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Abstract.  We calculated the two lowest electronically adiabatic potential energy surfaces 

of ammonia in the region of the conical intersection and at a sequence of geometries 

along which one of the N–H bonds is broken. We employed both a multi-reference (MR) 

method and a single-reference (SR) method.  The MR calculations are based on multi-

configuration quasidegenerate perturbation theory (MC-QDPT) with a 6-311+G(3df,3pd) 

basis set.  The SR calculations, carried out with the same basis, employ the completely 

renormalized equation-of motion coupled-cluster method with singles and doubles, and a 

non-iterative treatment of triples, denoted CR-EOMCCSD(T). At 91 geometries used for 

comparison, including geometries near a conical intersection, the surfaces agree to 7% on 

average. 
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1.  Introduction 

 Electronic structure theory of the non-degenerate ground electronic states of 

molecules has made great advances, and many important properties of molecules in the 

ground electronic state can be calculated more reliably or more conveniently than they 

can be measured.1–3  Furthermore, the value of this advance is greatly multiplied by the 

fact that many of the methods are systematic enough to be meaningfully tested and to be 

translated into computer codes that can be used even by nonexperts, which has allowed 

for unprecedented widespread progress.  Quasi-degenerate electronic states, such as those 

encountered in studies of bond breaking and biradicals, open-shell states, and, of 

particular interest to us in this work, excited electronic states, are another matter.  

Although there has also been great progress in the area of single-reference excited-state 

calculations, particularly after the introduction of the response4 and equation-of-motion 

(EOM)5,6 coupled-cluster (CC) methods to quantum chemistry, traditionally the most 

successful treatments of quasi-degenerate and excited states have been based on a multi-

reference (MR) treatment.7,8 Multi-reference treatments are very powerful, but they do 

have some important disadvantages, mainly related to the choice of reference state.  For 

small systems, these problems are ameliorated and can largely be solved by using a full-

valence complete active space.  However, for larger systems such a reference space is 

usually unaffordable, and one must limit the reference space. There is no completely 

general systematic way to do this, which has two consequences: (i) the methods often 

require expert users; (ii) in many cases, such as those encountered in transition metal 

chemistry, one cannot test the methods systematically because each system requires an 

individual practical decision on the active space which may become too large or difficult 
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to define for practical applications.  In this respect a more systematic single-reference 

procedure for electronically excited states would be a major step toward widespread 

progress. 

 Recently a new class of single-reference (SR) coupled cluster methods with great 

potential for the description of at least some classes of bond breaking, biradicals, and 

excited states has been developed; these methods are based on the method of moments of 

coupled cluster equations (MMCC).9–11  In the present paper we apply an approximate 

variant of the MMCC approach for ground and excited states, called the completely 

renormalized (CR) EOMCC method with singles, doubles, and non-iterative triples (CR-

EOMCCSD(T)),11(d),12  to a particularly challenging problem, the potential energy 

surfaces for the photodissociation of ammonia, including geometries near the conical 

intersection and along the dissociation coordinate, and we compare these calculations to 

calculations by a powerful multi-reference method, namely multi-configuration 

quasidegenerate perturbation theory13,14 (MC-QDPT) based on a full-valence complete-

active-space self-consistent field7 (CASSCF, also called FORS) reference function.  The 

CASSCF calculation includes static correlation, and the perturbation calculation adds 

dynamical correlation. The CR-EOMCCSD(T) approach treats both types of correlations 

dynamically via excitations from a single-reference determinant. 

 

2.  Theory 

2.1.  MC-QDPT 

The MC-QDPT method is based on multi-reference perturbation theory (MRPT) 

and involves expansion to the second-order of perturbation theory. The reference 
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functions for the perturbation calculations are obtained from the CASSCF scheme, 

optimized for a state average over the lowest-energy states of interest. The energy 

through the first order is the original CASSCF approximation, and at second order one 

includes single and double excitations. The MC-QDPT energies are the eigenvalues of 

the matrix with perturbed matrix elements.  We refer the reader to Refs. 13,14 for further 

details.  

2.2.  CR-EOMCCSD(T) 

The CR-EOMCCSD(T) method12 is an improved version of the EOMCCSD(T) 

method in which suitably defined non-iterative corrections to EOMCC energies are 

derived from the MMCC formalism,9–11 which provides us with expressions for the 

differences between the CC or EOMCC and exact, full CI energies of the electronic states 

of interest. The CR-EOMCCSD(T) expressions for the ground-state ( 0=μ ) and excited-

state ( 0>μ ) energies have the form:  

(T)CR(T)EOMCCSDEOMCCSD(T)CR / μμμμ DNEE +=− ,                            (1) 

where  are the CCSD 
EOMCCSD
μE )0( =μ  and EOMCCSD )0( >μ  energies respectively, 

and the numerator and denominator terms,   and   respectively, that are used 

to calculate the corrections due to triple excitations have been defined elsewhere.

CR(T)
μN (T)

μD

12 In this 

paper, we test the performance of the basic variant ID of the CR-EOMCCSD(T) 

theory.11(d),12  
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3.  Calculations and Results 

 We calculated potential energy curves for the ground state  and the first 

excited state  of ammonia using both MC-QDPT and CR-EOMCCSD(T) with the 6-

311+G(3df,3pd)

)( 1V

)( 2V

16,17 basis set. We label the three hydrogen atoms as HA, HB, and HC, and 

the N–H bond distances are labeled as  and  The orientation was set with the 

nitrogen atom at the origin with HA along the y-axis. The angles that the N–HB and N–

HC directions make with the y-axis are denoted by 

,, BA RR .CR

ωBand ,Cω  respectively. The out-of-

plane angle is denoted by .α  The coordinates of the hydrogen atoms are: 

α
ωα
ωα

α
ωα

ωα
α
α

sin
coscos
sincos:
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coscos

sincos:
sin
cos
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−=

=
−=

=
=
=
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 (2) 

We generated four scans for C2v geometries by setting the two distances  and 

 equal to 1.020 Å and by setting the angle 

BR

CR Bω  equal to .Cω  We then scanned 22 or 23 

values of  in the range 0.8 to 11 Å for each of four pairs of RA Bω  and α : 

Scan 1:    ωB = 60o,α = 0o

Scan 2:    ωB = 60o,α = 3o

Scan 3:    ωB = 52o,α = 0o

Scan 4:    ωB = 52o,α = 3o
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This yields 91 geometries. 

The MC-QDPT calculations were carried out using the HONDOPLUS–V.4.518,19 

electronic structure package. The active space consisted of 7 orbitals with 8 electrons; for 

ammonia this corresponds to a full-valence active space. In the MC-QDPT calculation, 

one inactive orbital corresponding to the 1s core orbital of N was frozen (that is kept 

doubly occupied in all CSFs). MC-QDPT includes single and double excitations from all 

of the active orbitals.  

The CR-EOMCCSD(T) calculations and the underlying CCSD and EOMCCSD 

computations were performed with the routines described in Refs. 12 and 20; these 

routines form part of the Michigan State University suite of coupled-cluster programs that 

are incorporated into GAMESS.21  

Note that since CR-EOMCCSD(T) is a single reference method and the system 

shows a conical intersection, the reference configuration is below the “excited” ones at 

some geometries and above it at others, where the “excitation energy” is negative. The 

energy values of the lowest two adiabatic states for all 91 geometries in scans 1–4 are 

provided in the supporting information. 

 For comparison of the results we set the zero of energy for each method to the 

energy yielded by that method for the ground state of ammonia at the equilibrium 

geometry calculated using the MC-QDPT method.  With this zero of energy, we calculate 

the mean value of the energy for all the points using  

E =
V1

CR-EOMCCSD(T) +V2
CR-EOMCCSD(T)( )+ V1

MC−QDPT +V2
MC−QDPT( )

4 × 91
, (3) 
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where V  are the ground- and excited-state energies, and we calculate 1  and V2 ε,   which is 

the mean unsigned deviation of the MM-EOM-CC energies from the MC-QDPT ones for 

both adiabatic surfaces, using 

912

VV QDPTMC
2

EOMCCSD(T)CR
2

QDPTMC
1

EOMCCSD(T)-CR
1

×

−+−
=

−−− VV
ε , (4) 

The percentage error is defined as 

100×=
E

P ε . (5) 

 

4.  Discussion and Concluding Remarks 

The MC-QDPT method13,14 has several advantages including size consistency, 

applicability to open-shell excited states, stability of both ground and excited states over 

wide regions of configuration space, and applicability to degenerate and quasi-degenerate 

systems. The CASSCF energies include non-dynamical correlation, and dynamical 

correlation is added by the second-order MC-QDPT step.  A key element of this 

procedure is that it is a perturb-then-diagonalize procedure. This has the advantage over 

the popular diagonalize-then-perturb procedures that the final step is a diagonalization. 

As a consequence, one expects to obtain consistent approximations to coupled potential 

energy surfaces even at or near intersections or avoided crossings, and our results show 

that this expectation is born out. 

 According to the MMCC theory, the energy differences between the EOMCC and 

full CI energies and the non-iterative corrections to EOMCC energies that result from 

them can be expressed in terms of the generalized moments of the EOMCC equations. 

The projections of the EOMCCSD equations on triply excited determinants defining the 
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corresponding moments of these equations enter the numerator terms  of eq. 1. The 

denominatorin eq 1 renormalizes the triples corrections, and this renormalization allows 

the CR-EOMCCSD(T) method to improve upon the failing of the standard 

EOMCCSD(T) approach in the bond breaking region. This we expect improved 

performance for potential energy surfaces of photdissociation processes, and a 

comparison of the MC-QDPT and CR-EOMCCSD(T) shows that this is achieved.  In 

particular, results for scans 1–4 are shown in Figs. 1–4, respectively. In the case of planar 

ammonia (scan 1 and 3), we find that the CR-EOMCCSD(T) and MC-QDPT  values of 

the  and  potential energy curves are in excellent qualitative agreement. Figure 1 

shows that both methods yield a conical intersection at an N–H distance of 2.10 Å. The 

potential energy curves for N–H distances between 1.8 and 2.3 Å are enlarged and shown 

as an inset plot in Fig. 1 and 3. In the case of non-planar geometries (scan 2 and 4) the 

potential curves have an avoided crossing for both MC-QDPT and CR-EOMCCSD(T) 

methods, as shown in Figs. 2 and 4.  

1V 2V

The adiabatic energies for the ground and the first excited state of ammonia 

obtained using the multi-reference MC-QDPT and single-reference CR-EOMCCSD(T) 

methods agree within 7% on average (calculated using eq 5; in particular, 36.0=ε eV 

and 88.4=E  eV). The potential energy curves along key one-dimensional cuts that pass 

through conical intersection and avoided crossings show similar features.  EOMCCSD 

results obtained without the triples correction are given in supporting information, and 

they are much less accurate than the CR-EOMCCSD(T) results. 

It is particularly encouraging that the CR-EOMCCSD(T) results behave in a 

reasonable and smooth way near the conical intersection and that it tends to the 
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asymptotic limit of dissociation in a reasonable way. In analogy to the standard CCSD(T) 

approach for the ground-state problem, the CR-EOMCCSD(T) method is a single-

reference “black-box” scheme that can be used by non-experts. In particular, the 

numerator and denominator terms,  and  respectively, defining the triples 

energy corrections of CR-EOMCCSD(T) are expressed in terms of the singly and doubly 

excited clusters obtained in the standard CCSD calculations, and in the case of excited-

state calculations, the zero-, one-, and two-body components of the linear excitation 

operator that defines the excited-state wave function in the EOMCCSD ansatz (see Ref. 

12 for the details). The computer costs of the CR-EOMCCSD(T) calculations per 

electronic state of interest are essentially identical to the costs of the standard CCSD(T) 

calculations. Thus, in analogy to the CCSD(T) approach,

Nμ
CR(T) (T)

μD

1,15 the CR-EOMCCSD(T) 

method is an  procedure in the iterative CCSD/EOMCCSD steps and an  

procedure in the non-iterative steps involving triples (  and  are the numbers of 

occupied and unoccupied orbitals, respectively, used in the correlated calculations).  

42
uo nn 43

uo nn

on un

The ability to obtain accurate results for this kind of a problem can have a 

profound affect on our future ability to develop systematic, validated methods for 

photodissociation problems as well as making it much more straightforward to carry out 

specific applications.  
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Figure caption 

 
Fig. 1. Plots of the ground-state (triangles) and first-excited-state (circles) energies for 

ammonia calculated using MC-QDPT (solid) and CR-EOMCCSD(T) (open) 

methods. The solid symbols are connected by curves to guide the eye.  For all 

calculations we set RB = RC =1.020Å and CB ωω = , and we vary the 

internuclear distance  The values of the remaining internal coordinates are 

. The region near the conical intersection (marked in the 

rectangular box) is shown as an enlarged inset plot. 

.AR
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Fig. 2. Plots of the ground-state (triangles) and first-excited-state (circles) energies for 

ammonia calculated using MC-QDPT (solid) and CR-EOMCCSD(T) (open) 

methods. The solid symbols are connected by curves to guide the eye.  For all 

calculations we set RB = RC =1.020Å and CB ωω = , and we vary the 

internuclear distance  The values of the remaining internal coordinates are 

. 
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Fig. 3.  Same as Fig. 1 except . oo 0,52B == αω

Fig. 4.  Same as fig. 2 except  . oo 3,52B == αω
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Figure 2 
 

0

1

2

3

4

5

6

7

8

0.5 1.5 2.5 3.5 4.5
 

En
er

gy
 (e

V
) 

 0.5            1.5            2.5            3.5            4.5 

RA (Å)
 



 17

Figure 3 
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Figure 4 
 

0

1

2

3

4

5

6

7

8

5.00E

En
er

gy
 (e

V
) 

-01 1.50E+00 2.50E+00 3.50E+00 4.50E+ 0.5            1.5            2.5            3.5            4.5 00
RA (Å)  

 
  



 19

Table of Content Graphic 
 

 


