mechanics (EE-MM)
method 5

F. Short description of the electrostatically
embedded multi-configuration molecular
mechanics (EE-MCSI) method 6

III. MCSI algorithm (nonsymmetrized) 7

IV. MCSI algorithm (symmetrized) 10

V. Notes on how to treat shallow potential energy
surfaces 14

VI. Distribution 15

VII. Installation 16

VIII. Program description 17
A. Features of tinker–version 3.5mn5 17

1. Morse treatment for the stretching
terms 17

2. MM3 van der Waals term 18
3. VESCF treatment for π systems 19

B. Structure of mcsi 19

1. The mctesi subroutine 20
2. The mctesis subroutine 21
3. The mcviic subroutine 21
4. The mcv12c subroutine 22
5. The mcv12i(s) subroutine 22

C. Limitations on the use of mcsi 23

IX. Description of input files 24
A. File usage 24
B. Description of esp.fu81 and esp.fu82 input

files 24
C. Description of esp.fu83 input file 26

1. The MCGEN83 section 28
2. The EEGEN83 section 30
3. The POINT sections 31

D. Description of esp.fu84 input file 34
E. Description of esp.fu85 input file 35

1. The MCGENERAL section 36
2. The MCENERGETICS section 38
3. The SYMMETRY section 38
4. The RESONANCE section 39
5. The EEGENERAL section 41

F. Description of param.prm input file 43

X. Comments on force fields 43

XI. Sample test runs 44
A. Test run 1 45
B. Test run 2 45
C. Test run 3 45
D. Test run 4 46
E. Test run 5 46
F. Test run 6 46
G. Test run 7 47
H. Test run 8 47
I. Test run 9 47
J. Test run 10 48
K. Test run 11 48
L. Test run 12 48
M. Test run 13 48
N. Test run 14 49
O. Test run 15 52
P. Test run 16 53
Q. Test run 17 53
R. Test run 18 55
S. Test run 19 55
T. Test run 20 56
U. Test run 21 56

2

V. Test run 22 56
W. Test run 23 56
X. Test run 24 56
Y. Test run 25 57

XII. Computers and operating systems on which the
code has been developed and tested 57

XIII. Revision History 60
A. mn versions of tinker 60

1. tinker–version 3.5mn1 (December
1999) 60

2. tinker–version 3.5mn2 60
3. tinker–version 3.5mn3 61
4. tinker–version 3.5mn4 61
5. tinker–version 3.5mn5 61

B. mcsi 61
1. mc-tinker–version 1.0 61
2. mc-tinker–version 1.0.1 61
3. mc-tinker–version 1.1 (Feburary 2004) 62
4. mc-tinker–version 1.1.1 (June 2007) 62
5. mc-tinker–version 2007 (June 2007) 62
6. mc-tinker–version 2008 (June 2008) 63
7. mc-tinker–version 2008-2 (June 2008) 63
8. mc-tinker–version 2009 (March 2009) 63
9. mcsi–version 2009-1 (December 2009) 64
10. mcsi–version 2010-1 (October 2010) 64

References 64

I. REQUIRED REFERENCES

Publications based on results obtained with this com-
puter code should include the following references:

1. O. Tishchenko, M. Higashi, T. V. Albu, J. C.
Corchado, Y. Kim, J. Vill, J. Xing, H. Lin, and D. G.
Truhlar, mcsi–version 2010-1 University of Minnesota,
Minneapolis, MN, 2010.

2. J. W. Ponder, tinker–version 3.5, Washington
University, St. Louis, MO, 1997.

For example: “The calculations were carried out using the
mcsi1 multi-configuration Shepard interpolation computer
program, which uses single-configuration molecular me-
chanics subroutines from the tinker2 computer program.”

The references are required; the wording is optional.

II. INTRODUCTION

The Multi-Configuration Shepard Interpolation (MCSI)
method3−8 is mainly based on the combination of five
computational techniques: the semiempirical valence bond
method,9−22 Chang, Minichino, the Miller’s method of
locally estimating V12 for semiempirical valence bond
calculations,22,23, the Shepard interpolation method.26,27,

the use of redundant internal coordinates,24,25 and the use
of molecular mechanics in parametrizing the valence bond
calcuations. The methods of Coulson and Danielsson12

and Raff17 and the empirical valence bond (EVB) method,
which is an approach to semiempirical valence bond the-
ory that is widely used by Warshel and coworkers,19−21

may also be considered to be molecular-mechanics-based
ways to parameterize valence bond theory, as alternatives
to the quantum mechanical based approaches of Eyring,
Polanyi, Sato, and Ellison.11,14−18 Another relevant ref-
erence is the work of Downing and Michl,32 who pointed
out the possibility that the matrix elements of a nondi-
agonal Hamiltonian representation of the potential energy
surfaces might be more amenable to approximation by sim-
ple functional forms than are the eigenvalues (which are
the adiabatic potential energy surfaces). A detailed de-
scription of the MCSI method is given in Refs. 3 and 7,
where the method is called multi-configuration molecular
mechanics (MCMM), and the equations are given summa-
rized in Secs. III and IV. Therefore, we present in Sec II A
only a brief overview. A detailed description of the EE-
MCSI method is given Ref. 6.
We now refer to the method as MCSI to emphasize that

is a Shepard interpolation based on a multi-configurational
framework; whereas previously we called it MCMM to
emphasize that it allows calculations of potential energy
surfaces that may be evaluated with a cost comparable
to molecular mechanics even when the system has more
than one configuration, that is, reactants and products of
a chemical reaction.
The mcsi program is a composite of the mct module,

which is a module for multi-configuration Shepard calcula-
tions, and the computer program tinker, which is a pro-
gram for single-configuration molecular mechanics calcula-
tions. The mcsi program can carry out four types of calcu-
lations: calculations based on single-configuration molecu-
lar mechanics (MM or, for emphasis, SCMM), as in tinker

itself, or calculations based on multi-configuration molec-
ular mechanics (MCSI), calculations based on electrostati-
cally embedded MM or SCMM (which may be called either
EE-MM or EE-SCMM) in which MM is applied to sys-
tems in the presence of an electrostatic potential, and cal-
culations based on electrostatically embedded MCSI (EE-
MCSI) in which MCSI is applied to systems in the presence
of an electrostatic potential. (Throughout this manual, we
use MM and SCMM interchangeably as synonyms.)
Note that prior to the present version, the mcsi code has

been called mc-tinker.

A. Short description of the multi-configuration
molecular mechanics method

In MCSI, we represent a nonstationary point on a po-
tential energy surface by using two configurations. The
current version of mcsi is restricted to the case of two con-
figurations, and the rest of this manual is also restricted
to the case of two configurations. For a chemical reaction,
these two configurations correspond to the reactant and
product configurations of that reaction. The energy at a

3

given point on the potential energy surface is approximated
by the lowest root V of the equation

∣∣∣∣
V11 − V β

β V22 − V

∣∣∣∣ = 0, (1)

where V11 and V22 are the energy functions of the two
configurations, and β is the approximation to the the off-
diagonal matrix element, V12, also called the resonance en-
ergy function or the resonance interaction.
The V11 and V22 functions are approximated by standard

or user-specified molecular mechanics functions; the stan-
dard molecular mechanics functions can be used either with
standard molecular mechanics parameters or with reaction-
specific parameters. The choice of β is less obvious. Sev-
eral approaches for determining β are available in mcsi;
the most powerful of them uses a multi-point extension
of a variant of the method described in Refs. 19-20. The
key element in the method of Refs. 19-20 is that β is cho-
sen locally to reproduce a Taylor series approximation to
V at one point. Here we apply that formula at one or
more points called Hessian points, or electronic structure
points (or electronic structure Shepard points), and we as-
sume that V12 and its gradient and Hessian are zero at two
other points, called the SCMM points. The Hessian points
and SCMM points together are called Shepard points, and
β is obtained at other points by using Shepard interpola-
tion to join several such local approximations to provide a
semiglobal approximation. From this representation, mcsi
can calculate V and the analytic gradient and Hessian of
V at any geometry. In summary, for the Shepard interpo-
lation of V12, the MCSI method uses a variable number of
electronic structure Shepard points and up to two single-
configuration molecular mechanics points, the latter two
points being called the SCMM point for configuration 1
and the SCMM point for configuration 2.
Two different formalisms are available in the mcsi code.

In the original version of the MCSI method,3,4,7 the valence
bond configuration matrixV was assumed to be Hermitian,
but in the current version of the method,5 the matrix V is
allowed to be non-Hermitian in order to broaden the range
of geometries for which the potential energy surface can be
fit accurately. Another important distinction in these two
formalisms is that the former one employs Shepard inter-
polation of modified Taylor series of V12, whereas the latter
uses Shepard interpolation of unmodified Taylor series of
V 2
12 and has simpler algebra.5 The formalism described in

Ref. 5 is recommended for most cases and it is the default
option in mcsi-2009.
While there are no restrictions on the locations of the

electronic structure Shepard points, it is expected that
these points will be placed in regions where neither of the
molecular mechanics potentials are accurate. At the two
SCMM points we may, as one option, define V12 (as well
as its first and second derivatives with respect to coor-
dinates) to be zero so the potential V reduces to V11 or
V22, whichever is smaller in energy. These points should
be therefore chosen in regions where the configuration 1
and configuration 2 molecular mechanics potential func-
tions, respectively, are accurate. However, this assump-

tion sometimes makes the potential energy surface rough
around the SCMM points because the potential energy sur-
face calculated by the SCMM approximation is different
from that calculated by the reference electronic structure
method. Therefore, although it is possible to mitigate the
problem by adjusting the SCMM parameters to reproduce
the reference potential energy surface around the SCMM
points, it may be inappropriate to employ the assumption
that V12 is zero at certain points when one attempts to
describe the potential energy surface around the reactant
and product as well as around the transition state. In
the current version of the mcsi program, there is an op-
tion to specify whether the two SCMM points are included
in the Shepard interpolation. (See the ISHMM option in
Sec. IXE4.) Actually the user has a third option, namely
to include these points, but with electronic structure data
so that V12 is not zero. The program treats this third choice
as a special case of not including SCMM points.
The Taylor series expansion of V12 is used to interpolate

between the electronic structure theory points to calculate
V12 for any geometry of interest on the potential energy
surface. To make the approach applicable for any num-
ber of electronic structure theory points, we use a Shepard
interpolation method. The Shepard scheme ensures that
the potential energy surface is a continuous function that
exactly reproduces the energies, gradients, and Hessians at
the electronic structure theory Shepard points. The pro-
cedure allows the results to be improved by adding more
electronic structure theory points, eventually converging
(in principle and with sufficient care) to the potential func-
tion that would be obtained from a dense set of electronic
structure theory results.
Given the geometry x of a point in Cartesians, for which

we want to obtain the MCSI energy, gradient, and Hessian,
the algorithm carries out the following steps:

• Transformation of the geometries, gradients, and
Hessians of the Shepard points from Cartesian to re-
dundant or nonredundant internal coordinates r (see
sec. II B for the explanation of the internal coordi-
nates used in the mcsi code).

• Calculation of V12 and its first and second derivatives
in internal coordinates at all geometries for which
electronic structure theory gradient and Hessian data
are available.

• Transformation of an input geometry x in Cartesians
to the same set of redundant or nonredundant inter-
nal coordinates r(x).

• Estimation of V12 and its first and second derivatives
with respect to internal coordinates at the geome-
try r(x) by means of Shepard interpolation, which
involves a weight function written in terms of coor-
dinates s(x).

• Transformation of the internal-coordinate derivatives
of V12 at r(x) to Cartesian coordinates by the inverse
of the transformation of a previous step (note that
using the inverse transformation preserves the correct
orientation in Cartesian coordinates).

4

• Calculation of V11 and V22 and their derivatives at the
geometry x in Cartesian coordinates (tinker evalu-
ates the derivatives in internal coordinates q and then
transforms them to Cartesian coordinates).

• Calculation of V (x) and its first and second deriva-
tives in Cartesian coordinates.

B. Usage of the internal coordinates in MCSI

The mcsi code returns the gradients and Hessians in
Cartesian coorinates. However, in order to make the
method rotationally and translationally invariant, the
interpolation procedure is carried out in internal rather
than in Cartesian coordinates, in particular either in
redundant or nonredundant internal coordinates.

The internal coordinates appear in the MCSI method in
three different contexts:

• the set q used to evaluate MM energies and deriva-
tives,

• the set r used for the Shepard interpolation step, and

• the set s used to evaluate the weight function.

The distinction between these coordinates was not ex-
plicitly mentioned in Refs. 3-31, but it is emphasized in
Refs. 4 and 7 and in Secs. III and IV of this manual. In
Refs. 3-31, the notation q was used for all three sets. While
the composition of the set q is completely determined by
the molecular mechanics method, sets r and s are intro-
duced in MCSI. Both sets r and s should be specified by
the user in the input esp.fu85 file. The current version of
the code only supports the following cases:

• sets r and s are the same

• set s is a subset of r

• a special case when set s is different from set r; this
case is designed for a generic BX· · ·A→B· · ·XA atom
transfer reaction and it is described in detail below.

Other cases require additional considerations.

1. Special case of the internal coordinates for an atom
transfer reaction

This is the only case currently available in the mcsi code
in which set s includes internal coordinates that are not
present in set r.
Let B–X· · ·A→B· · ·XA be an atom transfer reaction.

The coordinates r and s are selected as follows:

• set s: three interatomic distances {rBX ; rAX ; rAB}

• set r: either nonredundant internal coordinates or
redundant internal coordinates that involve the fol-
lowing three coordinates {rBX ; rAX ;∠BXA}, i.e., two
bond distances, rBX and rAX , and the angle, ∠BXA,
as a subset.

An example is shown in Ref. 5, Appendix B. Other choices
of s and r require additional programming.

C. Handling of nuclear permutation symmetry

The current version of the code can generate semi-global
potential energy surfaces that are invariant with respect to
permutations of selected identical nuclei. The current ver-
sion supports cases when only three identical nuclei need
to be treated as symmetrically equivalent while the rest (if
any) can be assumed to be distinguishable. These cases
are labeled m = 3. Extensions to other cases (m = 2 or
m ≥ 3) are in principle straightforward and can be im-
plemented in future versions. This manual describes the
input to both symmetrized and non-symmetrized calcula-
tions with mcsi. For details of the permutation symmetry
algorithm see Ref. 4 and the Appendix to this manual.
We note that in symmetrized calculations with m ≥ 3 we
use the redundant-internal-coordinate subroutines even if
the number of the coordinates is equal 3N -6 (e.g. when
one uses all internuclear distances for OH + HH system)
because in this case the coordinates are not internally in-
dependent.

D. Zero of energy in the multi-configuration Shepard
interpolation method

Special attention should be paid to the zero of energy
in an MCSI calculation. The two molecular mechanics
(MM) force field and the electronic structure (ES) calcula-
tion each have their own origin for the zero of energy. The
MM energy of a molecule is the sum of several terms. For
some small molecules like OH, CH4, H2O, and CH3, the
MM energies for the optimized structures are zero. Thus,
for example, the MM energy of reaction for the OH + CH4

→ H2O + CH3 reaction is zero, because both the MM
reactant state energy of OH + CH4 and the MM prod-
uct state energy of H2O + CH3 are zero. This does not
mean that the actual energy of reaction is zero, though,
because one cannot compare the MM energies for different
molecules that have different atom types and connectivi-
ties, since they are from different MM potential functions.
For more complicated molecules, such as propane, the MM
energy is not necessarily zero even in the optimized struc-
ture. (In general, whether or not the MM energy is zero
at the equilibrium structure depends on which MM force
field one is considering.)
To connect the MM energies for the two configurations

with the ES energies, a unique scale of energies should be
defined. This energy scale is defined in the MCSI calcula-
tions based on the MM and ES energies at some states (or
geometries) that we call energy reference states. The pro-
gram runs if the energy reference states are chosen at any

5

arbitrary state or geometry. We alert the user though that
it is more physical to choose the energy reference states
where the molecular mechanics potentials are relatively ac-
curate, i.e., close to equilibrium structures. (Note that the
energy reference states do not need to be the same as the
SCMM points, which are the single-configuration molecu-
lar mechanics points used in Shepard interpolation.)
The MM evaluations of the V11 and V22 matrix elements

at the energy reference states (obtained using tinker) have
the following values:

V11(configuration 1 energy reference state) = vz1MM (2)

V22(configuration 2 energy reference state) = vz2MM (3)

For emphasis we use superscript MM to denote values
that are obtained through molecular mechanics calcula-
tions. As stated above, vz1MM and vz2MM may be both
zero for some simple cases if the energy reference states are
the optimized structures but in the general case may have
any value.
The electronic structure theory energies, which are the

high-level energies from Gaussian or other electronic struc-
ture packages, satisfy:

V (configuration 1 energy reference state) = Vz1ES (4)

V (configuration 2 energy reference state) = Vz2ES (5)

We need to have this energy scale consistent with the
one obtained from MM calculations. We define the zero of
energy to be the electronic structure theory energy at the
configuration 1 energy reference state. Therefore:

V (configuration 1 energy reference state) = 0 (6)

V (configuration 2 energy reference state) = ediff0 (7)

where ediff0 is given by:

ediff0 = Vz2ES − Vz1ES (8)

and it is obtained only from electronic structure calcula-
tions. Then, whenever mcsi determines a MM energy, V11

or V22, these energies will be adjusted as:

V11(mcsi) = V11(tinker)− vz1MM (9)

V22(mcsi) = V22(tinker)− vz2MM + ediff0 (10)

Furthermore, when an electronic structure energy V is used
in an MCSI calculation, we use the adjusted energy value
given by:

V (mcsi) = V ES − Vz1ES (11)

Later in this manual, we sometimes use another notation,
in particular, vz1MM is called ZERO1, vz2MM is called
ZERO2, and ediff0 is called EDIFF (that is, ZERO1,
ZERO2, and EDIFF are the keywords whose arguments
are vz1MM, vz2MM, and ediff0).

E. Short description of the electrostatically
embedded molecular mechanics (EE-MM) method

EE-MM is a combined quantum mechanical and molec-
ular mechanical (QM/MM) method, based on Refs. 33 and
34, that can reproduce the electrostatically embedded QM
energy V EEQM(x,Φ) around a certain point (x0,Φ0); here
V EEQM(x,Φ) is the sum of the QM energy and QM/MM
electrostatic interaction energy with a site-site representa-
tion,

V EEQM(x,Φ) = 〈Ψ|Ĥ0 + Q̂TΦ|Ψ〉 (12)

where x stands for the collection of the Cartesian coordi-
nates xα (α = 1, 2, . . . , NQM), where NQM is the number
of the QM atoms) in the QM region, Ψ is the electronic

wave function, Ĥ0 is the electronic Hamiltonian (including

nuclear repulsion) of the QM region, Q̂ is the population

operator vector of order NQM whose components Q̂α are
the population operators that generate the partial charges
on QM atomic sites α:

Qα = 〈Ψ|Q̂α|Ψ〉 (13)

and Φ is the electrostatic potential distribution, which is
a vector on the order of NQM, each of whose components
Φα is the electrostatic potential at atom α from the MM
region.
In order to evaluate V EEQM(q,Φ) in the vicinity of a

certain point (q0,Φ0), a second-order Taylor expansion is
made:

V EEQM(q,Φ) ≈ V EEQM
0 +

∂V EEQM

∂q

T

∆q+
1

2
∆qT

∂2V EEQM

∂q2
∆q

+
∂V EEQM

∂Φ

T

∆Φ+
1

2
∆ΦT

∂2V EEQM

∂Φ2
∆Φ+∆ΦT

∂2V EEQM

∂Φ∂q
∆q (14)

where V EEQM
0 = V EEQM(q0,Φ0), ∆q = q−q0, and ∆Φ = Φ−Φ0. Here we employ arbitrary coordinates q; q can be

6

the Cartesian coordinates x or internal ones r. The first
derivative of V EEQM with respect to a component of Φ is
given by

∂V EEQM

∂Φα
= 〈Ψ|Q̂α|Ψ〉 = Qα (15)

Then, the second partial derivatives of V EEQM are

∂2V EEQM

∂Φα∂Φβ
=

∂Qα

∂Φβ
≡ χαβ (16)

and

∂2V EEQM

∂Φα∂qβ
=

∂Qα

∂qβ
≡ καβ (17)

These variables, χαβ and καβ, are known as charge re-
sponse kernels (CRKs) (Refs. 33 and 35); they describe
the QM charge fluctuations due to the external electro-
static potential and to the displacement of the QM atoms.
There can be some choices for the evaluation of other

terms,

V EEQM
0 +

∂V EEQM

∂q
∆q+

1

2
∆qT

∂2V EEQM

∂q2
∆q,

which depend only on q. For example, Lu and Yang di-
rectly evaluates these terms using the Cartesian coordi-
nates (Ref. 35). In the current version of the mcsi pro-
gram, as in the case of Ref. 34, we employ the internal
coordinates r, and the terms

V EEQM
0 +

∂V EEQM

∂r
∆r+

1

2
∆rT

∂2V EEQM

∂r2
∆r,

which depend only on r, are replaced with the MM po-
tential energy function. Therefore, we define the EE-MM
(EE-SCMM) potential energy function as

V EE-MM(r,Φ) = V MM(r) + V CRK(r,Φ) (18)

where VMM is the MM potential energy function (which is
calculated by the tinker program) and

V CRK(r,Φ) = QT

0∆Φ+
1

2
∆ΦT

χ0∆Φ+∆ΦT
κ0∆r (19)

where Q0, χ0, and κ0 are the partial charges and CRKs
at (r0,Φ0). Note that the last term in eq. 19 is ig-
nored in Ref. 34. Then we calculate the EE-MM energy
V EE-MM(r,Φ) around (r0,Φ0). Note that if one attempts
to describe a global potential energy surface along a reac-
tion path, one should employ the EE-MCSI method (See
the next section) rather than EE-MM, which is best suited
to nonreactive systems.

F. Short description of the electrostatically
embedded multi-configuration molecular mechanics

(EE-MCSI) method

The EE-MCSI method (Ref. 6) extends the original
MCSI method so that it can be applied to systems in the
presence of an electrostatic potential. Alternatively, it may
be thought of as extending EE-MM to EE-MCSI. EE-MCSI
is a combined quantum mechanical and molecular mechan-
ical (QM/MM) method, and it can reproduce the electro-
statically embedded QM energy V EEQM, which is the sum
of QM energy and QM/MM electrostatic interaction en-
ergy with a site-site representation,

V EEQM(x,Φ) = 〈Ψ|Ĥ0 + Q̂TΦ|Ψ〉 (20)

where x stands for the collection of the Cartesian coordi-
nates xα (α = 1, 2, . . . , NQM), where NQM is the number
of the QM atoms) in the QM region, Ψ is the electronic

wave function, Ĥ0 is the electronic Hamiltonian (including

nuclear repulsion) of the QM region, Q̂ is the population

operator vector of order NQM whose components Q̂α are
the population operators that generate the partial charges
on QM atomic sites α:

Qα = 〈Ψ|Q̂α|Ψ〉 (21)

and Φ is the electrostatic potential distribution, which is
a vector on the order of NQM, each of whose components
Φα is the electrostatic potential at atom α from the MM
region.
As in the case of the original MCSI method, the potential

energy in EE-MCSI is defined as the lowest eigenvalue of a
2×2 diabatic Hamiltonian matrix,

VEE-MCSI(r,Φ) =

(
V11(r,Φ) V12(r,Φ)
V12(r,Φ) V22(r,Φ)

)
, (22)

where we use nonredundant or redundant internal coor-
dinates r to represent the nuclear coordinates of the QM
subsystem. V11 and V22 are analytic functions that de-
scribe V EEQM in the region of reactants and products. V12

is based on a set of Shepard points (r(k),Φ(k)) where k =

1, 2, . . . , N . We evaluate [V12(r,Φ; k)]
2
by a second-order

Taylor expansion around each Shepard point (r(k),Φ(k))
where the Taylor series coefficients are determined such
that V EE-MCSI reproduces V EEQM and its first and sec-
ond derivatives with respect to r and Φ at Shepard point
(r(k),Φ(k)). Then, we construct V12(r,Φ) at any arbitrary
geometry by Shepard interpolation of these expressions.
To implement the above procedure, one needs the deriva-

tives of electronic structure calculations of V EEQM(r,Φ)
with respect to Φ in addition to those with respect to r.
The first derivative of V EEQM with respect to a component
of Φ is given by

∂V EEQM

∂Φα
= 〈Ψ|Q̂α|Ψ〉 = Qα (23)

7

Then, the second partial derivatives of V EEQM are

∂2V EEQM

∂Φα∂Φβ
=

∂Qα

∂Φβ
≡ χαβ (24)

and

∂2V EEQM

∂Φα∂rβ
=

∂Qα

∂rβ
≡ καβ (25)

These variables, χαβ and καβ, are known as charge re-
sponse kernels (CRKs) (Refs. 33 and 35); they describe
the QM charge fluctuations due to the external electro-
static potential and to the displacement of the QM atoms.
Since these effects are usually not included in MM poten-
tial energy functions, we define the EE-MM (EE-SCMM)
potential energy function as (see previous section)

Vii(r,Φ) = V MM
ii (r) + V CRK

ii (r,Φ) (26)

where V MM
ii is the MM potential energy function and

V CRK
ii (r,Φ) =Q

(i)T
0 ∆Φ+

1

2
∆Φ(i)T

χ
(i)
0 ∆Φ(i)

+∆Φ(i)T
κ
(i)
0 ∆r(i)

(27)

where Q(i), χ(i), and κ
(i) are calculated values at the reac-

tant and product, such that the partial charges and CRKs
calculated by the EE-MCSI agree with electronic structure
calculation at the reactant and product, respectively. (In
Ref. 6, the reactant and product correspond to infinitely
separated reagents, but the mcsi program allows them to
be either infinitely separated or at a finite distance, as in
a van der Waals well or an ion-dipole complex.) Then one
can calculate the EE-MCSI potential energy and its deriva-
tives.
The calculation steps for EE-MCSI are the same as those

for MCSI in Secs. III and IV below except that Φ is added.

III. MCSI ALGORITHM (NONSYMMETRIZED)

The procedure for constructing a potential energy sur-
face using a nonsymmetrized MCSI algorithm involves the

following steps:
(i) a) Select k = 1, 2, ..., N molecular geometries to be

used as electronic structure Shepard points, and b) calcu-
late the energies V (k), gradients G(k), and Hessians F(k)

at these geometries (e.g., using the gaussian code).
(ii) Read electronic structure information (accurate en-

ergies V (k), gradients G(k), and Hessians F(k)) k = 1, 2,

..., N , and molecular mechanics information (V
(k)
nn , G

(k)
nn ,

F
(k)
nn) for n = 1, 2 and k = 1, 2, ..., N in Cartesian co-

ordinates. (V
(k)
nn , G

(k)
nn , F

(k)
nn are obtained by calling the

tinker code).

(ii) TransformG(k), F(k), G
(k)
nn , and F

(k)
nn to the set of in-

ternal coordinates r by the Wilson B matrix and C tensor.
This yields:

g(k) ≡ ∂

∂r
V

∣∣∣∣
r=r(x(k))

(28)

f (k) ≡ ∂2

∂r2
V

∣∣∣∣
r=r(x(k))

(29)

g(k)
nn ≡ ∂

∂r
Vnn

∣∣∣∣
r=r(x(k))

(30)

f (k)nn ≡ ∂2

∂r2
Vnn

∣∣∣∣
r=r(x(k))

(31)

In these notes, we will use capital G and F to denote the
gradients and Hessians with respect to Cartesian coordi-
nates, and lower case g and f to denote the corresponding
derivatives with respect to internal coordinates.
(iv) Define a matrix V(k) at each geometry (k) by

V(k)(r) =

(
V

(k)
11 (r) V12(r; k)

V12(r; k) V
(k)
22 (r)

)
(32)

and construct second-order Taylor series expansions of
T 2
12 ≡ V 2

12, around each data point (k) by:

[T12(r; k)]
2 ≡ [V12(r; k)]

2

≈
(
V

(k)
11 − V (k)

)(
V

(k)
22 − V (k)

)
+
(
V

(k)
22 − V (k)

)(
g
(k)
11 − g(k)

)T
∆r(k)

+
(
V

(k)
11 − V (k)

)(
g
(k)
22 − g(k)

)T
∆r(k) +

1

2

(
V

(k)
22 − V (k)

)
∆r(k)T

(
f
(k)
11 − f (k)

)
∆r(k)

+
1

2

(
V

(k)
11 − V (k)

)
∆r(k)T

(
f
(k)
22 − f (k)

)
∆r(k) +

(
g
(k)
11 − g(k)

)T
∆r(k)

(
g
(k)
22 − g(k)

)T
∆r(k) (33)

where

∆r(k) = r(x) − r(x(k)). (34)

This step uses the Taylor series reversion V 2
12(x) =

[V11(x)− V (x)][V22(x)− V (x)] (Chang & Miller, Ref. 22).
(v) For each geometry (k) calculate Taylor coefficients

8

D(k), b(k), and C(k):

D(k) =
(
V

(k)
11 − V (k)

)(
V

(k)
22 − V (k)

)
(35)

b(k) =
g
(k)
11 − g(k)

V11
(k) − V (k)

− g
(k)
22 − g(k)

V22
(k) − V (k)

(36)

C(k) =
1

D(k)

[(
g
(k)
11 − g(k)

)(
g
(k)
22 − g(k)

)T

+
(
g
(k)
22 − g(k)

)(
g
(k)
11 − g(k)

)T]

+
f
(k)
11 − f (k)

V
(k)
11 − V (k)

+
f
(k)
22 − f (k)

V
(k)
22 − V (k)

(37)

With these coeffiecients, eq. 33 can be rewritten as:

[T12(r; k)]
2 = D(k)

(
1 + b(k)T∆r(k) +

1

2
∆r(k)TC(k)∆r(k)

)
.

(38)
Note that steps (i)–(v) are performed once at the begin-

ning. Then steps (vi) and (vii) are carried out every time
that the dynamics algorithm needs the energy, gradient,
and/or Hessian.
(vi) Define the valence bond configuration interaction

matrix V at the input geometry x by

V(x) =

(
V11(x) β(x)
β(x) V22(x)

)
, (39)

The lowest-energy eigenvalue of this matrix is the MCSI
potential energy function. The diagonal matrix elements
Vnn(x) and their derivatives Gnn(x), and Fnn(x) are de-
fined by molecular mechanics. The off-diagonal matrix ele-
ments β(x) are obtained via Shepard interpolation in inter-
nal coordinates r(x). Two different approaches are avail-
able in the mcsi code to calculate β. One is via Shepard
interpolation of T 2

12 of eq. 38 as described in Ref. 5. In
particular, the Shepard interpolation step yields

β2
o(r) =

N∑

k=1

wk(s)T
2
12(r; k), (40)

where wk are normalized weights, and each quantity

T 2
12(r; k) is a second-order Taylor series of V

(k)2
12 at a ge-

ometry r. Then, β is approximated by

β(r) =

{
|βo(r)|; β2

o(r) ≥ 0
iu|βo(r)|; β2

o(r) < 0,
(41)

where

u(r) =

{
1; β2

o(r) ≥ −∆2/4
∆/(2|βo|); β2

o(r) < −∆2/4,
(42)

and

∆ = V11(r)− V22(r). (43)

The first and second derivatives of β2 with respect to the
coordinates r are the same as the derivatives of β2

o for all
β2
o ≥ −∆2/4. These derivatives are given by

∂β2
o

∂r
=

N∑

k=1

(
∂wk

∂r
T 2
12(r; k) + wkg12(r, k)

)
(44)

and

∂2β2
o

∂r2
=

N∑

k=1

(
∂2wk

∂r2
T 2
12(r; k) +

∂wk

∂r
g12(r; k)

T

+ g12(r; k)

(
∂wk

∂r

)T

+ wkD
(k)C(k)

)
, (45)

where

g12(r; k) ≡
∂T 2

12(r; k)

∂r
= D(k)

(
b(k) +C(k)∆r(k)

)
, (46)

∂wk

∂rα
=

Γ∑

γ=1

∂wk

∂sγ

∂sγ
∂rα

, (47)

and

∂2wk

∂rα∂rβ
=

Γ∑

γ=1

Γ∑

γ=1′

∂sγ
∂rα

∂2wk

∂sγ∂sγ′

∂sγ′

∂rβ
+

Γ∑

γ=1

∂wk

∂sγ

∂2sγ
∂rα∂rβ

,

(48)
where r and s are the sets of the internal coordinates used
in Shepard interpolation and in calculations of the weight
function.
In this approach,5 called the non-Hermitian MCSI, the

matrix V is allowed to be non-Hermitian, and this is the
default method in mcsi 2010-1.
The other approach to calculated β is via Shepard inter-

polation of modified T 2
12 aroundN data points as described

in Ref. 3. In this case, the Shepard interpolation step yields

β(r) =

N∑

k=1

wk(r)V
′

12(r; k), (49)

where wk are normalized weights, and V ′

12 is defined by

V ′

12(r; k) =
√
T 2
12(r; k)u(r; k), (50)

where T 2
12(r, k) is given in eq. 38 , and

u(r; k) =

1

1 + (∆/T12(r; k))2n
; T 2

12(r; k) > 0

0; otherwise.
(51)

The first and second derivatives of β(r) of eq. 49 with
respect to internal coordinates are:

∂β(r)

∂r
=

N∑

k=1

(
∂wk

∂r
V ′

12(r; k) + wkg12(r; k)

)
(52)

9

∂2β(r)

∂r2
=

N∑

k=1

(
∂2wk

∂r2
V ′

12(r; k) +
∂wk

∂r
g12(r; k)

T + g12(r; k)

(
∂wk

∂r

)T

+ wkf12(r; k)

)
, (53)

where

g12 ≡ ∂V ′

12(r; k)

∂r
=

1

2V ′

12(r; k)
D(k)

(
b(k) +C(k)∆r(k)

)
u(r; k)

{
1 + nu(r; k)

(
∆

T12(r; k)

)2n
}

(54)

and

f12 ≡ ∂2V ′

12(r; k)

∂r2

=
1

V ′

12(r; k)

[
−g12(r; k)g12(r; k)

T +
1

2
D(k)C(k)u(r; k)

{
nu(r; k)

(
∆

T12(r; k)

)2n

+ 1

}

+

D(k)
(
b(k) +C(k)∆r(k)

)
nu(r; k)

T12(r; k)

2(
∆

T12(r; k)

)2n
{
nu(r; k)

(
∆

T12(r; k)

)2n

− (n− 1)

}
 , (55)

where the coefficients D(k), b(k), and C(k) are given in
eqs. 35-37. The derivatives of the weight function with
respect to coordinates r required by eqs. 52 and 53 are
the same as those given in eqs. 47 and 48. This approach
is called Hermitian MCSI, and it is obsolete. The default
values for ∆ and n in the mcsi code are 1.6×10−4 Eh and
2, respectively.

The normalized weight function is:

wk(s) =

1

dk(s)4

N+2∑

k=1

1

dk(s)4

(56)

where dk is the generalized distance between s and s(k)

defined as:

dk(s) =

√√√√
Γ∑

γ=1

(
sγ − s

(k)
γ

)2
, (57)

where s ≡ {s1, s2, . . . sγ , . . . sΓ} is a set of internal coordi-
nates that is generally different from the set r. Note that
the sum in eq. 56 has two more points than the sum in

eq. 40. The two extra points consist of one point in the
region where V is assumed to be well approximated by V11

and another in the region where V is assumed to be well
approximated by V22. At both of these points V12 and V ′

12

are assumed to be zero, so these points do not occur in
eq. 40. Thus eq. 40 actually corresponds to an (N + 2)-
point interpolation with N terms.
The first and second derivatives with respect to s of the

weight function given in eq. 56 are currently obtained nu-
merically. Since all operations except for this numerical
intermediate step are analytic, the final MCSI derivatives
may be called semi-analytical.

(vii) Find the eigenvalue V of eq. 39 and its derivatives
in Cartesian coordinates. These are given by:

V (x) =
1

2

[
V11(x) + V22(x)

−
{
(V11(x) − V22(x))

2
+ 4β2(x)

}1/2
]
,

(58)

where β2 is equal (at all geometries where β2
o(r) > −∆2/4)

to β2
o obtained directly via the N -term Shepard interpola-

tion, eq. 40, and

Gi =
∂V

∂xi
=

1

2

G11i +G22i −

2

(
∂β2

∂xi

)
+ (V11 − V22) (G11i −G22i)

{
(V11 − V22)

2 + 4β2
}1/2

 (59)

10

Fij =
∂2V

∂xi∂xj

=
1

2

F11ij + F22ij −

2

(
∂2β2

∂xi∂xj

)
+ (V11 − V22)

(
F11ij − F22ij

)
+ (G11i −G22i)

(
G11j −G22j

)

{
(V11 − V22)

2
+ 4β2

}1/2

+

{
2

(
∂β2

∂xi

)
+ (V11 − V22) (G11i −G22i)

}{
2

(
∂β2

∂xj

)
+ (V11 − V22)

(
G11j −G22j

)}

{
(V11 − V22)

2
+ 4β2

}3/2

 . (60)

If matrix V is set to be Hermitian (old MCSI formalism), then β (ratehr than β2) is calculated by eqs. 49 and 51, and
the gradient and Hessian components of V with respect to Cartesian coordinates in terms of β are given by:

Gi =
∂V

∂xi
=

1

2

G11i +G22i −

4β

(
∂β

∂xi

)
+ (V11 − V22)(G11i −G22i)

{
(V11 − V22)

2
+ 4β2

}1/2

 (61)

and

Fij =
∂2V

∂xi∂xj

=
1

2

F11ij + F22ij +

{
4β

(
∂β

∂xi

)
+ (V11 − V22) (G11i −G22i)

}{
4β

(
∂β

∂xj

)
+ (V11 − V22)

(
G11j −G22j

)}

{
(V11 − V22)

2 + 4β2
}3/2

−
4

(
∂β

∂xi

)(
∂β

∂xj

)
+ 4β

(
∂2β

∂xi∂xj

)
+ (G11i −G22i)

(
G11j −G22j

)
+ (V11 − V22)

(
F11ij − F22ij

)

{
(V11 − V22)

2
+ 4β2

}1/2

 . (62)

IV. MCSI ALGORITHM (SYMMETRIZED)

The procedure for constructing a potential energy sur-
face that is invariant with respect to the exchange of identi-
cal nuclei using MCSI is described in Ref. 4. The algorithm
is summarized below:
(i) a) Select k = 1, 2, ..., N molecular geometries x(k)

to be used as electronic structure Shepard points, and b)
calculate the energies V (k), gradients G(k), and Hessians
F(k) at these geometries (e.g., using the Gaussian code).
(ii) For each of these data points x(k) generate m!

symmetrically equivalent data sets {x(k,i), G(k,i), F(k,i)},
where

x(k,i) = P(i)x(k) (63)

G(k,i) ≡ ∂

∂x
V = P(i)G(k) (64)

F(k,i) ≡ ∂2

∂x2
V = P(i)F(k)P(i) (65)

where P is the nuclear permutation operator that inter-

changes Cartesian coordinates of identical nuclei.
(iii) Define a set of m! MM energies, gradients, and Hes-

sians at point (k, i) by:

V
(k,i)
MM,n ≡ Vnn(x

(k,i)) (66)

G
(k,i)
MM,n ≡ ∂

∂x
Vnn

∣∣∣∣
x=x

(k,i)

(67)

and

F
(k,i)
MM,n ≡ ∂2

∂x2
Vnn

∣∣∣∣
x=x

(k,i)

(68)

for n = 1, 2; k = 1, 2, ..., N ; i = 1, 2, ..., m!.
(iv) Define a symmetrized MM potential and its gra-

dient and Hessian at point (k) (where a tilde denotes a
symmetrization) by:

Ṽ (k)
n = − 1

α
ln

(
1

σmm

m!∑

i

e−αV
(k,i)
MM,n

)
, (69)

where α is a parameter; σmm, which is called the symmetry

11

factor, is the number of times the lowest-energy MM con-
figuration occurs among the m! symmetrically equivalent
MM configurations at a general geometry;

G̃(k)
n ≡ ∂

∂x
Ṽn

(k)
=

m!∑

i

G
(k,i)
MM,ne

−αV
(k,i)
MM,n

m!∑

i

e−αV
(k,i)
MM,n

, (70)

and

F̃(k)
n ≡ ∂2

∂x2
Ṽn

(k)

=

m!∑

i

(
F

(k,i)
MM,n − αG

(k,i)
MM,nG

(k,i)T
MM,n

)
e−αV

(k,i)
MM,n

m!∑

i

e−αV
(k,i)
MM,n

+αG̃(k)
n G̃(k)T

n . (71)

Notice that the symmetrized MM potential is dominated by
the σmm lowest-energy MM configurations among the m!
permutations of the labels on the identical atoms. The pa-
rameter α controls the rate of switching between different
dominant configurations in regions that separate the low-
energy regions corresponding to the differently permuted
coordinates.
(v) Generate m! values of G̃

(k,i)
n and F̃

(k,i)
n from each

G̃(k), and F̃(k) by applying P(i), as in step (ii).

(vi) Transform G(k,i), F(k,i), G̃
(k,i)
n , and F̃

(k,i)
n to the set

of internal coordinates r by the Wilson B matrix and C
tensor. This yields:

g(k,i) ≡ ∂

∂r
V

∣∣∣∣
r=r(x(k,i))

(72)

f (k,i) ≡ ∂2

∂r2
V

∣∣∣∣
r=r(x(k,i))

(73)

g̃(k,i)
n ≡ ∂

∂r
Ṽn

∣∣∣∣
r=r(x(k,i))

(74)

f̃ (k,i)n ≡ ∂2

∂r2
Ṽn

∣∣∣∣
r=r(x(k,i))

(75)

(vii) Define a matrix V(k,i) at each geometry (k, i) by

V(k,i)(r) =

(
Ṽ1

(k,i)
(r) V12(r; k, i)

V12(r; k, i) Ṽ2
(k,i)

(r)

)
(76)

and construct Taylor series expansions of V12 around each
data point (k, i) using Taylor series reversion in the same
way as in eqs. 32 and 33 for nonsymmetrized calculations,
with the only difference being that (k) is replaced by (k, i).

(viii) Calculate the Taylor series coefficients D, b, and
C (as in eqs. 35-37) for each symmetrically equivalent data
point (k, i):

D(k,i) =
(
Ṽ

(k,i)
1 − V (k,i)

)(
Ṽ

(k,i)
2 − V (k,i)

)
(77)

b(k,i) =
g̃
(k,i)
1 − g(k,i)

Ṽ
(k,i)
1 − V (k,i)

− g̃
(k,i)
2 − g(k,i)

Ṽ
(k,i)
2 − V (k,i)

(78)

C(k,i) =
(
1/D(k,i)

) [(
g̃
(k,i)
1 − g(k,i)

)(
g̃
(k,i)
2 − g(k,i)

)

+
(
g̃
(k,i)
2 − g(k,i)

)(
g̃
(k,i)
1 − g(k,i)

)T]

+
f̃
(k,i)
1 − f (k,i)

Ṽ
(k,i)
1 − V (k,i)

+
f̃
(k,i)
2 − f (k,i)

Ṽ
(k,i)
2 − V (k,i)

(79)

The second-order Taylor series of (V12)
2, (T12)

2, for each
(k, i) at an arbitrary geometry r = r(x) can now be writted
as:

[T12]
2 ≡[V12(r; k, i)]

2

=D(k,i)

(
1 + b(k,i)T∆r(k,i)

+
1

2
∆r(k,i)TC(k,i)∆r(k,i)

)
(80)

(ix) Define the matrix V at the input geometry x by

V(x) =

(
Ṽ1(x) β(x)

β(x) Ṽ2(x)

)
. (81)

The lowest-energy eigenvalue of this matrix is the MCSI
potential energy function. The diagonal matrix elements
Ṽn(x) and their derivatives, G̃n(x) and F̃n(x), are obtained
as follows: First we define

V
(j)
MM,n ≡ V (j)

nn (x) j = 1, ...,m! (82)

G
(j)
MM,n ≡ ∂

∂x
V (j)
nn j = 1, ...,m! (83)

and

F
(j)
MM,n ≡ ∂2

∂x2
V (j)
nn j = 1, ...,m! (84)

where each value of j corresponds to one of the m! con-
nectivity patterns. Then, Ṽn(x), G̃n(x), and F̃n(x) are
calculated as:

Ṽn(x) = − 1

α
ln

 1

σmm

m!∑

j

e−αV
(j)
MM,n

(x)

 , (85)

12

G̃n(x) =

m!∑

j

G
(j)
MM,n(x)e

−αV
(j)
MM,n

(x)

m!∑

j

e−αV
(j)
MM,n

(x)

, (86)

and

F̃n(x) =

m!∑

j

(
F

(j)
MM,n(x)− αG

(j)
MM,n(x)G

(j)
MM,n

T(x)
)
e−αV (j)

MM,n(x)

m!∑

j

e−αV (j)
MM,n(x)

+ αG̃nG̃
T

n, (87)

where V
(j)
MM,n(x), G

(j)
MM,n(x), and F

(j)
MM,n(x) are sets of m!

MM energies, gradients, and Hessians at the geometry x.
As in the algorithm for constructing nonsymmetrized

PESs, two approaches are available to obtain the off-
diagonal elements β. In the first case, one carries out the
Shepard interpolation of T 2

12 of eq. 80 directly:

β2
o(r) =

N∑

k=1

m!∑

i=1

wki(r)T
2
12(r; k, i), (88)

where wki are normalized weights. The value of β2 at a
geometry r is then approximated in the same way as in
eqs. 41 and 42 in the nonsymmetrized algorithm.
The first and second derivatives of β2 with respect to the

coordinates r are the same as the derivatives of βo for all
β2
o ≥ −∆2/4. These derivatives are given by

g(r) ≡ ∂β2(r)

∂r
=

N∑

k=1

m!∑

i=1

[
∂wki

∂r
T 2
12(r; k, i) + wkig12(r; k, i)

]
(89)

and

f(r) ≡ ∂2β2(r)

∂r2
=

N∑

k=1

m!∑

i=1

(
∂2wki

∂r2
T 2
12(r; k; i) +

∂wki

∂r
g12(r; k, i)

T+ g12(r; k, i)

(
∂wki

∂r

)T

+ wkif12(r; k, i)

)
, (90)

where

g12(r; k, i) ≡
∂T 2

12(r; k, i)

∂r

=D(k,i)
(
b(k,i) +C(k,i)∆r

) (91)

and

f12(r; k, i) ≡
∂2T 2

12(r; k, i)

∂r2
= C(k,i) (92)

The first and second derivatives of the weight function
with respect to coordinates r that are required by eqs. 89
and 90 are given by:

∂wk

∂rα
=

Γ∑

γ=1

∂wk

∂sγ

∂sγ
∂rα

(93)

and

∂2wk

∂rα∂rβ
=

Γ∑

γ=1

Γ∑

γ=1′

∂sγ
∂rα

∂2wk

∂sγ∂sγ′

∂sγ′

∂rβ
+

Γ∑

γ=1

∂wk

∂sγ

∂2sγ
∂rα∂rβ

,

(94)
where r and s are the sets of the internal coordinates used
in Shepard interpolation and in calculations of the weight
function.
In the other approach, called Hermitian MCSI, the value

of β and its first and second derivatives with respect to the
internal coordinates are obtained as follows:
The Shepard interpolation step yields:

β(r) =
N∑

k=1

m!∑

i=1

wki(r)V
′

12(r; k, i), (95)

where wki are normalized weights, and V ′

12 is defined by

V ′

12(r; k, i) =
√
T 2
12(r; k, i)u(r; k, i), (96)

13

where T12(r, k, i)
2 is given in eq. 80, and

u(r, k, i) =

1

1 + (∆/T12(r; k, i))2n
; T12(r; k, i)

2 > 0

0; otherwise.

(97)

The gradient and Hessian of β of eq. 81 with respect to
internal coordinates are given by:

g(r) ≡ ∂β(r)

∂r
=

N∑

k=1

m!∑

i=1

[
∂wki

∂r
V ′

12(r; k, i) + wkig12(r; k, i)

]
(98)

f(r) ≡ ∂2β(r)

∂r2
=

N∑

k=1

m!∑

i=1

(
∂2wki

∂r2
V ′

12(r; k, i) +
∂wki

∂r
g12(r; k, i)

T + g12(r; k, i)

(
∂wki

∂r

)T

+ wkif12(r; k, i)

)
, (99)

where

g12(r; k, i) ≡
∂V ′

12(r; k, i)

∂r
=

1

2V ′

12(r; k, i)
D(k,i)

(
b(k,i) +C(k,i)∆r(k,i)

)
u(r; k, i)

(
1 +

(
∆

T12(r; k, i)

)2n

nu(r; k, i)

)
(100)

and

f12 ≡ ∂2V ′

12(r; k, i)

∂r2

=
1

V ′

12(r; k, i)

[
−g12(r; k, i)g12(r; k, i)

T +
1

2
D(k,i)C(k,i)u(r; k, i)

{
nu(r; k, i)

(
∆

T12(r; k, i)

)2n

+ 1

}

+

D(k,i)

(
b(k,i) +C(k,i)∆r(k,i)

)
nu(r; k, i)

T12(r; k, i)

2(
∆

T12(r; k, i)

)2n
{
nu(r; k, i)

(
∆

T12(r; k, i)

)2n

− (n− 1)

}
(101)

As in the nonsymmetrized MCSI calculations, the first
and second derivatives with respect to r of the weight func-
tion are obtained numerically. Since all operations except
for this numerical intermediate step are analytic, the final
MCSI derivatives may be called semi-analytical.
These derivatives of β are then transformed from the

internal coordinates r to Cartesian coordinates by using
the transformation matrices saved in an earlier step, in
the same fashion as in the formalism for nonsymmetrized
potential energy surfaces.
The normalized weight function of eq. 95 is:

wki(s) =

Yki(r)

d4ki(s)
(N+2)∑

k=1

m!∑

i=1

Yki(r)

d4ki(s)

(102)

where dki is the generalized distance between s and s(k,i)

defined as:

dki(s) =

√√√√
Γm!∑

γ=1

(
sγ − s

(k,i)
γ

)2
, (103)

where s ≡ {s1, s2, . . . sγ , . . . sΓ}. The current implementa-
tion only supports the following cases: (i) set s is the same
as set r, and (ii) set s is a subset of r. The scaling coef-
ficients Yki(r) are chosen such that the reactive system is
described by pure molecular mechanics in the asymptotic
regions. In particular, we define Yki at a geometry r as:

Yki(r) =
1

1 +

(
T 2
12(r; k, i)−D(k,i)

A2

)µ , (104)

where A and µ are parameters; the default values are A =√
6× 10−4 Eh, µ = 4.
(x) Find the eigenvalue V of eq. 81 and its derivatives

in Cartesian coordinates. The lowest eigenvalue of eq 81 is
given by

V =
1

2

[
Ṽ1(q(x)) + Ṽ2(q(x))

−
{(

Ṽ1(q(x)) − Ṽ2(q(x))
)2

+ 4β2(r(x))

}1/2
]

(105)

14

where Ṽn are the symmetrized uninterpolated MM poten-
tials given by eq. 69, and β2 is equal (at all geometries
where β2

o(r) > −∆2/4) to β2
o obtained via the m!N -term

Shepard interpolation, eq. 88. The gradient and Hessian
components of V with respect to Cartesian coordinates are
given by:

Gi =
∂V

∂xi
=

1

2

G̃1i(x) + G̃2i(x)−

2

(
∂β2(r(x))

∂xi

)
+
(
Ṽ1(x)− Ṽ2(x)

)(
G̃1i(x)− G̃2i(x)

)

{(
Ṽ1(x) − Ṽ2(x)

)2
+ 4β2(r(x))

}1/2

 (106)

Fij =
∂2V

∂xi∂xj

=
1

2

F̃1ij(x) + F̃2ij(x) −

2

(
∂2β2

∂xi∂xj

)
+
(
Ṽ1 − Ṽ2

)(
F̃1ij − F̃2ij

)
+
(
G̃1i − G̃2i

)(
G̃1j − G̃2j

)

{(
Ṽ1 − Ṽ2

)2
+ 4β2

}1/2

+

{
2

(
∂β2

∂xi

)
+
(
Ṽ1 − Ṽ2

)(
G̃1i − G̃2i

)}{
2

(
∂β2

∂xj

)
+
(
Ṽ1 − Ṽ2

)(
G̃1j − G̃2j

)}

{(
Ṽ1 − Ṽ2

)2
+ 4β2(r

}3/2

 . (107)

If H is Hermitian, then the components of the gradient vector and the Hessian matrix of V are calculated (in terms of
β) as

Gi =
∂V

∂xi
=

1

2

G̃1i(x) + G̃2i(x)−

4

(
∂β

∂xi

)
+
(
Ṽ1(x) − Ṽ2(x)

)(
G̃1i(x)− G̃2i(x)

)

{(
Ṽ1(x)− Ṽ2(x)

)2
+ 4β2

}1/2

 (108)

and

Fij =
∂2V

∂xi∂xj

=
1

2

F̃1ij + F̃2ij +

{
4β

(
∂β

∂xi

)
+
(
Ṽ1 − Ṽ2

)(
G̃1i − G̃2i

)}{
4β

(
∂β

∂xj

)
+
(
Ṽ1 − Ṽ2

)(
G̃1j − G̃2j

)}

{(
Ṽ1 − Ṽ2

)2
+ 4β2

}3/2

−
4

(
∂β

∂xi

)(
∂β

∂xj

)
+ 4β

(
∂2β

∂xi∂xj

)
+
(
G̃1i − G̃2i

)(
G̃1j − G̃2j

)
+
(
Ṽ1 − Ṽ2

)(
F̃1ij − F̃2ij

)

{(
Ṽ1 − Ṽ2

)2
+ 4β2

}1/2

 . (109)

where β is obtained via the m!N -term Shepard interpola-
tion of modified T 2

12, eqs. 95-97.

V. NOTES ON HOW TO TREAT SHALLOW
POTENTIAL ENERGY SURFACES

The MCSI and EE-MCSI methods described above can
in principle reproduce any type of reactive potential energy
surface (PES) with good accuracy. One can raise the accu-

racy by adding Shepard points with an appropriate weight
function at any locations where the MCSI potential en-
ergy function does not reproduce the reference PES well.
Generally, the convergence is very fast due to the pres-
ence of the molecular mechanics force field in the diagonal
elements. Tyically no more than 10 Shepard points are re-
quired to describe the PES with an error of less than 1.0
kcal/mol. However, when the system has a shallow PES in
some directions, e.g. along dihedral angles, the convergence
might be very slow because of the quadratic expansion of

15

[T12(r; k)]
2
(eq. 38). For such directions, the diagonal el-

ement changes gradually, while [T12]
2 can rapidly change

as ∆r(k) becomes large. As a result, the MCSI PES might
have large deviations from the accurate one along such di-

rections. This problem does not appear if ∆r(k) is always
small in the calculations such as when one concentrates
only on regions near a minimum energy structure or near
a minimum energy path. However, in cases such as molec-
ular dynamics simulations, the problem can become severe
because the calculations sample a wide region.
To overcome this problem, two options are available in

the current version of mcsi (Ref 36). First, eq. 38 is mod-
ified for dihedral angles as follows,

[T12(r; k)]
2 = D(k)

{
1 + b(k)TS(∆r(k))

+
1

2
S(∆r(k))TC(k)S(∆r(k))

}
, (110)

where

S(∆r(k))T =
(
S(∆r

(k)
1) S(∆r

(k)
2) · · · S(∆r

(k)
Γ)
)
,

(111)
and

S(∆r(k)α) =

sin
(
mα∆r

(k)
α

)

mα
; if rα is dihedral angle

∆r
(k)
α ; otherwise.

(112)
where mα is the local periodicity of dihedral angle α. We
recommend that mα be determined physically; e.g, mα = 3
for dihedral angles describing internal rotation around a
C-C single bond, and mα = 2 for those describing inter-
nal rotation around a C-C double bond. Note that the
coefficients of the Taylor expansion, D(k), b(k), and C(k)

are the same as in the original equation because the first
and second derivatives of S(∆r(k)) at ∆r(k) = 0 are un-
changed. This modification greatly reduces the error of the
PES along dihedral angles. Note also that eq. 110 itself sat-
isfies periodic boundary conditions with respect to dihedral
angles, while the original equation does not, although the
PES generated by the latter can satisfy periodic boundary
condition by adding Shepard points along dihedral angles.
This option can be specified by the ICSHEPARD keyword
in the esp.fu85 input file. The function S can also be used
in the calculating the generalized distance dk(s) (eq. 57).
The second option is to simply set the quadratic coef-

ficients of the Taylor expansion involving such directions

equal to zero, namely C
(k)
αβ = 0 (β = 1, 2, · · · ,Γ) if the

PES along internal coodinates α is problematic. This op-
tion can be used for any type of internal coordinates. This
procedure is effective when the molecular mechanics force
field in the diagonal elements describes the reference PES
well, or the PES along such directions are not important
for the reaction. Note that if all the quadratic coefficients
are set equal to zero, it becomes gradient-based MCSI (Ref.
8). This option can be specified by the ICSHZERO key-

word in the esp.fu83 input file. In the current version of
mcsi, one can also set the linear and quadratic coefficients
of the Taylor expansion for an internal coordinate equal to
zero, which can be specified by the ICSAZERO keyword in
the esp.fu83 input file.

VI. DISTRIBUTION

mcsi is a combination of two packages of code:

• tinker 3.5mn5, which is a locally modified version of
the tinker program. (The modifications are listed
in Sec. XIII A of this manual.) Because tinker was
re-organized by its author (J.W.P.) in version 3.6, it
is not straightforward to incorporate the most recent
version of tinker into mcsi. Therefore we include
(with permission from J. W. Ponder) a locally modi-
fied version of tinker–version 3.5 in the mcsi distri-
bution. The current modification is called tinker–
version 3.5mn5.

• mct module, which is a set of subroutines that con-
trol and carry out SCMM and MCSI calculations by
interfacing with tinker 3.5mn3. The mct module
also contains a number of modified tinker subrou-
tines that are used in mcsi instead of the original
tinker subroutines.

The use of the mcsi program requires a specific license.
Further information can be obtained at:

http://comp.chem.umn.edu/mcsi

The program is distributed as a compressed tar file named
mcsi2010-1.tar.gz. To uncompress, enter:

gunzip mcsi2010-1.tar.gz

The uncompressed file will be named mcsi2010-1.tar.
After extracting the files from the tar file, which can be
done with the command:

tar -xvf mcsi2010-1.tar

a new directory, mcsi2010-1, is created. This directory
contains all the files included in the distribution package,
which are located in subdirectories according to the follow-
ing tree structure:

mcsi2010-1
|

--
| | | | |

exe script srcmct testmct tinker
|

| | | |

test1 test2 ... testo2010-1

• exe: no files. (After the compilation, the executable
will be moved to this directory.)

16

• script: 6 files containing compilation scripts for
mcsi:
compile.gfortran, compile.gfortran.sym,

compile.ifort, compile.ifort.sym,
compile.pgf77, compile.pgf77.sym.

• srcmct: 28 files comprising the mct module:
eemcmm.inc, emsrc1.f, energ.f, field.f,

getkey.f, getprm.f, grads.f, hesss.f,
initial.f, main.f, mccomm.inc, mcfset.f,

mcparm.i, mcparm.inc, mcparm.inc.sym
mcperc.inc, mcrsmldum.f, mcsrc1.f,

mcsrc2.f, mcsrc3.f, mcsrc4.f, mcsrc5.f,
mcsrc6.f, mcsrc7.f, mcsrc8.f, piscf.f,

readfile.f, sizes.i.

• testmct: 4 files: run all, run t all, getnew,
and compnew, and 25 subdirectories: 25 directo-
ries (test1, test2, ..., and test25) with the in-
put files for the test calculations, one directory
(testo2010-1) with the distributed outputs of the
test runs, and one directory (testonew) without
files. Running script getnew will collect the most
recent outputs for all test calculations into directory
testonew, and subsequently running script compnew
will generate files for comparisons between these
newly obtained and those distributed outputs for all
test runs.

• tinker: The directory tinker has the following
structure:

tinker
|

--
| | | | | | |

bin doc ibmr6k params sgi source test

• bin: no files. (The binary executable files for tinker
3.5mn5 will be located here.)

• doc: 9 files: README, guide.txt, license.txt,

spine.ps, summary.txt, guide.ps.Z,
license.ps, logo.ps.Z, summary.ps. These
files are the original documentation files from
tinker 3.5.

• ibmr6k: 8 files: README, clock.f, library.make,

listing.make, calendar.f, compile.make,
link.make, rename.make. These files can be
used for compiling tinker–version 3.5mn3 as a
stand-alone program on IBM RS/6000 machines.

• sgi: This directory contains the following subdirec-
tories:

– irix5.3: 10 files: README, debug.make,

link.make, listing.make, compile.make,
library.make, link.make, rename.make,

clock.f, calendar.f

– irix6.2: 8 files: README, compile.make,

library.make, link.make, listing.make,
rename.make, clock.f, calendar.f

The files in these subdirectories can be used for com-
piling tinker–version 3.5mn5 as a stand-alone pro-
gram on SGI workstations under IRIX 5.3 or IRIX
6.2, respectively.

• params: 16 files: README, merck.prm,

mm3pro.prm, smooth.prm, amber.prm,
emr.prm, mm2.prm, mmffpro.prm, tinker.prm,

blank.prm, hoch.prm, charmm27t35.prm,
mm3.prm, mmp old.prm, opls.prm, water.prm.
These files are the parameter files for the supported
force fields. We note that only the MM3 force field
has been tested with mcsi.

• source: The source directory contains all the sub-
routines and include files for the standalone tinker
3.5mn5 program.

• test: Set of input files for testing tinker 3.5mn5.

VII. INSTALLATION

First the user should obtain a licensed copy of the mcsi

package. After downloading, uncompressing, and untaring
the file, the mcsi package should appear as a directory, as
described in Sec. VI. The mcsi package also includes a
locally modified version of the tinker program.
There are a few variables that have to be set large enough

to accommodate the system or systems to be studied. Two
of these variables are maxatm in the mcparm.i include file
and mcmesp in the mcparm.inc include file in the srcmct
directory of mcsi. The maxatm variable indicates the max-
imum number of atoms allowed in the executable, and the
mcmesp variable indicates the maximum number of elec-
tronic structure theory Shepard points allowed in the exe-
cutable. The first of these variables is set to a value of 40
and the second to a value of 20 in the distributed version of
the code. The remaining variables in the include files can
be changed according to the characteristics of the system
and computer resources, but usually the default values are
good enough.
The installation of the mcsi program can be carried out

by running a C shell script, specifically, compile.gfortran
for GNU Fortran compiler, compile.ifort for Intel For-
tran compiler, compile.pgf77 for PGI Fortran compiler.
To run the script, the user should also give the path of the
mcsi2010-1 directory. For example, if the mcsi2010-1

path is /usr/mcsi2010-1 then the command should be

compile.gfortran /usr/mcsi2010-1

for GNU Fortran compiler,

compile.ifort /usr/mcsi2010-1

for Intel Fortran compiler, or

17

compile.pgf77 /usr/mcsi2010-1

for PGI Fortran compiler. If one needs symmetrized MCSI
calculations in addition to nonsymmetrized ones, use com-
pile.XXX.sym instead of compile.XXX (XXX is the com-
piler name). Note that symmetrized MCSI calculations
require a large amount of memory. These scripts will com-
pile the source code and will generate an executable file.
In Sec. XII we list the computers and operating systems
on which the code has been tested. The installation of
mcsi with a different kind of compiler or operating sys-
tem should be straightforward, requiring only changes in
the compiler and loader options in any one of the scripts,
compile.gfortran, compile.ifort, or compile.pgf77.
After installation, the executable file is put into the exe
subdirectory of the mcsi2010-1 directory.
The user can also compile a set of files from the tinker

3.5mn5 suite as a stand-alone program. These files are de-
scribed in the tinker manual in the tinker subdirectory of
the present package. Their main purpose is to calculate the
molecular mechanics energies and to generate molecular
mechanics optimized geometries that may be used in MCSI
calculations. To compile these programs, the user should
copy the script files from the tinker/ibmr6k subdirectory
(for IBM/RS6000 computers) or the tinker/sgi subdirec-
tory (for SGI computers) into the tinker/source subdi-
rectory, as well as the clock.f and calendar.f source code
files. Then, from this source directory, one must launch the
compiling scripts in the following order: compile.make,
library.make, link.make, and rename.make. The exe-
cutables will be located in the tinker/bin subdirectory.

VIII. PROGRAM DESCRIPTION

The mcsi programmakes use of routines from tinker pro-
gram through calls from the mct module. Several modified
tinker subroutines are components of the mct module and
are used in mcsi instead of the original tinker subroutines.
The version of tinker we used is version 3.5mn5, which is
version 3.5 modified in order to eliminate some bugs and
to make the code more suitable for our purposes.

A. Features of tinker–version 3.5mn5

The mcsi program follows the polyrate hooks proto-
col. This means that if energy, gradient, and/or Hessian
calculations are desired, the program calls the appropriate
hooks subroutine that will return that information. (The
user may read more about hooks in the polyrate man-
ual, although everything that is required to be known to
use mcsi is given here.) In order to allow the modular
hooks protocol, few subroutines of the tinker program
have been modified in order to provide mct module with
the requested information and are now considered as being
elements of the mct module. The subroutines in tinker

that have uses other than the calculation of the energy or
first and second derivatives are not used in the mcsi pro-
gram.

A requirement of mcsi is that the system under study
must be defined by means of the symbols of all the chemi-
cal elements that compose the system. It is very common
in molecular mechanics force fields to represent a group of
atoms as a single particle. For example, the methyl group,
CH3, is very often described as a single atom with atomic
mass of (approximately) 15 amu, ignoring its internal struc-
ture. (This is sometimes called a united-atom representa-
tion or a coarse-grained representation.) The present ver-
sion of mcsi cannot perform such kinds of calculations: the
number of atoms in mcsi must be the same as the number
of atoms in tinker, and mcsi only accepts atomic ele-
ments. In other words, mcsi can be used with all-atom
force fields but not with united-atom force fields.
Another desired feature of mcsi is that the energy and at

least its first and second derivatives should be continuous
functions of geometry. This is not always fulfilled in some
of the force fields in tinker. For example, let’s consider
the study of butadiene with the MM3 force field. This
force field treats the conjugated π-system by means of a
self-consistent VESCF calculation, for which no analytical
derivatives are available in tinker, and these derivatives
are taken as zero. It is assumed by tinker–version 3.5
that the user is not going to be interested in points on the
potential energy surface far from an equilibrium position,
and that the contributions to the overall gradient and Hes-
sian from the derivatives of this term are negligible, but
this is not true when the MM energy expression is used as
part of an MCSI calculation. Thus, the calculation of a
reaction path that involves a modification in the π-system
for butadiene will not have continuous derivatives if the
contributions to the derivatives from the VECSF calcula-
tion are neglected. Therefore, it is our recommendation to
never use the VECSF calculation. This is discussed further
in Sec. VIII A 3.
With these restrictions, mcsi can use any method avail-

able in tinker for the estimation of energies, gradients,
and Hessians. These methods are based on molecular me-
chanics with a variety of force fields. The user is encour-
aged to read the tinker manual for more information
about the molecular mechanics methods employed by tin-

ker. We do warn the reader though that so far we have
only checked mcsi with MM3.
A few tinker subroutines have been modified in order

to include some features that are required or useful for
following the hooks protocol of mcsi and they are used
in mcsi instead of the original tinker subroutines. In
addition, some tinker subroutines have been modified to
increase the abilities of tinker program and to fix some
bugs, and these changes in the code are presented in more
detail in Sec. XIIIA. Here we present the modifications
that involve changes in the MM methods as implemented
in tinker.

1. Morse treatment for the stretching terms

The expression for a Morse curve is:

V (R) = D
(
e−2α(R−Ro) − 2αe−α(R−Ro)

)
(113)

18

where R is the bond distance, Ro is the equilibrium bond
distance, α is a parameter (i.e., the range parameter), and
D is the bond dissociation energy.
tinker–version 3.5 includes an option for a Morse treat-

ment of the stretching terms. In version 3.5, the Morse
curve is constructed using the bond distance and the force
constant read from the parameter file. The α parameter is
always set to a default value of 2 Å−1, with the bond disso-
ciation energy estimated from these three parameters. In
version 3.5mn3 the user can select the Morse treatment for
all bond stretches (as in tinker–version 3.5) or for only
a subset of the bond stretch terms in the molecule. In
the latter case, the user of tinker–3.5mn3 must specify
the bond dissociation energy for the bonds to be treated
as Morse oscillators and tinker–3.5mn3 maintains the origi-
nal treatment from the selected force field for the remaining
bonds (which usually is a Taylor series expansion). This
way, the BONDTYPE keyword is overwritten by MORSE
for these bonds, and the default value of the α parameter
is also overwritten by the value calculated by the program
using bond distance, force constant, and bond dissociation
energy.
For treating a bond as a Morse oscillator, the record cor-

responding to that bond in the parameter file can be fol-
lowed by the value of the dissociation energy. The BOND-
TYPE keyword does not need to be set to MORSE; the
presence of the bond dissociation energy will overwrite the
BONDTYPE keyword for this bond. For example, the fol-
lowing records in the parameter file:

BONDTYPE TAYLOR

bond 1 5 4.7400 1.1120 105.
bond 1 1 4.4900 1.5247

will indicate a Morse treatment of the bond between atoms
1 and 5, with the bond dissociation energy for that bond
being set to 105 kcal/mol, even though the BONDTYPE
option in the parameter file has been set to TAYLOR. Since
no bond dissociation energy is input for the 1–1 bond, it
will be treated using a Taylor series expansion, as indicated
with the BONDTYPE keyword. The records

BONDTYPE MORSE
bond 1 5 4.7400 1.1120 105.

bond 1 1 4.4900 1.5247

will lead the program to treat all the bonds as Morse oscil-
lators with the default value of α (2 Å−1), except the 1–5
bond, whose value of α will be estimated according to the
bond dissociation energy input.
A new keyword introduced in tinker is the keyword

BDEUNIT. Its syntax is

BDEUNIT real

and it allows the user to indicate the scale factor needed
to convert the bond dissociation energy input into units of
kcal/mol. For example, an alternative way of inputting the
same information as in the previous example would be

BDEUNIT 627.51

BONDTYPE MORSE
bond 1 5 4.7400 1.1120 .1673

bond 1 1 4.4900 1.5247

In this case, the bond dissociation energy is input in
hartrees. The BDEUNIT factor is the coefficient that
transforms the bond dissociation energies into units of
kcal/mol.
The subroutines modified for introducing this improve-

ment were analyze.f, ebond.f, ebond1.f, ebond2.f,
ebond3.f, field.f, kbond.f, prmkey.f, prtprm.f,
and readprm.f. The bndpot.i, bond.i, and kbonds.i
include files were also modified.
In addition to this improvement, a bug that used to cause

a miscalculation of the first derivatives of the energy (term
deddt in ebond1.f and ebond2.f) when the MORSE op-
tion was used has been corrected.

2. MM3 van der Waals term

The original van der Waals term in the MM3 method is
represented by the Buckingham potential (also called the
Exp-6 potential):

VExp-6(r) = ǫ

[
Ae−Br/rm − C

(rm
r

)6]
. (114)

where rm is the sum of the van der Waals radii, and ǫ
is the energy parameter for the interaction between two
atoms. In tinker–3.5, the van der Waals energy is repre-
sented by either this Exp-6 or by an r−12 term, depending
on the distance r between the two atoms. If r is larger
than a threshold value, the Buckingham function is used;
if it is smaller than this threshold, a repulsive function
r−12 is used instead. The shift between one function and
the other is done without any kind of smoothing, making
a discontinuous transition from one function to the other.
This is not usually a problem in SCMM calculations, since
most of the systems that one might study are always in
the range described by the Buckingham function, but in
multi-configuration molecular mechanics calculations, the
system can often reach values of r in the repulsive zone. As
stated in Sec. VIIIA, we desire the energy to be a continu-
ous function of the coordinates with at least two continuous
derivatives. We solved this problem simply by writing the
van der Waals term as a linear combination of both func-
tions. Thus, the contribution of the van der Waals term to
the energy, Vvdw, is written as:

Vvdw(r) = ǫ

[
Ae−Br/rm − C

(rm
r

)6]
+Dα

(rm
r

)12
,

(115)
where α is defined as

α =
VExp-6(r)

ǫ(rmr)12

∣∣∣∣ . (116)

and D is a unitless reaction-specific coefficient that can
be optimized to minimize the deviation of MCSI energies
from single-point accurate energies at a number of points
in the dynamically important region (examples are given
in Ref. 31). This coefficient can be specified via a keyword
dterm (which is a keyword that was added in the version
1.1.1 of mcsi) in the .prm file that contains the MM3 pa-

19

rameters. Values of D in the range 0.005-0.02 are expected
to work well for most reactions; however, some adjustment
may be required for optimum results. Note that all versions
of mcsi prior to 1.1.1 and all applications prior to Ref. 31
used a hard-coded value of D = 0.2. This resulted in an
overestimation of the van der Waals energy at small in-
ternuclear separations and in deterioration of the fit (such
as appearance of artificial wells on the concave side of the
MEP, etc.) that was more or less pronounced in different
applications.3−30 For more details on the van der Waals
energy term in mcsi, see Ref. 31
Thus, the MM3 force field now gives a continuous en-

ergy with at least two continuous derivatives whenever the
VESCF treatment for the π-system is not included. The
user should be aware that the results for MM3 calculations
obtained with this version of tinker will be slightly differ-
ent from those obtained from a standard MM3 code.
The subroutines modified in order to accomplish this ob-

jective are ebuck.f, ebuck1.f, ebuck2.f, ebuck3.f,
ebuck4.f, and ebuck5.f. A bug that miscalculated the
second derivatives of the energy for the repulsive term
(term d2e in the ebuck2.f subroutine) has been corrected
in version 1.0.

3. VESCF treatment for π systems

Another relevant issue concerns the VESCF treatment
for π-systems, which is mentioned above (in Sec. VIIIA).
For example, in the 1,3-pentadiene molecule, the bonds 1
and 3 are not a typical double bond, and the bond num-
ber 2 is not a typical single bond. Using the same set of
parameters for describing the bond numbered 2 and bonds
numbered 1 and 3 in pentadiene as any other single and
double bond, respectively, leads to an unphysical situation.
The VESCF treatment variationally optimizes the param-
eters of the bonds, bond angles, and torsions involved in
a π-system. Thus, after applying the VESCF treatment
the bonds number 1 and 3 in 1,3 pentadiene are longer
than nonconjugated double bonds, while the bond number
2 is shorter than a single bond located between two single
bonds. Similarly, the force constants, bond angles, torsion
constants, etc. are optimized for each bond. However, once
the new set of parameters describing each interaction is cal-
culated using the VESCF method, the standard MM3 pro-
cedure is unsatisfactory for calculating the gradients and
Hessians of the systems. In this standard MM3 procedure,
if we calculate numerically the derivatives, the parameters
will be reoptimized for each geometry, and even though the
changes in the geometry are small, they are large enough
to make the parameters slightly different for each geom-
etry used in the numerical differentiation. Therefore, the
numerical and analytical derivatives are different. (In gen-
eral, the analytical derivatives are not continuous.)
The way we work around this problem in investigating

the isomerization of 1,3-cis-pentadiene3 is to carry out a
VESCF calculation on pentadiene, which is the system that
has to be adequately described by the molecular mechanics
method. Then, we modify the parameter file, and we define
the system using the VESCF-optimized parameters and

we do not make any further special treatment for the π-
system. This way we obtain for pentadiene exactly the
same results as using the VESCF method with the original
set of parameters, but a change in the geometry will not
modify the parameters, and so we eliminate the problems
with the derivatives.

B. Structure of mcsi

The mcsi program follows the hooks protocol in
polyrate; that is, whenever the program requires energy,
gradient, or Hessian calculation, it calls the appropriate
hooks subroutines. In this section we will describe all the
steps in a usual calculation.
The first subroutine called by the driver is subroutine

mcfope, which opens the esp.fu86 output file and the
esp.fu85 input file. If both files are opened succesfully,
the next step is to print the header in the esp.fu86 out-
put file (by calling subroutine mcpthd). The program sets
the defaults and reads the various options of the calculation
(in subroutine mcrfgi) and then closes the esp.fu85 input
file (by calling subroutine mcfclo). Further, the program
prints out a summary table of all the options (in subroutine
mcptab).
The next step is preparing for the calculation. This is

done in subroutine mcscal. The first subroutine called in
mcscal is subroutine mcsvar, which sets some variables,
followed by subroutine mcrfmm. Depending on the type
of calculation that is to be pursued (SCMM using config-
uration 1 bonding scheme, SCMM configuration 2 bond-
ing scheme, or MCSI), the mcrfmm subroutine is called to
open and read (done by means of subroutine readfile) the
esp.fu81 and/or esp.fu82 input file. The mcrfmm subrou-
tine is called with the argument 1 for configuration 1 and
2 for configuration 2. The esp.fu81 and/or esp.fu82 in-
put files are tinker input files that specify the geometries
of the SCMM points (single-configuration molecular me-
chanics Shepard points), the connectivity, atom types, and
atomic symbols of the configuration 1 and configuration 2,
respectively. This information (geometries, connectivity,
atom types, and atomic symbols) is stored in the appro-
priate arrays. (Note that for an SCMM calculation, the
geometry that is read in the esp.fu81 or esp.fu82 in-
put file is meaningless.) For an MCSI calculation, mcscal
calls three more subroutines: subroutine mcsici, which
does some checks and determines the internal coordinates
used both for Shepard interpolation and for generalized
distances, subroutine mctmmg or mctmmgs, and subroutine
mcsesi. The mctmmg subroutine transforms the geometries
of the two SCMM points (from esp.fu81 and esp.fu82 in-
put files) from Cartesian to internal coordinates. In case of
symmetrized calculations, the subroutine mcrfmms is called
instead to perform analogous transformations of the m!
symmetrically equivalent SCMM geometries that are given
in files esp.fu82 and esp.fu72-esp.fu76 for configura-
tion I and in files esp.fu82 and esp.fu62-esp.fu66 for
configuration II (see Sec. IXA for the usage of these files).
The mcsesi subroutine makes some checks, then calls the
mcrfes subroutine to read the electronic structure informa-

20

tion (from esp.fu83 input file) and the mctesi subroutine
to transform this information from Cartesian to internal
coordinates. The mctesi subroutine is presented in more
detail in Sec. VIII B 1. Note that the mcscal subroutine is
called only once prior to any calculation.
After calling the mcscal subroutine, mcsi is ready to

start the calculation of the energy, gradient, or Hessian,
which is done by calling subroutine mcsrun. In this subrou-
tine the esp.fu84 input file is opened, and the number of
points for which calculations should be carried out is read.
The program then enters a loop (which in the code is a do
loop on the integer variable mcipts) that runs from 1 to the
number of points (mcnpts). In this loop, the program reads
the geometry of the point, transforms it to mass-unscaled
bohrs, calls the appropriate hooks subroutine (mehook for
an energy calculation, mghook for a gradient calculation,
or mhhook for a Hessian calculation), and then prints the
results (in subroutine mcprez). In the mehook subroutine,
the program calls subroutine mcviic for an SCMM cal-
culation or subroutines mcviic and mcv12c for an MCSI
calculation. These subroutines (which will be presented
in more detail in Secs. VIII B 3 and VIII B 4) return V11,
V22, and V12, which are further combined in the mccene
subroutine to give the potential energy V . Similarly, in
the mghook and mhhook subroutines, the program calls the
mcviic and/or mcv12c subroutines but they return, be-
sides the potential energy components, their first and sec-
ond derivatives with respect to the Cartesian coordinates,
respectively. These derivatives are further combined then
in subroutines mccgra and mcches to produce the first
and second derivatives of the potential energy, respectively.
Symmetrized MCSI calculations are performed in a simi-
lar fashion, except that the subroutines mehooks, mghooks,
and mhhooks, respectively, are called to return symmter-
ized MM energies, gradients, and Hessians, respectively,
and the mcv12is subroutine is called to return a sym-
metrized value of V12. After the loop over the number
of points is completed, the program closes the esp.fu84
input file and returns to the driver. Finally, the program
writes the end of the esp.fu86 output file, and closes it
(by calling subroutine mcfclo).

1. The mctesi subroutine

The mctesi subroutine is an mcsi subroutine that com-
putes the D, b, and C coefficients of eq. (18) of Ref. 3 for
each electronic structure theory point of the Shepard in-
terpolation. This subroutine is called only once since these
coefficients are constant.
In this subroutine, after defining some variables, the

program enters a loop (which, in the code, is a do loop
on the integer variable mciesp) that runs from 1 to the
number of electronic structure theory points (mcnesp).
The number of such electronic structure theory points
was called Ns + 1 in the initial applications of MCSI to
chemical reactions.3,28 For these systems, the electronic
structure theory information about the saddle point was
required, and all the other electronic structure theory
points, Ns, were called “supplementary” points,3,28 so

the total number of electronic structure theory points was
therefore

mcnesp = Ns + 1

In this loop over the number of electronic structure the-
ory points, once for each of these points, the program has
to follow the following steps to get the D, b, and C coeffi-
cients:

• Transfer the information about each point into the
working arrays the store the geometry (Cartesian co-
ordinates) in x0, the gradient in d0, and the Hessian
in k0.

• Calculate V11 and its gradient and Hessian (that will
be stored in v1, d1, and k1, respectively). This is
done by calling the mcviic subroutine with the argu-
ment 1 (for configuration 1).

• Calculate V22 and its gradient and Hessian (that will
be stored in v2, d2, and k2, respectively). This is
done by calling the mcviic subroutine but with the
argument 2 (for configuration 2).

• Transform the geometry, gradient, and Hessian from
Cartesian coordinates to internal coordinates. (The
information we have in v1, v2, d1, d2, k1, and k2 is in
Cartesian coordinates. This information is obtained
from the Cartesian geometry x0. Also, the ab ini-
tio gradient and Hessian, stored in d0 and k0, are in
Cartesian coordinates, and we assume that they cor-
respond to the same orientation as x0.) The mctcic
subroutine is called to transform the Cartesian coor-
dinates x0 to internal coordinates used for Shepard
interpolation and for generalized distances, which are
stored in qs0 and qd0 respectively. Then the Wilson
matrices B and G are calculated and applied to d0,
d1, d2, k0, k1, and k2 to obtain dxint0, dxint1,
dxint2, kxint0, kxint1, and kxint2.

• Calculate the differences between gradient and Hes-
sian components used in eqs. (21) and (22) in Ref. 3:

do i=1,mcnics
dxint1(i) = dxint1(i) - dxint0(i)

dxint2(i) = dxint2(i) - dxint0(i)
do j=1,mcnics

kxint1(j,i) = kxint1(j,i) - kxint0(j,i)

kxint2(j,i) = kxint2(j,i) - kxint0(j,i)
enddo

enddo

• Obtain the D, b, and C coefficients of eq. (18)
in Ref. 3 according to eqs. (20) through (22).
Those values are stored in the arrays aevbm(mciesp),
bevbm(i,mciesp) and cevbm(i,j,mciesp) where i

and j are indexes of internal coordinates.

After the loop is completed, the program closes the
esp.fu83 input file and leaves the subroutine by return-
ing to subroutine mcsesi.

21

2. The mctesis subroutine

The mctesis subroutine is a version of the mctesi sub-
routine that returns D, b, and C coefficients of eq. (18) of
Ref. 3 or, equivalently, of eq. (23) of Ref. 4 for each permu-
tationally equivalent electronic structure theory Shepard
point (k, i).
This is accomplished by using the following steps:

• Generate m! values of symmetrically equivalent data
points from each Shepard point (k) by applying the
permutation operatorP(i) to each x(k), G(k) andF(k)

as in eqs. (4-6) of Ref. 4.

• Calculate m! values of V11 and their gradients and
Hessians (which will be stored in v1 j, d1 j, and k1 j
(j = 1, · · ·m!), respectively) for each data point (k).
This is done by calling the mcviic subroutine with
the arguments 1 and 1 (for configuration 1 and per-
mutation PMM(1) for each geometry (k, i)), and is
equivalent to applying each PMM(j) to a valence bond
configuration 1 at each geometry (k,1).

• Calculate m! values of V22 and its gradients and Hes-
sians (which will be stored in v2 i, d2 i, and k2 i
(i = 1, · · ·m!), respectively) for each data point (k).
This is done by calling the mcviic subroutine but
with the arguments 2 and 1 (for configuration 2 and
permutation PMM(1) for each geometry (k, i)), and is
equivalent to applying each PMM(j) to a valence bond
configuration 2 at each geometry (k,1) .

• Calculate the symmetrized MM potentials Ṽ
(k)
nn and

their gradients G̃
(k,1)
nn and Hessians F̃

(k,1)
nn at each

point (k,1) using eqs. (10-12) of Ref. 4. These val-
ues will be stored in vn, dn, and kn (n = 1, 2), for
configurations 1 and 2, respectively).

• Generate m! values of G̃
(k,i)
nn and F̃

(k,i)
nn from each

G̃
(k,1)
nn and F̃

(k,1)
nn for each point (k, i) by applying

P(i) to the gradient vectors and Hessian matrices, as
in the first step. At this point, we have the sym-
metrized accurate potential V (k), G(k,i) and F(k,i),

and the symmetrized MM potential Ṽ
(k)
nn , G̃

(k,i)
nn and

F̃
(k,i)
nn in Cartesian coordinates at each permutation-

ally equivalent Shepard point.

• The mctcic subroutine is further called to transform
the geometry of each point (k, i) from Cartesian co-
ordinates to both sets of the internal coordinates r

and s (vide supra). This yields m! sets of coordi-
nates r and m! sets of coordinates s (stored in qs0 i
and qd0 i, where i corresponds to a permutation
P(i). Then, the Wilson matrices B and G are calcu-
lated and applied to the symmetrized G(k,i), F(k,i),

G̃
(k,i)
nn and F̃

(k,i)
nn to obtain the differences used in

eqs. (20-22) of Ref. 3. These are stored in arrays
dxint0 i, dxint1 i, dxint2 i, kxint0 i, kxint1 i,
and kxint2 i, where i corresponds to a permutation
P(i). These values are used to calculate the Tay-
lor series coefficients D, b, and C as in eqs. 20-22

of Ref. 4 at each symmetrically equivalent Shepard
point (k, i).

3. The mcviic subroutine

The mcviic subroutine is a mcsi subroutine with six ar-
guments: xii, ex, gx, hx, itypec, and iconf. The array
xii is the array of Cartesian coordinates, ex contains the
molecular mechanics energy (V11 or V22), gx array con-
tains the gradient vector of V11 or V22 with respect to the
Cartesian coordinates, and hx array contains the Hessian
matrix of V11 or V22 with respect to the Cartesian coor-
dinates. The itypec argument is a flag that determines
if a molecular mechanics energy (itypec = 1), gradient
(itypec = 2), or Hessian (itypec = 3) calculation should
be carried out. The iconf argument determines whether
the molecular mechanics calculation should be carried out
using configuration 1 (iconf= 1) or configuration 2 (iconf
= 2).
Another important detail to be kept in mind is that,

when a Hessian calculation is desired, the mcviic subrou-
tine also has to return the value of the energy and the gra-
dient. The modified tinker subroutine that carried out
molecular mechanics Hessian calculations, the hesss sub-
routine, only returns the value of the Hessian and does not
give back the gradient. To determine the gradient and the
energy it is necessary to add a call to the grads subroutine,
also a modified tinker subroutine, that performs the addi-
tional gradient calculation. Similarly, a Hessian calculation
has to return the energy; but this is not a problem, since a
gradient calculation in tinker (in the grads subroutine)
automatically involves an energy calculation.
The mcviic subroutine starts by transforming the Carte-

sian coordinates from bohr (which are the units for coordi-
nates in mcsi) to angstrom (which are the units for coordi-
nates in tinker). The program then transfers the values of
the arrays that store connectivity, atom types, and atomic
symbols to the working arrays that are used in the code
for the calculations. The values transferred correspond to
the configuration 1 or configuration 2 depending on the
value of the argument iconf. For example, the number
of atoms to which an atom is connected is permanently
stored in the array incon, which is a two-dimensional ar-
ray, incon(i,j). The index j is the value of iconf and
the index i is the number of the atom. For example, in
incon(3,2) is stored the number of atoms connected to
the atom number 3 in the configuration 2 (iconf = 2).
After the molecular mechanics information is stored

in the working array, the program calls the appropri-
ate modified tinker subroutines: energ for an energy
calculation, grads for a gradient calculation, or grads
and hesss for a Hessian calculation. Once the molecular
mechanics values are returned by tinker subroutines, the
program transforms the energy to hartree and corrects the
molecular mechanics energy as described in Sec. II D, eqs.
(2.9) and (2.10):

ex = dble(enertk)/fhakc - vz1

22

for the configuration 1 and:

ex = dble(enertk)/fhakc + ediff0 - vz2

for the configuration 2, where enertk is the energy in
kcal/mol returned by modified tinker subroutines. Finally,
the program also transforms the gradient and Hessian to
atomic units (hartree bohr−1 and hartree bohr−2, respec-
tively) and returns from the subroutine.

4. The mcv12c subroutine

The mcv12c subroutine is the part of mcsi that calcu-
lates V12 and its derivatives in Cartesian coordinates. This
subroutine has five arguments: xii, e12, g12, h12, and
itypec. The array xii is the array of Cartesian coordi-
nates, e12 contains the energy V12, g12 array contains the
gradient vector of V12 with respect to the Cartesian co-
ordinates, and h12 array contains the calculated Hessian
matrix of V12 with respect to the Cartesian coordinates.
The itypec argument is a flag that indicates which kind
of calculation is to be performed: if itypec = 1, only V12 is
calculated; if itypec = 2, the gradient is also calculated; if
itypec = 3, the gradient and Hessian are also calculated.
The mcv12c subroutine starts by initializing some vari-

ables and doing some checks. If a constant value for V12 is
wanted (RESMETHOD is set to constant - see Sec. IXE4),
the subroutine returns that V12 value. If V12 is not con-
stant then the following steps are followed. The subrou-
tine has the geometry that is used to calculate V12 and
its derivatives stored in the array xii. The geometry is
transformed to internal coordinates used for Shepard inter-
polation, that are stored in the array qs, and to internal
coordinates used for generalized distances, that are stored
in the array qd. These transformations are done by calling
subroutine mctcic. If the gradient of V12 is to be calcu-
lated, it is necessary to obtain the matrix B, which is going
to be stored in the array amatb in the code. This is done
by calling subroutine ybmat. If the Hessian of V12 is to be
calculated, it is necessary to obtain the matrix G, which
will be stored in amatbtc. The matrix G is calculated by
calling subroutine btenscj. After these transformations,
it is possible to use the internal coordinates instead of the
Cartesian coordinates.
The next step is to calculate V12 and its derivatives

in internal coordinates by using the appropriate interpo-
lation or expansion scheme. This is the aim of subrou-
tine mcv12i (nonsymmetrized calculations), or analogous
subroutine mcv12is (symmetrized calculations) which is
called next. These subroutines (which are explained in
Sec. VIII B 5) use the geometry from the arrays qs and
qd, the D, b, and C coefficients calculated in subroutine
mctesi, and determine V12 and its derivatives with respect
to the internal coordinates either by expansion around one
electronic structure theory Shepard point or by Shepard
interpolation. The mcv12i(s) subroutine then returns the
(symmetrized) energy V12 in the variable e12, its gradient
with respect to the internal coordinates in the vector gi12,
and the Hessian in the array hi12.

The last step in subroutine mcv12c is to transform the
information about the derivatives back to Cartesian co-
ordinates. This is done by calling subroutine trangj for
getting the gradient in Cartesian coordinates from the gra-
dient in internal coordinates, and by calling the formf2cj,
tranlfj, and tranfcj subroutines for getting the Hessian
in Cartesian coordinates from the gradient and Hessian in
internal coordinates. These transformations are done us-
ing the matrix B calculated previously and stored in the
array amatb, and the matrix G stored in amatbtc, in or-
der to guarantee that the orientation of these gradient and
Hessian is consistent with the orientation of the geome-
try in Cartesian coordinates from the vector xii. Once
the term V12 and its derivatives in Cartesian coordinates
are obtained, the program leaves subroutine mcv12c and
returns to the appropriate hooks subroutine.

5. The mcv12i(s) subroutine

The mcv12i(s) subroutine is the subroutine that car-
ries out the Shepard interpolation to obtain V12 in internal
coordinates as described in Ref. 5. There are two ver-
sions of this subroutine: mcv12i, which is called in non-
symmetrized calculations, and mcv12is, which is called in
symmetrized calculations, and they are referred here to as
mcv12i(s). The subroutines mcv12iold and mcv12isold
carry out Shepard interpolation of modified Taylor series
of V12 according to Ref. 3 and they are no longer used in
calculations with the mcsi2009 code, unless otherwise is
requisted by the user (using the NONHERMITIAN false
option in the RESONANCE section).
The subroutine mcv12i(s) uses the D(k), b(k), and

C(k) (D(k,i), b(k,i), and C(k,i)) coefficients calculated in
mctesi(s) for calculating the value of V12 and its deriva-
tives at the geometry qs in internal coordinates. This is
done using the m!mcnesp sets of D, b, and C coefficients.
Thus, we obtain m!mcnesp values of V12(i) and its deriva-
tives. (V12(k, i) represents the value of V12 obtained from
expansion around Shepard point (k, i)). Usually, we add to
this set 2 (2m! in symmetrized calculations) more values:
those of the SCMM points. These structures are assumed
to be accurately described by the molecular mechanics po-
tential functions therefore their V12 and their derivatives
are considered to be zero. Once we have them!(mcnesp+2)
values of V12(i), we perform a Shepard interpolation ac-
cording to eq (2) of Ref. 5 (or equivalently, eq. 88 of Sec. IV
for symmetrized calculations) and get the final value of V12.
In the mcv12i(s)old subroutine, Shepard interpolation if
performed according to eq. (14) of Ref. 3 (or equivalently,
eq. (24) of Ref. 4 in symmetrized calculations).
Here, qs are the internal r coordinates used for Shepard

interpolation, and qd are the internal coordinates s used for
generalized distances (see the comment in Sec. II A about
the three internal coordinate systems.). The first part of
the mcv12i subroutine calculates the differences between
the values of the internal coordinates at the point described
by qs and qd and the values of the internal coordinates
at the Shepard points, qs0 and qd0. These differences
are stored in the arrays dqs and dqd. In the mcsi–1.1.1,

23

the part of the code that calculates dqd was moved to the
mcswts subroutine.
Next, the mcswtsnum subroutine is called to determine

the weights and their derivatives with respect to the in-
ternal coordinates s. The weights involve the generalized
distances dk(s) defined by eq. (35) of Ref. 3. The right-
hand side of this equation involves adding the squares of
coordinates that have different units. Thus eq. (35) is ac-
tually evaluated in reduced units. The expression for dk(s)
in reduced units is

dk(s) =

√√√√√
N ′∑

i=1

(
si − s

(k)
i

)2

µi
, (117)

where µi ≡ 1ao if si is a bond length, and si = 1 radian
if si is a bond angle or torsion angle. Since the code uses
atomic units, the constants µi are all unity, and they do
not actually appear in the program.
The next step in the calculation is the differentiation of

the weights with respect to the internal coordinates; this is
performed numerically, and therefore the final MCSI gra-
dients and Hessians are semi-analytical. The mcswtsnum
subroutine uses the step size stored in a variable hh to
generate coordinates for evaluating numerical derivatives,
and it calls either the mcswts or mcswtss subroutine (de-
pending on whether one performes a non-symmetrized or
symmetrized MCSI calculation) that return the normalized
weights. In the mcswts/mcswts subroutine, taking the dif-
ferences between the internal coordinates used for calculat-
ing generalized distances (stored in dqd/dqd p12), the pro-
gram calculates the m!(mcnesp + 2) generalized distances
according to eq. (35) of Ref. 3 or, equivalently, according to
eq. (38) of Ref. 4, and stores them in the array disst(i).
In order to avoid problems with the code, we check that
none of these distances are smaller than a cutoff. If one
of the distances is less than that cutoff, we consider that
the weight of that point in the Shepard interpolation is
unity, while the weight of all the other points is zero. If all
the generalized distances are larger than the cutoff, we cal-
culated the normalized weights given in eq. (34) of Ref. 3
and their numerical derivatives with respect to the internal
coordinates s. (The cutoff is currently hardwired and set
equal to 10-8 reduced units.) Note that the code is written
in such a way that w(i) is the array that contains the nor-
malized weights of each Shepard point. Testing new weight
functions will only require to code the new mathematical
functions that evaluate the values of the components of
the array w(i). Therefore the code, as it is now, is quite
modular and easy to modify.
Once the weights and their derivative are calculated, the

program starts a loop over the Shepard points, in order to
evaluate V12(i), which is stored as e12pnt (e12pnt i), by
using the arrays aevbm, bevbm i, and cevbm i calculated
in subroutine mctesi(s), and eq. (18) of Ref. 3. The
contribution of this Shepard point to the interpolated value
of V12, stored in e12, is calculated as:

e12 = e12 + w(mciesp)*e12p(mciesp)

The program also calculates the gradient of V12 for the

present Shepard point (in internal coordinates) and stores
it in gi12, and the same thing is done with the Hessian
matrix, which is stored in hi12. The loop over the Shep-
ard points is closed here, and after the loop has run over
the m!mcnesp electronic structure theory Shepard points,
the interpolated V12 is passed to mcv12c through the e12
variable, its gradient passed through gi12, and the Hessian
through hi12.

C. Limitations on the use of mcsi

There are some issues that limit the use of mcsi:

• The MCSI method in its current state can make use
of only two molecular mechanics configurations. This
is a formal limitation, but we note that the results
still converge to the correct answer as the amount of
electronic structure information is increased.

• In addition to the geometries where electronic struc-
ture information is available, only two more struc-
tures can be used for the Shepard interpolation
step. These two structures (called SCMM points)
are points where the single-configuration molecular
mechanics potentials defined by configuration 1 and
configuration 2, respectively, are accurate. For ex-
ample, the SCMM point for configuration 1 can be a
single reactant (for unimolecular reactions) or an op-
timized reactant well (for bimolecular reactions), and
the SCMM point for configuration 2 can be a single
product (for unimolecular reactions) or a optimized
product well (for bimolecular reactions).

• The ordering of the atoms has to be the same for
the SCMM points, for the electronic structure the-
ory Shepard points, and in defining the other points
where an MCSI calculation is desired.

• For symmetrized MCSI calculations, the identical
nuclei that need to be treated as indistinguishable,
should have atom numbers 2, 3, and 4 when defining
Cartesian coordinates in all input files (see, e.g., test
runs test13 and test14).

• All the atoms of the system under study must be in-
cluded explicitly. It is very common in molecular me-
chanics force fields to represent a group of atoms as a
single particle. For example, the methyl group, CH3,
it is very often described as a single atom with atomic
mass of (approximately) 15 amu, ignoring its inter-
nal structure. This is sometimes called united-atom
coarse-grained representation. The present version
of mcsi cannot perform such kinds of calculations;
the number of atoms in mcsi (or the electronic struc-
ture package) has to be the same as the number of
atoms in tinker, and mcsi (or the electronic struc-
ture package) only accepts atomic elements.

24

IX. DESCRIPTION OF INPUT FILES

A. File usage

The mcsi program uses several files for input and output
data. The names of these files are of the form esp.fu#,
where # is an integer indicating the FORTRAN unit
number. The usage of the files is:

Input files:

• esp.fu81 Input data for the configuration 1: the ge-
ometry of the SCMM point for configuration 1, the
atom types, and the connectivities

• esp.fu82 Input data for the configuration 2: the ge-
ometry of the SCMM point for configuration 2, the
atom types, and the connectivities

• esp.fu83 Input data for the electronic structure the-
ory Shepard points used in Shepard interpolation (ge-
ometry, energy, gradient, Hessian)

• esp.fu84 Input data for the points (the number and
the geometries of the points) where MCSI (SCMM)
calculations are desired

• esp.fu85General input data that controls the MCSI
or SCMM part of the calculation

• param.prm Parameter file for the molecular mechan-
ics force field (FORTRAN unit 79) required by tinker.

A more detailed description of the input files is presented
in the following sections.
In addition, for symmetrized calculations with m = 3,

the following input files are required:

• esp.fu72 Input data for the configuration 1: the ge-
ometry of the SCMM point for configuration 1 is the
same as in esp.fu81 file, but with permuted atom
types and connectivities. These atom types and con-
nectivities result from applying PMM(12) to the atom
types and connectivities specified in esp.fu81

• esp.fu73 Same as esp.fu72 but applying PMM(23).

• esp.fu74 Same as esp.fu72 but applying PMM(13).

• esp.fu75 Same as esp.fu72 but applying PMM(123).

• esp.fu76 Same as esp.fu72 but applying PMM(132).

• esp.fu62 Input data for configuration 2: the geom-
etry of the SCMM point for configuration 1 is the
same as in esp.fu82 file, but with permuted atom
types and connectivities. These atom types and con-
nectivities result from applying PMM(12) to the atom
types and connectivities specified in esp.fu82.

• esp.fu63 Same as esp.fu62 but applying PMM(23).

• esp.fu64 Same as esp.fu62 but applying PMM(13).

• esp.fu65 Same as esp.fu62 but applying PMM(123).

• esp.fu66 Same as esp.fu62 but applying PMM(132).

• Output files: esp.fu86 Full output file

B. Description of esp.fu81 and esp.fu82 input files

The esp.fu81 and esp.fu82 input files contain the ge-
ometries of the single-configuration molecular mechanics
Shepard points (the SCMM point for configuration 1 and
the SCMM point for configuration 2, respectively), the
atom types, and the connectivities for the configurations
1 and 2, respectively. These input files are written in the
same fashion as any xyz-input file for tinker. The only
consideration to be taken into account is the restriction
on the ordering of atoms, namely, the order used in these
files should be the same as the order used for MCATOMS
keywords in MCGENERAL section of the esp.fu85 input
file. For the symmetrized MCSI calculations, additional in-
put files esp.fu62-esp.fu66 and esp.fu72-esp.fu76 are
required. These files specify the corresponding permuted
MM configurations. An example is given in the test14
directory.
The input file has the following format: On the first

record, there must be an integer indicating the number
of atoms in the system that may be followed by some
comments. The following records contain the information
on these atoms: a number indicating the index of the
atom, the atomic symbol of the atom, the three Cartesian
coordinates, the atom type number, and the indices of the
atoms bonded to it. All the records are read in free format.

Example:

7 HOH---CH3 well
1 H -2.528735 0.393818 -0.630578 5 2

2 C* -2.225690 -0.619356 -0.324313 29 1 4 5
3 H .457798 1.026333 0.821507 21 6

4 H -1.822563 -1.322295 -1.069648 5 2
5 H -2.320781 -0.927796 0.728296 5 2

6 O 1.068112 0.590172 0.243503 6 3 7
7 H 1.013893 -0.326197 0.476171 21 6

In addition, for an EE-MM or EE-MCSI calculations,
the CRKFMT and CRK sections are required after the
xyz input for tinker. The CRK section specifies partial
atomic charges (this is called the charge distribution), elec-
trostatic potentials at the atomic centers (this is called the
electrostatic potential distribution), derivatives of charges

with respect to coordinates, κ
(i)
ab ≡ ∂Q

(i)
a

∂Rb
, and deriva-

tives of charges with respect to electrostatic potentials,

χ
(i)
ab ≡ ∂Q

(i)
a

∂Φb
for the diagonal elements (eq. 19). The

CRKFMT section specifies the format and units. Note
that the matrix κ

(i) is read in terms of the Cartesian coor-
dinates, then it is transformed to the internal coordinates,
which are defined in ICSHEPARD in the RESONANCE
section in the esp.fu85 file, in an EE-MM or EE-MCSI
calculation. The table below lists all valid keywords for
these sections. A more complete explanation for each key-
word is given in Secs. IXC2 and IXC3.

25

The CRKFMT section

(This section is similar to the EEGEN83 one in the esp.fu83 file.)

Keyword Type Default Description

FORMQPHI variable 1 the format for the charges and electrostatic potentials

UNITELP variable volt the units for the electrostatic potentials

FORMDQDR variable gamess the format for the derivatives of the charges with respect to coordinates

UNITDQDR variable au the units for the derivatives of the charges with respect to coordinates

FORMDQDPHI variable gamess the format for the derivatives of the charges with respect to electrostatic potentials

UNITDQDPHI variable au the units for the derivatives of the charges with respect to the electrostatic potentials

The CRK section

(This section is similar to the POINT one in the esp.fu83 file.)

Keyword Type Default Description

QPHI list required charges and electrostatic potentials for the diagonal elements

DQDR list required derivatives of charges with respect to coordinates for the diagonal elements

DQDPHI list required derivatives of charges with respect to electrostatic potentials for the diagonal elements

Example of esp.fu81 or esp.fu82 file for an EE-MM or EE-MCSI calculation:

6 Cl...CH3Cl

1 C 0.000000 0.000000 0.190194 1 2 3 4 5
2 H -0.512622 0.887887 -0.157990 5 1

3 H -0.512622 -0.887887 -0.157990 5 1
4 H 1.025244 0.000000 -0.157990 5 1

5 Cl 0.000000 0.000000 1.962454 12 1
6 Cl 0.000000 0.000000 -10.000000 200

*CRKFMT

UNITELP au

UNITDQDPHI au
UNITDQDR bohr

FORMQPHI 2

*CRK

QPHI

1 -0.1697892085E+00 0.0000000000E+00
2 0.1142936768E+00 0.0000000000E+00

3 0.1142936768E+00 0.0000000000E+00
4 0.1142936768E+00 0.0000000000E+00

5 -0.1730918219E+00 0.0000000000E+00
6 -0.1000000000E+01 0.0000000000E+00

END

DQDR
1 1 0.00000000E+00 0.00000000E+00-2.27867592E-01 5.94803140E-03-1.03022926E-02

1 2 1.75759847E-02 5.94803140E-03 1.03022926E-02 1.75759847E-02-1.18960628E-02
1 3 0.00000000E+00 1.75759847E-02 0.00000000E+00 0.00000000E+00 1.75139638E-01

1 4 0.00000000E+00 0.00000000E+00 0.00000000E+00
2 1-3.12183735E-03 5.40718090E-03-3.17427793E-02-1.26748426E-02 2.19534713E-02

2 2-5.69980378E-04 1.15642832E-02-9.85694039E-03 4.72853869E-03 2.75421917E-03
2 3-1.49434332E-02 4.72853869E-03 1.78125596E-03-3.08522583E-03 2.28556823E-02

2 4 0.00000000E+00 0.00000000E+00 0.00000000E+00

26

3 1-3.12183735E-03-5.40718090E-03-3.17427793E-02 1.15642832E-02 9.85694039E-03

3 2 4.72853869E-03-1.26748426E-02-2.19534713E-02-5.69980378E-04 2.75421917E-03
3 3 1.49434332E-02 4.72853869E-03 1.78125596E-03 3.08522583E-03 2.28556823E-02

3 4 0.00000000E+00 0.00000000E+00 0.00000000E+00
4 1 6.24367469E-03 0.00000000E+00-3.17427793E-02-1.43185024E-02-5.08649285E-03

4 2 4.72853869E-03-1.43185024E-02 5.08649285E-03 4.72853869E-03 2.53496852E-02
4 3 0.00000000E+00-5.69980378E-04-3.56251193E-03 0.00000000E+00 2.28556823E-02

4 4 0.00000000E+00 0.00000000E+00 0.00000000E+00
5 1 0.00000000E+00 0.00000000E+00 3.23095931E-01 9.48103137E-03-1.64216280E-02
5 2-2.64630823E-02 9.48103137E-03 1.64216280E-02-2.64630823E-02-1.89620627E-02

5 3 0.00000000E+00-2.64630823E-02 0.00000000E+00 0.00000000E+00-2.43706684E-01
5 4 0.00000000E+00 0.00000000E+00 0.00000000E+00

6 1 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00
6 2 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00

6 3 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00
6 4 0.00000000E+00 0.00000000E+00 0.00000000E+00

END

DQDPHI
1 1-3.20965502E+00 7.27741772E-01 7.27741772E-01 7.27741772E-01 1.02642970E+00

1 2 0.00000000E+00
2 1 7.27741772E-01-9.41489938E-01 4.07115495E-02 4.07115495E-02 1.32325067E-01

2 2 0.00000000E+00
3 1 7.27741772E-01 4.07115495E-02-9.41489938E-01 4.07115495E-02 1.32325067E-01

3 2 0.00000000E+00
4 1 7.27741772E-01 4.07115495E-02 4.07115495E-02-9.41489938E-01 1.32325067E-01

4 2 0.00000000E+00
5 1 1.02642970E+00 1.32325067E-01 1.32325067E-01 1.32325067E-01-1.42340490E+00

5 2 0.00000000E+00
6 1 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00
6 2 0.00000000E+00

END

C. Description of esp.fu83 input file

The input for FORTRAN unit esp.fu83 is in the free
format keyword style. The input has the same for both
symmetrized and unsymmetrized calculations, and it con-
sists of section headers (section headers are always pre-
ceded by a star, *) and associated keywords. The esp.fu83
input consists of two types of sections: MCGEN83, which
gives general information about the file, and POINT, which
give the electronic structure data for an electronic structure
theory Shepard point. Note the sections can be entered in
any order in the input file.
The keywords used in this file are of two types: variable

and list. A variable keyword always requires an argument.
The argument must appear on the same line as the variable
keyword. The second type is the list keyword. The use of
a list keyword used here takes the form:

LISTKEYWORD
...

...
END

where the END line is mandatory.
All input is case insensitive, and anything after a pound

sign (#) on a line is assumed to be a comment. Blank
lines are ignored. Following an example for the esp.fu83

input file, the rest of this section details the keywords for
the two sections. Please note that every keyword must be
used in its proper section, i.e., between the occurrence of
its starred header and the occurrence of the next starred
header (or, for the last section, between the proper starred
header and the end of the file).

Example:

*MCGEN83
NESTSP 3

*POINT 1

ENERGY 0.0189494

27

GEOMETRY

-6.69454329E-02 -1.96574211E+00 0.00000000E+00 -9.15479645E-01 8.85833624E-01
0.00000000E+00 -1.03439821E-01 3.77243731E+00 0.00000000E+00

END
GRADIENT

-2.80934625E-08 -7.33177670E-09 2.12772599E-11 -1.41410517E-08 3.67943859E-08
1.46347707E-11 4.22345150E-08 -2.94626079E-08 -3.59120307E-11

END
HESSIAN
7.26849015E-03 -2.46048400E-02 9.35414373E-02 -4.14090454E-12 5.92075782E-12

-1.80332522E-08 -1.58285758E-02 5.21279047E-02 -6.41965167E-12 2.30461818E-02
-6.01027280E-03 1.56393041E-02 -4.61939022E-11 -2.75845692E-02 -1.39825157E-01

1.52073611E-11 -3.72014964E-11 -2.99670799E-08 1.54332795E-11 1.38812605E-10
8.11309802E-08 8.56008545E-03 -2.75230647E-02 1.05605569E-11 -7.21760599E-03

3.35948420E-02 -3.06406234E-11 -1.34247944E-03 3.06151128E-02 -1.09180741E-01
4.02730797E-11 -2.45433355E-02 1.24185853E-01 -1.01611061E-10 -6.07177726E-03

-1.50051120E-02 -1.10664188E-11 3.12807014E-11 4.74362771E-08 -9.01366720E-12
-9.26186406E-11 -5.11638840E-08 2.00800682E-11 6.13379559E-11 3.77438791E-09

END

*POINT 2
ENERGY 0.0155076

GEOMETRY
1.88783626E-02 -1.77342847E+00 0.00000000E+00 -9.64608741E-01 7.58182633E-01

0.00000000E+00 -1.48060031E-02 3.98045268E+00 0.00000000E+00
END

GRADIENT
-7.04527640E-03 2.08625864E-02 4.20704162E-11 1.23914913E-02 9.85972298E-05

-1.53427741E-11 -5.34621492E-03 -2.09611837E-02 -2.67276420E-11
END
HESSIAN

2.73425524E-02 -8.91295912E-02 2.38375655E-01 -1.64800680E-11 3.20686826E-11
-7.62842906E-03 -3.22699724E-02 9.74643152E-02 1.37702563E-11 3.31359082E-02

7.49672027E-02 -1.93418930E-01 -3.23699396E-11 -7.95148555E-02 1.64483703E-01
2.15023069E-11 -2.75062061E-11 7.14722292E-03 -1.28980457E-11 6.75315374E-11

-1.27930503E-02 4.92742148E-03 -8.33472403E-03 2.70970039E-12 -8.65935818E-04
4.54765281E-03 -8.60421477E-12 -4.06148564E-03 1.41623885E-02 -4.49567246E-02

3.01891512E-13 -1.79494597E-02 2.89352272E-02 -4.00256698E-11 3.78707122E-03
1.60214974E-02 -5.02228204E-12 -4.56263118E-12 4.81206933E-04 -8.72237563E-13

-3.51617696E-11 5.64582739E-03 5.89458449E-12 3.97241047E-11 -6.12703432E-03
END

*POINT 3

ENERGY 0.0131228
GEOMETRY

1.87914352E-02 -1.77251762E+00 0.00000000E+00 -7.94928355E-01 1.33468323E+00
0.00000000E+00 -1.94981928E-02 3.96178219E+00 0.00000000E+00

END
GRADIENT
-5.58392215E-03 1.98776164E-02 2.12149634E-11 -2.66994512E-04 -4.12160102E-02

-2.25140647E-10 5.85091666E-03 2.13383939E-02 2.03925684E-10
END

HESSIAN
-4.59086210E-03 -4.15311460E-03 2.00441257E-02 1.03647292E-11 -2.58418012E-10

-6.61590357E-03 -2.57695064E-03 2.90930715E-02 8.79571777E-11 2.58958679E-02
-1.72503621E-02 7.60444963E-02 3.56457266E-10 1.69607045E-02 -6.60072201E-02

-4.80443485E-11 6.15093126E-10 6.87432965E-03 -1.89563233E-10 -9.00231123E-10
6.83804279E-04 7.16781445E-03 -2.49399568E-02 -9.83219024E-11 -2.33189172E-02

2.89657547E-04 2.37607569E-10 1.61511028E-02 2.14034767E-02 -9.60886206E-02
-9.80392519E-11 -4.60537760E-02 -1.00372762E-02 2.85137984E-10 2.46502993E-02

28

1.06125897E-01 3.76796288E-11 -3.56675142E-10 -2.58425284E-04 1.01606046E-10

5.43773903E-10 -7.55813393E-03 -1.39285666E-10 -1.87098750E-10 7.81655924E-03
END

1. The MCGEN83 section

The MCGEN83 section is used to give the number
of electronic structure theory points to be used in the
Shepard interpolation, the units of the electronic structure
data, and the format of the Hessian matrices. The table
below lists all valid keywords for this section. A more

complete explanation for each keyword is given in the
alphabetical glossary that follows. Note that all keywords
are variable keywords, and they all have default values.
These keywords need to be given only if the user wishes
to override the default.

Keyword Type Default Description

FORMHESS variable packed specify the format for the Hessians given in the esp.fu83 file

NESTSP variable 1 number of electronic structure theory Shepard points

UNITENER variable hartree specify the units for the energies given in the esp.fu83 file

UNITGEOM variable bohr specify the units for the geometries given in the esp.fu83 file

UNITGRAD variable hperb specify the units for the gradients given in the esp.fu83 file

UNITHESS variable hperb2 specify the units for the Hessians given in the esp.fu83 file

Glossary of MCGEN83 keywords

FORMHESS

FORMHESS is a variable keyword that specifies the for-
mat in which the Hessian matrices are given. The options
are the packed format (as printed in a Gaussian formatted
checkpoint file), the full format, or the GAMESS format.
The default is packed.
Setting FORMHESS to ’ZERO’ requests using no Hes-

sian information in MCSI calculations as described in Ref. 8
This is equivalent to truncation of the Taylor series at the
first order.
The packed format of the Hessian matrix should list

only the lower triangle of the matrix in order such that
Hij = F (j + i(i − 1)/2), where F (k) is the k element of
the input list and Hij is the element of matrix H in row
i and column j. The number of elements listed per line
is arbitrary. Examples of both input forms for a 6 × 6
matrix are shown below.

Example 1 of full matrix:

H11 H12 H13 H14 H15 H16

H21 H22 H23 H24 H25 H26
H31 H32 H33 H34 H35 H36

H41 H42 H43 H44 H45 H46

H51 H52 H53 H54 H55 H56
H61 H62 H63 H64 H65 H66

Example 2 of full matrix:

H11 H12 H13 H14 H15 H16 H21 H22 H23
H24 H25 H26 H31 H32 H33 H34 H35 H36

H41 H42 H43 H44 H45 H46 H51 H52 H53
H54 H55 H56 H61 H62 H63 H64 H65 H66

Example 1 of packed matrix:

H11
H21 H22

H31 H32 H33
H41 H42 H43 H44

H51 H52 H53 H54 H55
H61 H62 H63 H64 H65 H66

Example 2 of packed matrix:

H11 H21 H22 H31 H32

H33 H41 H42 H43 H44
H51 H52 H53 H54 H55

H61 H62 H63 H64 H65
H66

Example of GAMESS matrix:

1 1 5.64593548E-05 0.00000000E+00-3.25451560E-04-5.64593548E-05 0.00000000E+00

1 2 3.25451560E-04

29

2 1 0.00000000E+00 5.64593340E-05-3.25449030E-04 0.00000000E+00-5.64593340E-05

2 2 3.25449030E-04
3 1-3.25451560E-04-3.25449030E-04 3.28251414E-01-3.25451561E-04-3.25449031E-04

3 2-3.23469728E-01
4 1-5.64593548E-05 0.00000000E+00-3.25451561E-04 5.64593548E-05 0.00000000E+00

4 2 3.25451561E-04
5 1 0.00000000E+00-5.64593340E-05-3.25449031E-04 0.00000000E+00 5.64593340E-05

5 2 3.25449031E-04
6 1 3.25451560E-04 3.25449030E-04-3.23469728E-01 3.25451561E-04 3.25449031E-04
6 2 3.18688043E-01

Note that Gaussian 98 andGaussian 03 write the packed
Hessian matrix in a slightly different way (that is, differ-
ent from GAMESS) in the standard output file, but the
Hessian in the formatted checkpoint file (requested by the
FormCheck or FChk keyword) is in precisely the packed
form accepted by mcsi and so is convenient for copying
and pasting into mcsi esp.fu83 files.
Note that the exact H matrix is symmetric, but due

to finite precision in computations, the actual matrix one
has to input is usually unsymmetric. If one inputs an
unsymmetric full matrix, the code uses the unsymmetric
matrix. If a user wants the code to use a symmetric matrix,
we recommend taking an arithmetic average of Hij and
Hji for the resulting symmetrized elements in packed form.

Option Description

packed packed Hessian matrices are given

full full Hessian matrices are given

gamess the GAMESS format is used for the

Hessian matrices

zero no Hessian information is used

Example:

FORMHESS full

NESTSP

NESTSP is a variable keyword that specifies the number
of electronic structure theory Shepard points that are
given in the esp.fu83 input file and are used in the
Shepard interpolation of resonance function. The default
is 1.

Example:

NESTSP 10

UNITENER

UNITENER is a variable keyword that specifies the
units for the energies given in the POINT sections of the
esp.fu83 input file. The default is hartree.

Option Description

hartree Energies are given in hartrees

(atomic units)

kcal Energies are given in kcal/mol

Example:

UNITENER kcal

UNITGEOM

UNITGEOM is a variable keyword that specifies the
units for the geometries given in the POINT sections of
the esp.fu83 input file. The default is bohr.

Option Description

ang Geometries are given in angstroms

bohr Geometries are given in bohrs

(atomic units)

Example:

UNITGEOM ang

UNITGRAD

UNITGRAD is a variable keyword that specifies the
units for the gradients given in the POINT sections of the
esp.fu83 input file. The default is hperb.

Option Description

hperb Gradients are given in hartree bohr−1

(atomic units)

kcpera Gradients are given in kcal

mol−1 angstrom−1

Example:

UNITGRAD kcpera

UNITHESS

UNITHESS is a variable keyword that specifies the
units for the Hessians given in the POINT section of the
esp.fu83 input file. The default is hperb2.

Option Description

hperb2 Gradients are given in hartree bohr−2

(atomic units)

kcpera2 Gradients are given in kcal mol−1 angstrom−2

Example:

UNITHESS kcpera2

30

2. The EEGEN83 section

The EEGEN83 section is used to give the units and for-
mats of the electronic structure data used as the electronic-
structure-theory Shepard points in an EE-MCSI calcula-
tion. Note that the electronic structure data in an EE-MM
calculation or for the diagonal elements in an EE-MCSI
calculation is read in the CRK section in the esp.fu81

or esp.fu82 files (See Sec. IXB). This section is read in
when EECALC in the EE section in the esp.fu85 file is
true. The table below lists all valid keywords for this sec-
tion. A more complete explanation for each keyword is
given in the alphabetical glossary that follows. Note that
all keywords are variable keywords, and they all have de-
fault values. These keywords need to be given only if the
user wishes to override the default.

Keyword Type Default Description

FORMQPHI variable 1 the format for the charges and electrostatic potentials

given in the esp.fu83 file

UNITELP variable volt the units for the electrostatic potentials given in the

esp.fu83 file

FORMDQDR variable gamess the format for the derivatives of the charges with

respect to coordinates given in the esp.fu83 file

UNITDQDR variable au the units for the derivatives of the charges with respect

to coordinates given in the esp.fu83 file

FORMDQDPHI variable gamess the format for the derivatives of the charges with respect

to electrostatic potentials given in the esp.fu83 file

UNITDQDPHI variable au the units for the derivatives of the charges with respect

to the electrostatic potentials given in the esp.fu83 file

Glossary of EEGEN83 keywords

FORMDQDPHI

FORMDQDPHI is a variable keyword that specifies the
format in which the matrices representing the derivatives
of the charges with respect to electrostatic potentials,

χab ≡ ∂Qa

∂Φb
=

∂2V EEQM

∂Φa∂Φb
, are given in the esp.fu83

file. The options are the same as FORMHESS in the
MCGEN83 section: the packed format (as printed in
a Gaussian formatted checkpoint file), the full format,
or the GAMESS format. Setting FORMDQDPHI to
’ZERO’ requests using no χab information in EE-MCSI
calculations as the case of the gradient-based MCSI. The
default is gamess.

Option Description

packed packed matrices are given

full full matrices are given

gamess the GAMESS format is used for matrices

zero no χab is used

Example:

FORMDQDPHI full

FORMDQDR

FORMDQDR is a variable keyword that specifies
the format in which the matrices representing the
derivatives of the charges with respect to coordinates,

κab ≡ ∂Qa

∂Rb
=

∂2V EEQM

∂Φa∂Rb
, are given in the esp.fu83 file.

The options are the full format or the GAMESS format.
Note that the packed format is unavailable because κ is
not symmetric. Setting FORMDQDR to ’ZERO’ requests
using no κab information in EE-MCSI calculations as the
case of the gradient-based MCSI. The default is gamess.

Option Description

full full matrices are given

gamess the GAMESS format is used for matrices

zero no κab is used

Example:

FORMDQDPHI full

FORMQPHI

FORMQPHI is a variable keyword that specifies the for-
mat in which the partial charges and electrostatic poten-
tials are given in the esp.fu83 file. The ordering of atoms
must be the same as that of MCATOMS in the MCGEN-
ERAL section in the esp.fu85 file (See Sec. IXE 1). The

31

options are two formats, format 1 or format 2 (see exam- ples). The default is 1.

Option Description

1 mcnatm lines, each indicating the charge and the electrostatic potential on a given atom.

2 mcnatm lines, each of which has a comment field (the first word of each line is ignored in a

calculation), followed by the charges, and the electrostatic potentials on a given atom.

Example:

FORMQPHI 2

Example of format 1:

QPHI
-0.2600038533E-01 0.0000000000E+00

0.1185141676E+00 0.0000000000E+00
0.1185141676E+00 0.0000000000E+00

0.1185141676E+00 0.0000000000E+00
-0.6647710587E+00 0.0000000000E+00

-0.6647710587E+00 0.0000000000E+00
END

Example of format 2:

QPHI
1 -0.2600038533E-01 0.0000000000E+00

2 0.1185141676E+00 0.0000000000E+00
3 0.1185141676E+00 0.0000000000E+00

4 0.1185141676E+00 0.0000000000E+00
5 -0.6647710587E+00 0.0000000000E+00

6 -0.6647710587E+00 0.0000000000E+00
END

UNITDQDPHI

UNITDQDPHI is a variable keyword that specifies the
units for the derivatives of the charges with respect to

electrostatic potentials, χab ≡ ∂Qa

∂Φb
=

∂2V EEQM

∂Φa∂Φb
, given

in the POINT sections of the esp.fu83 input file. The
default is au.

Option Description

au χ are given in atomic units

volt χ are given in e/V

Example:

UNITDQDPHI volt

UNITDQDR

UNITDQDR is a variable keyword that specifies the
units for the derivatives of the charges with respect to

coordinates, κab ≡
∂Qa

∂Rb
=

∂2V EEQM

∂Φa∂Rb
, given in the POINT

sections of the esp.fu83 input file. The default is au.

Option Description

au χ are given in atomic units

ang χ are given in e/Å

Example:

UNITDQDR ang

UNITELP

UNITELP is a variable keyword that specifies the
units for the electrostatic potentials, given in the POINT
sections of the esp.fu83 input file. The default is volt.

Option Description

au electrostatic potentials are given in atomic units

volt electrostatic potentials are given in volts

Example:

UNITDQDR volt

3. The POINT sections

The esp.fu83 input file will have a number of POINT
sections that should equal the number of electronic struc-
ture theory points to be used in Shepard interpolation.
Each POINT section is used to give the electronic structure
information for one of the electronic structure theory Shep-
ard points. Each of the POINT sections is recognized by a
line containing *POINT followed by an integer, which rep-
resent the index of the electronic structure theory Shepard
point. The presence of this integer is required. The ta-
ble below lists all valid keywords for this section. A more
complete explanation for each keyword is given in the al-
phabetical glossary that follows. Note that all keywords
are required, and none of them have default values.

32

Keyword Type Default Description

The first four parameters are required for either MCSI or EE-MCSI:

ENERGY variable required energy of the electronic structure theory Shepard point

GEOMETRY list required geometry of the electronic structure theory Shepard point

GRADIENT list required gradient components of the electronic structure theory Shepard point

HESSIAN list required Hessian components of the electronic structure theory Shepard point

The following two parameters are optional:

ICSHZERO list none internal coordinates whose quadratic Taylor coefficients are set equal to zero

ICSAZERO list none internal coordinates whose linear and quadratic Taylor coefficients are set equal to zero

The following parameters are required only for an EE-MCSI calculation:

QPHI list none charges and electrostatic potentials of the electronic structure theory

Shepard point

DQDR list none derivatives of charges with respect to coordinates of the electronic

structure theory Shepard point

DQDPHI list none derivatives of charges with respect to electrostatic potentails of the

electronic structure theory Shepard point

Glossary of POINT keywords

ENERGY

ENERGY is a variable keyword that specifies the energy
of the electronic structure theory Shepard point. Note
that this energy should be relative to the energy of the
configuration 1 energy reference state as presented in
Sec. II D of this manual.

Example:

ENERGY 0.0189494

GEOMETRY

GEOMETRY is a list keyword that specifies the geom-
etry of the electronic structure theory Shepard point.

Example:

GEOMETRY

-6.69454329E-02 -1.96574211E+00 0.00000000E+00
-9.15479645E-01 8.85833624E-01 0.00000000E+00

-1.03439821E-01 3.77243731E+00 0.00000000E+00
END

GRADIENT

GRADIENT is a list keyword that specifies the gradient
components of the electronic structure theory Shepard
point.

Example:

GRADIENT
-2.80934625E-08 -7.33177670E-09 2.12772599E-11

-1.41410517E-08 3.67943859E-08 1.46347707E-11
4.22345150E-08 -2.94626079E-08 -3.59120307E-11

END

HESSIAN

HESSIAN is a list keyword that specifies the Hessian
components of the electronic structure theory Shepard
point.

Example:

HESSIAN

7.26849015E-03 -2.46048400E-02 9.35414373E-02
-4.14090454E-12 5.92075782E-12 -1.80332522E-08

-1.58285758E-02 5.21279047E-02 -6.41965167E-12
2.30461818E-02 -6.01027280E-03 1.56393041E-02

-4.61939022E-11 -2.75845692E-02 -1.39825157E-01
1.52073611E-11 -3.72014964E-11 -2.99670799E-08
1.54332795E-11 1.38812605E-10 8.11309802E-08

8.56008545E-03 -2.75230647E-02 1.05605569E-11
-7.21760599E-03 3.35948420E-02 -3.06406234E-11

-1.34247944E-03 3.06151128E-02 -1.09180741E-01
4.02730797E-11 -2.45433355E-02 1.24185853E-01

-1.01611061E-10 -6.07177726E-03 -1.50051120E-02
-1.10664188E-11 3.12807014E-11 4.74362771E-08

-9.01366720E-12 -9.26186406E-11 -5.11638840E-08
2.00800682E-11 6.13379559E-11 3.77438791E-09

END

33

ICSHZERO

ICSHZERO is a list keyword that specifies the internal
coordinates whose quadratic Taylor coefficients are set

to zero, namely C
(k)
αβ = 0 (β = 1, 2, · · · ,Γ), where α

labels the one of the internal coordinates specified by
ICSHZERO (See Sec. V). In the EE-MCSI calculations,
the quadratic couplings between the internal coordinates
and electrostatic potentials are also set equal to zero. The
format is the same as the case of ICSHEPARD keyword
in the esp.fu85 input file.

Example:

ICSHZERO

5-8
7-9 7-10 7-12

2-1-5-6 3-1-5-6 4-1-5-6
END

ICSAZERO

ICSAZERO is a list keyword that specifies the
internal coordinates whose linear and quadratic Tay-

lor coefficients are set to zero, namely b
(k)
α = 0 and

C
(k)
αβ = 0 (β = 1, 2, · · · ,Γ), where α is a label for one of the

internal coordinates specified by ICSAZERO (See Sec. V).
In the EE-MCSI calculations, the quadratic couplings be-
tween the internal coordinate and electrostatic potentials
are also set equal to zero. The format is the same as the
case of ICSHEPARD keyword in the esp.fu85 input file.

Example:

ICSAZERO

5-8

7-9 7-10 7-12
2-1-5-6 3-1-5-6 4-1-5-6

END

QPHI (required for an EE-MCSI calculation)

QPHI is a list keyword that specifies the partial charges
and electrostatic potentials of the electronic-structure-
theory Shepard point. The format and units for the
list are specified by FORMQPHI and UNITELP in the
EEGEN83 section.

Example:

QPHI

1 -0.2600038533E-01 0.0000000000E+00
2 0.1185141676E+00 0.0000000000E+00

3 0.1185141676E+00 0.0000000000E+00
4 0.1185141676E+00 0.0000000000E+00

5 -0.6647710587E+00 0.0000000000E+00
6 -0.6647710587E+00 0.0000000000E+00

END

DQDR (required for an EE-MCSI calculation)

DQDR is a list keyword that specifies the component
of the derivatives of charges with respect to coordinates,

κab ≡ ∂Qa

∂Rb
=

∂2V EEQM

∂Φa∂Rb
, of the electronic-structure-

theory Shepard point. The format and units for the list
are specified by FORMDQDR and UNITDQDR in the EE-
GEN83 section.

Example:

DQDR

1 1 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.71480368E-02-2.97012710E-02
1 2 0.00000000E+00 1.71480368E-02 2.97012710E-02 0.00000000E+00-3.42960737E-02

1 3 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 9.77987307E-02
1 4 0.00000000E+00 0.00000000E+00-9.77987307E-02

2 1 1.98462395E-02-3.43746951E-02 0.00000000E+00-3.52215916E-02 6.10055862E-02
2 2 0.00000000E+00 1.63732791E-02-1.21562599E-02 0.00000000E+00 2.34099030E-03

2 3-2.02578056E-02 0.00000000E+00-1.44985822E-03 2.51122810E-03 1.30910625E-02
2 4-1.44985822E-03 2.51122810E-03-1.30910625E-02
3 1 1.98462395E-02 3.43746951E-02 0.00000000E+00 1.63732791E-02 1.21562599E-02

3 2 0.00000000E+00-3.52215916E-02-6.10055862E-02 0.00000000E+00 2.34099030E-03
3 3 2.02578056E-02 0.00000000E+00-1.44985822E-03-2.51122810E-03 1.30910625E-02

3 4-1.44985822E-03-2.51122810E-03-1.30910625E-02
4 1-3.96924789E-02 0.00000000E+00 0.00000000E+00-1.87142694E-02-8.10154572E-03

4 2 0.00000000E+00-1.87142694E-02 8.10154572E-03 0.00000000E+00 7.04431833E-02
4 3 0.00000000E+00 0.00000000E+00 2.89971644E-03 0.00000000E+00 1.30910625E-02

4 4 2.89971644E-03 0.00000000E+00-1.30910625E-02
5 1 0.00000000E+00 0.00000000E+00 3.87749919E-01 1.02072717E-02-1.76795132E-02

5 2-1.81757312E-02 1.02072717E-02 1.76795132E-02-1.81757312E-02-2.04145434E-02
5 3 0.00000000E+00-1.81757312E-02 0.00000000E+00 0.00000000E+00-2.35147321E-01

5 4 0.00000000E+00 0.00000000E+00-9.80754037E-02
6 1 0.00000000E+00 0.00000000E+00-3.87749919E-01 1.02072717E-02-1.76795132E-02

34

6 2 1.81757312E-02 1.02072717E-02 1.76795132E-02 1.81757312E-02-2.04145434E-02

6 3 0.00000000E+00 1.81757312E-02 0.00000000E+00 0.00000000E+00 9.80754037E-02
6 4 0.00000000E+00 0.00000000E+00 2.35147321E-01

END

DQDPHI (required for an EE-MCSI calculation)

DQDPHI is a list keyword that specifies the component
of the derivatives of charges with respect to electrostatic

potentials, χab ≡ ∂Qa

∂Φb
=

∂2V EEQM

∂Φa∂Φb
, of the electronic-

structure-theory Shepard point. The format and units for
the list are specified by FORMDQDPHI and UNITDQD-
PHI in the EEGEN83 section.

Example:

DQDPHI
1 1-3.19481334E+00 6.53679089E-01 6.53679089E-01 6.53679089E-01 6.16888035E-01

1 2 6.16888035E-01
2 1 6.53679089E-01-9.08847834E-01 2.88245436E-02 2.88245436E-02 9.87598291E-02

2 2 9.87598291E-02
3 1 6.53679089E-01 2.88245436E-02-9.08847834E-01 2.88245436E-02 9.87598291E-02

3 2 9.87598291E-02
4 1 6.53679089E-01 2.88245436E-02 2.88245436E-02-9.08847834E-01 9.87598291E-02

4 2 9.87598291E-02
5 1 6.16888035E-01 9.87598291E-02 9.87598291E-02 9.87598291E-02-1.20630830E+00

5 2 2.93140774E-01
6 1 6.16888035E-01 9.87598291E-02 9.87598291E-02 9.87598291E-02 2.93140774E-01

6 2-1.20630830E+00
END

D. Description of esp.fu84 input file

The esp.fu84 input file is a formatted input file that
includes the geometry information for the points where
MCSI or SCMM calculations should be performed. All
the records are read in free format. The input has the
same format for both symmetrized and non-symmetrized
calculations.
The first two lines of the esp.fu84 input file should con-

tain:

• First line: The keyword POINTS followed by mcnpts,
which is an integer indicating the number of points
for which MCSI or SCMM are desired.

• Second line: The keyword FORMAT followed by
mcifrm, which is an integer indicating the format
used to read the data in the esp.fu84 input file.

Example:

POINTS 25
FORMAT 2

At this time there is a loop that goes from 1 to mcnpts,
reading the information for each of the points. Therefore,
there must be mcnpts blocks. All the information following
these blocks is ignored.

For mcifrm = 1, each of these mcnpts blocks contains
the following records:

• Record 1: mcnatm, an integer indicating the number
of atoms in the system.

• Record 2: Comment line.

• Record 3: mcnatm lines indicating the index of the
atom in the molecule (or the chemical symbol) and
the Cartesian coordinates for that atom.

For mcifrm = 2, each of these mcnpts blocks contains
the following records:

• Record 1: Comment line.

• Record 2: mcnatm lines indicating the index of the
atom in the molecule (or the chemical symbol) and
the Cartesian coordinates for that atom.

For mcifrm = 3, each of these mcnpts blocks contains
the following records:
Record 1: Comment line. Record 2: mcnatm lines indi-

cating the Cartesian coordinates for that atom.
For each of the formats (mcifrm = 1, 2, or 3) these

records have to be repeated for each point until the infor-
mation for all mcnpts points is input. Note that everything
that is written on a line following the third Cartesian
coordinate is ignored in a MM or MCSI calculation. (For
case of an EE-MM or EE-MCSI calculation, see below.)

35

Example of format 1:

points 2

format 1
7

Comment line: first geometry
1 0.000000 0.000000 0.000000
2 1.105391 0.000000 0.000000

3 1.452921 1.160817 0.000000
4 1.536666 -0.459271 -0.908287

5 1.540129 -0.398133 0.937112
6 1.386584 2.344293 -0.681525

7 0.850429 2.088654 -1.487727
7

Comment line: second geometry
H 0.000000 0.000000 0.000000

C 1.205391 0.000000 0.000000
H 1.452921 1.160817 0.000000

H 1.536666 -0.459271 -0.908287
H 1.540129 -0.398133 0.937112

O 1.386584 2.344293 -0.681525
H 0.850429 2.088654 -1.487727

Example of format 2:

Points 2
Format 2

Comment line: first geometry
1 0.000000 0.000000 0.000000

2 1.105391 0.000000 0.000000
3 1.452921 1.160817 0.000000

4 1.536666 -0.459271 -0.908287
5 1.540129 -0.398133 0.937112

6 1.386584 2.344293 -0.681525
7 0.850429 2.088654 -1.487727

Comment line: second geometry
H 0.000000 0.000000 0.000000

C 1.205391 0.000000 0.000000

H 1.452921 1.160817 0.000000
H 1.536666 -0.459271 -0.908287

H 1.540129 -0.398133 0.937112
O 1.386584 2.344293 -0.681525

H 0.850429 2.088654 -1.487727

Example of format 3:

POINTS 2

FORMAT 3
Comment line: first geometry

0.000000 0.000000 0.000000
1.105391 0.000000 0.000000

1.452921 1.160817 0.000000
1.536666 -0.459271 -0.908287

1.540129 -0.398133 0.937112
1.386584 2.344293 -0.681525

0.850429 2.088654 -1.487727
Comment line: second geometry

0.000000 0.000000 0.000000
1.205391 0.000000 0.000000

1.452921 1.160817 0.000000
1.536666 -0.459271 -0.908287
1.540129 -0.398133 0.937112

1.386584 2.344293 -0.681525
0.850429 2.088654 -1.487727

In an EE-MM or EE-MCSI calculation (that is, when
EECALC in the EEGENERAL section in the esp.fu85
input file is true), the number after the Cartesian coor-
dinate is read as the electrostatic potential at the center
(nucleus) of that atom. The unit of the electrostatic po-
tential is specified by UNITELPIN in the EEGENERAL
section in the esp.fu85 input file. If there is no number
after the Cartesian coordinate, the electrostatic potential
at the center of that atom is regarded as zero.

Example:

POINTS 2

FORMAT 2
* transition state in gas phase

C 0.00000000 0.00000000 0.00000000
H -0.53435591 0.92553159 0.00000000

H -0.53435591 -0.92553159 0.00000000
H 1.06871182 0.00000000 0.00000000

CL 0.00000000 0.00000000 2.31503001
CL2 0.00000000 0.00000000 -2.31503001

* transtion state in solution
C 0.00000000 0.00000000 0.00000000 4.75122986

H -0.53520866 0.92700860 0.00000000 4.60761341
H -0.53520866 -0.92700860 0.00000000 4.60761341
H 1.07041733 0.00000000 0.00000000 4.60761341

CL1 0.00000000 0.00000000 2.31589993 5.21148000
CL2 0.00000000 0.00000000 -2.31589993 5.21148000

E. Description of esp.fu85 input file

The input for FORTRAN unit esp.fu85 is in the free

to four sections. These are defined in the three subsections
that follow this section. The input file consists of section

36

headers (section headers are always preceded by a star, *)
and associated keywords.
The keywords are of two types: variable and list. A vari-

able keyword always requires an argument. The argument
must appear on the same line as the variable keyword. A
list keyword has the form:

LISTKEYWORD

...

...

END

where the END line is mandatory.
All variable keywords have default values, and these

types of keywords need to be given only if the user wishes
to override the default. List keywords may have defaults as
well, but in the current version of the code, only the MCTI-
TLE keyword has default. List keywords start a subsection
that is always terminated with an END line.
Except for the input of the MCTITLE keyword in the

MCGENERAL section, all input is case insensitive, and
anything after a pound sign (#) on a line is assumed to be

a comment (except within the ICSHEPARD and ICDIS-
TANCE list keywords). Blank lines are ignored. It is
highly recommended that the novice user print out one
of the test run input files and compare it with the descrip-
tions in the following subsections. The rest of this section
details the keywords for each of the three sections. Please
note that every keyword must be used in its proper sec-
tion, i.e., between the occurrence of its starred header and
the occurrence of the next starred header (or, for the last
section, between the proper starred header and the end of
the file).

1. The MCGENERAL section

The MCGENERAL section is used to give a title that
can be used to identify the run, to define all the atoms in
the system, and to define the type of calculation that is
to be carried out. The table below lists all valid keywords
for this section. A more complete explanation for each
keyword is given in the alphabetical glossary that follows.

Keyword Type Default Description

MCATOMS list required atoms in system

MCTITLE list blank title with 5 lines maximum

ORDERCALC variable mcmm carry out an MCSI calculation

SCMASS variable 1.0 scaling factor for mass-scaled coordinates

SSWEIGHT variable 0.000001 step size (in a.u.) for numerical calculations of the first and second

derivatives of the weight function with respect to internal coordinates

STEPSIZE variable 0.000001 step size (in a.u.) for numerical calculations of MCSI gradients and Hessians

TYPECALC variable energy calculate of energy only

UDELTA variable 2.56×10−8 a value for ∆2 (in a.u.) in eqs 15 and 52 of the Appendix

UNITINPUT variable ang specify the units for the geometries given in the esp.fu84 file

UNITOUTPUT variable bohr specify the units for the results printed in the esp.fu86 file

UNN variable 2.0 a value for n in eqs 15 and 52 of the Appendix

Glossary of MCGENERAL keywords

MCATOMS

MCATOMS is a required list keyword that is used to
specify all the atoms in the system. For each atom the user
must specify n, a sequential number unique to each atom
in the molecule, and a label, either the atomic number or
symbol of atom n. The mass of the atom in atomic mass
units (amu) can also be specified following the label. If
it is not included then the mass of the most prominent
isotope is used. This program uses the universal atomic
mass scale, i.e., the mass of 12 C is 12.000000. (For
this scale, the correct abbreviation is u, although most
people use the old-fashioned abbreviation amu.) The

mass is supplied from an internally stored table using
the atomic number or symbol as given by the user. Note
that the unique number n will be used in other sections
to specify the atom. The example below corresponds to
monodeuterated methane.

Example:

MCATOMS
1 C

2 H
3 H

4 H 1.0078
5 H 2.0140

END

37

Note: The ordering of atoms defined in the MCGEN-
ERAL section has to be the same as in the esp.fu81
through esp.fu84 input files.

MCTITLE

MCTITLE is a list keyword that allows the user to give
a title to the run. The user can specify up to five lines of
80 characters each. Like all list variables, an END must
be given at the end of the MCTITLE subsection.

Example:

MCTITLE

HO - H - CH3 System
Resonance function constant at 28 kcal/mol

END

ORDERCALC

ORDERCALC is a variable keyword that specifies
whether an SCMM or an MCSI calculation is to be carried
out. The default is mcmm.

Option Description

mcmm MCSI calculation

scmm1 SCMM calculation with

configuration 1 bonding scheme

scmm2 SCMM calculation with

configuration 2 bonding scheme

Example:

ORDERCALC scmm2

SCMASS

SCMASS is a variable keyword that specifies the
value (in amu) for the parameter µ used in defining the
mass-scaled coordinates. (Mass-scaled coordinates, x, are
defined as xi = (mi

µ)1/2Ri, where mi is the mass of atom

i = 1 · · ·N , and R is one Cartesian coordinate.) The
default is 1.0 amu.

Example:

SCMASS 12.0

SSWEIGHT

This variable keyword specifies the step size which
is used in numerical evaluation of the first and second
derivatives of the weight function with respect to the
internal coordinates. Note that in general an MCSI
gradient and Hessian is calculated semi-analytically as
described in Secs. III and IV. This step size is only used

in a single numerical step to obtain
∂wk

∂r
and

∂2wk

∂r2
.

STEPSIZE

STEPSIZE specifies the step size for numerical calcula-
tions of the first of second derivatives of the MCSI energy;

this keyword is used only if the TYPECALC keyword is
set to a gradtest or to a hesstest. The default value for
a stepsize is 0.000001 a.u.

TYPECALC

TYPECALC is a variable keyword that specifies
whether an energy, gradient, or Hessian is to be carried
out. One can also calculate the first ant second derivatives
of the MCSI or EE-MCSI energy both analytically and
numerically for comparison. The default is energy.

Option Description

energy energy calculation

gradient energy and gradient calculation

hessian energy, gradient, and

Hessian calculation

gradtest energy, analytical and

numerical gradient

hesstest energy, analytical and

numerical Hessian

chargetest energy, analytical and

numerical charge

dqdrtest energy, analytical and

numerical CRK κ

dqdphitest energy, analytical and

numerical CRK χ

Example:

TYPECALC Hessian

UDELTA and UNN

These variable keywords specify the values for ∆2 and
n, respectively, that that are used in eqs. 51 and 97. We
note that some experimenting may be required to find the
best values for these parameters for a particular reaction.

UNITINPUT

UNITINPUT is a variable keyword that specifies the
units for the geometries given in the esp.fu84 input file.
(This keyword has no effect on the units for the geometries
given in the esp.fu81 and esp.fu82 input files, which
should be in angstroms, and the esp.fu83 input file,
which are defined in the MCGEN83 section.) The default
is ang.

Option Description

bohr coordinates are in unscaled bohrs

msbohr coordinates are in mass-scaled bohrs

ang coordinates are in unscaled angstroms

msang coordinates are in mass-scaled angstroms

Example:

UNITINPUT bohr

38

UNITOUTPUT

UNITOUTPUT is a variable keyword that specifies
the units for the results printed in the esp.fu86 output
file. The esp.fu86 output file gives the coordinates in
angstroms and bohrs, and the energies in hartrees, eV,

cm1, and kcal/mol for any type of calculation. For gradient
and Hessian calculations, the results (geometry, gradient,
and Hessian) are given in a format similar to the one used
in a Gaussian formatted checkpoint file. The UNITOUT-
PUT keyword applies to these results. The default is bohr.

Option Description

bohr coordinates are in unscaled bohrs, gradients are in hartrees per unscaled bohr, Hessians are in

hartrees per unscaled bohr2

msbohr coordinates are in mass-scaled bohrs, gradients are in hartrees per mass-scaled bohr, Hessians

are in hartrees per mass-scaled bohr2

ang coordinates are in unscaled angstroms, gradients are in hartrees per unscaled angstroms, Hessians

are in hartrees per unscaled angstroms2

msang coordinates are in mass-scaled angstroms, gradients are in hartrees per mass-scaled angstroms,

Hessians are in hartrees per mass-scaled angstroms2

Example:

UNITOUTPUT msbohr

2. The MCENERGETICS section

The MCENERGETICS section is used to specify single
configuration energies at the energy reference states/points

and the electronic structure theory energy difference be-
tween these states/points. The table below lists all valid
keywords for this section. A more complete explanation
for each keyword is given in the alphabetical glossary that
follows.

Keyword Type Default Description

ZERO1 variable 0.0 molecular mechanics energy of the configuration 1 energy reference state/point (in hartrees)

ZERO2 variable 0.0 molecular mechanics energy of the configuration 2 energy reference state/point (in hartrees)

EDIFF variable 0.0 electronic structure theory energy difference (in hartrees)

Glossary of MCENERGETICS keywords

EDIFF

EDIFF is a variable keyword whose argument specifies
the electronic structure energy difference (in hartrees)
between the configuration 2 energy reference state/point
and the configuration 1 energy reference state/point. The
default is 0.0.

Example:

EDIFF 0.0125479

ZERO1

ZERO1 is a variable keyword whose argument specifies
the molecular mechanics energy of the configuration 1 en-
ergy reference state/point (in hartrees). The default is 0.0.

Example:

ZERO1 0.0035921

ZERO2

ZERO2 is a variable keyword whose argument specifies
the molecular mechanics energy of the configuration 2 en-
ergy reference state/point (in hartrees). The default is 0.0.

Example:

ZERO2 0.0012528

3. The SYMMETRY section

The SYMMETRY section is used to specify some param-
eters required for symmetrized calculations. This section

39

should be omitted in nonsymmetrized calculations. The table below lists all valid keywords for this section.

Keyword Type Default Description

ALPHA1 variable 0.0 A parameter for δ = 1
α used in eqs. (10-12) and in eqs. (31-33) of Ref. 4

for MM configuration 1 (in kcal/mol)

ALPHA2 variable 0.0 Same as ALPHA1 but for MM configuration 2

SIGMA1 variable 1 Symmetry factor for MM configu-ration 1, i.e., the number of times the lowest-energy

configuration 1 occurs among the m! permutations of the labels of identical atoms.

This is explained in Ref. 4.

SIGMA2 variable 1 Same as SIGMA1 but for MM configuration 2

IPERMSYM variable 0 Indicates whether symmetrized (1) or nonsymmetrized (0) calculations will be performed.

4. The RESONANCE section

The RESONANCE section is used to specify the method
used for calculating the resonance energy function (also
called the resonance integral or the diabatic coupling), V12.
This section is not needed if the ORDERCALC keyword

in MCGENERAL section is set to scmm1 or scmm2 (as in a
single-configuration molecular mechanics calculation using
configuration 1 or 2, respectively). The table below lists all
valid keywords for this section. A more complete explana-
tion for each keyword is given in the alphabetical glossary
that follows:

Keyword Type Default Description

ICDISTANCE list not used define internal coordinates used in calculating generalized distances

ICSHEPARD list not used define internal coordinates used in Shepard interpolation

ISHMM variable true the coordinates given in the esp.fu81 and esp.fu82 are used as SCMM

Shepard points, that is, as points where V12 and its Taylor series are

taken to be identically zero

JACOBIANS variable 0 use (=1) or not to use (=0) Jacobians and Hessians for an atom transfer

reaction (see Sec. II B for more details)

LINEARITY switch nonlinear system is non-linear

NONHERMITIAN switch true use non-Hermitian formalism

POINTEXP variable 1 the electronic structure theory point from which the expansion will be

used to determine V12

PRINTIC variable none do not print internal coordinates

RESFORM variable 2 quadratic form used for V12

RESMETHOD variable shepard the method used for determining V12

RESVALUE variable 0.03187203 the constant value (in hartrees) of V12

Glossary of RESONANCE keywords

ICDISTANCE

ICDISTANCE is a list keyword used to specify the
curvilinear internal coordinates used for estimating the

generalized distances between points for the Shepard
interpolation (set s). Similar to the ICSHEPARD key-
word, the allowed types are distances (i − j), angles
(i − j − k), dihedral angles (i − j − k − l), sines of
dihedral angles (m − i − j − k − l) and degenerate angles
(i = j = k) where i, j, k, and l are the atom-number-

40

labels defined in the MCGENERAL section, and m is
periodicity of the dihedral angle (See Sec V). Note:
when the bond angle is close to 180 degrees (i.e., greater
than about 175 degrees), the use of a doubly degenerate
linear bending coordinate is preferred to a ”normal”
bending coordinate. Note also that sines of dihedral
angles are available for nonsymmetrized calculations.
There are no defaults for this keyword, and this keyword
is required if RESMETHOD is set to expansion or shepard.

Example:

ICDISTANCE
2-5 2-6 6-5

END

Note: The pound sign (#) cannot be used as a comment
card within ICDISTANCE keyword list.

ICSHEPARD

ICSHEPARD is a list keyword used to specify the curvi-
linear internal coordinates used for the transformation
step and the Shepard interpolation in internal coordinates
(set r). Similar to the ICDISTANCE keyword, the allowed
types are distances (i−j), angles (i−j−k), dihedral angles
(i− j − k − l), sines of dihedral angles (m− i− j − k − l),
and degenerate angles (i = j = k) where i, j, k, and l
are the atom-number-labels defined in the MCGENERAL
section, and m is periodicity of the dihedral angle (See
Sec V). Note: when the bond angle is close to 180 degrees
(i.e., greater than about 175 degrees), the use of a doubly
degenerate linear bending coordinate is preferred to a
”normal” bending coordinate. Note also that sines of
dihedral angles are available for nonsymmetrized calcula-
tions, and that dihedral angles (i − j − k − l) and sines
of dihedral angles (m − i − j − k − l) are allowed to be
used at the same time in the current version of mcsi.
There are no defaults for this keyword, and this keyword
is required if RESMETHOD is set to expansion or shepard.

Example:

ICSHEPARD

2-1 3-2 6-2 3-6 2-4 5-2 7-6
1-2-3 3-2-4 1-2-4 2=4=5

1-2-4-5
END

Note: The pound sign (#) cannot be used as a comment
card within ICSHEPARD keyword list.
Note: The current version of the code only supports cases
when the coordinates given in the ICDISTANCE and
ICSHEPARD cards are the same.

ISHMM

The ISHMM keyword is used to specify whether the
coordinates given in the esp.fu81 and esp.fu82 files are
used as SCMM Shepard points, where (and the Taylor
series of is zero), or not. This option is available only for
a nonsymmetrized calculation. Note that when ISHMM

is true, the number of Shepard points is equal to the
number of electronic-structure-theory Shepard points plus
2, whereas when ISHMM is false, the number of Shepard
points is the same as the number of electronic-structure-
theory Shepard points. The default is true.

Option Description

true the coordinates given in the esp.fu81

and esp.fu82 files are used as SCMM Shepard

points

false the coordinates given in the esp.fu81 and

esp.fu82 files are not used as SCMM Shepard

points

Example:

ISHMM false

JACOBIANS

The JACOBIANS keyword is used to specify whether or
not to use the Jacobians and Hessians in calculation of the
derivatives of the weight function with respect to internal
coordinates. The reason why one needs Jacobians and
Hessians is because Shepard interpolation is carried out in
coordinates r, whereas the weight function is calculated in
coordinates s. If s is different from r and is not a subset
of r, one generally needs Jacobians ∂s

∂r and Hessians ∂2s
∂r2 ,

if calculation of the gradient or Hessian of V is requested.
For s being different from r (and not representing a subset
of r), the present implementation of the mcsi code only
supports the case suitable for an atom transfer reaction,
as described in Sec. II B. If s (specified by ICDISTANCE)
is the same as r (specified by ICSHEPARD) or if s is
a subset of r, the JACOBIANS switch should be set
to 0. If one choses s and r as described in Sec. II B 1,
the JACOBIANS switch should be set to 1. Internal
coordinates s and r can be given in any order. Note:
it is recommended to run GRADTEST and/or HES-
STEST calculation prior to running actual calculations to
make sure that the combination of keywords is appropriate.

Option Description

0 do not use the Jacobians and/or Hessians

1 use the Jacobians and/or Hessians

as described in Sec. II B 1

Example:

JACOBIANS 0

LINEARITY

The LINEARITY keyword is used to specify whether
the system is linear or not. The default is nonlinear.

Option Description

linear the system is linear

nonlinear the system is non-linear

Example:

41

LINEARITY linear

NONHERMITIAN

The NONHERMITIAN keyword is used to specify
whether to use the non-Hermitian MCSI technique. The
default is true.

Option Description

true use non-Hermitian MCSI technique (Ref. 5)

false use Hermitian MCSI technique (Refs. 3 and 7)

Example:

NONHERMITIAN true

POINTEXP

POINTEXP is a variable keyword that indicates the
point in the esp.fu83 input file that will be used to
determine the resonance energy function by using the
expansion around this point. Note that the entry for
POINTEXP keyword should be smaller than the number
of points defined in the esp.fu83 input file (NESTSP).
This keyword is ignored if RESMETHOD is not set to
expansion. The default is 1.

Example:

POINTEXP 2

PRINTIC

PRINTIC is a variable keyword that indicates if the in-
ternal coordinates used for Shepard interpolation and the
internal coordinates used for generalized distances should
be printed in the esp.fu86 output file. The default is none.

Option Description

none do no print any internal coordinates

point print the internal coordinates only for

each point where an MCSI calculation is desired

all print the internal coordinates for the

Shepard points and for each point where an

MCSI calculation is desired

Example:

PRINTIC point

RESFORM

RESFORM is a variable keyword that indicates the
form used for the resonance energy function. The default

and the only available option in the current version of the
code is 2.

Option Description

1 generalized Gaussian form

2 quadratic form

Example:

RESFORM 2

RESMETHOD

RESMETHOD is a variable keyword that indicates the
method used for the determining the resonance energy
function. The default is shepard.

Option Description

constant V12 has a constant value.

expansion V12 is determined from an expansion

around an electronic structure theory point.

(This option is not currently supported.)

shepard V12 is determined through Shepard

interpolation.

Example:

RESMETHOD expansion

RESVALUE

RESVALUE is a variable keyword whose argument spec-
ifies the constant value of the resonance energy function
(in hartrees). This keyword is ignored if RESMETHOD is
not set to constant. The default is 0.0318720274 (which
is equal to 20 kcal/mol).

Example:

RESVALUE 0.0835691

5. The EEGENERAL section

The EEGENERAL section is used to specify whether
an EE-MM or EE-MCSI calculation is carried out and to
define some parameters for the EE-MM or EE-MCSI cal-
culation. The table below lists all valid keywords for this
section. A more complete explanation for each keyword is
given in the alphabetical glossary that follows.

42

Keyword Type Default Description

EECALC variable false carry out the original MCSI

EETYP variable charge calculate partial charges only

UNITELPIN variable volt specify the units for the electrostatic potentials given in the esp.fu84 file

ICEEZERO list none define internal coordinates whose coefficients are set equal to zero in EE-MM

or EE-MCSI diagonal elements calculations

Glossary of EEGENERAL keywords

EECALC

EECALC is a variable keyword that specifies whether
an EE-MM or EE-MCSI calculation is to be carried
out or not. In the current mcsi, only nonsymmetrized
calculations are available for the EE-MCSI calculation.
If ORDERCALC in the MCGENERAL section is scmm1
or scmm2, an EE-MM calculation (based on the diagonal
element of VEE-MCSI, that is, eq. 18) is to be carried out.
The default is false.

Option Description

true EE-MM or EE-MCSI calculation

false MM or original MCSI calculation

Example:

EECALC true

EETYPE

EETYPE is a variable keyword that specifies whether

partial charges,Q =
∂V EE-MCSI

∂Φ
, derivatives of the charges

with respect to coordinates, κ =
∂Q

∂R
=

∂2V EE-MCSI

∂R∂Φ
, or

derivatives of the charges with respect to electrostatic po-

tentials, χ =
∂Q

∂Φ
=

∂2V EE-MCSI

∂Φ∂Φ
, are to be calculated in

an EE-MM or EE-MCSI calculation. When κ is to be cal-
culated, TYPECALC must be gradient or hessian. The
default is charge.

Option Description

charge partial charges are to be calculated.

dqdr partial charges and derivatives of partial charges with respect to coordinates κ are to be calculated.

dqdphi partial charges and derivatives of partial charges with respect to electrostatic potentials χ are to be calculated.

all partial charges, derivatives of partial charges with respect to coordinates κ, and derivatives of partial charges

with respect to electrostatic potentials χ are to be calculated.

Example:

EETYPE all

UNITELPIN

UNITELPIN is a variable keyword that specifies the
units for the electrostatic potentials given in the esp.fu84
input file. (This keyword has no effect on the units for
the electrostatic potentials given in the esp.fu81 and
esp.fu82 input files, which are defined in the CRKFMT
section, or in the esp.fu83 input file, which are defined in
the EEGEN83 section.) The default is volt.

Option Description

au electrostatic potentials are in a.u.

volt electrostatic potentials are in volts.

Example:

UNITELPIN volt

ICEEZERO

ICEEZERO is a list keyword that specifies the internal
coordinates whose quadratic Taylor coefficients in the
EE-MM or EE-MCSI diagonal calculations are set to
zero, namely (κ0)αβ = 0 ; (α = 1, 2, · · · , NQM) in eqs. 19
and 27, where β is an internal coordinate specified by
ICEEZERO. The format is the same as the case of
ICSHEPARD keyword in the esp.fu85 input file.

Example:

ICEEZERO
2-1-5-6 3-1-5-6 4-1-5-6

2-1-5-7 3-1-5-7 4-1-5-7
END

43

F. Description of param.prm input file

The parameter file for tinker, which includes all the force
field parameters, is read from a file called param.prm. The
format of this file is the same as in any tinker calculation,
with the only exception being the changes in the input for
bond parameters in order to take advantage of the possi-
bility of treating selected modes as Morse oscillators, as
indicated above (see Sec. VIII A 1).
In particular, we note that a charmm27 force field

parameter file charmm27t35.prm was generated for tin-

ker 3.5mn4 on the basis of the charmm27 parameter
file charmm27.prm associated with tinker 4.1. The
atom types implemented in both charmm27t35.prm and
charmm27.prm parameter files are the same. The imple-
mentation of force field parameters for tinker 3.5mn4 is
discussed in more detail in Sec. X.
In most cases, the user can use the parameter files pro-

vided with tinker 3.5mn4 without any modification.

X. COMMENTS ON FORCE FIELDS

The force field parameter files in tinker 3.5mn4 are
generated on the basis of the force field parameter files
distributed within tinker 3.5, with only a few modifica-
tions. We have discussed in Sec. VIII A the modifications
related to the MCSI calculations, which are concerned with
(1) the Morse treatment for the stretching terms, (2) the
MM3 van der Waals terms, and (3) the VESCF treatment
for π-systems. These changes normally require revisions
not only of parameter files but also of subroutines.
In this section, we discuss the implementation of force

field parameters in tinker 3.5mn4, with the emphasis on
the differences between tinker and the original force field
programs. In other words, the issues discussed here are
concerned with the algorithms in tinker rather than with
the MCSI method.
For the most part the force fields are treated in tinker

in the same way as in the original programs. However,
there are several exceptions, in particular for the charmm

force field.
For the most part the force fields are treated in tinker

in the same way as in the original programs. However,
there are several exceptions, in particular for the charmm

force field.

• Completeness of force field

For many force fields, tinker does not implement the
complete set of atoms types. Users are encouraged
to check the tinker manual for more information.

• Atom classes

tinker uses atom class in additional to atom type
to classify atoms. (See the tinker 4.1 manual, page
45). Manipulation of atom types and the prolifera-
tion of parameters as atoms are further subdivided
into new types is the major difficulty of force field

calculation. For example, if each topologically dis-
tinct atom arising from the 20 natural amino acids is
given a different atom type, then about 300 separate
types are required (this ignores the different N- and
C-terminal residues, diastereotopic hydrogens, etc.).
However, these 300 types lead to thousands of differ-
ent force field parameters. In fact, there are thou-
sands of distinct torsional parameters alone. It is
impossible at present to fully optimize each of these
parameters; and even if that were done, a great many
of the parameters would be nearly identical. Two ap-
proaches are available to handle the proliferation of
parameters.

The first is to specify the molecular fragments to
which a given parameter can be applied in terms of
a chemical structure language, smiles strings for ex-
ample. Some commercial systems, such as the tripos
Sybyl software, make use of such a scheme to parse
structures and assign force field parameters.

A second general approach is to use hierarchical cas-
cades of parameter groups. tinker uses a simple ver-
sion of this scheme. Each tinker force field atom has
both an atom type number and an atom class num-
ber. The types are subsets of the atom classes, i.e.,
several different atom types can belong to the same
atom class. Force field parameters that are somewhat
less sensitive to local environment, such as local ge-
ometry terms, are then provided and assigned based
on atom class. Other energy parameters, such as
electrostatic parameters, those are very environment
dependent are assigned over the atom types. This
greatly reduces the number of independent multiple-
atom parameters such as the four-atom torsional pa-
rameters.

However, in tinker 3.5 (and tinker 3.5mn4 as well),
atom class is not used. In other words, atom type
is identical to atom class in tinker 3.5 (and tinker
3.5mn4). In later versions of tinker (e.g. tinker

4.1), atom classes are employed. The current version
of mcsi is based on tinker 3.5mn4, and therefore
makes use of atom types exclusively.

• Van der Waals (VDW) 1-4 terms

In some force fields such as the charmm force field,
a set of specially developed parameters is used in-
stead of the normal VDW parameters to evaluate the
VDW 1–4 interactions. However, the data structure
in tinker 3.5 does not provide entries for the VDW
1–4 parameters. There are no such VDW 1–4 pa-
rameters provided in those force field (e.g., charmm
force field) parameter files, either. The VDW 1–4
interactions are not correctly calculated in tinker

3.5 through tinker 3.5mn3 when using those force
fields.

In tinker 3.5mn4, the data structure was modified
such that the use of the VDW 1–4 parameters is al-
lowed. Some subroutines were also changed accord-
ingly.

44

It should be noted that the later versions of tinker
(e.g., tinker 4.1) do handle the VDW 1-4 interactions
correctly. See Sec. VIIIA 2 for special discussion of
the MM3 van der Waals term.

• Improper dihedrals

Improper dihedral angles (usually just called im-
proper dihedrals) are treated different manner in dif-
ferent force fields. For example, in amber the im-
proper terms have the same functional form as proper
torsions, and there is no separate code for those in the
energy evaluation routines, although the improper di-
hedrals need to be identified and given the correct
parameters.

charmm however uses a different functional form for
improper dihedrals. Following charmm style, the
improper dihedral for a trigonal atom D bonded to
atoms A, B, and C could be input as improper dihe-
dral angle D-A-B-C. The actual angle computed by
the program is then literally the dihedral D-A-B-C,
which will always have as its ideal value zero degrees.
In general D-A-B-C is different from D-B-A-C; the
order of the three peripheral atoms matters. (In the
original charmm parameter files, the trigonal atom is
often listed last; i.e., as C-B-A-D instead of D-A-B-
C.)

tinker handles the charmm improper dihedrals in a
different way from the original charmm. tinker 3.5
(and tinker 3.5mn4) uses only one improper param-
eter per site, the charmm force constants have been
doubled in tinker 3.5 (and tinker 3.5mn4). Ac-
cording to Ponder, the differences between tinker and
original charmm are in the hundredths of kcal/mol in
the total energy.

In tinker, the energy of an improper dihedral is
given by

E = k′DABC(φDABC − φDABC0)
2, (118)

where k′DABC = 2kDABC , kDABC is the charmm

force constant for improper dihedral D-A-B-C (actu-
ally the C-B-A-D in charmm notation), φDABC and
φDABC0 are the instantaneous and equilibrium values
for the improper dihedral D-A-B-C.

For the users information, we note that the treat-
ments of charmm improper dihedrals in tinker are
slightly different in version 3.5 and later versions
(e.g., version 4.1). Therefore, one does not neces-
sarily obtain identical results when using different
versions of tinker even if the same charmm force
field (e.g., charmm27) is employed.

The treatment outlined above, equation 118, is ap-
plied in both tinker 3.5 and 4.1. The difference
between tinker 3.5 and 4.1 is that symmetry is fur-
ther considered in tinker 4.1. If the atom classes of
atoms A and B are the same, energy will be calcu-

lated by

E = kDABC (φDABC − φDABC0)
2

+kDABC (φDBAC − φDBAC0)
2 . (119)

Similarly, when atom classes of A and C (or B and
C) are the same:

E = kDABC (φDABC − φDABC0)
2

+kDABC (φDCBA − φDCBA0)
2
. (120)

or

E = kDABC (φDABC − φDABC0)
2

+kDABC (φDACB − φDACB0)
2 . (121)

And if atom types of A, B, and C are the same, one
has

E = k′′DABC (φDABC − φDABC0)
2

+k′′DABC (φDACB − φDACB0)
2

+k′′DABC (φDBAC − φDBAC0)
2

+k′′DABC (φDBCA − φDBCA0)
2

+k′′DABC (φDCAB − φDCAB0)
2

+k′′DABC (φDCBA − φDCBA0)
2
, (122)

where k′′DABC = kDABC/3.

Please also note that the parameter kDABC is identi-
cal in tinker 3.5 and tinker 4.1. However, neither
treatment (in tinker 3.5 or 4.1) is identical to the
original charmm treatment. The treatment in tin-

ker 3.5mn4 is the same as that in tinker 3.5.

XI. SAMPLE TEST RUNS

The test suite includes fifteen test runs. Each of these
test runs is described below. To run the complete test
suite, one can run either one of the scripts located in the
testmct directory, run all or run t all (the run t all
script also does the timing of the runs).
To the convenience of the user, we provide two scripts,

getnew and compnew, for doing comparisons. Running
script getnew will collect the most recent test calculation
outputs into directory testonew, and subsequently running
script compnew will generate files for comparisons between
these newly obtained and those distributed outputs for the
test runs.
Note that the gradient and Hessian results are printed in

the Gaussian formatted checkpoint file format. The very
small values of some gradient and Hessian components are
subject to machine-dependent round-off errors and are not
expected to be exact compared to the values in the dis-
tributed output files that are obtained on an IBM Regatta
Power4 machine.
All test runs in this version of mcsi use the default value

45

of the NONHERMITIAN keyword, that is, they use the
formalism of Ref. 5.

A. Test run 1

Nonsymmetrized MCSI energy calculation on the Cl – H
– Br system

This test run is an MCSI energy calculation (the
default) for the Cl – H – Br system. The chemical
process modeled in this calculation is Cl + H–Br →
Cl–H + Br. The configuration 1 has the hydrogen atom
bonded to bromine atom while the configuration 2 has
the hydrogen atom bonded to chlorine. The configuration
1 energy reference state is the optimized H–Br and Cl
atom infinitely separate, and the configuration 2 energy
reference state is the optimized H–Cl and Br atom
infinitely separate. The energy difference between these
energy reference states became the energy of reaction.
This is one of the systems treated in Ref. 28 We use the
reaction energy of -9.18 kcal/mol, which is the calculated
value at the MP2/6-31G(d) level of theory used here. V12

is determined using Shepard interpolation with eleven
electronic structure theory Shepard points and two SCMM
points (in this case they are the structures of the van der
Waals wells). The expansions in Shepard interpolation
use three internal coordinates (set r: Cl–H, and H–Br
distances, and Cl–H–Br angle), which are different than
the ones used in calculating the generalized distance (set
s: Cl–H, H–Br, and Cl–Br distances) between points.
Since s is different from r, the JACOBIANS keyword
in the RESONANCE Section is set to 1. The geom-
etry input file (esp.fu84 or test1.84) contains three
geometries (given in angstrom), and the MCSI calcula-
tion is carried out for each of these points. The value of
the parameterD (see Sec. VIII A 2) for this test run is 0.01.

INPUT FILES:

test1.81 Configuration 1 input file

test1.82 Configuration 2 input file

test1.83 Electronic structure theory data file

test1.84 Geometry input file

test1.85 General input file

param-test1.prm Modified tinker parameter file

run test1 Script file to run mcsi

run t test1 Script file to run mcsi and to time

the run

OUTPUT FILES:

test1.86 Full output file

B. Test run 2

Nonsymmetrized MCSI gradient calculation on the O – H
– CH3 system

This test run is an MCSI gradient calculation for the
O – H – CH3 system. The chemical reaction modeled
in this calculation is O(3P) + CH4 → O–H + CH3, in
which the configuration 1 has the transferring hydrogen
atom bonded to carbon while the configuration 2 has
this hydrogen atom bonded to oxygen. This is one of
the systems treated in Ref. 28 V12 is determined using
Shepard interpolation with eleven electronic structure
theory points and two SCMM points (these two points
are the van der Waals wells in this case). The Shepard
interpolation is carried out by using fourteen internal
coordinates; these internal coordinates form set r. Two
of these (O–Ht, and Ht–C distances, where Ht represents
the transferring hydrogen) are included in set s and
are used in calculating the generalized distance. The
geometry input file (esp.fu84 or test2.84) contains two
geometries (given in angstrom), and the MCSI calcula-
tion is carried out for both of these points. The value of
the parameterD (see Sec. VIII A 2) for this test run is 0.01.

INPUT FILES:

test2.81 Configuration 1 input file

test2.82 Configuration 2 input file

test2.83 Electronic structure theory data file

test2.84 Geometry input file

test2.85 General input file

param-test2.prm Modified tinker parameter file

run test2 Script file to run mcsi

run t test2 Script file to run mcsi and to time

the run

OUTPUT FILES:

test2.86 Full output file

C. Test run 3

Nonsymmetrized MCSI gradient calculation on the O –
H – CH3 system

This test run is an MCSI gradient calculation for the
O – H – CH3 system. This test run is the same as the
test run 2 except it uses six Shepard points; these consist
of four electronic structure theory Shepard points, and
two single-configuration molecular mechanics Shepard
points, namely SCMM point for configuration 1 and
SCMM point for configuration 2. Note that the test3.83
file has the same electronic structure information as the
test2.83 file (except the value for NESTSP) but only
four electronic structure theory points are actually used
in the calculation, the ones with indexes greater than
NESTSP are ignored.

46

INPUT FILES:

test3.81 Configuration 1 input file

test3.82 Configuration 2 input file

test3.83 Electronic structure theory data file

test3.84 Geometry input file

test3.85 General input file

param-test3.prm Modified tinker parameter file

run test3 Script file to run mcsi

run t test3 Script file to run mcsi and to time

the run

OUTPUT FILES:

test3.86 Full output file

D. Test run 4

Nonsymmetrized MCSI Hessian calculation on the HO –
H – C3H7 system

This test run is an MCSI Hessian calculation for the
HO – H – C3H7 system. Configuration 1 has the trans-
ferring hydrogen atom bonded to the secondary carbon
of propane while configuration 2 has this hydrogen atom
bonded to oxygen. The chemical reaction modeled in
this calculation is HO + C3H8 → H2O + C3H7. The
configuration 1 energy reference state is represented by
HO and C3H8 in their equilibrium structure and infinitely
separate, and the configuration 2 energy reference state
is represented by H2O and C3H7 in their equilibrium
structure and infinitely separate. The energy difference
between these energy reference states is the energy of
reaction. This is one of the systems treated in Ref. 28 The
electronic structure theory used is MPW1K/6-31+G(d,p),
and the energy of reaction is determined to be -16.51
kcal/mol. V12 is determined using Shepard interpolation
with eight points, six electronic structure theory points
and two SCMM points. The Shepard interpolation is
carried out by using thirty-eight internal coordinates (set
r). Two of these (O–Ht, and Ht–C distances, where
Ht represents the transferring hydrogen) are included
in the set s that is used to calculate the generalized
distance. Note also that the molecular mechanics energy
of the optimized propane and the optimized sec-propyl
a are not zero so ZERO1 and ZERO2 keywords are
included in MCENERGETICS section of the esp.fu85

input file to overwrite the default values. The value of
the parameterD (see Sec. VIII A 2) for this test run is 0.01.

INPUT FILES:

test4.81 Configuration 1 input file

test4.82 Configuration 2 input file

test4.83 Electronic structure theory data file

test4.84 Geometry input file

test4.85 General input file

param-test4.prm Modified tinker parameter file

run test4 Script file to run mcsi

run t test4 Script file to run mcsi and to time

the run

OUTPUT FILES:

test4.86 Full output file

E. Test run 5

Nonsymmetrized MCSI Hessian calculation on the HO –
H – C3H7 system

This test run is an MCSI Hessian calculation for the HO
– H – C3H7 system. This test run is the same as the test
run 4 except in calculating generalized distances between
points it uses the same internal coordinates as in Shepard
interpolation (set s is the same as set r).

INPUT FILES:

test5.81 Configuration 1 input file

test5.82 Configuration 2 input file

test5.83 Electronic structure theory data file

test5.84 Geometry input file

test5.85 General input file

param-test5.prm Modified tinker parameter file

run test5 Script file to run mcsi

run t test5 Script file to run mcsi and to time

the run

OUTPUT FILES:

test5.86 Full output file

F. Test run 6

Nonsymmetrized MCSI Hessian calculation on the HO –
H – C3H7 system

This test run is an MCSI Hessian calculation for the HO
– H – C3H7 system. This test run is the same as the test
run 5 except it uses thirty-nine internal coordinates in the
Shepard interpolation step and three internal coordinates
in calculating generalized distances (O–Ht, Ht–C, and
O–C distances, where Ht represents the transferring
hydrogen).

INPUT FILES:

test6.81 Configuration 1 input file

test6.82 Configuration 2 input file

test6.83 Electronic structure theory data file

test6.84 Geometry input file

test6.85 General input file

param-test6.prm Modified tinker parameter file

47

run test6 Script file to run mcsi

run t test6 Script file to run mcsi and to time

the run

OUTPUT FILES:

test6.86 Full output file

G. Test run 7

Nonsymmetrized SCMM1 Hessian calculation on the HO
– H – C3H7 system

This test run is an SCMM1 Hessian calculation for the
HO – H – C3H7 system. The SCMM1 option is explained
in the section 6.5.1 on the ORDERCALC keyword. The
configuration 1 has the atom connectivities equivalent to
hydroxyl and propane. Note that in the test7.85 input
file, the RESONANCE section is not necessary and that
in the MCENERGETICS section only ZERO1 keyword
is used. This calculation provide an energy value relative
to the molecular mechanics energy of the configuration 1
energy reference state (nonzero), and this value is different
than one obtained directly by using tinker. The value of
the parameterD (see Sec. VIII A 2) for this test run is 0.01.

INPUT FILES:

test7.81 Configuration 1 input file

test7.84 Geometry input file

test7.85 General input file

param-test7.prm Modified tinker parameter file

run test7 Script file to run mcsi

run t test7 Script file to run mcsi and to time

the run

OUTPUT FILES:

test7.86 Full output file

H. Test run 8

Nonsymmetrized SCMM2 Hessian calculation on the HO
– H – C3H7 system

This test run is an SCMM2 Hessian calculation for the
HO – H – C3H7 system. The SCMM2 option is explained
in the section 6.5.1 on the ORDERCALC keyword. The
configuration 2 has the atom connectivities equivalent to
water and sec-propyl. Note that in the test8.85 input file,
the RESONANCE section is not necessary and that in the
MCENERGETICS section only ZERO2 keyword is used.
This calculation provide an energy value relative to the
molecular mechanics energy of the configuration 2 energy
reference state (not zero), and this value is different than
one obtained directly by using tinker. The value of the
parameter D (see Sec. VIIIA 2) for this test run is 0.01.

INPUT FILES:

test8.82 Configuration 2 input file

test8.84 Geometry input file

test7.85 General input file

param-test8.prm Modified tinker parameter file

run test8 Script file to run mcsi

run t test8 Script file to run mcsi and to time

the run

OUTPUT FILES:

test8.86 Full output file

I. Test run 9

Nonsymmetrized MCSI gradient calculation on the H2N –
H – CH3 system

This test run is an MCSI gradient calculation for the
H2N – H – CH3 system. The chemical reaction modeled in
this calculation is NH2 + CH4 → NH3 + CH3 with config-
uration 1 having the transferring hydrogen atom bonded
to carbon and configuration 2 having this hydrogen atom
bonded to nitrogen. This is one of the systems treated
in Ref. 28 V12 is determined using Shepard interpolation
with eleven electronic structure theory points and two
SCMM points. The Shepard interpolation is carried
out by using twenty-four internal coordinates, and the
generalized distances are calculated using three internal
coordinates. Set s includes one coordinate (N-H distance)
which is not present in r. This type of coordinates is
described in Sec. II B 1. Notice that set r includes the
N-H-C angle (see Sec. II B 1). The JACOBIANS keyword
is set to 1. The input geometry is given in mass-scaled
bohrs (the scaling mass is 12.00 amu), and the printed
results are mass-scaled also. The PRINTIC keyword is set
to point, so the internal coordinates are printed for the
point where MCSI calculation is carried out. The value of
the parameterD (see Sec. VIII A 2) for this test run is 0.01.

INPUT FILES:

test9.81 Configuration 1 input file

test9.82 Configuration 2 input file

test9.83 Electronic structure theory data file

test9.84 Geometry input file

test9.85 General input file

param-test9.prm Modified tinker parameter file

run test9 Script file to run mcsi

run t test9 Script file to run mcsi and to time

the run

OUTPUT FILES:

test9.86 Full output file

48

J. Test run 10

Nonsymmetrized MCSI Hessian calculation on the H2FC
– H – CH2Cl system

This test run is an MCSI Hessian calculation for the
H2FC – H – CH2Cl system. The chemical reaction
modeled in this calculation is CH2F + CH3Cl → CH3F
+ CH2Cl. Configuration 1 has the transferring hydrogen
atom bonded to the carbon of CH3Cl while configuration
2 has this hydrogen atom bonded to carbon of CH3F. The
electronic structure theory used is MPW1K/6-31+G(d,p),
and the difference in energy between the energy refer-
ence states (optimized structures infinitely separated)
is determined to be -1.32 kcal/mol. This is one of the
systems treated in Ref. 28 V12 is determined using Shepard
interpolation with fourteen points, twelve electronic struc-
ture theory points and two SCMM points. The Shepard
interpolation is carried out by using twenty-seven internal
coordinates. Two of these (C–Ht, and Ht–C distances,
where Ht represents the transferring hydrogen) are used
in calculating generalized distances. Note also that the
molecular mechanics energy of the optimized CH2F,
CH3Cl, CH3F, and CH2Cl structures are not zero so
ZERO1 and ZERO2 keywords are included in MCENER-
GETICS section of the esp.fu85 input file. The value of
the parameterD (see Sec. VIII A 2) for this test run is 0.01.

INPUT FILES:

test10.81 Configuration 1 input file

test10.82 Configuration 2 input file

test10.83 Electronic structure theory data file

test10.84 Geometry input file

test10.85 General input file

param-test10.prm Modified tinker parameter file

run test10 Script file to run mcsi

run t test10 Script file to run mcsi and to time

the run

OUTPUT FILES:

test10.86 Full output file

K. Test run 11

Nonsymmetrized MCSI Hessian calculation on the H2FC
– H – CH2Cl system

This test run is an MCSI Hessian calculation for the
H2FC – H – CH2Cl system. This test run is the same
as the test run 10 except in determining the resonance
energy. The Shepard interpolation is not employed, and
the resonance energy is determined through the expansion
around POINT 2 of the esp.fu83 input file.

INPUT FILES:

test11.81 Configuration 1 input file

test11.82 Configuration 2 input file

test11.83 Electronic structure theory data file

test11.84 Geometry input file

test11.85 General input file

param-test11.prm Modified tinker parameter file

run test11 Script file to run mcsi

run t test11 Script file to run mcsi and to time

the run

OUTPUT FILES:

test11.86 Full output file

L. Test run 12

Nonsymmetrized MCSI Hessian calculation on the H2FC
– H – CH2Cl system

This test run is an MCSI Hessian calculation for the
H2FC – H – CH2Cl system. This test run is the same
as the test run 8 except in determining the resonance
energy. In this test run the resonance energy is considered
constant with a value given as the argument of keyword
RESVALUE in the esp.fu85 input file. Note that the
input file esp.fu83 is not used for this type of calculations.

INPUT FILES:

test12.81 Configuration 1 input file

test12.82 Configuration 2 input file

test12.83 Electronic structure theory data file

test12.84 Geometry input file

test12.85 General input file

param-test12.prm Modified tinker parameter file

run test12 Script file to run mcsi

run t test12 Script file to run mcsi and to time

the run

OUTPUT FILES:

test12.86 Full output file

M. Test run 13

Nonsymmetrized MCSI energy calculation on the C5H8
system

This test run is an MCSI energy calculation for the 1,3-
cis-pentadiene system. The chemical process modeled in
this calculation is the isomerization of 1,3-cis-pentadiene,
in which configuration 1 has the transferring hydrogen
atom bonded to carbon 5 while configuration 2 has this
hydrogen atom bonded to carbon 6. This is one of the sys-
tems treated in Ref. 3 Both the configuration 1 energy ref-
erence state and the configuration 2 energy reference state

49

are 1,3-cis-pentadiene in its equilibrium geometry (s-trans
conformation) determined using tinker with a VESCF cal-
culation. The parameter file param-test13.prm is a modi-
fied version of the standard MM3 force field parameters and
includes the VESCF-optimized parameters. A new atom
type, which is labeled atom type number 20, is defined
to use the VESCF-optimized parameters and to avoid the
VESCF calculations (see Sec. VIII A 3). No further special
treatment for the π-system is made. The calculation uses
the MORSE bond type for the C(sp3)H bonds (the bond
strength of the C(sp3)-H bond is taken as 99 kcal/mol)
and the TAYLOR bond type for all other bonds in the
molecule. The electronic structure data is obtained from
AM1 calculations.
V12 is determined using Shepard interpolation with

five points, in particular three electronic structure theory
points and two SCMM points. The two SCMM points
are 1,3-cis-pentadiene in the s-cis conformation. (Note
that the structure, energy, and frequencies for the s-cis
conformation of pentadiene are exactly the same as those
using the VESCF method with the original set of param-
eters.) The Shepard interpolation is carried out by using
forty-three internal coordinates, with three of these used
in calculating the generalized distance between points.
The esp.fu84 input file contains two geometries (given in
unscaled angstroms), and the MCSI energy calculation is
carried out for both of these geometries. The PRINTIC
keyword is set to all so the internal coordinates are
printed for all the Shepard points and for the two points
where MCSI calculations are carried out. The value of
the parameterD (see Sec. VIII A 2) for this test run is 0.01.

INPUT FILES:

test13.81 Configuration 1 input file

test13.82 Configuration 2 input file

test13.83 Electronic structure theory data file

test13.84 Geometry input file

test13.85 General input file

param-test13.prm Modified tinker parameter file

run test13 Script file to run mcsi

run t test13 Script file to run mcsi and to time

the run

OUTPUT FILES:

test13.86 Full output file

N. Test run 14

Symmetrized MCSI gradient calculation on the OH +
H2 system. All three hydrogen atoms are treated as
indistinguishable.

This test run is an MCSI Hessian calculation for the
OH + H2 system. The two MM configurations used to
represent reactants and products are H2O + H and OH +
H2, respectively. The input file esp.fu81 specifies MM con-
figuration 1. Input files esp.fu72--esp.fu76 specify the

five equivalent MM configurations. Input files esp.fu82

and esp.fu62--esp.fu66 contain similar information for
MM configuration 2. We used three electronic-structure
Shepard points placed at (i) the saddle point of the
H-transfer reaction, (ii) the saddle point of the exchange
reaction, and (iii) the ammonia-like equilibrium structure
OH3. These three unique Shepard points are specified
in the esp.fu83 file. The other 15 data points that are
symmetrically equivalent to points (i), (ii), and (iii) and
are also used in the interpolation, are generated by the pro-
gram after reading the information from the esp.fu83 file.
The electronic structure level is MPW1K/6-31+G(d,p).
In addition to the three electronic structure Shepard
points, there are two SCMM points, which are the van
der Waals wells, OH· · ·H2 and H2O· · ·H. The set r of
internal coordinates includes all six internuclear distances
and all twelve bond angles. The set s consists of the six
internuclear distances. It is essential that both sets r and
s include, in addition to the internal coordinates that
one would use in a nonsymmetrized MCSI calculation,
all symmetrically equivalent coordinates. For example,
if one wants to include the O–H1 distance to either of
these sets, one should also include the O–H2 and O–H3

distances because these hydrogen atoms are symmetrically
equivalent. The SYMMETRY section in the esp.fu85 file
specifies parameters α and σ that will be used to generate
symmetric SCMM potentials for configurations 1 and 2.
The esp.84 file contains an arbitrary geometry followed
by the five equivalent geometries with the permuted
Cartesian coordinates for the hydrogen atoms. The output
file contains the symmetrized MCSI energies, and gradient
vectors. Note that Vnn, V12, and the lowest eigenvalue V
of the matrix V are scalar, and all these values are the
same for all six input geometries. The gradient vectors
have the same components for all six geometries, but these
components are arranged in different order corresponding
to the six different permutations.

INPUT FILES:

test14.81 Configuration 1; permutation (E)

test14.72 Configuration 1; permutation (12)

test14.73 Configuration 1; permutation (23)

test14.74 Configuration 1; permutation (13)

test14.75 Configuration 1; permutation (123)

test14.76 Configuration 1; permutation (132)

test14.82 Configuration 2; permutation (E)

test14.62 Configuration 2; permutation (12)

test14.63 Configuration 2; permutation (23)

test14.64 Configuration 2; permutation (13)

test14.65 Configuration 2; permutation (123)

test14.66 Configuration 2; permutation (132)

test14.83 Electronic structure theory data file

test14.84 Geometry input file

test14.85 General input file

param-test14.prm Modified tinker parameter file

run test14 Script file to run mcsi

run t test14 Script file to run mcsi and to time

50

the run

OUTPUT FILES:

test14.86 Full output file

Example of a set of m! input files that specify the MM

configurations of reactants (OH + H2) is given below. Note
that these files contain the same Cartesian coordinates
but different connectivity patters that result from applying
each PMM to the atom types and connectivities given in
the test14.fu81 file.

test14.81
4 reactant well (E)

1 O 3.195183 .105829 -.396280 20 2
2 H 4.162021 .189153 -.416404 21 1

3 H .000000 .000000 .000000 122 4
4 H .015372 -.337746 -.659867 122 3

test14.72

4 reactant well (12)
1 O 3.195183 .105829 -.396280 20 3

2 H 4.162021 .189153 -.416404 122 4
3 H .000000 .000000 .000000 21 1

4 H .015372 -.337746 -.659867 122 2

test14.73
4 reactant well (23)
1 O 3.195183 .105829 -.396280 20 2

2 H 4.162021 .189153 -.416404 21 1
3 H .000000 .000000 .000000 122 4

4 H .015372 -.337746 -.659867 122 3

test14.74
4 reactant well (13)

1 O 3.195183 .105829 -.396280 20 4
2 H 4.162021 .189153 -.416404 122 3

3 H .000000 .000000 .000000 122 2
4 H .015372 -.337746 -.659867 21 1

test14.75

4 reactant well (123)
1 O 3.195183 .105829 -.396280 20 3

2 H 4.162021 .189153 -.416404 122 4
3 H .000000 .000000 .000000 21 1

4 H .015372 -.337746 -.659867 122 2

test14.76
4 reactant well (132)
1 O 3.195183 .105829 -.396280 20 4

2 H 4.162021 .189153 -.416404 122 3
3 H .000000 .000000 .000000 122 2

4 H .015372 -.337746 -.659867 21 1

The mcsi output file test14.86 contains the symmetrized matrix elements (SCMM1, SCMM2, and the resonance
energy), the MCSI energies, and the symmetrized gradient vectors.

(E)

hartree eV cm**-1 kcal
SCMM1 energy (V11) .0519673 1.414115 11405.512 32.61000

SCMM2 energy (V22) .2202130 5.992349 48331.156 138.18572
Resonance energy (V12) .0202639 .551414 4447.418 12.71581

MCSI energy (V) .0495611 1.348638 10877.406 31.10007

** Cartesian Coordinates (unscaled angstroms):

51

-2.25480000E-01 5.90000000E-02 0.00000000E+00 -3.67630000E-01 -8.98670000E-01

0.00000000E+00 1.03452000E+00 6.08900000E-02 0.00000000E+00 1.59161000E+00
-1.00530000E-01 0.00000000E+00

** Cartesian Gradient (hartrees per unscaled angstrom):
8.32028495E-02 -8.43227395E-03 0.00000000E+00 -2.32641931E-02 -2.72840556E-03

0.00000000E+00 2.65507406E-01 -9.69894223E-02 0.00000000E+00 -3.25446063E-01
1.08150102E-01 0.00000000E+00

(12)
hartree eV cm**-1 kcal

SCMM1 energy (V11) .0519673 1.414115 11405.512 32.61000
SCMM2 energy (V22) .2202130 5.992349 48331.156 138.18572

Resonance energy (V12) .0202639 .551414 4447.418 12.71581
MCSI energy (V) .0495611 1.348638 10877.406 31.10007

** Cartesian Coordinates (unscaled angstroms):

-2.25480000E-01 5.90000000E-02 0.00000000E+00 1.03452000E+00 6.08900000E-02
0.00000000E+00 -3.67630000E-01 -8.98670000E-01 0.00000000E+00 1.59161000E+00

-1.00530000E-01 0.00000000E+00
** Cartesian Gradient (hartrees per unscaled angstrom):

8.32028495E-02 -8.43227395E-03 0.00000000E+00 2.65507406E-01 -9.69894223E-02
0.00000000E+00 -2.32641931E-02 -2.72840556E-03 0.00000000E+00 -3.25446063E-01

1.08150102E-01 0.00000000E+00

(23)
hartree eV cm**-1 kcal

SCMM1 energy (V11) .0519673 1.414115 11405.512 32.61000
SCMM2 energy (V22) .2202130 5.992349 48331.156 138.18572

Resonance energy (V12) .0202639 .551414 4447.418 12.71581
MCSI energy (V) .0495611 1.348638 10877.406 31.10007

** Cartesian Coordinates (unscaled angstroms):
-2.25480000E-01 5.90000000E-02 0.00000000E+00 -3.67630000E-01 -8.98670000E-01

0.00000000E+00 1.59161000E+00 -1.00530000E-01 0.00000000E+00 1.03452000E+00
6.08900000E-02 0.00000000E+00

** Cartesian Gradient (hartrees per unscaled angstrom):
8.32028495E-02 -8.43227395E-03 0.00000000E+00 -2.32641931E-02 -2.72840556E-03

0.00000000E+00 -3.25446063E-01 1.08150102E-01 0.00000000E+00 2.65507406E-01
-9.69894223E-02 0.00000000E+00

(13)

hartree eV cm**-1 kcal
SCMM1 energy (V11) .0519673 1.414115 11405.512 32.61000

SCMM2 energy (V22) .2202130 5.992349 48331.156 138.18572
Resonance energy (V12) .0202639 .551414 4447.418 12.71581

MCSI energy (V) .0495611 1.348638 10877.406 31.10007

** Cartesian Coordinates (unscaled angstroms):
-2.25480000E-01 5.90000000E-02 0.00000000E+00 1.59161000E+00 -1.00530000E-01
0.00000000E+00 1.03452000E+00 6.08900000E-02 0.00000000E+00 -3.67630000E-01

-8.98670000E-01 0.00000000E+00
** Cartesian Gradient (hartrees per unscaled angstrom):

8.32028495E-02 -8.43227395E-03 0.00000000E+00 -3.25446063E-01 1.08150102E-01
0.00000000E+00 2.65507406E-01 -9.69894223E-02 0.00000000E+00 -2.32641931E-02

-2.72840556E-03 0.00000000E+00

(123)
hartree eV cm**-1 kcal

SCMM1 energy (V11) .0519673 1.414115 11405.512 32.61000
SCMM2 energy (V22) .2202130 5.992349 48331.156 138.18572

52

Resonance energy (V12) .0202639 .551414 4447.418 12.71581

MCSI energy (V) .0495611 1.348638 10877.406 31.10007

** Cartesian Coordinates (unscaled angstroms):
-2.25480000E-01 5.90000000E-02 0.00000000E+00 1.59161000E+00 -1.00530000E-01

0.00000000E+00 -3.67630000E-01 -8.98670000E-01 0.00000000E+00 1.03452000E+00
6.08900000E-02 0.00000000E+00

** Cartesian Gradient (hartrees per unscaled angstrom):
8.32028495E-02 -8.43227395E-03 0.00000000E+00 -3.25446063E-01 1.08150102E-01
0.00000000E+00 -2.32641931E-02 -2.72840556E-03 0.00000000E+00 2.65507406E-01

-9.69894223E-02 0.00000000E+00

(132)
hartree eV cm**-1 kcal

SCMM1 energy (V11) .0519673 1.414115 11405.512 32.61000
SCMM2 energy (V22) .2202130 5.992349 48331.156 138.18572

Resonance energy (V12) .0202639 .551414 4447.418 12.71581
MCSI energy (V) .0495611 1.348638 10877.406 31.10007

** Cartesian Coordinates (unscaled angstroms):

-2.25480000E-01 5.90000000E-02 0.00000000E+00 1.03452000E+00 6.08900000E-02
0.00000000E+00 1.59161000E+00 -1.00530000E-01 0.00000000E+00 -3.67630000E-01

-8.98670000E-01 0.00000000E+00
** Cartesian Gradient (hartrees per unscaled angstrom):

8.32028495E-02 -8.43227395E-03 0.00000000E+00 2.65507406E-01 -9.69894223E-02
0.00000000E+00 -3.25446063E-01 1.08150102E-01 0.00000000E+00 -2.32641931E-02

-2.72840556E-03 0.00000000E+00

O. Test run 15

Symmetrized MCSI gradient calculation on the OH +
H2 system. All three hydrogen atoms are treated as
indistinguishable.

This test run is the same as test 14 except that the sets
of internal coordinates r and s are the same, and they
both consist of the six internuclear distances.

INPUT FILES:

test15.81 Configuration 1; permutation (E)

test15.72 Configuration 1; permutation (12)

test15.73 Configuration 1; permutation (23)

test15.74 Configuration 1; permutation (13)

test15.75 Configuration 1; permutation (123)

test15.76 Configuration 1; permutation (132)

test15.82 Configuration 2; permutation (E)

test15.62 Configuration 2; permutation (12)

test15.63 Configuration 2; permutation (23)

test15.64 Configuration 2; permutation (13)

test15.65 Configuration 2; permutation (123)

test15.66 Configuration 2; permutation (132)

test15.83 Electronic structure theory data file

test15.84 Geometry input file

test15.85 General input file

param-test15.prm Modified tinker parameter file

53

run test15 Script file to run mcsi

run t test15 Script file to run mcsi and to time

the run

OUTPUT FILES:

test15.86 Full output file

P. Test run 16

Nonsymmetrized EE-MM energy and charge calculation
on the CH3Cl system

This test run is an EE-MM energy and charge calcula-
tion with the SCMM1 option for the CH3Cl system. The
EE-MM calculation is carried out using eqs. 2.18 and 2.19.
Note that in the test16.85 input file, the ICSHEPARD
keyword in the RESONANCE section is required to
transform the derivatives of the charges with respect to
the Cartesian coordinates to those with respect to the
internal coordinates, and that in the MCENERGETICS
section only the ZERO1 keyword is used.

INPUT FILES:

test16.81 Configuration 1 input file

test16.84 Geometry input file

test16.85 General input file

param-test16.prm Modified tinker parameter file

run test16 Script file to run mcsi

run t test16 Script file to run mcsi and to time

the run

OUTPUT FILES:

test16.86 Full output file

Q. Test run 17

Nonsymmetrized EE-MCSI Hessian and CRK calculation
on the Cl− + CH3Cl

′ system

This test run is an EE-MCSI Hessian and CRK cal-
culation for the Cl− + CH3Cl

′ system. This system is
treated in Ref. 6. Configuration 1 corresponds to the
Cl− + CH3Cl

′ system while configuration 2 corresponds
to ClCH3 + Cl′− the system. The electronic structure
theory used is MPW1K, and the basis set is 6-31G(d,p)
for C and H atoms and 6-31+G(d,p) for Cl. The potential
barrier is determined to be 3.2 kcal/mol in gas phase.
V12 is determined using Shepard interpolation with three
stationary electronic structure theory points (the precursor
ion-dipole complex, the saddle point, and the successor
ion-dipole complex) and nine nonstationary electronic
structure theory points. The Shepard interpolation is
carried out by using fifteen internal coordinates (set r).
Three of these (C–Cl, C–Cl′, and Cl–Cl′) are included in
the set s that is used to calculate the generalized distance.

54

INPUT FILES:

test17.81 Configuration 1 input file

test17.82 Configuration 2 input file

test17.83 Electronic structure theory data file

test17.84 Geometry input file

test17.85 General input file

param-test17.prm Modified tinker parameter file

run test17 Script file to run mcsi

run t test17 Script file to run mcsi and to time

the run

OUTPUT FILES:

test17.86 Full output file

Output test17.86 file (in part)

********************************* Point 2 *********************************

Atom Number Atomic Symbol X(angstrom) Y(angstrom) Z(angstrom)
1 C .00000000 .00000000 .00000000

2 H -.53435591 .92553159 .00000000
3 H -.53435591 -.92553159 .00000000

4 H 1.06871182 .00000000 .00000000
5 Cl .00000000 .00000000 2.31503001

6 Cl .00000000 .00000000 -2.31503001

hartree eV cm**-1 kcal
SCMM1 energy (V11) .0865608 2.355460 18997.910 54.31776

SCMM2 energy (V22) .0865608 2.355460 18997.910 54.31776
Resonance energy (V12) .0814768 2.217115 17882.088 51.12746

MCSI energy (V) .0050841 .138345 1115.822 3.19030

------------------------------ EE-MCSI Results ------------------------------

Atom Number Atomic Symbol Phi(a.u.) Phi(V) Charge(a.u.)
1 C .00000000 .00000000 -.02600043

2 H .00000000 .00000000 .11851415
3 H .00000000 .00000000 .11851415

4 H .00000000 .00000000 .11851415
5 Cl .00000000 .00000000 -.66477100
6 Cl .00000000 .00000000 -.66477100

hartree eV cm**-1 kcal/mol

V(QM) energy .0050841 .138345 1115.822 3.19030
V(QM/MM) energy .0000000 .000000 .000 .00000

V(QM)+V(QM/MM) energy .0050841 .138345 1115.822 3.19030

********************************* Point 4 *********************************

Atom Number Atomic Symbol X(angstrom) Y(angstrom) Z(angstrom)
1 C .00000000 .00000000 .00000000

2 H -.53520866 .92700860 .00000000
3 H -.53520866 -.92700860 .00000000

4 H 1.07041733 .00000000 .00000000
5 Cl .00000000 .00000000 2.31589993

6 Cl .00000000 .00000000 -2.31589993

hartree eV cm**-1 kcal

55

SCMM1 energy (V11) -.1159039 -3.153932 -25437.965 -72.73080

SCMM2 energy (V22) -.1159039 -3.153932 -25437.965 -72.73080
Resonance energy (V12) .0783440 2.131867 17194.528 49.16163

MCSI energy (V) -.1942479 -5.285799 -42632.492 -121.89242

------------------------------ EE-MCSI Results ------------------------------

Atom Number Atomic Symbol Phi(a.u.) Phi(eV) Charge(a.u.)
1 C .17460304 4.75122986 -.01524567
2 H .16932528 4.60761341 .12671321

3 H .16932528 4.60761341 .12671321
4 H .16932528 4.60761341 .12671321

5 Cl .19151678 5.21148000 -.68244699
6 Cl .19151678 5.21148000 -.68244699

hartree eV cm**-1 kcal/mol

V(QM) energy .0054469 .148218 1195.448 3.41796
V(QM/MM) energy -.1996948 -5.434017 -43827.940 -125.31038

V(QM)+V(QM/MM) energy -.1942479 -5.285799 -42632.492 -121.89242

R. Test run 18

This test run uses the input from Test 9 (nonsym-
metrized MCSI calculation on the H2N – H – CH3 system),
but it prints out the Hessian matrix calculated numerically
and analytically (HESSTEST option).

Numerical Analytical Difference
.3506667179 .3506672724 -.0000005545

-.0862289060 -.0862289218 .0000000159

.0646117881 .0646123401 -.0000005519
-.0000001388 -.0000001058 -.0000000330

.0000001388 .0000001865 -.0000000477

.0458322269 .0458328313 -.0000006044

-.3306099491 -.3306099384 -.0000000107

INPUT FILES:

test18.81 Configuration 1 input file

test18.82 Configuration 2 input file

test18.83 Electronic structure theory data file

test18.84 Geometry input file

test18.85 General input file

param-test18.prm Modified tinker parameter file

run test18 Script file to run mcsi

run t test18 Script file to run mcsi and to time

the run

OUTPUT FILES:

test18.86 Full output file

S. Test run 19

This test run uses the input from Test run 15 (sym-
metrized MCSI calculation on the OH + H2 system), ex-
cept that it uses the GRADTEST option in the MCGEN-

ERAL section to print the gradient vector calculated nu-
merically and analytically.

Numerical Gradient

.0479849099 -.0033938573 .0000000000
-.0081293623 -.0009467760 .0000000000

.1376129581 -.0508624819 .0000000000
-.1774685054 .0552031155 .0000000000

Analytical Gradient

.0479849098 -.0033938573 .0000000000
-.0081293624 -.0009467760 .0000000000

.1376129584 -.0508624820 .0000000000
-.1774685058 .0552031153 .0000000000

INPUT FILES:

test19.81 Configuration 1; permutation (E)

test19.72 Configuration 1; permutation (12)

test19.73 Configuration 1; permutation (23)

test19.74 Configuration 1; permutation (13)

test19.75 Configuration 1; permutation (123)

test19.76 Configuration 1; permutation (132)

test19.82 Configuration 2; permutation (E)

test19.62 Configuration 2; permutation (12)

test19.63 Configuration 2; permutation (23)

test19.64 Configuration 2; permutation (13)

test19.65 Configuration 2; permutation (123)

test19.66 Configuration 2; permutation (132)

test19.83 Electronic structure theory data file

test19.84 Geometry input file

test19.85 General input file

param-test19.prm Modified tinker parameter file

run test19 Script file to run mcsi

run t test19 Script file to run mcsi and to time

the run

56

OUTPUT FILES:

test19.86 Full output file

T. Test run 20

This test run is for the symmetrized MCSI PES of the
OH + H2 system using only gradient information.

INPUT FILES:

test20.81 Configuration 1; permutation (E)

test20.72 Configuration 1; permutation (12)

test20.73 Configuration 1; permutation (23)

test20.74 Configuration 1; permutation (13)

test20.75 Configuration 1; permutation (123)

test20.76 Configuration 1; permutation (132)

test20.82 Configuration 2; permutation (E)

test20.62 Configuration 2; permutation (12)

test20.63 Configuration 2; permutation (23)

test20.64 Configuration 2; permutation (13)

test20.65 Configuration 2; permutation (123)

test20.66 Configuration 2; permutation (132)

test20.83 Electronic structure theory data file

test20.84 Geometry input file

test20.85 General input file

param-test20.prm Modified tinker parameter file

run test20 Script file to run mcsi

run t test20 Script file to run mcsi and to time

the run

OUTPUT FILES:

test20.86 Full output file

U. Test run 21

This test run is for the MCSI PES of the 5,7,8-
trimethyl-croman-6-ol + CH3 reaction using only gradient
information.

INPUT FILES:

test21.81 Configuration 1 input file

test21.82 Configuration 2 input file

test21.83 Electronic structure theory data file

test21.84 Geometry input file

test21.85 General input file

param-test21.prm Modified tinker parameter file

run test21 Script file to run mcsi

run t test21 Script file to run mcsi and to time

the run

OUTPUT FILES:

test21.86 Full output file

V. Test run 22

This test run uses the input from Test run 17 (non-
symmetrized EE-MCSI calculation on the Cl− + CH3Cl

′

system), except that it uses the CHARGETEST option in
the MCGENERAL section to print the charges calculated
numerically and analytically.

INPUT FILES:

test22.81 Configuration 1 input file

test22.82 Configuration 2 input file

test22.83 Electronic structure theory data file

test22.84 Geometry input file

test22.85 General input file

param-test22.prm Modified tinker parameter file

run test22 Script file to run mcsi

run t test22 Script file to run mcsi and to time

the run

OUTPUT FILES:

test22.86 Full output file

W. Test run 23

This test run uses the input from Test run 17 (non-
symmetrized EE-MCSI calculation on the Cl− + CH3Cl

′

system), except that it uses the DQDRTEST option in

the MCGENERAL section to print the CRK κ =
∂Q

∂R
calculated numerically and analytically.

INPUT FILES:

test23.81 Configuration 1 input file

test23.82 Configuration 2 input file

test23.83 Electronic structure theory data file

test23.84 Geometry input file

test23.85 General input file

param-test23.prm Modified tinker parameter file

run test23 Script file to run mcsi

run t test23 Script file to run mcsi and to time

the run

OUTPUT FILES:

test23.86 Full output file

X. Test run 24

This test run uses the input from Test run 17 (non-
symmetrized EE-MCSI calculation on the Cl− + CH3Cl

′

57

system), except that it uses the DQDRTEST option in

the MCGENERAL section to print the CRK χ =
∂Q

∂Φ
calculated numerically and analytically.

INPUT FILES:

test24.81 Configuration 1 input file

test24.82 Configuration 2 input file

test24.83 Electronic structure theory data file

test24.84 Geometry input file

test24.85 General input file

param-test24.prm Modified tinker parameter file

run test24 Script file to run mcsi

run t test24 Script file to run mcsi and to time

the run

OUTPUT FILES:

test24.86 Full output file

Y. Test run 25

Nonsymmetrized EE-MCSI energy calculation on the
CH3COO− + CH2ClCH2Cl system

This test run is an EE-MCSI energy calculation for
the CH3COO− + CH2ClCH2Cl system. This system is
treated in Ref. 36. Configuration 1 corresponds to the
CH3COO− + CH2ClCH2Cl system while configuration 2
corresponds to CH3COOCH2CH2Cl + Cl− the system.
The electronic structure theory used is MPW1K, and
the basis set is 6-31G(d,p) for C and H atoms and
6-31+G(d,p) for O and Cl. The Shepard points are deter-
mined based on the QM/MM potential energy surface in
haloalkane dehalogenase. V12 is determined using Shepard
interpolation with three electronic structure theory points

(the reactant, the saddle point, and the product) and
five nonstationary electronic structure theory points. The
Shepard interpolation is carried out by using 66 internal
coordinates (set r), where sines of dihedral angles are used
for the Taylor expansion (See Sec. V). Three of these
(C–O, C–Cl, and C–O–C–Cl) are included in the set s

that is used to calculate the generalized distance.

INPUT FILES:

test25.81 Configuration 1 input file

test25.82 Configuration 2 input file

test25.83 Electronic structure theory data file

test25.84 Geometry input file

test25.85 General input file

param-test25.prm Modified tinker parameter file

run test25 Script file to run mcsi

run t test25 Script file to run mcsi and to time

the run

OUTPUT FILES:

test25.86 Full output file

XII. COMPUTERS AND OPERATING SYSTEMS
ON WHICH THE CODE HAS BEEN DEVELOPED

AND TESTED

The computers, operating systems, and compiler ver-
sions on which various versions of mcsi have been tested
are listed in Tables 10.1 and 10.2. The compiler and loader
commands used for testing the code are listed in Tables
10.3 and 10.4. Note that the FORTRAN compiler on the
Compaq computer uses a Compaq FORTRAN 90 compiler
(which is called f77) with several compilation flags for FOR-
TRAN 77.

TABLE I: Operating systems on the various machines on which various
versions of the code have been tested

Version Machine Operating system

1.0 IBM SP Power3 AIX 4.3.4.0

SGI Origin 3800 R14000 IRIX 6.5.12f

Compaq ES40 Alpha 500 Tru64 4.0f

1.0.1 IBM SP Power3 AIX 4.3

IBM Regatta Power4 AIX 5.1

SGI Altix 3000 Linux SMP 2.4.20

Netfinity Linux Cluster (Intel Pentium III) RedHat Linux 7.2 – 2.4.9 kernel

1.1 IBM SP Power3 AIX 4.3

IBM Regatta Power4 AIX 5.1

SGI Altix 3000 Linux SMP 2.4.20

Netfinity Linux Cluster (Intel Pentium III) RedHat Linux 7.2 – 2.4.9 kernel

1.1.1 IBM Regatta Power4 AIX 5.2

2007 IBM Regatta Power4 AIX 5.2

SGI Altix 3000 SuSE Linux

58

IBM BladeCenter Linux Cluster SuSE Linux

2008 IBM Regatta Power4 AIX 5.3

SGI Altix 3000 SuSE Linux Enterprise Server 9 (ia64) – 2.6.5 kernel

IBM BladeCenter Linux Cluster SuSE Linux Enterprise Server 9 (x86 64) – 2.6.5 kernel

20082 IBM Regatta Power4 AIX 5.3

2009 IBM Regatta Power4 AIX 5.3

SGI Altix 3000 SuSE Linux Enterprise Server 9 (ia64) – 2.6.5 kernel

IBM BladeCenter Linux Cluster SuSE Linux Enterprise Server 9 (x86 64) – 2.6.5 kernel

SGI Altix XE 1300 Linux Cluster Linux

2009-1 IBM BladeCenter Linux Cluster SuSE Linux Enterprise Server 9 (x86 64) – 2.6.5 kernel

2010-1 Linux Cluster CentOS 4.4 (x86 64) – 2.6.9 kernel

TABLE II: Compiler versions used for various machines

Version Machine Compiler version

1.0 IBM SP Power3 XL FORTRAN 6.1.0.3

SGI Origin 3800 R14000 MIPSpro 7.3.1.2m

Compaq ES40 Alpha 500 Compaq FORTRAN V5.4-1283-46ABA

1.0.1 IBM SP Power3 XL FORTRAN 6.1.0.3

IBM Regatta Power4 XL FORTRAN 7.1.1.2

SGI Altix 3000 Intel C/C++ and Fortran compilers 7.0

Netfinity Linux Cluster (Intel Pentium III) Portland Group FORTRAN 77 compiler 5.0

1.1 IBM SP Power3 XL FORTRAN 6.1.0.3

IBM Regatta Power4 XL FORTRAN 7.1.1.2

SGI Altix 3000 Intel C/C++ and Fortran compilers 7.0

Netfinity Linux Cluster (Intel Pentium III) Portland Group FORTRAN 77 compiler 5.0

1.1.1 IBM Regatta Power4 XL Fortran for AIX

2007 IBM Regatta Power4 XL Fortran for AIX

SGI Altix 3000 g77 version 3.4.6

IBM BladeCenter Linux Cluster Portland Group Fortran 90 compiler version 6.2-5

IBM BladeCenter Linux Cluster g77 version 3.4.6

2008 IBM Regatta Power4 XL Fortran for AIX version 10.1

SGI Altix 3000 g77 version 3.3.3

SGI Altix 3000 Intel Fortran complier version 8.1

IBM BladeCenter Linux Cluster Portland Group Fortran 90 compiler version 6.2-5

IBM BladeCenter Linux Cluster g77 version 3.3.3

IBM BladeCenter Linux Cluster Intel Fortran complier version 9.1

20082 IBM Regatta Power4 XL Fortran for AIX version 10.1

2009 IBM Regatta Power4 XL Fortran for AIX version 10.1

SGI Altix 3000 g77 version 3.3.3

SGI Altix 3000 Intel Fortran complier version 8.1

IBM BladeCenter Linux Cluster Portland Group Fortran 90 compiler version 6.2-5

IBM BladeCenter Linux Cluster g77 version 3.3.3

IBM BladeCenter Linux Cluster Intel Fortran complier version 9.1

SGI Altix XE 1300 Linux Cluster Intel Fortran complier version 11

2009-1 IBM BladeCenter Linux Cluster Intel Fortran complier version 9.1

2010-1 Linux Cluster Intel Fortran complier version 11.0

Linux Cluster GNU Fortran complier version 4.1.0

Linux Cluster PGI Fortran complier version 7.1-2

59

TABLE III: Compiler options used for various machines

Version Machine Compiler commands

1.0 IBM SP Power3 xlf -c -qdpc -qmaxmem=-1

SGI Origin 3800 R14000 f77 -c -O3 -static -64

Compaq ES40 Alpha 500 f77 -c -O3

1.0.1 IBM SP Power3 xlf -c -qdpc -qmaxmem=-1

IBM Regatta Power4 xlf -c -qdpc -qmaxmem=-1

SGI Altix 3000 efc -c -static -w

Netfinity Linux Cluster (Intel Pentium III) pgf77 -c -O3

1.1 IBM SP Power3 xlf -c -qdpc -qmaxmem=-1

IBM Regatta Power4 xlf -c -qdpc -qmaxmem=-1

SGI Altix 3000 efc -c -static -w

Netfinity Linux Cluster (Intel Pentium III) pgf77 -c -O3

1.1.1 IBM Regatta Power4 xlf -c -qdpc -qmaxmem=-1

2007 IBM Regatta Power4 xlf -c -qdpc -qmaxmem=-1

SGI Altix 3000 g77 -c -O3

IBM BladeCenter Linux Cluster pgf90 -c -Bstatic -Msave -fast

IBM BladeCenter Linux Cluster g77 -c -O3

2008 IBM Regatta Power4 xlf -c -qdpc -qmaxmem=-1

SGI Altix 3000 g77 -c -O3

SGI Altix 3000 ifort -c -w

IBM BladeCenter Linux Cluster pgf90 -c -Bstatic -Msave -fast

IBM BladeCenter Linux Cluster g77 -c -O3

IBM BladeCenter Linux Cluster ifort -c -w

20082 IBM Regatta Power4 xlf -c -qdpc -qmaxmem=-1

2009 IBM Regatta Power4 xlf -g -c -qdpc -O3 -qmaxmem=-1

SGI Altix 3000 g77 -c -O3

SGI Altix 3000 ifort -c -w

IBM BladeCenter Linux Cluster pgf90 -c -Bstatic -Msave -fast

IBM BladeCenter Linux Cluster g77 -c -O3

IBM BladeCenter Linux Cluster ifort -c -w

SGI Altix XE 1300 Linux Cluster ifort -O3 -c

2009-1 IBM BladeCenter Linux Cluster ifort -c -w

2010-1 Linux Cluster ifort -c -w

Linux Cluster gfortran -c -w

Linux Cluster pgf77 -c -w

TABLE IV: Loader commands used for various machines

Version Machine Loader commands

1.0 IBM SP Power3 xlf -o

SGI Origin 3800 R14000 f77 -64 -o

Compaq ES40 Alpha 500 f77 -o

1.0.1 IBM SP Power3 xlf -o

IBM Regatta Power4 xlf -o

SGI Altix 3000 efc -Vaxlib -o

Netfinity Linux Cluster (Intel Pentium III) pgf77 -o

1.1 IBM SP Power3 xlf -o

IBM Regatta Power4 xlf -o

SGI Altix 3000 efc -Vaxlib -o

Netfinity Linux Cluster (Intel Pentium III) pgf77 -o

1.1.1 IBM Regatta Power4 xlf -o

2007 IBM Regatta Power4 xlf -o

SGI Altix 3000 g77-o

IBM BladeCenter Linux Cluster pgf90 -o

60

IBM BladeCenter Linux Cluster g77 -o

2008 IBM Regatta Power4 xlf -o

SGI Altix 3000 g77 -o

IBM BladeCenter Linux Cluster pgf90 -o

IBM BladeCenter Linux Cluster g77 -o

IBM BladeCenter Linux Cluster ifort -o

20082 IBM Regatta Power4 xlf -o

2009 IBM Regatta Power4 xlf -o

SGI Altix 3000 g77 -o

IBM BladeCenter Linux Cluster pgf90 -o

IBM BladeCenter Linux Cluster g77 -o

IBM BladeCenter Linux Cluster ifort -o

SGI Altix XE 1300 Linux Cluster ifort -o

2009-1 IBM BladeCenter Linux Cluster ifort -o

2010-1 Linux Cluster ifort -o

Linux Cluster gfortran -o

Linux Cluster pgf77 -o

XIII. REVISION HISTORY

A. mn versions of tinker

In this section we will list the changes made with respect
to the original tinker 3.5 release of the code by Jay W.
Ponder.

1. tinker–version 3.5mn1 (December 1999)

tinker–version3.5mn1 is the first mn version of the
tinker program. The differences between tinker 3.5 and
tinker 3.5mn1 are:

• Two bugs found in the original tinker 3.5 version have
been corrected. These bugs are also corrected in later
tinker versions distributed by J. W. Ponder. These
bugs are:

– When the BUCKINGHAM option is selected
for the van der Waals energy term, the second
derivatives (term d2e in the ebuck2.f subrou-
tine) were miscalculated in tinker–version

3.5 when the system is in the repulsive zone.
The problem was solved by modifying the
ebuck2.f subroutine. (If the option Bucking-
ham is selected for the van der Waals energy
term, the repulsive wall is estimated by means
of a function of R–12; the second derivatives of
this function were wrong.)

– The expression for the first derivatives of
the Morse function (term deddt in ebond1.f
and ebond2.f) was miscalculated, in tinker–

version3.5. This was fixed by changing the
ebond1.f and ebond2.f subroutines.

• As explained in Sec. VIIIA 1, the Morse treatment
for bond lengths has been flexibilized by making it

possible to use this option for selected bonds (rather
than for all or none of them) and using a user-input
bond dissociation energy. The subroutines modi-
fied for this purpose were analyze.f, ebond.f,

ebond1.f, ebond2.f, ebond3.f, field.f,
kbond.f, prmkey.f, prtprm.f, and readprm.f.
The bndpot.i, bond.i, and kbonds.i include files
were also modified.

• As explained in Sec. VIIIA 2, when the user selects
the Buckingham option for the van der Waals en-
ergy term in tinker 3.5mn1, the energy is calcu-
lated by using one expression constructed by means
of a linear combination of attractive and repulsive
functions. This approach gives results for MM3
calculations (the MM3 force field is the only force
field that uses the Buckingham function that is sup-
ported in this version of the code) slightly differ-
ent from those obtained with any other standard
code, but continuous with respect to the distance
R. The subroutines modified in order to include
this approach are ebuck.f, ebuck1.f, ebuck2.f,
ebuck3.f, ebuck4.f, and ebuck5.f.

2. tinker–version 3.5mn2

• Due to a mistake in the treatment of van der Waals
1–4 interactions when using the CHARMM force
field present in tinker–version 3.5, that code
or any version of mc–tinker based on tinker–

version 3.5 should not be used with the CHARMM
force field. To prevent incorrect usage, in version
3.5mn2 we removed the CHARMM parameter file
charmm.prm. We do note that the CHARMM force
field is handled correctly in versions 3.7 and later
of tinker (those versions are available from Jay W.
Ponder, but they are not compatible with any version
of mc-tinker or tinkerate).

61

3. tinker–version 3.5mn3

• This version of the code fixes a bug that caused all
charge-dipole interaction energies to have the wrong
sign. This involved changes in the following subrou-
tines: echgdpl.f, echgdpl1.f, echgdpl2.f, and
echgdpl3.f.

4. tinker–version 3.5mn4

• A.This version of the code correctly evaluates the van
der Waals (VDW) 1–4 interactions.

It was found that the VDW 1–4 interactions are not
correctly calculated in tinker 3.5 when using the
charmm force field. In the charmm force field, a set
of specially developed parameters (instead of the nor-
mal VDW parameters) is used to evaluate the VDW
1–4 interactions. However, tinker 3.5 does not supply
VDW 1–4 parameters in the charmm force field file.
Moreover, the data structure in tinker 3.5 does not
provide entries for the VDW 1–4 parameters.

The data structure in tinker 3.5 was modified to
allow the use of the VDW 1–4 parameters. Some sub-
routines were also changed accordingly. In total, we
revised 2 common blocks (vdw.i and kvdws.i) and
26 subroutines/programs (readprm.f, prtprm.f,
kvdws.f, analyze.f, elj.f, elj1.f, elj2.f,

elj3.f, elj4.f, elj5.f, ebuck.f, ebuck1.f,
ebuck2.f, ebuck3.f, ebuck4.f, ebuck5.f,

egauss.f, egauss1.f, egauss2.f, egauss3.f,
ehal.f, ehal1.f, ehal2.f, ehal3.f, ehal4.f,
and ehal5.f).

The charmm force field uses the Lennard-Jones (L-
J) function for VDW interactions, but other force
fields may use other (e.g. Buckingham) functions for
VDW interactions. In both cases, the new VDW 1-4
implementation allows the use of a set of specially
developed parameters instead of the normal VDW
parameters.

• A new parameter file called charmm27t35.prm is also
generated, which is based on the charmm27.prm file
distributed in the tinker 4.1 package. For pro-
teins and peptides, the charmm27 force field is es-
sentially identical to charmm22 force field. The
charmm27t35.prm file should be used when the
charmm force field is selected. See also Sec. VIII A
for discussions on implementations of force field pa-
rameters in tinker.

The charmm27t35.prm was validated by a series
of tests. In order to test large systems like the
membrane bi-layer, some size-control parameters in
the code need modifications. For this propose,
five include files were revised: kangs.i, kbonds.i,
ktorsn.i, kiprop.i, and kurybr.i. The larger
amount of parameters in charmm27t35.prm requires
the increase of maximum allowed parameter numbers

in sizes.i, and the option -qmaxmem=-1 was used
to compile the tinker codes.

Please note that tinker does not implement the com-
plete set of charmm force field. Thus the charmm27
force field implemented in tinker 4.1 is not com-
pletely the same as the charmm27 force field imple-
mented in original charmm. Users are encouraged to
check the tinker manual for more information.

5. tinker–version 3.5mn5

• Subroutines ebuck1.f, ebuck2.f, ebuck3.f,

ebuck4.f were modified to allow the value for the D
coefficient (described in section 5.1.2 of this manual)
to be specified in a .prm file. See Ref. 4 for the usage
of this parameter in MCSI calculations.

• A bug is fixed that is related to improper handling
of systems that contain valence bending terms for
one MM configuration and no valence bending terms
for another MM configuration (e.g., in case of OH
+ H2 → H2O + H reaction). In such cases, MM
calculations were carried without valence bending
terms in both MM configurations. In fact, this bug
was only noticeable when tinker was used as part
of the mcsi code.

Modified subroutines: ebuck1.f, ebuck2.f,

ebuck3.f, ebuck4.f, energ.f, grads.f,
hesss.f.

B. mcsi

Versions 1.0 through 2009 were called mc-tinker. Be-
ginning with version 2009-1, the code is called MCSI.

1. mc-tinker–version 1.0

mcsi–version 1.0 is the first official version of mcsi. See
Sec. X 9 for discussion of the predecessor of mcsi.

2. mc-tinker–version 1.0.1

mc-tinker–version 1.0.1 is a bug-fixed version for mc-

tinker–version 1.0.
Updates/corrections are as follows:

• It was found that the initialization was not properly
done when tinker subroutines were called for the first
time, as compared with calculations done with tin-

kerate 8.5. Thus, in version 1.0, the first call gave
small errors in the energies and derivatives; some-
times the differences were not negligible. On the

62

other hand, the rest of the calls to tinker subrou-
tines were fine. The bug was fixed by adding an addi-
tional call to tinker subroutines just for initialization.
Since this is a molecular mechanics energy computa-
tion, its effect on the CPU time is negligible. The
correction affects the following subroutines: mehook,
mghook, mhhook, and mctesi.

• In order to minimize other possible improper ini-
tializations, variables are explicitly initialized (e.g.,
by filling with zero) before calls to tinker subrou-
tines. The updates affects the following subroutines:
mctesi and mcviic.

• In subroutine mcviic, variable tnky was incorrectly
defined as double precision. Now it is defined as an
integer.

• In subroutines mccgra (mcches), when e12=0 and
e1=e2, the gradient (Hessian) was not correctly eval-
uated. They were obtained as the sum of the two
gradients (Hessians). Now they are obtained as the
average of the corresponding terms.

• In subroutine mcptab, typos in output formats 1400
and 1450 were corrected.

3. mc-tinker–version 1.1 (Feburary 2004)

mc-tinker–version 1.1 is a new version of mc-tinker,
using tinker 3.5mn4. The improvements are

• correct evaluations for the VDW 1–4 interactions,
and

• implementation of the charmm27 force field. See
Sec. XIII A 4 (revision of tinker 3.5mn4) and Sec. X
(comments on force fields) for more details.

4. mc-tinker–version 1.1.1 (June 2007)

(Updated by: O.T. and D.G.T.)
mc-tinker–version 1.1.1 is a bug-fixed version for

mc-tinker–version 1.1.

Updates/corrections are as follows:

• The tensor C(k) given in eq. (22) of Ref. 3 was not
correctly calculated and it was not symmetric. This
bug is fixed.

• Because the weight function given in eq. (34) of
Ref. 3 is already normalized, the quantity w(q) given
in eq. (15) of Ref. 3 is always equal to one. There-
fore, eqs. (15), (16), (28), and (29) of Ref. 3 are no
longer needed. These equations are not used in the
present version.

• There were errors in the previous version of the code
that resulted in incorrect MCSI gradients and Hes-
sians. These errors were related to the wrong deriva-
tives of the weight function with respect to the inter-
nal coordinates. In particular, the first and second
derivatives of the weights given in eq (34) of Ref. 3
with respect to the generalized distances given in eqs.
(38) and (40) cannot be correct because these expres-
sions include only the terms that are associated with
a distance dk with respect to a single Shepard point
k and neglect other distances dk′(k 6= k′), while the
weight function given in eq. (34) depends on all dis-
tances; note the typo in eq. (34): i should be k.
Note that when one increments one of the internal
coordinates, all distances d change. In the previous
version of the code, these derivatives were taken as if
one moved a particular Shepard point k rather than
changing the current geometry. This resulted in an
error in the gradients of the weight, and consequently,
in the error in the final MCSI derivatives. In version
1.1.1, we take the derivatives of the weight function
given in eq. (34) numerically, because this procedure
involves a smaller number of operations, and because
it leads to sufficiently accurate final derivatives. Since
most of the operations are still analytic, and A.only
this one inner derivative in the chain is numerical, the
final derivatives may be classified as semi-analytical.
Equations (36) through (41) of Ref. 3 are no longer
used in the code. The final semi-analytical MCSI
first and second derivatives of V are now in excellent
agreement with numerical derivatives.

• A typo is corrected in the mcv12i subroutine where
it calculates off-diagonal elements of a Hessian ma-
trix. That typo resulted in wrong matrix elements of
the Hessian of V12 when one used different internal
coordinates in sets r and s.

New subroutines added in this version: mcswtsnum.
Modified subroutines: mcswts and mcv12i.

5. mc-tinker–version 2007 (June 2007)

(Updated by: O.T. and D.G.T.)
mc-tinker 2007 is a new version of mc-tinker, using

on tinker 3.5mn5. The updates are as follows:

The permutation symmetry algorithm is imple-
mented in the MCSI method. To accomplish this,
the following subroutines have been added: mctesis,
mcv12is, mehooks, mghooks, mhhooks, mctmmgs,

mcrssy, mc12perm, mc23perm, mc13perm, mc123perm,
mc132perm, mc12perm2, mc23perm2, and mc13perm2.
However, these are added to existing files, so there are no
new files. The first five subroutines in this list are coun-
terparts of the corresponding mctesi, mcv12i, mehook,
mghook, and mhhook subroutines, but they return the
symmetrized values.
mctesis subroutine returns the Taylor series coefficients

D, b, and C for each symmetrically equivalent Shepard

63

point (k, i). mcv12is subroutine returns the symmetrized
coupling term V12 and its derivatives in the internal coordi-
nates r. mehooks, mghooks, and mhhooks return the sym-
metrized MM potential, its gradient and Hessian in Carte-
sian coordinates (these values are denoted by capital V , G,
and F with a tilde in this manual and in Ref. 4) mcrssy
subroutine reads in the input in the SYMMETRY sec-
tion. mc12perm - mc132perm subroutines permute rows
in a vector. mc12perm2, mc23perm2, and mc13perm2 sub-
routines permute rows and columns in a square matrix.
The following subroutines have been modified in or-

der to handle permutation symmetry in MCSI cal-
culations: msptab, mcrfgi, mcrfmm, mcscal, mcsdef,
mcsrun, mcv12c, and mcviic.

6. mc-tinker–version 2008 (June 2008)

(Updated by: M.H. and D.G.T.)
mc-tinker 2008 is a new version of mc-tinker, using

tinker 3.5mn5. The updates are as follows:

The capability to carry out EE-SCMM and EE-MCSI
calculations has been added. Two files, eemcmm.inc and
emsrc1.f, have been added in the srcmct directory. The
ISHMM keyword has been added in the RESONANCE sec-
tion in the esp.fu85 file. This option specifies whether or
not two SCMM Shepard points at which V12 and its Tay-
lor series are zero are included for the Shepard interpola-
tion calculation. The GAMESS option of the FORMHESS
keyword has been added in the MCGEN83 section in the
esp.fu83 file. Two files, mcfset.f and mcrsmldum.f, have
been added to interface mc-tinker 2008 with the sander
program in the amber 9. These files are replaced when
mc-tinker 2008 is combined with sander program.
Modified subroutines: mcptab, mcrfes, mcrfmm,

mcrkeh, mcrseg, mcrsep, mcrsre, mcscal, mcsdef,
mcsesi, mcsrun, and mcswts.

7. mc-tinker–version 2008-2 (June 2008)

(Updated by: O.T. and D.G.T.)
mc-tinker 2008-2 is a new version of mc-tinker, using

tinker 3.5mn5. The updates are as follows:

The u-function given in eq. 19 of Ref. 3 is replaced by an-
other u-function given by eqs. 51 and 97 . This change was
necessary to make the global MCSI potential energy surface
for OH + HH reaction suitable for semiclassical trajectory
calculations. The new u-function is implemented for both
symmetrized and nonsymmetrized MCSI calculations. The
user can input nondefault values for parameters in the new
u-function using the UDELTA and UNN keywords in the
MCGENERAL section of the esp.fu85 file. The new scal-
ing coefficient Yki (eq. 104), which is based on the value
of V12ki at a given geometry, is introduced to calculate the
normalized weights wki (in symmetrized calculations only).
This allows one to obtain a good representation of the
potential energy surfaces everywhere at large internuclear

separation between the reactants, including asymptotic re-
gions. The GRADTEST and the HESSTEST keywords
(along with the STEPSIZE keyword) have been added in
the MCGENERAL section in the esp.fu85 file to calculate
and compare analytical and numerical MCSI gradients and
Hessians. These options will be useful primarily in further
developments of the code, but they can also be useful in
applications, for example, when one uses new functional
forms to represent the molecular mechanics part, or if one
wishes to trace a problem (if one encounters a problem) in
dynamics calculations.
Modified subroutines: mcrsge, mcv12i, mcv12is,

mcwtss.
New subroutines: mcv12isw returns Fki(r) (eq. 55 of the

Appendix). mcgradtest calculates MCSI gradient analyt-
ically and numerically and prints the results. mchesstest
calculates MCSI Hessian (half matrix) analytically and nu-
merically and prints the results (both Hessians and their
differences for convenience).

8. mc-tinker–version 2009 (March 2009)

(Updated by: O.T. and D.G.T.)
mc-tinker 2009 is a new version of mc-tinker, using

tinker 3.5mn5. The updates are as follows:

The non-Hermitian MCSI method and direct Shepard in-
terpolation are implemented. The mcsi code can now carry
out calculations using both Hermitian and non-Hermitian
MCSI. The keyword NONHERMITIAN is added to the
RESONANCE section to indicate the choice of the formal-
ism. The non-Hermitian MCSI scheme is the defaut and
is recommended for most cases. Another improvement is
the implementation of the Jacobians and Hessians that are
necessary for calculation of the first and second derivatives
of the weight function with respect to the internal coordi-
nates in the case when set of coordinates s is different from
set r. This is currently only available for a special case of
s and r for a generic atom-transfer reaction as described
in Sec. II B 1. The keyword JACOBIANS is added in the
RESONANCE section to indicate whether or not to use
these Jacobians and Hessians in a calculation.
Subroutines mcv12i and mcv12is are renamed to

mcv12iold and mcv12isold and they are used to perform
Shepard interpolation of modified Taylor series of V12 ac-
cording to the old MCSI method.
The new subroutines: mcv12i, mcv12is are added.

These subroutines return the interpolated value of β ob-
tained using the non-Hermitian formalism described in
Ref. 5.
The subroutines mccene, mccgra, and mcches are mod-

ified to carry out calculations according to Hermitian and
non-Hermitian MCSI methods.
A new subroutine mcswtsnum1 is added. This sub-

routine calculates the first and second derivatives of the
weight function in the internal coordinates as described in
Sec. II B 1.

64

9. mcsi–version 2009-1 (December 2009)

(Updated by: O.T. and D.G.T.)
mcsi 2009-1 is a new version of mc-tinker, using

tinker 3.5mn5. The updates are as follows:

In addition to the renaming, the code is updated as
follows: A capability is added for constructing potential
energy surfaces based only on gradient information, that
is without using any Hessian information from electronic
structure calculations, as described in Ref. 8. This op-
tion is invoked by setting the FORMHESS variable of the
esp.fu83 input file to ’ZERO’.

10. mcsi–version 2010-1 (October 2010)

(Updated by: M.H. and D.G.T.)
The updates and corrections are as follows;

• The capability to carry out non-Hermitian EE-MCSI
calculations has been added.

• The capability to carry out V12 calculation utilizing
sines of dihedral angles has been added.

• The ICSHZERO and ICSAZERO keywords in the
esp.fu83 file have been added. The ICEEZERO key-
word in the esp.fu85 file has been added.

• The ZERO option has been added for the FOR-
MDQDPHI and FORMDQDR keywords. The ZERO
option of the FORMHESS keyword is now available
for EE-MCSI calculations.

• The capability to carry out GRADTEST and HES-
STEST options in the TYPECALC keyword for EE-
MM and EE-MCSI calculations has been added. The
CHARGETEST, DQDRTEST, and DQDPHITEST
options in TYPECALC keyword have been added.

• In non-Hermitian (EE-)MCSI calculations, not [V12]
2

but V12 is now printed to match the units of energy
and diagonal matrix elements.

• A bug in calculating the EE-MM energy has been
fixed.

• Some comment lines starting with ’CAMBP’ has
been added in the program. They are activated in
compiling the AMBERPLUS program.

New subroutines: mcishz, mcv12z, eechargetest,
eedqdphitest, eedqdrtest, eestiz, eev12iold.
Modified subroutines: main, mcrkic, mcprez,
mcrfgi, mcrkeh, mcrsep, mcrsge, mcsdef,

mcsisi, mcgradtest, mchesstest, mcswts, eerd85,
mcv12iold, mcv12i1st, mcv12i, eetiqr, eev12i,

eeviic

1 O. Tishchenko, M. Higashi, T. V. Albu, J. C. Corchado,
Y. Kim, J. Vill, J. Xing, H. Lin, and D. G. Truhlar, mcsi–
version 2010-1 University of Minnesota, Minneapolis, MN,
2010.

2 J. W. Ponder, tinker–version 3.5, Washington University,
St. Louis, MO, 1997.

3 Y. Kim, J. C. Corchado, J. Villa, X. Xing, and D. G. Truhlar,
J. Chem. Phys. 112, 2718 (2000).

4 O. Tishchenko and D. G. Truhlar, J. Chem. Theory Comp.
3, 938 (2007).

5 O. Tishchenko and D. G. Truhlar, J. Chem. Theory Comp.
5, 1454 (2009).

6 M. Higashi and D. G. Truhlar, J. Chem. Theory Comp. 4,
790 (2008).

7 O. Tishchenko and D. G. Truhlar, J. Chem. Phys. 130,
024105 (2009).

8 O. Tishchenko and D. G. Truhlar, J. Chem. Phys. 132,
084109 (2010).

9 F. London, Z. Electrochem. 35, 552 (1929).
10 H. Eyring and M. Polanyi, Z. Phys. Chem. B12, 279 (1931).
11 G. E. Kimball and H. Eyring, J. Am. Chem. Soc. 54, 3876

(1932).
12 C. A. Coulson and U. Danielsson, Arkiv Fysik 8, 239 (1954).
13 S. Sato, Bull. Chem. Soc. Japan 28, 450 (1955).
14 F. O. Ellison, J. Am. Chem. Soc. 85, 3540 (1963).
15 J. K. Cashion and D. R. Herschbach J. Chem. Phys. 40,

2358 (1964).
16 C. A. Parr and D. G. Truhlar, J. Phys. Chem. 75, 1844

(1971).
17 L. M. Raff, J. Chem. Phys. 40, 2358 (1964).

18 P. J. Kuntz, In Atom-Molecule Collision Theory; Bernstein,
R. B., Ed.; Plenum: New York, 1979; p. 79.

19 A. Warshel and R. M. Weiss, J. Am. Chem. Soc. 102, 6218
(1980).

20 A. Warshel, S. Russell, and R. M. Weiss, In Chemical Ap-
proaches to Understanding Enzyme Catalysis: Biomimectic
Chemistry and Transition State Analogs; B. S. Green, Y.
Ashani, and D. Chipman, Eds.; Elsevier: Amsterdam, 1981,
p. 267.

21 A. Warshel, Computer Modeling of Chemical Reactions in
Enzymes and Solutions; John Wiley & Sons: New York,
1991.

22 Y. T. Chang and W. H. Miller, J. Phys. Chem. 94, 5884
(1990).

23 Y. T. Chang, C. Minichino, and W. H. Miller, J. Chem.
Phys. 96, 4341 (1992).

24 P. Pulay and G. Fogarasi, J. Chem. Phys. 96, 2856 (1992).
25 Y.-Y. Chuang and D. G. Truhlar, J. Phys. Chem. A 102,

242 (1998).
26 J. Ischtwan and M. A. Collins, J. Chem. Phys. 100, 8080

(1994).
27 K. A. Nguyen, I. Rossi, and D. G. Truhlar, J. Chem. Phys.

103, 5522 (1995).
28 T. V. Albu, J. C. Corchado, and D. G. Truhlar, J. Phys.

Chem. A 105, 8465 (2001).
29 H. Lin, J. Pu, T. V. Albu, and D. G. Truhlar, J. Phys. Chem.

A 108, 4112 (2004).
30 H. Lin, Y. Zhao, O. Tishchenko, and D. G. Truhlar, J. Chem.

Theory Comp. 2, 1237 (2006).
31 O. Tishchenko and D. G. Truhlar, J. Phys. Chem. A 110,

65

13530 (2006).
32 J. W. Downing and J. Michl, In Potential Energy Surfaces

and Dynamics Calculations; D. G. Truhlar,, Ed.; Plenum:
New York, 1981; p. 199.

33 A. Morita and S. Kato, J. Am. Chem. Soc. 119, 4021 (1997).
34 S. Iuchi, A. Morita, and S. Kato, J. Phys. Chem. B 106,

3466 (2002).
35 Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004).
36 M. Higashi and D. G. Truhlar, J. Chem. Theory Comp. 5,

2925 (2009).

