
Revised for J. Phys. Chem. B

on August 31, 2006

Phase Behavior of Elemental Aluminum using Monte Carlo Simulations

Divesh Bhatt, Nathan E. Schultz, Ahren W. Jasper, J. Ilja Siepmann∗, Donald G.

Truhlar∗

Department of Chemistry and Supercomputing Institute, University of Minnesota,

207 Pleasant Street SE, Minneapolis, MN 55455-0431

Abstract

Monte Carlo simulations are presented for two models of aluminum, an embedded-

atom model and an explicit many-body model. Vapor/liquid coexistence curves are

determined using Gibbs ensemble Monte Carlo simulations. The normal boiling points

predicted by both models are somewhat higher (by about 10%) than the experimen-

tal value. Isothermal constant-stress simulations are used to simulate solid Al from

300 K to the triple point. The solid structures are at least metastable in the FCC

configuration, and the specific heat is determined to be lower than the experimental

value. The melting point predicted for the embedded-atom model determined via

thermodynamic integration along a pseudo-supercritical path is approximately 20%

higher than the experimental value.
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Introduction

Aluminum is of technological importance not only as a lightweight, rust-resistant

structural material but also as an ingredient for high-energy fuels and, potentially,

as a hydrogen storage device.1 In many applications, e.g. the controlled growth of

Al nanoparticles, precise knowledge of Al’s thermodynamic properties such as the

saturated vapor pressure over a large range of temperatures up to the critical point is

pivotal. The high-temperature thermodynamic properties of metals in general, and

Al in particular, are not known, and the present article reports computer simula-

tions performed on analytical potential models to determine such properties. In this

context, it becomes imperative that these analytical potential energy functions be

validated before applying them for prediction of experimentally difficult to determine

properties.

Density-functional theory (DFT)2 is used quite extensively to predict potential

energy functions, and the PBE0 functional3 (also called PBEh) has been shown to

provide accurate potential energy functions for Al clusters.4 Recently, some of us and

coworkers5 have presented analytical potential energy functions that were validated

against density-functional theory (DFT) results for Al clusters and nanoparticles. At

0 K, an accurate potential function and a calculation of the zeropoint energy suffice

to give a reasonably complete and accurate thermodynamic description of a clus-

ter, nanoparticle, or solid, but at finite temperatures, the entropy is important in

determining thermodynamic properties, and statistical mechanical methods must be

employed.6 However, DFT is often prohibitively costly for use in finite-temperature
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statistical mechanical simulations,7 and analytic potential models become useful. Ac-

cordingly, phase equilibrium calculations on bulk systems with known thermodynamic

properties provide an additional and important way to further validate the analytic

potential energy functions, which can then be used to calculate bulk properties under

conditions where they are not well known experimentally8 as well as calculating finite-

temperature properties of large clusters and nanoparticles that have been recalcitrant

to experimental size-selected measurement.

Thus, the main aim of this manuscript is to test the applicability of two ana-

lytical potential energy functions for Al, previously validated against DFT results

at 0 K, against known experimental results such as the normal boiling point and

melting point. Previously, we calculated the vapor–liquid coexistence properties of

two embedded-atom potential energy functions and highlighted the sensitivity of the

phase diagram to the force field parametrization.8 While an embedded-atom potential

fitted to solid state data9 yields an unsatisfactory description of the vapor-liquid coex-

istence curve (VLCC), another potential function fitted to clusters and nanoparticles

of various sizes10 gives an accurate description of the VLCC at lower temperatures

(where experimental data are available) and allows for the prediction of Al’s critical

point.8

This manuscript is organized as follows. First, the potential models that are used

for aluminum are described. Then, the details of the simulation methodologies used

to simulate various thermodynamic properties of Al are given. This is followed by

results and detailed discussions of the vapor–liquid equilibria, simulations of solid
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Al structures, the solid–vapor equilibria, and the melting point. The final section

summarizes the key conclusions.

Potential Models for Aluminum

We explore two different potential models for Al. The first is an example of an

embedded-atom (EAM) model.11 The total energy of a system of N atoms interacting

via an EAM potential is given by5,9−11

U =
N
∑

i

F (ρi) +
∑

i>j

φ(rij) (1)

and where rij is the distance between two atoms i and j, and the first term in eq 1

(the embedding energy) is model dependent. For the EAM model employed by Mei

and Davenport9, this function is given by
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where x = (r− rn)/(rc− rn). The second term in eq 1 is a pairwise interaction given

by

φ(r) = −φ0

[

1 + δ

(

r

r0
− 1
)]

exp

[

−γ
(

r

r0
− 1
)]

. (6)

The parameters used in eqs 1–6 are given in Table 1. Many-body interactions ap-

pear in this potential in the density-dependent term, F (ρ), although all terms are

functions of the set of pairwise additive distances. Thus, the potential is a function

of interpair distances but is not pairwise additive. This form of the EAM potential

was used by Mei and Davenport,9 with different parameters than those given in Ta-

ble 1, to calculate the melting point of Al as 800±9 K. Recently, Jasper et. al.5 have

reparametrized the EAM potential for a large data set of Al cluster and nanoparticle

energies. Table 1 represents the result of this reparametrization, which is called NP-B

in Ref 5, but is simply called EAM here.

The second Al potential that is considered in this work is an explicit many-body

potential (EMB), also parametrized in Ref 5, where it is called NP-A. The form of

this potential is given by5

U =
∑

i>j

u2(rij)−
∑

i>j

u′2(rij)
[

fS
ij + fCN

ij

]

(7)

where the explicit pair potentials, u2 and u
′
2, are given by

u2(rij) = −De(1 + a1Yij + a2Y
2
ij + a3Y

3
ij) exp(−a1Yij) (8)

and

u′2(rij) = −D′
e(1 + a′1Y

′
ij + a′2Y

′2
ij + a′3Y

′3
ij ) exp(−a′1Y ′

ij) (9)
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where Yij = rij − re and Y ′
ij = rij − r′e. Explicit multi-body terms appear through the

screening function, fS
ij, and the coordination number function, f

CN
ij . The screening

function is

fS
ij = tanh

(

χS
ij

)

(10)

where
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k 6=i,j
exp

[
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κ3 /rκ3
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]

(11)

The coordination number function is

fCN
ij = d(1−Gij) (12)

where

Gij =
1

1 +
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)γ , (13)

gi is the effective coordination number of atom i defined by

gi =
∑

k 6=i
fg(rik), (14)

and the weighting function, fg is
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The parameters5 of eqs 7–15 are given in Table 2. We note that the parameters for

u2 were adjusted to fit data for Al2 and a large data set including AlN clusters and

nanoparticles with N =3 – 177 was then used to optimize the parameters for u′2, f
S,

and fCN.5 The many-body terms were designed to vanish at large separations, giving
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the EMB potential the correct two-body limit. Thus, the EMB potential reproduces

the dimer binding energy very well with an error of only 0.01 eV.5. In contrast, the

EAM potential which was fully optimized over the entire data set, including the dimer

data, overbinds Al2 by 0.38 eV.
5 Nevertheless, the fitting errors measured over the

entire data set are similar for the EAM and EMB models (0.05 eV/atom and 0.03

eV/atom, respectively).

Simulation Methods

Vapor-liquid coexistence. The vapor-liquid coexistence curve is determined

using Gibbs-ensemble Monte Carlo (GEMC) simulations,12,13 employing translations,

aggregation-volume-bias Monte Carlo14 moves to sample clustering in the vapor phase,

volume exchanges, and configuration-bias Monte Carlo swaps.15,16 For the EAM po-

tential, 350 Al atoms with periodic boundary conditions are employed. The size of

the vapor box is adjusted such that about 50 atoms are in the vapor phase. Since a

liquid structure is used as the initial configuration, these GEMC can be extended to

temperatures below the triple point, i.e. into a region where the liquid phase is only

metastable compared to the solid phase.17 Averages are collected for 100,000 cycles

after allowing 50,000 equilibration cycles. Each cycle consists of N moves (where N is

the total number of atoms in the simulation boxes of the Gibbs ensemble). Evaluation

of the EAM potential scales as N 2, whereas that for the EMB potential scales as N 3;

thus a smaller system size was used for the EMB calculations. For the EMB model,

the simulation includes 150 atoms, of which about 20 atoms are in the vapor phase.

For the EMB potential, 40,000 equilibration cycles are followed by 40,000 production

7



cycles during which the averages are collected. For the EAM potential, additional

GEMC simulations were performed at the two highest temperatures for a system of

800 Al atoms. As noted in our previous work,8 the effect of increasing the box size

on the vapor-liquid coexistence properties calculated with the EAM potential was

negligible; due to its more expensive nature, such a study was not conducted for the

EMB potential.

Periodic solid structures. Isothermal constant-stress Monte Carlo simulations18

are used to explore the FCC solid for both potentials. In these simulations, Monte

Carlo moves allow for sampling of the cell parameters (i.e., the three lengths and

three angles that describe the periodic simulation cell) in accordance to a constant

external stress, as first suggested by Parrinello and Rahman for molecular dynamics

simulations.19,20 The initial starting structure is FCC, which has the lowest lattice

energy, and the non-cubic primitive cell was replicated to yield simulation boxes of

a suitable size. For the EAM potential, 392 atoms are in the simulation cell and

60,000 cycles are used; whereas 252 atoms are simulated for 60,000 cycles for the

EMB potential.

Solid-vapor coexistence. To determine the solid/vapor coexistence for Al, we

chose the starting structures to be the equilibrated constant-stress structures gener-

ated above. The solid-slab GEMC method of Chen et al.17 was employed. Thus, a

vapor space (of the thickness of the solid slab) was added to the exposed 111 surface

of a solid slab on either side (thus, tripling the length of the box containing the solid

slab). Due to the addition of the vapor space, the exchange of atoms between the
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solid structure and the second vapor box of the Gibbs-ensemble is greatly facilitated

by allowing the exchange to occur from the surface of the solid slab.17 The size of the

vapor box is chosen such that about 10-15% of the atoms are in the vapor box.

Melting point. To determine the melting point, thermodynamic integration21

along a pseudo-supercritical path is performed. In this method,22,23 the average vol-

umes of the two bulk phases (Vliq and Vsol, in the case of melting) are determined

using isothermal-isobaric simulations at the melting pressure of interest (usually 1

atm) and a temperature at which both phases are (meta)stable. Subsequently, the

Helmholtz free energy difference between the two phases at their average volumes

is calculated via thermodynamic integration along a pseudo-supercritical path. This

path is divided into three distinct stages. Only a brief description is given here,

further details are available elsewhere 22 and 23. In stage A, the liquid is trans-

formed into a weakly attracting fluid at a system volume Vliq. Accordingly, a series of

canonical ensemble simulations are performed in which the strength of intermolecular

interactions is gradually scaled down. In stage B, the intermolecular interactions are

kept at their scaled–down values, and an external potential that acts at the lattice

sites of an ordered solid is gradually turned on. The form of this external potential is

Gaussian (ae−br
2

; as in the original references, with a = 3.45 eV and b = 0.76 Å
2
; the

values of a and b are somewhat arbitrary, but result in gradual ordering of the atoms

into a lattice as the external potential is turned on). Additionally, the volume is also

changed from Vliq to Vsol in this stage. In the final stage C, the external potential

is gradually turned off, and the full intermolecular potential is gradually restored.
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Thus, at the end of stage C, a regular bulk solid phase is obtained. The Gibbs free

energy difference between the the liquid and the solid phase at the particular state

point (given by T and p) is obtained as

∆G(T, p) ≡ Gliq −Gsol = ∆F
ex
A +∆F ex

B +∆F ex
C +∆F id + p(Vliq − Vsol) (16)

where F ex
i is the difference in excess Helmholtz free energies at the beginning and the

end of stage i calculated from thermodynamic integration, and F id is the ideal part

that is calculated analytically (and equals RT ln(ρs/ρl), where ρs is the density of the

solid at the given T and p, and ρl is the liquid density under the same conditions).

A system size of 256 atoms with periodic boundary conditions was used. In

addition to the liquid box, the solid box is also cubic with an FCC structure. For

each stage, thermodynamic integration is performed using 20–30 points (with a higher

point density in the region where the integrand is rapidly varying). Once the Gibbs

free energy difference is calculated at a given T and p, it is evaluated at other T using

multiple-histogram reweighting24 for each bulk phase.

Results and Discussion

Vapor liquid equilibria. The vapor-liquid coexistence curve (VLCC) for the

EAM potential is obtained for a temperature range from 1100 to 5250 K. At lower

temperatures, the particle exchange moves are very inefficient. For the EMB po-

tential, the VLCC is investigated between 1200 and 5500 K. Figure 1 shows the

temperature-density phase diagram for liquid–vapor coexistence with diamonds for

the EAM potential and circles for the EMB potential. The open symbols represent
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the GEMC results, whereas the filled ones are the critical points obtained by the

method discussed next.

As noted in our previous work, two different methods are used to obtain the critical

properties. In the first method, the critical temperature is obtained from the scaling

law21

ρl − ρv ∼ (Tc − T )β (17)

where ρl and ρv are the liquid and vapor coexistence densities, respectively, Tc is

the critical temperature, and the scaling coefficient β is the critical exponent25 with

a value of 0.325. Additionally, the critical density ρc is obtained from the law of

rectilinear diameters21

ρl + ρv

2
= ρc + A(T − Tc) (18)

where A is a slope obtained by fitting. The second method uses additional terms in

the scaling and rectilinear laws to account for deviations from corresponding states.30

As in our previous work,8 simulated temperatures above the normal boiling point

were used in the fits to obtain the critical properties. The average value of the

critical temperature for the EAM potential from the two methods is 6299±48 K, and

the critical density is 707±60 kg/m3. Critical properties for the EMB potential are

obtained, in the manner described above, as Tc = 7075±45 K and ρc = 538±8 kg/m3.

As compared to the VLCC of the EAM potential, the VLCC of the EMB potential

shows a lower saturated liquid density at low and intermediate temperatures, but the

curves cross at about 5500 K. Moreover, the vapor coexistence densities are higher

for the EAM potential. This results in a higher Tc for the EMB potential.
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The normal (i.e., 1 atm) boiling temperature, Tb, is usually obtained from the the

simulations using the Clausius-Clapeyron equation31,32

d ln pv

d(1/T )
= −

∆Hlv

R
(19)

where pv is the vapor pressure (= ρvRT ), and ∆Hlv is the heat of vaporization.

However, the form of the EAM potential does not permit a straightforward calculation

of the pressure via the virial route?? because although the force on a given atom can

be computed, this force cannot be decomposed simply into pairwise additive terms.

To overcome this problem, an alternate method that utilizes the thermodynamic

definition of pressure is used,26

p = pid −
〈

∂U

∂V

〉

(20)

where pid is the ideal-gas contribution to the pressure, U is the potential energy of

the system, and the averaging is done in a system with fixed volume (such as a

canonical ensemble). Accordingly, additional NV T simulations are performed at the

average GEMC vapor densities, and the pressure is calculated using eq 20. For a

given configuration in the canonical ensemble simulations, ∂U/∂V is calculated by

performing small test volume changes.26

The resulting plot of pv as a function of 1/T for four values of vapor pressure

closest to 1 atm is shown in Figure 2 for both the potentials. The experimental data

is depicted by the solid line. The temperature corresponding to pv = 1 atm gives

Tb = 2993 ± 8 K. Compared to the experimental normal boiling point of 2792 K,27

the EAM potential overestimates Tb for Al by about 7%. For the EMB potential, a
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similar procedure yields Tb to be 3097 ± 9 K. Thus, compared to the more expensive

EMB potential, the EAM potential gives a slightly better estimate of the normal

boiling point. However, a reliable value of the experimental Tc is unavailable
8 to

make similar comparison of the two Al potentials for a wider range of the vapor-

liquid coexistence.

Constant-stress simulations. Constant-stress simulations for the face-centered

cubic (FCC) solid are performed at 1 atm and several different temperatures for the

EAM potential. Although the experimental melting point of Al is 933.5 K,27 the

structures are at least metastable as crystalline solids up to at least 1250 K. Figure 3

depicts the orientational order parameter, Q6,
28,29 as a function of the number of MC

cycles for 900 K, 1250 K, and 1300 K. In calculating Q6, the neighbors as defined

as pairs of atoms that are closer than the first minimum in the radial distribution

functions. For a crystalline solid, Q6 is approximately 0.5, and it approaches a value

of 0 in the thermodynamic limit for a homogeneous liquid.29 From the values of Q6

in Figure 3, it is clear that the structures remain crystalline at 900 and 1250 K. On

the other hand, as the simulation proceeds at 1300 K, the starting structure loses

its crystallinity. For comparison, instantaneous density profiles (after 60,000 cycles)

for the EAM potential are shown for 1300 K, 1250 K, and 900 K in Figure 4. These

density profiles are collected in bins of width 0.25 Å. In each figure, z is the direction

perpendicular to the 111 plane. Thus, the spikes in the density profiles at 900 K

(panel (c)) and 1250 K (panel (b)) indicate a solid-like structure with the atoms on

sets of parallel 111 planes. The spacing between the spikes is approximately 2.8 Å,
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corresponding to the lattice spacing between adjacent Al atoms. Upon increasing the

temperature to 1250 K, the density spikes broaden, as expected. However, at 1300

K, the density profile indicates the onset of melting.

For 900 K, the layered structure is shown in more detail in Figure 5; the ABC

stacking representative of the an FCC lattice can be clearly seen. This FCC stacking is

maintained for all the solid structures. It should be pointed out that the preservation

of the FCC structure does not imply that the FCC structure is the most stable one.

It does indicate, however, that the FCC structure is probably at least metastable.

Table 3 shows the densities and enthalpies of the solid structures as functions of

temperature. At 300 K, the density of EAM Al is almost identical to the experimen-

tal density of aluminum (at 293 K, the experimental density is 2.69927 g/cm3). Also,

since all the simulations are performed at 1 atm, the specific heat, Cp = (δH/δT )p

can be evaluated. The filled circles of Figure 6 depict the enthalpies as a function

of temperature. Given the wide range of T simulated, it is unlikely that Cp can be

approximated as a constant; this is confirmed by the nonlinearity of the enthalpy-

temperature plot in Figure 6. However, the enthalpy can be well approximated by a

quadratic fit, and, as expected, the specific heat is an increasing function of tempera-

ture. From a quadratic fit to the data, the specific heat is estimated to be 15.2 ± 0.4

J/mol K at 300 K and 19.6 ± 0.6 J/mol K at 900 K. Compared to the experimental

values27 of 24.2 and 32.6 J/mol K at 300 and 900 K, respectively, the heat capacity

for the EAM potential is smaller by about 40% at both temperatures.

For the EMB potential, one constant-stress simulation at 1000 K was performed.
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As also observed for the EAM potential, the FCC structure for the EMB potential is

at least metastable at 1000 K and has an enthalpy of −315.2 kJ/mol. This is larger

by about 1 kJ/mol than the enthalpy value for the EAM potential at 1000 K. The

reverse is observed for the enthalpies of the liquid phases for the EMB and EAM

potentials at 1200 K.

Solid-vapor equilibria. As outlined earlier, the solid structures generated along

the 111 surface are surrounded by vapor, and solid-slab GEMC simulations are per-

formed to calculate the solid/vapor coexistence. At lower T (below 950 K) there are

a few to no particle exchange moves between the solid slab and the vapor boxes. The

orientational order parameter, Q6, is shown as a function of the number of MC cycles

for two different temperatures in Figure 7. At 1075 K, the value of Q6 shows that

the system is a crystalline solid throughout the entire length of the simulation. In

contrast, the structure at 1100 K melts, resulting in a lower value of Q6. Since the

current system is in solid/vapor equilibrium, the pressure on the solid structure is the

vapor pressure of EAM Al at that temperature, in contrast to the above constant-

stress simulations at 1 atm. However, for this range of pressure, the solid structure

is still FCC at 1075 K, as can be seen in Figure 8 where the atoms in three adjacent

layers are shown by different symbols (similar to Figure 5).

The temperature at which the solid slab melts, i.e., 1100 K, can be contrasted with

the temperature of 1250 K mentioned above for which the periodic solid structures

(without solid/vapor interface in the simulation box) are at least metastable. The

presence of a solid/vapor interface allows for surface melting to occur and the free
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energy barrier from the solid to the liquid phase is greatly lowered.

Figure 9 shows the Clausius-Clapeyron plot for the solid–vapor coexistence as

closed symbols and the dashed line represents the best fit. On the same graph, the

open circles denote the vapor–liquid coexistence results obtained above. Because

of the very low coexistence vapor density, the vapor pressure for the solid–vapor

coexistence at a given T is obtained by treating the vapor phase as an ideal gas instead

of performing additional NV T simulation at average vapor density (as in the case of

vapor/liquid coexistence). The triple point can, in principle, be determined from the

intersection of the sublimation and the boiling vapor pressure lines on such a plot.

However, the slopes of the Clausius-Clapeyron plot for the solid-vapor coexistence

are almost identical to the slope of the liquid-vapor coexistence. This prevents an

accurate determination of the triple point for the EAM potential using this method.

An additional issue that arises in such solid-slab simulations is whether the slab is

thick enough to allow for an interior region with bulk properties because surface

relaxation and melting can be observed for slabs.17 Effects of the slab thickness were

not explored in this work because of the very small heat of fusion. Thus, as described

in the following section, the melting point is obtained using a different route.

Melting Point. Isobaric-isothermal ensemble simulations at 1100 K and 1 atm

with the EAM potential yield a box length of 16.823 Å for the cubic liquid box con-

taining 256 atoms, and a length of 16.553 Å for the cubic FCC solid box with 256

atoms. Using these two volumes for the bulk condensed phases, explicit thermody-

namic integration is performed at 1100 K yielding ∆F ex
A = 256.26 ± 0.02 kJ/mol,
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∆F ex
B = −294.09 ± 0.05 kJ/mol, and ∆F ex

C = 37.21 ± 0.04 kJ/mol. The error in

these values are due to uncertainties in the values of the integrand at each integration

point, and do not represent the errors due to the discrete nature of the integration

itself. Using these values in eq 16, we find that ∆G(1100 K, 1 atm) = 0.19±0.11

kJ/mol. Accordingly, the solid phase is more stable than the liquid phase at 1100 K

and 1 atm, and the normal melting point of EAM Al is higher than 1100 K.

Multiple histogram reweighting simulations in the isobaric-isothermal ensemble

for each bulk phase were performed at 4 different temperatures (1080, 1100, 1120,

and 1140 K) and 1 atm. Figure 10 shows the Gibbs free energies (relative to the

respective values at 1100 K) for both the solid and the liquid phases. It must be

noted here that the reference values for free energies for the two phases are different,

and the purpose of Figure 10 is to highlight that the free energy of the solid phase

decreases more rapidly than that of the liquid phase. Combining Figure 10 with the

value of ∆G(1100 K, 1atm) given above, yields Figure 11, which depicts the difference

in Gibbs free energies of liquid and the solid phase as a function of T . The figure

shows that ∆G(T,1atm) changes sign at 1122 K. Thus, the normal melting point of

EAM Al is 1122±13 K, where the error bar is based on the uncertainty of ∆G(1100

K, 1atm). This is higher than the experimental value of 933 K by approximately

20%.

For the more expensive EMB potential, explicit thermodynamic integration is not

performed to determine the melting point. However, the similarities of the enthalpies

for the solid and liquid phases at 1000 and 1200 K, respectively, obtained for the EMB
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and EAM potentials (see above) give an indication that the EMB potential would

lead to a similar overestimation of the melting point.

The effect of pressure on the melting point was studied by a similar procedure for

two different pressures. In one case, explicit thermodynamic integration, performed

at 1000 K and 5.9×10−10 atm (vapor pressure of the liquid at 1100 K, as obtained

from GEMC simulations), yields ∆G to be 1.17±0.12 kJ/mol. In combination with

multiple histogram reweighting (at 1000 K, 1040 K, 1070 K, 1100 K, and 1140 K and

at the given pressure) the melting point at the above stated pressure is obtained as

1132±15 K. This value is statistically the same as that at 1 atm. In the second case,

explicit thermodynamic integration is performed at 1100 K and at 10000 atm; ∆G

is then calculated to be 0.99±0.10 kJ/mol. Multiple histograms at 1050 K, 1100 K,

1150 K, and 1200 K result in a melting point of 1215±13 K. Accordingly, an increase

in pressure to values encountered inside Earth’s crust leads to a significant increase

in the melting point.

Vocadlo and Alfe33 and Alfe et al.34 calculated the melting curve of Al for pressures

(up to 150 GPa) using ab initio molecular dynamics simulations. They calculated

the liquid-phase free energy by constructing a thermodynamic reversible path to a

Lennard-Jones fluid (and subsequently using the Lennard-Jones equation of state of

Johnson et al.35). The free energy of the solid was computed by referencing to a

harmonic crystal. As in the current work, a significant increase in melting point was

observed with an increase in pressure.33,34 Further, the slope of the melting curve was

calculated to be approximately 80 K/GPa,33 a value that agrees well with the current
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work (an increase in the melting point of approximately 100 K with an increase in

pressure by ∼ 1 GPa).

The form of the EAM potential for Al is same as the original Mei-Davenport

embedded-atom (MDEAM) potential9 for Al that is parametrized to bulk solid-state

data. Thus a comparison of the results obtained with EAM potential to those obtained

with their original parameters (called the MDEAM potential) is helpful in determining

the effect for parameterizing potentials not only to match bulk solid-state data but

also to reproduce accurate energies of clusters and nanoparticles of various sizes (from

dimer to bulk). Mei and Davenport calculated a value of 800 K for the melting point of

the MDEAM potential; this underestimates the experimental value by 14%, whereas

the present value of 1122 K is a 21% overestimate. In a previous study, we reported

that the MDEAM potential dramatically underestimates both the boiling point and

the heat of vaporization.8

Conclusions

The thermodynamic properties of Al are calculated for two nonpairwise-additive

potentials. Vapor-liquid equilibria are determined using Gibbs-ensemble Monte Carlo.

The more expensive EMB potential shows a lower saturated vapor density than the

EAM potential for a wide range of temperatures. Accordingly, the critical temper-

ature of the EMB potential is higher than that of the EAM potential. From the

vapor pressures, the normal boiling point is determined for both the potentials. In

accord with the higher value of the critical temperature, the normal boiling point

of the EMB potential is higher than that for the EAM potential. In turn, both the

19



potentials overestimate the experimental normal boiling point.

Constant-stress simulations in the solid phase show that the FCC structure re-

mains stable over a range of temperatures and that the density of Al at ambient

conditions using the EAM potential is very close to the experimental value. The

specific heat of the solid phase increases with the temperature, and is lower than the

experimental value. Solid-slab Gibbs ensemble simulations are performed to deter-

mine the solid-vapor coexistence of the EAM potential. For this purpose, the 111 facet

of the FCC structure is exposed to the vapor phase. Compared to a periodic solid

(without any vapor phase surrounding it) of the constant-stress simulations, surface

melting results in a significantly lower melting temperature. However, an accurate

determination of the triple point using the vapor pressure versus temperature plot is

precluded by almost identical enthalpies of vaporization and of sublimation. Ther-

modynamic integration along a pseudo-supercritical path gives a value of the melting

point of EAM Al as 1122 K that is approximately 20% higher than the experimental

value.

This study highlights the efficacy of analytical potentials parametrized to repro-

duce accurate DFT energies for clusters of various sizes5 in making useful predictions

of bulk thermodynamic phase behavior. While an earlier embedded-atom model by

Mei and Davenport9 yields very inaccurate results for dimers and smaller clusters that

results in a significant error for the vapor–liquid coexistence curve due to formation of

dimers in the vapor phase8, the present EAM potential yields significantly improved

binding energies for smaller clusters, a small fraction of aggregates in the saturated
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vapor phase, and hence, a fairly accurate heat of vaporization and boiling point. The

more expensive EMB potential yields similar results for the vapor–liquid coexistence

curve, but its functional form is more physical, and it performs better than EAM for

small clusters.
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Figure 1: Vapor-liquid coexistence curves for the EAM (diamonds) and EMB (circles)

potentials. The corresponding closed symbols represent the respective critical points.
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Figure 2: Clausius-Clapeyron plot for the EAM and the EMB potentials. The dashed

line through each set is a least squares fit.
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Figure 3: Instantaneous orientational order parameter as a function of MC cycles for

bulk structures at three different temperatures obtained from constant-stress simula-

tions at 1 atm. All simulations were started from the fcc structure.
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Figure 4: Bulk density profiles along the direction perpendicular to the 111 plane

obtained from constant-stress simulations for the EAM Al potential at a pressure of

1 atm and three different temperatures.
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Figure 5: Stacking of the atoms in three adjacent 111 planes at 900 K obtained from

the constant-stress simulations for bulk periodic systems. The open circles represent

the first layer, the gray diamonds are in the second layer, and the black triangles are

in the third layer.
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Figure 6: Enthalpy of the bulk fcc solid as a function of temperature for the EAM

potential at 1 atm. A quadratic fit is shown by the dashed line with Hs = −330.8 +

0.0130T + 3.644× 10−6T 2.
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Figure 7: Instantaneous orientational order parameter as a function of MC cycles for

structures at two different temperatures obtained from solid-slab simulations.
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Figure 8: Stacking of the atoms on on three adjacent 111 planes at 1075 K for the

solid-slab simulation. Symbols as in Figure 5.
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Figure 9: Clausius-Clapeyron plot for the solid-vapor coexistence for the EAM poten-

tial represented by the closed circles. The dashed line is the best fit to the sublimation

pressure and the open circles are the liquid–vapor data.
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Figure 10: Gibbs free energy (relative to the Gibbs free energy at 1100 K and 1 atm)

for both the FCC solid and the liquid phases of EAM Al as a function of temperature.
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Figure 11: Difference in the Gibbs free energies of the liquid and the solid phases as

a function of temperature at 1 atm.
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Table 1: Parameters for the embedded atom (EAM) potential.

Constant Value Unit

Ec 2.8336616280 eV

φ0 0.209474578 eV

r0 2.759835989 Å

α 4.953631991

β 5.202672172

γ 5.824302949

δ 8.968682037

c(1) 0.433294196

c(2) -7.305279256

c(3) 29.818956621

c(4) -54.437991632

c(5) 48.412067298

cc(6) -15.525225110

s(1) 6.927645227

s(2) 3.861172975

s(3) 15.498062621

rn 1.75r0 Å

rc 1.95r0 Å
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Table 2: Parameters for the explicit many-body (EMB) potential.

Constant Value Unit Constant Value Unit

De 1.71013678553981441 eV re 5.08182706399609163 Å

a1 1.24074255007327805 Å
−1

a2 0.551880801172447422 Å
−2

a3 0.129970688812896917 Å
−3

au2 0.143243771372740580

bu2 6.5 Å κ1 4.24002677622442103

κ2 0.117656503960960862 κ3 4.78063179546451522

au23 1.63973192904916298 γ1 0.708483373073205747

d 1.13286279334603357 γ 0.663930057862113232

g0 8.54498572971970027 γ2 5.39584023677170066 Å

D′
e 1.42526928794948882 eV r′e 4.87735706664722812 Å

a′1 1.20666644170640880 Å
−1

a′2 0.728296669115275908 Å
−2

a′3 0.215461507389864804 Å
−3

au2b 0.138211749991007299

bu2b 6.5 Å
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Table 3: Solid densities and enthalpies for different temperatures.

T (k) Density (g/cm3) Enthalpy (kJ/mol)

300 2.7001 -326.540

500 2.6711 -323.361

700 2.6322 -319.863

900 2.5833 -316.165

950 2.5701 -315.101

1000 2.5521 -314.083

1050 2.5401 -313.073

1100 2.5291 -312.012

1150 2.5101 -310.992

1200 2.5000 -309.963

1250 2.4832 -308.773
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