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ABSTRACT: We present a new method for generating global or semi-global potential energy surfaces in the presence of an 

electrostatic potential; the new method can be used to model chemical reactions in solution or in an enzyme, nanocavity, or 

other chemical environment. The method extends the multiconfiguration molecular mechanics (MCMM) method so that the 

energy depends on the electrostatic potential at each atomic center. The charge distribution of the system can also be 

calculated. We illustrate the method by applying it to the symmetric bimolecular reaction 

3 3Cl  + CH Cl ClCH  + Cl− −′ ′→  in aqueous solution, where the potential energy information is obtained by the 

combined density functional and molecular mechanical (DF/MM) method, that is by the combined quantum mechanical and 

molecular mechanical method (QM/MM) with the QM level being density functional theory. It is found that we can describe 

a semi-global potential energy surface in aqueous solution with electronic structure information obtained entirely in the gas 

phase, including the linear and quadratic responses to variations in the electrostatic potential distribution. The semi-global 

potential energy surface calculated by the present method is in good agreement with that calculated directly without any 

fitting. 
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1. Introduction 

Combined quantum mechanical and molecular mechanical (QM/MM) methods have provided 

powerful means for studying chemical reactions in solution, enzymes, and solids.1-28 In these approaches, 

the solute molecule or the reaction center involved in the formation and breaking of chemical bonds is 

described quantum mechanically, while the surroundings (e.g. solvent or protein environment) are 

treated by using a molecular mechanics (MM) force field. When the system contains a large number of 

atoms, a statistical sampling method such as molecular dynamics (MD) or Monte Carlo simulation is 

required. 

However, the high computational cost of ab initio or density functional QM calculations prevents 

carrying out QM/MM MD simulations with reliable accuracy and adequate sampling. To overcome this 

difficulty, many more approximate methods have been developed, but we can mainly classify them into 

three types. In the first type of method, a reaction path connecting the reactant and product is first 

determined in limited dimensionality, e.g., in the gas phase or with non-quantal degrees of freedom 

(corresponding to spectator atoms or a secondary zone) excluded (in which case the method is called 

QM-FE) or frozen (in which case it is called QM/MM-FE). Then the free energy profile is obtained by 

free energy perturbation calculations along the path with the QM coordinates and electron density 

fixed.29-36 These methods assume that the dynamics of the QM and MM subsystems are independent of 

each other and that the QM subsystem needs to be treated only in the quadratic region around the single 

uncoupled path.37 Although several efficient algorithms for tracing the reaction paths have been 

developed,30,33-35 this approach sometimes has a difficulty that the reaction path is trapped at one of the 

local minima of the potential energy surface (PES) and not smoothly connected from the reactant to 

product because there are many local minima on the MM PES.32 Any single reaction path can deviate 

significantly from paths that make an appreciable contribution in a properly sampled thermal 

ensemble,38-48 even if the single path is the minimum-free-energy path (MFEP) on the potential of mean 

force (PMF) for a large subset of the degrees of freedom. (The PMF is an averaged energy surface, in 

particular a free energy surface (FES). The true dynamics involves an average over paths, not the 
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optimized path on an average surface, and, even if the subset of the degrees of freedom included in the 

potential of mean force were large enough, this potential provides the full information needed to 

describe the dynamics only if classical transition state theory applies with a transmission coefficient of 

unity.) In addition, since the QM coordinates and charge distribution are fixed during MD simulations 

of this type, a significant part of the coupling between the QM and MM regions is ignored.  

In the second type of calculation, high-level electronic structure methods combined with dielectric 

continuum models49-54 or integral equation theories of solvation (such as the reference interaction site 

model self-consistent field (RISM-SCF) method55-58) are used to calculate the free energy surfaces of 

chemical reactions in solution. Although these methods do not need to sample the solvent degrees of 

freedom, they cannot easily be applied to reactions with inhomogeneous environments such as proteins, 

and furthermore they again yield only a pre-averaged surface. (For many purposes, it is an advantage to 

directly calculate the FES, and it facilitates the calculation of equilibrium solvation paths59,60 (ESPs), 

also called minimum free-energy paths61 (MFEPs), and transition state theory rate constants,53 but the 

PES required for full real-time dynamics can only be obtained from the FES by making further 

approximations.62,63 Note that an ESP is a special case of an MFEP in which the primary coordinates on 

which the FES depends correspond to the coordinates of a solute or a microsolvated solute and the 

secondary subsystem that is averaged corresponds to the solvent or the rest of the solvent.) 

In the third type of calculation (SE-MO/MM), one uses proper free energy sampling of 

unaveraged motions, but due to cost, one uses semiempirical molecular orbital (SE-MO) methods such 

as Austin model 1 (AM1),64 parametrized model 3 (PM3),65 or self-consistent-charge density-functional 

tight binding (SCC-DFTB)66,67 instead of high-level methods in the QM electronic structure calculation. 

Semiempirical methods require much lower computational cost than ab initio or density functional 

methods, and direct SE-MO/MM dynamics simulations are feasible, so dynamical properties such as 

transmission coefficients can be calculated straightforwardly.16,47 However, it is well known that SE-

MO is less reliable than ab initio wave function theory and density functional theory. 
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Lu and Yang37 re-examined the QM/MM-FE method30,34 and summarized its chief 

approximations as (i) assuming that the dynamics of the QM and MM subsystems are independent of 

each other and (ii) assuming that the QM system is confined to the quadratic region around the single 

uncoupled path. They then proposed a new method, called QM/MM-RPP where the PES and its electron 

density response properties are expanded to second order along a reaction path.37 The expanded 

potential and response properties provide what may be called a reaction path potential (RPP), which is a 

concept widely used in gas-phase dynamics.68-74 Yang and coworkers61 subsequently extended the 

theory to optimize the reaction path on an FES; they call the resulting theory the QM/MM minimum 

free-energy path (QM/MM-MFEP) method. This method can treat the dynamical coupling between the 

QM and MM regions with QM/MM methods employing high-level QM in the vicinity of the MFEP. 

However, a second-order expansion is valid only near the origin of the expansion, and many expansion 

points are required to calculate a global FES. A global PES or global FES is needed to compute a broad 

distribution of reaction paths such as, for example, are often involved in large-curvature tunneling, 

which can make a significant contribution to the rate of hydrogen transfer reactions such as proton 

transfer reactions. For this purpose, and because even for the small-curvature tunneling case the 

ensemble of reaction paths can be broad,47 it is desirable to develop a method to describe the global PES 

with a minimum of high-level QM input. This is the objective of the present study. 

The multiconfiguration molecular mechanics (MCMM) method will be the starting point for the 

present development. MCMM has been successful in describing semi-global potential energy surfaces 

of gas-phase reactions and calculating the reaction rates with multidimensional tunneling 

contributions.75-82 In the MCMM method, which is compared elsewhere83,84 (with more than 30 

references) to related approaches, the Born-Oppenheimer potential energy at geometry q  is represented 

as the lowest eigenvalue of the 2 2×  diabatic Hamiltonian matrix, 

 ( ) ( ) ( )
( ) ( )

11 12MCMM

12 22

V V
V V
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

q q
V q

q q
, (1) 
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where the diagonal elements, 11V  and 22V , are MM energy functions that describe reactants and products,  

respectively. The off-diagonal element 12V  and its derivatives are determined to reproduce high-level 

electronic structure calculation of the energy, gradient, and Hessian at some reference points called 

Shepard points, and modified Shepard interpolation.85,86 is used to interpolate the PES between the trust 

regions of the resulting set of second-order Taylor series. In case of reactions with more than one 

possible product, MCMM would need to be extended, e.g., to use a 3 3×  matrix. The computational cost 

of using MCMM is much lower than that of using high-level electronic structure calculations directly. 

         In the present paper, we propose a method called electrostatically embedded multiconfiguration 

molecular mechanics (EE-MCMM). The new method is based on QM/MM methodology, and it extends 

the original MCMM by adding the electrostatic potential on each QM atom from the MM regions to 

MCMMV . Taylor expansions are carried out with respect to both the nuclear coordinates and the 

electrostatic potentials at the nuclei; the coefficients of the Taylor series are determined such that they 

reproduce high-level electronic structure calculations at Shepard points. The collection of the values of 

the external electrostatic potential at the locations of the QM nuclei will be called the electrostatic 

potential distribution. The EE-MCMM allows us to calculate the PES in the presence of an external 

electrostatic potential. The Taylor series can represent the electrostatic potential due to the MM 

subsystem, and thus EE-MCMM can describe semi-global PESs with moderate computational cost. 

Because the method is efficient, we can use DF/MM, that is, QM/MM with the QM level being density 

functional theory.  

           We illustrate the new method by application to the symmetric bimolecular reaction 

3 3Cl  + CH Cl ClCH  + Cl− −′ ′→  in aqueous solution, a reaction that has been investigated with various 

theoretical methods.29,87-108 We first create a semi-global PES in the gas phase by MCMM. The PES 

generated by MCMM is compared to that calculated directly without any fitting in a wide swath from 

the reactant through the saddle point to the product. We also calculate the variation of the gas-phase 

charge distribution (i.e., the partial charges on the QM atoms) along the reaction path in the gas phase 
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by EE-MCMM, and we evaluate the response of the gas-phase partial charges and energy to the 

electrostatic potential distribution through second order in the Taylor series. Then we apply the EE-

MCMM method to the same reaction in solution, where we use the geometries and electrostatic 

potentials calculated by the RISM-SCF method55-57 to compare full RISM-SCF calculations to results 

predicted by EE-MCMM calculations with all the electrostatic potentials at the Shepard points equal to 

zero. We employ the same Shepard points as in the gas phase. After the reliability of the EE-MCMM is 

checked in the case that only the electrostatic potential is changed, we compare the PES of EE-MCMM 

calculations to full high-level calculations along an aqueous-solution reaction path. Note that when we 

talk about the PES in a liquid-phase solution, we are referring to the electrostatically embedded 

electronic energy (including nuclear repulsion) of the QM subsystem. The variation of the charge 

distribution along the reaction path in the aqueous solution is also computed. 

The organization of the article is as follows. In the next section, we describe the theoretical 

methods employed here. The computational details of the EE-MCMM calculations are given in section 

3. In section 4, we present the results of the calculations, and the conclusions are summarized in section 

5. 
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2. Theoretical method 

In QM/MM methods, the potential energy is represented as the sum of three terms, 

 QM QM/MM MMtotal MM MM MM MM( , ) ( , ) ( , ) ( )V V V V= + +R R R R R R R , (2) 

where R and MMR  stand for the collection of the coordinates aR  and MM
AR  of atoms in the QM and 

MM regions, respectively, where 11,2,…, a n=  and 21, 2,…, A n= . Here the first term is the electronic 

energy of the QM region, QM
0

ˆV H= Ψ Ψ , with Ψ  being the electronic wave function and 0Ĥ  the 

electronic Hamiltonian (including nuclear repulsions) of the QM region. Note that although 0Ĥ  depends 

only on R , Ψ  depends on MMR  as well as R  through QM/MMV . The last term in Eq. (2) is the MM 

potential energy function. The QM/MM interaction term ( )QM/MM MM,V R R  can be separated into three 

terms, 

 ( ) ( ) ( ) ( )QM/MM QM/MM QM/MM QM/MM
ele v

MM MM MM
dW val

MM, , , ,V V V V= + +R R RR RR RR , (3) 

where QM/MM
eleV , QM/MM

vdWV  and QM/MM
valV  are the electrostatic, van der Waals, and valence interaction 

energies, respectively. Of these three terms, only QM/MM
eleV  depends on Ψ . We define the sum of the Ψ -

dependent terms, QMV  and QM/MM
eleV , as the electrostatically embedded QM energy: 

 ( ) ( ) ( )MM MMEEQM QM QM/M
e

MM
le

M, , ,V V V≡ +RR RR RR . (4) 

The objective of the present study is to reproduce this ( )MEEQM M,V R R  by the EE-MCMM method. 

Note that EEQMV  is called the PES. 

We adopt a site-site representation of the QM/MM electrostatic interaction,55,108-112 

 ( )QM/M
el

MM T
e

M ˆ,V = Ψ ΨRR Q Φ , (5) 
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where ˆ
aQ  is the population operator that generates the partial charge aQ on the QM atomic site a ,  

 ˆ
a aQ Q= Ψ Ψ , (6) 

 and aΦ  is the electrostatic potential from the MM region, 

 
2 M

1
M

M

M

n
A

a
A a A

Q
=

Φ =
−

∑ RR
, (7) 

where MM
AQ  is the effective charge of MM atom A . Note that Q  and Φ  are 1n -dimensional vectors, 

and aR  and MM
AR  are 3-dimentional vectors. By adopting this representation, we can regard EEQMV  as a 

function of R  and Φ , 

 ( )EEQM T
0

ˆˆ,V H= Ψ + ΨR Φ Q Φ , (8) 

where R  is a 13n -dimensional vector. At this stage, we can extend the MCMM method75 to the EE-

MCMM one straightforwardly.  

As in the MCMM method, the potential energy in EE-MCMM is the lowest eigenvalue of a 2 2×  

diabatic Hamiltonian matrix, 

 ( ) ( ) ( )
( ) ( )

11 12EE-MCMM

12 22

, ,
,

, ,
V V
V V
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

q Φ q Φ
V q Φ

q Φ q Φ
, (9) 

where we use nonredundant or redundant internal coordinates113 q  to represent the nuclear coordinates 

of the QM subsystem.  We evaluate EE-MCMMV  and its derivatives in terms of the internal coordinates q ; 

then we transform the derivatives to the Cartesian coordinate system R . The strategy to be developed 

involves evaluating a second-order Taylor expression of EE-MCMMV  around a set of interpolation nodes 

( )( ) ( ),k kR Φ , where 1, 2,…, k N= , then converting114 these expansions, for given 11V  and 22V , to 
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second-order expansions of 2
12V  around the interpolation nodes (called Shepard points), and finally 

evaluating 2
12V  at any arbitrary geometry by Shepard interpolation85,86 of these expressions. 

The lowest eigenvalue of Eq. (9) is given by 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )
1

2 2 2EE-MCMM
11 22 11 22 12

1, , , , , 4 ,
2

V V V V V V
⎧ ⎫⎪ ⎪⎡ ⎤= + − − −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

q Φ q Φ q Φ q Φ q Φ q Φ , (10) 

where ( )11 ,V q Φ  and ( )22 ,V q Φ  are analytic functions that describe V  in the regions of reactants and 

products. ( )12 ,V q Φ  is evaluated by Shepard interpolation85,86 as follows:75 

 ( ) ( ) ( )12 12
1

, , , ;
N

k
k

V W V k
=

′= ∑q Φ q Φ q Φ , (11) 

 where ( ),kW q Φ  is a normalized weight function,  

 ( ) ( ) ( )2 2
12 12, ; , ; , ;V k V k u k′⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦q Φ q Φ q Φ  (12) 

where 

 ( )
( )( ) ( )

( )

2 2
12 12

2
12

exp , ; , ; 0 
, ;

0 , ; 0,

V k V k
u k

V k

δ⎧ ⎡ ⎤ ⎡ ⎤− >⎣ ⎦ ⎣ ⎦⎪= ⎨
⎪ ⎡ ⎤ ≤⎣ ⎦⎩

q Φ q Φ
q Φ

q Φ
 (13) 

δ  is a parameter (we used a very small value of δ , in particular 81 10−× 2
hE  where h 1E ≡  hartree), and  

 ( ) ( ) ( )
( ) ( )( ) ( )

2 ( ) ( )T ( )T ( )T ( )T
12 ( ) ( )( ) ( )

1, ; 1
2

k kk k
k k k k k

k kk kV k D
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞Δ Δ

⎡ ⎤ = + + Δ Δ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟Δ Δ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

qq qΦ
q Φ

Φq ΦΦ

c cq q
q Φ b b q Φ

c cΦ Φ
, (14) 

 ( ) ( )k kΔ = −q q q , (15) 

and  

 ( ) ( )k kΔ = −Φ Φ Φ . (16) 
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For 1, 2,…, k N= , the Taylor series coefficients, ( )kD , ( )k
qb , ( )k

Φb , ( )k
qqc , ( )k

qΦc , ( )k
Φqc  and ( )k

ΦΦc  are 

determined to reproduce EEQMV  in Eq. (8) and its first and second derivatives with respect to q  and Φ  

at the Shepard point ( )( ) ( )k kq Φ . The expressions for the elements ( )kD , ( )k
qb , and ( )k

qqc  are given in 

Refs. 75 and 82. The other elements are obtained similarly. It is notable that EE-MCMM is the same as 

the original MCMM in the case when =Φ 0  and all ( )kΦ  (for 1, 2,…, k N= ) are also 0 .  

To implement the above procedure, we need the derivatives of electronic structure calculations 

of ( )EEQM ,V R Φ  with respect to Φ  in addition to those with respect to R . The first derivative of 

( )EEQM ,V R Φ  with respect to a component of Φ  is given by110 

 
EEQM

ˆ
a a

a

V Q Q∂
= Ψ Ψ =

∂Φ
. (17) 

Then the second partial derivatives of ( ),V q Φ  are 

 
2 EEQM

a
ab

a b b

QV χ∂∂
= ≡

∂Φ ∂Φ ∂Φ
, (18) 

and 

 
2 EEQM

a
ab

a b b

QV
R R

κ∂∂
= ≡

∂Φ ∂ ∂
. (19) 

These variables, abχ and abκ , are known as charge response kernels (CRKs); they describe the QM 

charge fluctuations due to the external electrostatic potential (which, in applications, will represent the 

electrostatic effect of the MM region) and to the displacements of the QM atoms. The CRKs abχ  and 

abκ  were introduced by Morita and Kato110,111  and Lu and Yang37 respectively. Since these effects are 

usually not included in MM potential energy functions, we define  

 ( ) ( ) ( )MM CRK, ,ii ii iiV V V= +q Φ q q Φ , (20) 
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where ( )MM
iiV q  is the MM potential energy function, and 

 ( )CRK ( )T ( ) ( )T ( ) ( ) ( )T ( ) ( )1, Δ Δ Δ Δ Δ
2

i i i i i i i i
iiV = + +q Φ Q Φ Φ κ Φ Φ χ q , (21) 

where ( )iQ , ( )iκ , and ( )iχ  are calculated values at reactant and product, such that the partial charges and 

CRKs of EE-MCMM agree with electronic structure calculation at reactant and product, respectively. 

(Note that the reactant and product correspond to infinitely separated reagents and are not included in 

the N  Shepard points used in Eq. (11), although we do include the precursor ion-dipole complex and 

the successor ion-dipole complex.) Then we can calculate the EE-MCMM potential energy and its 

derivatives. The calculation steps are the same as those in Refs. 75 and 82 except that Φ  is added.  
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3. Computational details 

We used the MPW1K density functional115 for the electronic structure calculations on the QM 

subsystem. The basis set is 6-31G(d,p) for C and H atoms and 6-31+G(d,p) for Cl. We refer to this 

mixed basis set as 6-31(+)G(d,p). Calculations carried out by direct dynamics, i.e., without MCMM or 

EE-MCMM, will be called direct or full. 

Although there can be many choices for the population operator ˆ
aQ , we choose the operator 

according to Charge Model 4 (CM4).116  The CM4 charge model is determined from wave-function-

dependent charges, the Mayer bond order,117-119 and empirical parameters that are determined to 

reproduce experimental or converged theoretical charge-dependent observables, 

 ( )0
a a ab ab ab ab

b a

Q Q B D C B
≠

= + +∑ , (22) 

where 0
aQ  is the partial atomic charge from either a Löwdin population analysis (LPA) for nondiffuse 

basis sets or a redistributed Löwdin population analysis (RLPA) for diffuse basis sets,120 abB  is the 

Mayer bond order between atom a  and b , and abD  and abC  are empirical parameters.  The RLPA 

charge is given by 

 ( ) ( ) ( ) ( )0 0 2 2RLPA LPA exp expa a a a a ab b b b ab
b a b a

Q Q Z Y R Z Y Rα α
≠ ≠

= + − − −∑ ∑ , (23) 

where aZ  is a empirical parameter, aY  is the Löwdin population that is associated with the diffuse basis 

functions on atom a , and aα  is the diffuse orbital exponent on atom a .  The Fock matrix and gradient 

for the Hamiltonian in Eq. (8) with CM4 charges are given in Refs. 121 and 122, respectively.  

Although the CM4 parameters are available for various density functionals and basis sets, those 

for the MPW1K/6-31(+)G(d,p) mixed basis set are unavailable. The reason why we adopted the mixed 

basis set is that the wave function with MPW1K/6-31G+(d,p) in Eq. (8) was not converged for ≠Φ 0  at 

some geometries. Note that the fixed gas-phase density matrix at a geometry optimized in the gas phase 

could be used for abB  in the previous study,122 while this procedure is not appropriate for the present 
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study because the purpose of this study is to describe the global PES. We therefore determined the 

empirical parameters, abD , abC , and aZ  for MPW1K/6-31(+)G(d,p) so as to reproduce the CM4 

charges obtained with MPW1K/6-31+G(d,p) in the gas phase at three geometries; 3CH Cl , the ion-

molecule complex 3Cl CH Cl− , and the saddle point [ ]3Cl CH Cl − .  The optimized parameters are 

0.02abD = −  for a C and H pair, 0.11abD =  for a C and Cl pair, and 0.11aZ =  for a Cl atom; the other 

parameters are set to zero.  The mean unsigned error (MUE) and root-mean-square error (RMSE) of the 

CM4 charges between MPW1K/6-31+G(d,p) and MPW1K/6-31(+)G(d,p) at the three geometries are 

33.6 10−×  and 34.9 10−× , respectively.  We obtained the Hessian and CRKs by numerical 

differentiations of the gradients and charges, respectively. 

The gas-phase minimum energy path (MEP) was calculated by MCMM by the MC-TINKERATE 

program.123 In these calculations, the MEP is the path of steepest descent in mass-scaled coordinates124 

from the saddle point, and the reaction coordinate is the signed distance along the path. 

We employed the RISM-SCF method55-57 to obtain the geometry and electrostatic potential Φ  on 

each atom from the MM region in aqueous solution. The reason why we adopted the RISM-SCF method 

in the present study is that we wanted to check, as a first step, how well the EE-MCMM method can 

reproduce EEQMV  at various geometries and with various electrostatic potential distributions. In the 

RISM-SCF method, the equilibrium distribution of MM solvent molecules can be calculated in a self-

consistent manner. For a fixed subsystem consisting of the solute with coordinates R  and averaging 

over a subsystem corresponding to the solvent, the FES is approximated as the sum of QMV  and the 

excess chemical potential μΔ  coming from solute-solvent interaction:57 

 ( ) ( ) ( )QM ,F V μ= + ΔR R R Q , (24) 

where μΔ  is the standard-state free energy of solvation of a solute with fixed geometry R 59. Note that  

the FES is another name for a multidimensional potential of mean force.125,126 This same quantity is also 

sometimes called127 the solvent-modified potential energy of the system described by the coordinates R . 
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In the RISM integral equation theory, in conjunction with the hyper-netted chain (HNC) closure 

relation,128 μΔ  can be expressed as129 

 ( ) ( ) ( ) ( )
v1

2 2

0

1 1 4
2 2

Nn

am am am am am am am am am am
a m

c r h r c r h r r drρμ π
β

∞ ⎡ ⎤Δ = − − +⎢ ⎥⎣ ⎦
∑∑∫ , (25) 

where amr  is the distance between an atom a  of the QM solute molecule and an atom m  of the MM 

solvent molecule, MM
am a mr = −R R , vN  is the number of atoms contained in a solvent molecule ( v 3N =  

for water), ρ  is the density of solvent, Bk Tβ =  with Bk  being the Boltzmann constant and T  the 

temperature, and amc  and amh  are the direct and total correlation function, respectively. Note that amc  

and amh  can be determined from the solute-solvent RISM equation and the HNC closure relation, 

 ( ) ( ) ( ) ( )
v1

1
NN

am am ab ab bn bn nm nm
b n

h k w k c k H kρ−= ∑∑ , (26) 

and 

 ( ) ( ) ( ) ( )exp 1am am am am am am am amh r u r h r c rβ⎡ ⎤= − + − −⎣ ⎦ , (27) 

where abw  is the intramolecular correlation function calculated using the QM solute coordinates R , and 

nmH is the pure solvent site density pair correlation function calculated from the solvent-solvent RISM 

equation; amu  is the solute-solvent interaction potential, 

 ( )
12 6MM

4a m am am
am am am

am am am

Q Qu r
r r r

σ σε
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= + −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

, (28) 

where amε  and amσ  is the Lennard-Jones parameters, and a tilde represents a Fourier transform with 

wavenumber amk  as in 
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 ( ) ( ) ( )
0

4 sinam am am am am am am am
am

h k h r r k r dr
k
π ∞

= ∫ . (29) 

With this formalism, QMV  and Q  in Eq. (24) can be determined by Eq. (8) with  

 ( )
v MM

2

0
4

N
m

a am am am am
m am

Q g r r dr
r

ρ π
∞

Φ = ∑∫ , (30) 

where amg is the radial distribution function, and 

 1am amg h≡ − . (31) 

We can obtain the self-consistent free energy by iteratively solving Eqs. (8), (26), and (27) until self-

consistency is achieved. The gradient of the free energy F  can be calculated analytically.57  

We optimized the QM geometry on the FES with one or two internal coordinates fixed, and then 

compared EEQMV  from the direct calculation (Eq. (8)) to EE-MCMMV  from the EE-MCMM one (Eq. (10)) 

at the optimized coordinates and electrostatic potentials. We also calculated the minimum energy path124 

on the FES, and we refer to this as the MFEP. (Since the fixed system in our PMF is a solute, and the 

averaged subsystem is the solvent, we could also call this an ESP, but we use the more general term the 

rest of this article.) 

In the RISM-SCF calculation, the Lennard-Jones parameters for the solute atoms were taken from 

the AMBER force field.130 The simple point charge (SPC) model131 was adopted for solvent water. The 

temperature and density of solvent water were 300 K and 1.0 g/cm3, respectively. All the electronic 

structure calculations were performed by GAMESSPLUS132 based on the GAMESS quantum package,133  in 

which we implemented the RISM-SCF routines. 

In the MCMM and EE-MCMM calculations, we used a modified MM3 force field134-136 for the 

diagonal elements ( )MM
iiV q  in Eq. (20). For the bond stretching term, we replaced the MM3 bond 

stretching function with a Morse137 potential. The dissociation energy of the Morse function for C-Cl 

was set equal to 83.7 kcal/mol, which was calculated by MPW1K/6-31(+)G(d,p) and is in good 
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agreement with the experimental value, 83.8 kcal/mol.138 We also modified the van der Waals energy 

term as in Ref. 81; we used the additional parameter 0.01D =  in the modified van der Waals energy 

function. The other parameters are the same as those installed in the TINKER program.139 We used the 

same functional form for the normalized weight function as in the original MCMM method,75  

 ( )
( )

( )

4

4

1

1

1

k
k

N

i i

d
W

d=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

q
q

q

, (32) 

where ( )kd q  denotes a generalized distance between q  and ( )kq , which is defined as 

 ( ) ( )
max 2( )

1

j
k

k j j
j

d q q
=

= −∑q . (33) 

We employed three bond distances ( max 3j = ), C-Cl, C-Cl ,′ and Cl-Cl ,′ to calculate the generalized 

distance. We didn’t make the weight function depend on Φ , although this is possible in principle. All 

the EE-MCMM calculations were carried out by the MC-TINKER program,140 modified for this purpose.  
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4. Results and discussion 

We applied the new EE-MCMM method to the reaction 3 3Cl  + CH Cl ClCH  + Cl− −′ ′→  in 

aqueous solution. The free energy profile of this reaction is much different in aqueous solution from that 

in the gas phase because the solute-solvent electrostatic interaction at the TS, where there is no dipole 

moment and the charge is more delocalized, is weaker than that at the reactant. Therefore, this reaction 

is a good benchmark system for testing the performance of theoretical methods, and consequently 

various methods have been applied to calculate the free energy profile of this reaction. 29,87-108 

For plotting purposes, we take the difference between two C-Cl distances as the reaction 

coordinate,  

 CCl CClz R R′= −  (34) 

although the reaction paths along which z  and other quantities are computed are the gas-phase MEP 

and the aqueous-phase MFEP. First, in Fig. 1, we compare the gas-phase PES and the aqueous-phase 

FES with the former evaluated along the direct dynamics MEP and the latter along the direct MFEP. For 

each curve the zero of energy corresponds to infinitely separated reagents.  

In the gas phase, the ion-dipole complex is 9.7 kcal/mol below reactants, and the potential energy 

barrier is 3.2 kcal/mol above reactants; both values are in good agreement with experimental values, 

10.4141 and 2.5142 kcal/mol, respectively. (The best estimate of the gas-phase potential energy barrier is 

3.1 kcal/mol.143) The ion-dipole complexes are found in the present calculations to be located at 

1.378z = ± Å.  

In aqueous solution, the free energy barrier is calculated to be 25.8 kcal/mol, which agrees well 

with the experimental activation energy, 26.6 kcal/mol.144 In contrast to the gas-phase reaction, the 

binding energy for the ion-dipole complex is calculated to be very small. A very shallow minimum 

(only -0.03 kcal/mol) was found in the FES at 1.744z = Å. Therefore, a practical objective for the EE-

MCMM method is to reproduce the potential energy profile for 1.8z ≤ Å. 
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4.1. Gas phase reaction 

We first constructed a semi-global potential energy surface in gas phase by the original MCMM 

method. The objective region over which we aimed to make this valid was from the reactant ion-dipole 

complex through the saddle point (SP) to the product ion-dipole complex including the concave side of 

the reaction path. Note that the previous75-82 MCMM studies did not attempt to converge the energy 

surface more than 3/4 of the way down from the barrier, but here we consider the path all the way down 

to the ion-dipole complexes. The placement of Shepard points was based on the strategy in Ref. 76, but 

some modifications were made, as described next.  

The first MEP calculation was based on the MCMM-0 surface, which was constructed by 

electronic structure information at three geometries: the precursor ion-dipole complex, the SP, and the 

successor ion-dipole complex. (In general the notation75,76 MCMM-N ′ means that the Shepard 

interpolation is based on Hessians at these three stationary points plus N ′  nonstationary points.) In the 

previous studies, we assumed that the 11V  and 22V  MM force fields could describe the PES of the local 

minima in the reactant and product valleys. Therefore, 12V  was zero for these two points, which will 

here be called 1k N= −  and k N= , where 3N N ′= + . In the present study, we used electronic 

structure calculations to determine a Taylor series of 2
12V  for all N  points.  

In order to keep the symmetry of the reaction, the nonstationary Shepard points were determined 

at the same time for both the reactant and product sides. We define the energy difference between the 

ion-dipole complex and the SP as *V ; this is 12.9 kcal/mol for MPW1K/6-31(+)G(d,p) in the gas phase. 

The first and second supplementary points ( 1, 2α = ) were taken to be along the MEP of the MCMM-0 

run, lower than the SP by 1/4 of *V . The calculation with these five Shepard points is called MCMM-2 

because it involves 2 supplementary points. The third and fourth supplementary points were taken to be 

along the MEP of the MCMM-2 run, lower than the SP by 1/2 of *V . The calculation with these seven 

Shepard points is called MCMM-4.  The fifth and sixth supplementary points were taken to be along the 

MEP of the MCMM-4 run, lower than the SP by 3/4 of *V . This calculation is called MCMM-6. The 
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seventh and eighth supplementary points were taken to be along the MEP of the MCMM-6 run, lower 

than the SP by 7/8 of *V .  This calculation is called MCMM-8. We could connect from the SP to the 

reactant and product ion-dipole complex smoothly by the MCMM-8 MEP. To reproduce the PES on the 

concave side of the reaction path, a ninth supplementary point was taken to be located halfway in 

Cartesian coordinates along a line that connects the reactant ion-dipole complex with the product ion-

dipole complex. The calculation including this point is called MCMM-9. 

Therefore, we used the electronic structure information at 12 Shepard points (if we consider the 

symmetry, the number is reduced to 7). The locations of the Shepard points and the direct MEP are 

shown in Fig. 2. It is noted that the purpose of this study is not to reduce the number of Shepard points 

but to reproduce the semi-global PES in aqueous solution by EE-MCMM.  It is possible to reduce the 

number of Shepard points by adjusting the force field parameters81 or changing the strategy for where 

the Shepard points are placed. 

The potential energy profiles of the direct, MCMM-0, MCMM-4 and MCMM-8 gas-phase 

calculations are shown in Fig. 3. The ends of the curves correspond to the precursor and successor ion-

dipole complexes. The potential energies of the MCMM-0 and MCMM-4 calculations noticeably differ 

from the direct one, while the MCMM-8 potential curve is in good agreement with the direct one from 

the SP all the way to the ion-dipole complexes. 

We present equipotential contour plots of the gas-phase PES determined in the MCMM-9 

calculation in Fig. 4a. The length of the forming C-Cl bond and the breaking C-Cl′  bond are taken as 

the axes. The remaining coordinates are optimized by direct calculations. Equipotential contour plots of 

the difference between the MCMM-9 and direct PESs, MCMM QMV V− , are shown in Fig. 4b. In a wide 

swath from the precursor complex through the SP to the successor complex, including the concave side 

of the reaction path, the MCMM-9 PES agrees with the direct one within 1 kcal/mol.  Therefore, this 

MCMM-9 PES is accurate enough for dynamics calculations. 
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The matrix elements of the electronically diabatic Hamiltonian MCMMV  and the lowest eigenvalue 

MCMMV  are plotted in Fig. 5 along four distinguished paths: the path with CCl CCl 4.6R R ′+ =  Å (Fig. 5a) 

which goes through the SP, the path with CCl CCl 5.0R R ′+ =  Å (Fig. 5b) which goes through the reactant 

and product ion-dipole complexes, the path with CCl 1.8R =  Å which goes through the reactant ion-

dipole complex (Fig. 5c), and the path with CCl 2.3R =  Å which goes through the SP (Fig. 5d). The 

remaining coordinates are optimized by direct calculations. The matrix element 12V  has a maximum at 

the SP, then decreases toward the reactant and product ion-dipole complexes.  

To investigate the variation of the partial atomic charges along the reaction path, we carried out an 

EE-MCMM-9 calculation using the electronic structure information at the same Shepard points as 

MCMM-9. This means that all ( )k
aΦ  are zero for this EE-MCMM calculation. The partial charges can be 

obtained by calculating the derivative of EE-MCMMV  in Eq. (10) with respect to Φ  as in Eq. (17), which 

yields 
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11 22
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. (35) 

Note that the gas-phase charges correspond to evaluating this derivative with all a =Φ 0 . The partial 

charges on each atom in the EE-MCMM-9 and direct calculations along each MEP are presented in Fig. 

6. By construction, the partial charges obtained by Eqs. (17) and (35) agree exactly at Shepard points, 

but the figure shows the changes of the partial charges in the MCMM-9 calculation are quite similar to 

those in the direct calculation along the whole reaction path. In both cases, the charges of two Cl atoms 

change significantly along the MEP. 
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4.2. Reaction in aqueous solution 

Now we consider the PES for the reaction in aqueous solution; in particular we will compare 

EE-MCMMV  to the electrostatically embedded QM energy EEQMV .  

When we apply the EE-MCMM method to a reaction in the condensed phase, where ≠Φ 0 , we 

have to consider how the locations of the Shepard points ( )( ) ( ),k kq Φ  are determined. In general, it is 

desirable to select the Shepard points so as to make ( )kΔq  and ( )kΔΦ  as small as possible during the 

statistical sampling in the simulation of the target QM/MM system because EE-MCMM is based on 

second- order expansions. Several strategies can be considered. One of the strategies, in analogy to the 

QM/MM-MFEP procedure of Yang and coworkers,61 is to take the Shepard points along the QM/MM 

MFEP determined from the potential of mean force in the QM degrees of freedom. In this scheme, the 

QM geometry and charge distribution are fixed during an MD simulation, then the QM geometry is 

optimized using the average electrostatic potential and force from the MM atoms; this procedure is 

repeated until self-consistency between the QM and MM regions is achieved. If the ensemble of 

reaction paths were restricted to paths that lie close to the MFEP, then this kind of MFEP procedure 

would make ( )kΔq  and ( )kΔΦ  always be small. A drawback to this scheme is that the computational 

cost of the MFEP calculation is not low. If we were to take supplementary Shepard points along the 

MFEP of a previous EE-MCMM calculation with fewer Shepard points (as was done in the original 

MCMM method), hundreds of MD simulation runs would be required, which is undesirable. 

Furthermore, one expects significant contributions to the reaction rates from paths that differ 

appreciably from the MFEP.38-48 

Therefore, we adopted a different strategy for the location of the Shepard points in condensed-

phase reactions. We first select Shepard points for a gas-phase reaction in the same way as in the 

original MCMM method, and then these Shepard points are applied to the reaction in aqueous solution. 

In other words, all the Shepard points have ( )k =Φ 0 . This means that as far as the terms relating to the 

electrostatic potential distribution are concerned, the Taylor series is reduced to a Maclaurin series, or –
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stated another way – we are using only gas-phase information as input to the Shepard interpolation for 

the aqueous-phase calculations. We adopted this simple strategy because it has been shown111 that the 

linear response relation between Q  and Φ  (see below), that is, a second order expansion of EEQMV  with 

respect to Φ , generally holds well even if the components of ΔΦ  become quite large. Based on this 

result, we first generated a semi-global PES in the gas phase, and then we applied it to the reaction in 

aqueous solution. It is noted that the computational cost of this strategy is much lower than using a 

MFEP calculation since only QM gas-phase calculations on the solute are required during the stage of 

finding the reaction path. Although the present reaction was treated using only eight supplementary 

points near the gas-phase reaction path and one point off the path, other reactions may require more 

points off the reaction path. On the other hand one might be able to use fewer points near the reaction 

path if their locations are optimized. Further experience will be helpful in understanding these issues. 

We first considered the case of Δ =q 0  and Δ ≠Φ 0  to check the reliability. We used the RISM-

SCF method to calculate the electrostatic potential on each atom of the solute in aqueous solution at the 

gas-phase precursor ion-dipole complex and the gas-phase SP. The calculated electrostatic potential 

distribution is given in Table 1. The electrostatic potential on the Cl ion is larger than those on other 

atoms at the gas-phase ion-dipole complex because Cl−  has a considerable localized negative charge. In 

contrast the electrostatic potential distribution is more uniform at the SP because the charge is more 

delocalized. We then compared the electrostatically embedded energies and charges of EE-MCMM 

(calculated with the Φ  of Table 1) to those of a direct calculation. We also compared the results with 

those calculated by the original CRK method,110,111 

 ( ) 0CRK = +Q Q χΦ  (36) 

 ( ) 0
EEQM QM T T

0
1CRK
2

V V= + +Q Φ Φ χΦ , (37) 
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where 0Q  are the charges at =Φ 0 , and QM
0V  is the value of 0 0 0ĤΨ Ψ , where 0Ψ  is the gas-phase 

wave function. The difference between 0ĤΨ Ψ  and 0 0 0ĤΨ Ψ  is accounted for by using the 

coefficient of 1/2 in the last term of Eq. (37). Note that the original CRK method and our method differ 

in the way that the expansion is carried out. The original CRK expands EEQMV  itself, while our method 

expands 2
12V  by using Eq. (14). The results are shown in Table 2. The aqueous charge distributions 

obtained by all the methods in Table 2 are more polarized than the gas-phase charge distribution 

because of the strong solute-solvent interaction. Both the degrees of charge polarization and the 

electrostatically embedded energy change upon solution are quite similar in all three methods; the 

differences are 0.1 kcal/mol or less. 

We next calculated the profile of EE-MCMMV  by EE-MCMM-9 along the direct MFEP that was 

obtained by the RISM-SCF method. The result is presented in Fig. 7. The energy is relative to separated 

reactants in the gas phase. Both edges of the potential energy profiles correspond to the shallow minima 

of the free energy profile obtained by RISM-SCF method. The energy difference between the SP and 

ion-dipole complex is very large compared with gas-phase reaction because of the difference of the 

solute-solvent interaction. The figure shows that the potential energy profile of EE-MCMM-9 is in very 

good agreement with that of the direct calculation; in fact the two curves are essentially on top of one 

another. We computed equipotential contour plots of EE-MCMMV  as determined in the EE-MCMM-9 

calculation; these are shown in Fig. 8a.  The forming C-Cl bond and the breaking C-Cl′  bond are taken 

as the axes. The remaining coordinates and the electrostatic potential distribution are optimized by 

RISM-SCF calculations. Although EE-MCMMV  has a minimum in Fig. 8a when both C-Cl distances are 

increased, neither totalV  nor F  has a minimum in this region. Equipotential contour plots of the 

difference between the EE-MCMM-9 and direct PESs, EE-MCMM EEQMV V− , are shown in Fig. 8b. As in 

the case of the gas-phase reaction, the EE-MCMM-9 PES agrees with the direct one within 1 kcal/mol 

in a wide swath from the reactant through the SP to the product including the concave side of the 
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reaction path. It is notable that we only used electronic structure information of the gas-phase reaction. 

Nevertheless, we could reproduce the PES for the condensed-phase reaction.  

To investigate the effects of the electrostatic potential Φ on the matrix elements of the 

electronically diabatic Hamiltonian EE-MCMM ,V we computed these matrix elements along the 

distinguished path with CCl CCl 4.8R R ′+ = Å for the following four sets of the electronic potential 

distributions: =Φ 0  (gas phase),  IDC=Φ Φ , SP=Φ Φ , and SP1
2

=Φ Φ , where IDCΦ  and SPΦ  are the 

electrostatic potential distribution calculated by RISM-SCF at the gas-phase precursor ion-dipole 

complex and the gas-phase SP (Table 1). The other remaining coordinates are optimized by direct gas-

phase calculations. The results are shown in Fig. 9. The diagonal elements 11V  and 22V  are strongly 

stabilized by the external electrostatic potential because the system has negative charge, and all the 

values of the electrostatic potential are positive. When IDC=Φ Φ  (Fig. 9b), 11V  is more stabilized than 

22V  because IDCΦ  is favorable to 11V . Although the effect of the electrostatic potential on 12V  is smaller 

than the effects on 11V  and 22V , the profile of 12V  with IDC=Φ Φ  is asymmetric. Therefore, it is 

important to consider the dependence of  12V  on external electrostatic potential Φ . 

The charge distribution of the QM subsystem is important in QM/MM calculations since it 

controls the interaction with the MM subsystem. The partial charge on each atom in the EE-MCMM-9 

and direct calculations along the MFEP obtained by the RISM-SCF method is presented in Fig. 10. 

Although there is a slight difference at 1.5z >  Å, the results of the two calculations are quite similar. 

Note that no Shepard points were placed at 1.378z > Å because the ion-dipole complexes are located at 

1.378z = Å in the gas phase. If Shepard points are added in such regions, the results will be improved.  
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5. Conclusion 

In the present work, we proposed a method for generating a potential energy function for a system 

in the presence of an electrostatic potential. For this purpose, we extended the MCMM method so that 

the potential energy depends on the electrostatic potential acting on the atomic centers of a subsystem, 

which is called the QM subsystem. The resulting energy representation can be used to describe PESs 

defined by a QM/MM method. The charge distribution of the QM subsystem can be obtained by 

calculating the derivative of the potential energy with respect to the electrostatic potential distribution. 

We applied the present method to the degenerate rearrangement 3 3Cl  + CH Cl ClCH  + Cl− −′ ′→  in 

aqueous solution. We first generated the semi-global PES in the gas phase by the original MCMM 

method, and then we generated it in aqueous solution using the same electronic structure information 

augmented by a Maclaurin series with respect to the electrostatic potential distribution. The calculated 

potential energy in aqueous solution is very close to that calculated directly without any fitting. The 

charge distribution in aqueous solution as calculated by the present method is also found to be quite 

similar to that obtained directly. This shows that we can generate a semi-global PES in the condensed 

phase using only electronic structure information in gas phase. From the perspective of computational 

cost, it is very efficient that we can use only gas-phase data to determine the location of the Shepard 

points (in both coordinate space and electrostatic potential distribution space) when we apply the present 

method to reactions in the condensed phase. 

Based on the present results, we conclude that the new EE-MCMM method is a very powerful 

tool for studying reactions in the condensed phase. Although we didn’t present the results of actual MD 

simulations here, such applications are now straightforward. An application of the present method to the 

MD simulation of a condensed-phase reaction is now in progress. 
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Table 1. Electrostatic potential (in volts) on each atom in aqueous solution by RISM-SCF at the gas-

phase ion-dipole complex and the gas-phase saddle point. 

 Ion-dipole complex Saddle point 

CΦ  4.467 4.753 

HΦ  4.596 4.611 

Cl'Φ  3.552 5.211 

ClΦ  7.048 5.211 
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Table 2. Partial charges (in units of e) and electrostatically embedded QM energy (in kcal/mol) in the 

gas phase and in aqueous solution. 

 Gas phase Solution phase 

 direct direct EE-MCMM Original CRK 

 Ion-dipole complex a 

CQ  -0.1447 -0.1570 -0.1558 -0.1480 

HQ   0.1157  0.1117  0.1109  0.1110 

ClQ ′  -0.2559 -0.2036 -0.2072 -0.2093 

ClQ  -0.9425 -0.9744 -0.9699 -0.9751 

EEQMV     -9.67 -163.82 -163.72 -163.76 

 Saddle point a 

CQ  -0.0260 -0.0157 -0.0153 -0.0155 

HQ   0.1185  0.1265  0.1264   0.1263 

( )Cl ClQ Q ′=  -0.6448 -0.6820 -0.6819 -0.6817 

EEQMV       3.19 -121.86 -121.85 -121.85 

a Gas-phase geometries. 
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Figure 1. Energy profiles of the 3 3Cl  + CH Cl ClCH  + Cl− −→  reaction: PES profile for gas-phase 

reaction along the direct MEP (solid) and FES profile for the reaction in aqueous solution along the 

direct MFEP calculated by RISM-SCF (dashed). Both curves are relative to reactants ( z = −∞ ). 

Figure 2. Gas-phase calculations: two-dimensional representation of the direct MEP and the location of 

Shepard points for the MCMM-9 calculation. Filled circles are stationary points, and open circles are 

other Shepard points. 

Figure 3. Gas-phase potential energy profiles along the MEP as a function of the reaction 

coordinate :z direct (solid line), MCMM-0 (dashed line), MCMM-4 (dotted line) and MCMM-8 (dot-

dashed line). The dot-dashed line is almost completely hidden by the solid one. All curves are plotted 

for the direct MEP. 

Figure 4. (a) Equipotential contours of the gas-phase PES calculated by MCMM-9. Contour labels are 

in kcal/mol. Countours are spaced from -8 to 8 by 2 kcal/mol. The zero of energy is at infinitely 

separated reagents. (b) Equipotential contours of the difference between the gas-phase PESs calculated 

by the MCMM-9 and direct methods. Contours are spaced from -5 to 5 by 2 kcal/mol. 

Figure 5.  The matrix elements of the electronically diabatic Hamiltonian MCMMV  and the lowest 

eigenvalue MCMMV  along the paths with (a) CCl CCl 4.6R R ′+ =  Å, (b) CCl CCl 5.0R R ′+ =  Å, (c) CCl 1.8R =  

Å, and (d) CCl 2.3R =  Å. 

Figure 6.  Partial charge on each atom in the EE-MCMM-9 (left) and direct (right) calculations: partial 

charge on C (solid line), H (dashed line), Cl′ (dotted line) and Cl (dot-dashed line). 

Figure 7. Potential energy profiles along the direct aqueous-phase MFEP: direct RISM-SCF (solid line); 

EE-MCMM-9 (dashed line). 
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Figure 8. (a) Equipotential contours of the PES calculated by the EE-MCMM-9. Contour labels are in 

kcal/mol. Countours are spaced from -170 to -110 by 10 kcal/mol. (b) equipotential contours of the 

difference between the PESs calculated by the EE-MCMM-9 and direct methods. Countours are spaced 

from -5 to 5 by 2 kcal/mol. 

Figure 9.  The matrix elements of the electronically diabatic Hamiltonian EE-MCMMV  and the lowest 

eigenvalue EE-MCMMV  along the path with CCl CCl 4.8R R ′+ =  Å for the electrostatic potential distributions 

with (a) =Φ 0 ,  (b) IDC=Φ Φ , (c) SP=Φ Φ  , and  (d) SP1
2

=Φ Φ . 

Figure 10.  Partial charge on each atom in the EE-MCMM-9 (left) and direct calculations (right) along 

the MFEP obtained by RISM-SCF method: partial charge on C (solid line), H (dashed line), Cl′ (dotted 

line) and Cl (dot-dashed line). 
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M. Higashi and D. G. Truhlar, Figure 1. 
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M. Higashi and D. G. Truhlar, Figure 2. 

 

 

 

 

 

 



 42

 

M. Higashi and D. G. Truhlar, Figure 3. 
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M. Higashi and D. G. Truhlar, Figure 4. 
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M. Higashi and D. G. Truhlar, Figure 5. 
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M. Higashi and D. G. Truhlar, Figure 6. 
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M. Higashi and D. G. Truhlar, Figure 7. 
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M. Higashi and D. G. Truhlar, Figure 8. 
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M. Higashi and D. G. Truhlar, Figure 9. 
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M. Higashi and D. G. Truhlar, Figure 10. 

 

 


