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Abstract. The thermal rate constant of the three-dimensional OH + H2 Ø H2O + H 

reaction was computed using the flux autocorrelation function, with a time-independent 

square-integrable basis set. Two modes that actively participate in bond making and bond 

breaking were treated using two-dimensional distributed Gaussian functions, and the 

remaining (nonreactive) modes were treated using harmonic oscillator functions. The 

finite-basis eigenvalues and eigenvectors of the Hamiltonian were obtained by solving 

the resulting generalized eigenvalue equation, and the flux autocorrelation function for a 

dividing surface optimized in reduced-dimensionality calculations was represented in the 

basis formed by the eigenvectors of the Hamiltonian. The rate constant was obtained by 

integrating the flux autocorrelation function. The choice of the final time to which the 

integration is carried is determined by a plateau criterion. The potential energy surface is 

from Wu, Schatz, Lendvay, Fang, and Harding (WSLFH). We also studied the collinear 

H + H2 reaction using the Liu-Siegbahn-Truhlar-Horowitz (LSTH) potential energy 

surface. The calculated thermal rate constant results were compared with reported values 

on the same surfaces.  The success of these calculations demonstrates that time-

independent vibrational configuration can be a very convenient way to calculate 

converged quantum mechanical rate constants, and it opens the door to calculating 

converged rate constants for much larger reactions than have been treated up to now. 

 



I.  INTRODUCTION 

The evaluation of the thermal reaction rate constant from the quantum 

mechanical flux provides an efficient alternative to the computation of rate constants via 

the scattering matrix. The quantum mechanical formulation of in terms of flux 

autocorrelation functions 

)(Tk

(k )T

)(f tC was presented by Yamamoto and Miller et al. (1−3), and 

there have been several applications to calculate thermal rate constants for specific 

systems. The flux operator can be used to compute the cumulative reaction probability 

or the flux autocorrelation function, and either of these can be used to compute the 

thermal rate constant. Various approaches (4−24) involving basis functions, path 

integrals, and wave packet propagation methods have been used. Recently, Manthe et al. 

have calculated the thermal rate constants for the CH

)(EN

4 + HØ CH3 + H2 and CH4 + O Ø 

CH3 + OH reactions (19, 22) by calculating as a function of energy)(EN E using the 

multi-configuration time-dependent Hartree (MCTDH) method. Earlier work on triatomic 

reactions showed that accurate results can be obtained with an approach based on 

diagonalizing the time-independent Hamiltonian (4, 8, 10). One advantage of this 

formulation is that the variational principle is used to identify the relevant subspace of the 

basis set. This approach is appealing in terms of its generality and straightforward 

extension to larger systems, and it is extended to polyatomic reactions in the present 

article. 

In the present work, we have used flux autocorrelation functions to compute the 

thermal rate constants of two benchmark reactions, collinear H + H2 Ø H2 + H (which is 

used as a test of our new computer program) and full-dimensional OH + H2 Ø H2O + H. 

Both of these reactions have been studied extensively in the past using various potential 

 



energy surfaces (8, 11, 13, 16, 20, 22−37). In the present work, we have used a time-

independent square-integrable (L  basis set to represent the Hamiltonian and the flux 

operator, and we formulated the method in a way that should be applicable to general 

polyatomic reactions. The basis functions are expressed in terms of mass-scaled normal 

mode coordinates defined at the saddle point or at a variational transition state. We have 

used two-dimensional distributed Gaussian functions to represent the two modes that 

actively participate in the bond forming and bond breaking process. For the collinear H + 

H

)2

2 Ø H2 + H reaction, there are only two modes, and both of these modes were treated 

using two-dimensional distributed Gaussian functions. The use of distributed Gaussian 

functions allows us to saturate the basis space in the strong interactions region, i.e., on 

and around the transition state. A similar strategy was employed earlier for calculating 

scattering matrices (38, 39). 

The OH + H2 Ø H2O + H reaction has become a benchmark reaction for four-

atom systems. Recently, two new potential energy surfaces (33, 34) have been developed 

for this reaction. We have used the Wu-Schatz-Lendvay-Fang-Harding (WSLFH) 

potential energy WSLFH surface (33) for our work, and the resulting thermal rate 

constants are compared with earlier wave packet calculations by Goldfield et al. (35).  

There are six normal mode coordinates at the saddle point geometry, and the 

Hamiltonian is represented as a function of the six mass-scaled normal mode coordinates. 

Two stretching modes that represent the bond making and bond breaking process are 

treated using two-dimensional distributed Gaussian functions, and the remaining four 

modes are treated using harmonic oscillator basis functions. Six-dimensional basis 

functions are formed by taking a direct product of the two-dimensional distributed 

 



Gaussian functions with the harmonic oscillator functions, and the matrix elements of the 

Hamiltonian operator are evaluated in this basis. Since the two-dimensional Gaussian 

functions are not orthogonal to each other, the overlap matrix is computed, and the 

generalized eigenvalue problem is solved to obtain the eigenvalues and eigenvectors. The 

eigenvalues and eigenvectors are used to compute the flux autocorrelation function and 

the thermal rate constant.  

 

II.  QUANTUM MECHANICAL THEORY 

The thermal rate constant can be expressed in terms of the quantum mechanical flux 

operator via the flux autocorrelation function (1−3). The derivation leading to this result for a 

bimolecular reaction has been presented earlier (2), and so here we will simply summarize 

the important relations. For further details, the reader is referred to refs. 3 and 8.  

The expression for the symmetric flux operator is  F

                                       )],(,[ sHiF θ
h

=                                                                    [1] 

where h  is Plank’s constant divided by ,2π H is the Hamiltonian operator, θ  is the 

Heaviside unit step function, s  is the reaction coordinate, and 0=s  defines a dividing 

surface separating reactants from products. The flux autocorrelation function fC  at time t  

for a given temperature T  is  

                     },{Tr /22/
f BB hh iHtTkHTkHiHt eFeeFeC −−−=                                 [2]  

where Tr{ } represents a quantum mechanical trace, and  is Boltzmann’s constant. 

The thermal rate constant  is related to the flux autocorrelation function via
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where σ  is the symmetry number of the reaction,
 

 is the electronic degeneracy of the 

potential energy surface on which the reaction occurs (in the present case, is 2), 

TS
eld

TS
eld RΦ  is 

the distinguishable-particle reactant partition function per unit volume, and  is the 

Laplace transform of the cumulative reaction probability given by  
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One method of computing the flux correlation function is to evaluate the trace in Eq. 2, in the 

basis formed from the eigenvectors of the Hamiltonian, and the resulting expression is  

                     ),cos(
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where  and Ψ  are the eigenvalues and eigenvectors of the Hamiltonian operator, 

respectively. Inserting the expression of the flux operator from Eq. 1, we can rewrite Eq. 6 as   

iE i
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where ijθ  is the matrix element of the Heaviside step function in the basis formed from the 

eigenvectors of the Hamiltonian operator.  

In Eq. 3 the presence of σ  indicates that we assume that  and are calculated 

without considering identical particle symmetry, and the presence of indicates that we 

assume reaction occurs on a single Born-Oppenheimer potential energy surface of 

L RΦ

TS
eld

 



degeneracy . Carrying out the integral of Eq. 5 analytically for a finite upper limit t  we 

obtain 
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eld
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The upper limit  should be chosen large enough that the correlation function has practically 

decayed to zero, and the area under the C  curve remains unchanged with time. Since total 

angular momentum  is a good quantum number, we calculate the contributions of each  

value to or separately. We therefore write 

f

J J

L )

               [10] .)()12(∑ +=
J

J TLJL

In order to evaluate the rate constant using Eq. 9 we need the eigenvectors  and 

eigenvectors of the Hamiltonian operator. We expand the eigenvectors in a nonorthogonal 

basis as:   

iE

                                                  ,∑ Φ=Ψ
k

kkii c                                                              [11] 

where the overlap matrix S  is  

                                                  
.kkkkS ′′ ΦΦ=                                                          [12] 

The eigenvalues were obtained by solving the generalized eigenvalue equation  

                                               
,iii E ScHc =                                                                    [13] 

 



where  is the Hamiltonian matrix in the nonorthogonal basis, and c  is the eigenvector 

with elements c . 

H i

ki

 

III.  DISTRIBUTED GAUSSIAN FUNCTIONS 

Distributed Gaussian functions have been found to be very useful in solving for 

vibrational energy levels (39–41) and calculating rate constants (8, 10, 18, 30). Furthermore, 

it has been shown in previous calculations that a combination of 2D distributed Gaussian 

functions with 1D functions for other modes forms an efficient basis set for dynamics 

problems (38, 39). We shall use that strategy here as well. 

A one-dimensional Gaussian function centered at  with a width parameter of  

can be written as (40) 

γx γA
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The matrix elements of the kinetic energy operator and the overlap matrix can be expressed 

analytically in such a basis (40): 
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where 

                                                                                              [16]                               ,)/4( 4/12πα γγγγ ′′ = AA
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In these equations, the elements of the overlap matrix are represented by  where the 

superscript 

xS γγ ′

x  is used to denote that the Gaussians are functions of x . Although this notation 

is not important for 1D Gaussian, it is useful for describing matrix elements of 2D Gaussian 

functions, which are described next. 

One can also construct a 2D Gaussian in the xy  plane by taking a direct product of 

Gaussian functions along the x  and  axes:  y

                         ).,;(),;( γγγγγγγχ yAygxAxg ′=                                             [19] 

Although one can optimize grids of 2D Gaussian functions (6, 38, 39, 42, 43), in the present 

work we start with direct products and use an energy cutoff (described below) to optimize the 

final selection of basis functions. The overlap and the kinetic energy integrals for the 2D 

Gaussian can be written in term of those for 1D Gaussian functions: 

                                                                                                              [20]                       ,yx SSS γγγγγγ ′′′ =

A set of distributed 2D Gaussian functions of the form of Eq. 19 has parameters. In 

order to reduce the number of parameters we use a single width parameter (

N N4

)AAA ≡′= γγ  

for all Gaussian functions. The value of  is chosen such that the overlap between any two 

2D Gaussians never exceeds a prespecified value. The details for the overlap cutoff will be 

discussed in Sec. V.  

γA

 

IV.  COLLINEAR H + H2 SYSTEM 

The collinear H + H2 reaction has been studied extensively (6, 25, 28) and here it 

is used to validate the method. The details are given in Appendix A of supporting 

information. The results agree with those calculated by scattering theory (28) within 1%.  

 



V.  OH + H2 CALCULATION 

The three hydrogen atoms in the OH + H2 system were labeled as  

                                    HAO + HBHCØ HAOHB + HC.                                                   [21] 

The OH + H2 system has six vibrational degrees of freedom. Normal mode 

analysis was performed at the saddle point geometry, and the resulting frequencies are 

3675, 2439, 1191, 690, and 573 cm-1 for modes 1-5, respectively, and 1210i cm-1 for 

mode 6. The modes Q , , Q , and Q  modes represent the spectator O-H stretch, the 

out-of-plane bend, the in-plane bend, and the torsion, respectively. The two stretch modes 

that actively participate in the bond making and bond breaking process are Q  and . 

All Q are zero at the saddle point. The two reactive modes were 

represented using 2D distributed Gaussian functions. The remaining four spectator modes 

were represented by harmonic oscillator (HO) functions. The 6D basis was formed by 

taking a direct product between 2D distributed Gaussian functions and the HO functions. 

Earlier work (31) has shown that the contribution of the vibrational angular momentum 

term is very small for this system and can be dropped from the expression of the 

Hamiltonian. Therefore the Hamiltonian in mass-scaled (27) normal coordinates is  

1
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whereµ  is the scaling mass. In the present calculations the value ofµ  was set at 1 amu. 

The matrix elements of the Hamiltonian operator were evaluated using six-dimensional 

basis functions, and the resulting generalized eigenvalue equation was solved.  

 

 

 



V.A.  Dividing surface 

All rate calculations (except for those used in check calculations described in the last 

paragraph of Section VI) were carried out with a dividing surface optimized in reduced 

dimensionality calculations. The dividing surface was defined in terms of the reactive modes 

by  where 0=s

                                                 ,tan62 cQQs +−= η                                        [23] 

whereη  and  are parameters. Fifteen such dividing surfaces were generated by taking 

various combination of 

c

η  and  parameters and were tested in 2D calculations; the details 

are provided in Appendix B of supporting information. In this section, we will discuss only 

the optimal dividing surface, which is shown in Fig. 1. This surface is labeled as D

c

1, and it 

has 4πη =  and c . The figure also shows the dividing surface of conventional transition 

state (TST) theory; it separates the reactant from the product region near the saddle point 

region, but does not separate the reactants from products in the region of large and small 

. As seen in Fig. 1, this problem is corrected by rotating the dividing surface by 

0=

2Q

6Q 4π . 

 

V.B.  Basis functions 

A two-dimensional cut of the six-dimensional potential energy surface V  was 

obtained by varying the  and  distances and keeping all the other degrees of 

freedom fixed at the saddle point geometry. A square grid with spacing d  was formed by 

placing 

OBR BCR

M  points, from a minimum  to a maximum , along each axis. Out of 

the total of 

MinR MaxR

2M  points, all points with potential energy less than or equal to  were 

selected. The selected points were then transformed to normal coordinates and were used 

CutE

 



as centers for two-dimensional distributed Gaussian functions with 6Qx = and  

The number of two-dimensional Gaussian functions formed is called . All  

Gaussian functions were assigned the same width parameter  such that the maximum 

overlap between any two Gaussian functions is less than or equal to .  

.2Qy =

gNgN

MaxS

62Q

A

,

The number of basis functions used for the six-dimensional calculations is directly 

proportional to the number of 2D Gaussian functions. It is desirable to have a small value 

of  so that the number of basis functions for the 6D calculations is affordable. We 

therefore carried out reduced-dimensional calculations whose purpose was to optimize the 

2D distributed Gaussian functions. 

N

gN

gN

The reduced-dimensional calculations were performed in the Q  subspace, with 

the other vibrational degrees of freedom frozen at their saddle point values. The calculations 

were repeated with various sets of 2D Gaussian functions, and the parameters were varied to 

find small basis sets that yield converged results in 2D. Table 1 lists parameters for two 

different sets of 2D Gaussian basis functions, labeled as G1 and G2, that yield converged flux 

autocorrelation functions in 2D for the temperature range of 300–1000 K. The G2 set has a 

larger value for the cutoff energy  and a smaller value of grid spacing d  and it contains 

more basis functions than the G

CutE ,

1 set. The centers of the 243 distributed Gaussian functions in 

set G1 are shown in Fig. 1. This set was selected for use in 6D calculations. 

The basis functions are functions of six normal coordinates and are given by  

                                           ),( HO
62 kkk QQ Φ=Φ χ                                     [24] 

where 

 



                       Φ                                    [25] ),()()()( 5431
HO

5431 QQQQ kkkk nnnnk ϕϕϕϕ=

and mknϕ  is an HO function, with orders .,1,0 K=mkn  Note that Eq. 24 does not include 

rotation. One could carry out calculations for nonzero total angular momentum by 

multiplying Eq. 24 by a rotational function (44-47). In the present article we use basis 

functions only for  Since the

J

.0=J 0=J rotational eigenfunction is a constant, including 

rotation in Eq. 24 only affects the normalization. Note that HO
kΦ is an eigenfunction of the 

four-dimensional HO Hamiltonian defined at the saddle point geometry, with eigenvalue  

                               ,~
55443311

HO ωωωω hhhh kkkkk nnnnE +++=                               [26] 

where mω  is the frequency of mode  at the saddle point. Note that the zero point energy of 

the four-dimensional HO is included in the zero of energy. The 6D basis functions were 

formed by taking a direct product between  4D harmonic oscillator functions and  

2D Gaussian functions, resulting in 

,m

N

HON

HOg N

gN

N=  six-dimensional basis functions. The 

procedure used to select the HO functions is discussed in Sec. VI. 

 

V.C.  Thermal rate constant calculations 

The matrix elements needed in Eqs. 9 and 13 were computed by standard methods as 

explained in Appendix C of supporting information. The eigenvalues and eigenvectors of the 

Hamiltonian were obtained from Eq. 13, and the 0=J  contribution to the  Laplace 

transform was obtained from Eqs. 8 and 9. The integral depends on the upper limit of the 

integration, and we must choose the upper limit large enough that the results are converged 

(3, 8). However, due to the finite size of the basis, the integral does not really converge, but 

)(0 TLJ =

t

 



only reaches a plateau. Figure 2 shows )(f tC and the 300 K integral for the time range 0 to 

60 fs. We see that in the 0–20 fs and 40–60 fs regions the value fluctuates with t , but it is 

very stable in the time range of 30–40 fs. One can use this plateau value of  to compute 

thermal rate constants. Factors that affect the range of time over which is stable at its 

plateau value include the number of basis functions used for the calculation, the locations of 

the basis functions, and the position of the dividing surface. The type of basis functions is 

also an important factor; for example, it was shown by ref. 5 that 1D distributed Gaussian 

functions and sine functions are more efficient basis functions than harmonic oscillator 

functions for evaluating 

)(tI

)(tI

)(tI

fC  for a 1D Eckart potential. 
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The value of the upper limit of time integration was determined in the present work 

by finding the widest time interval over which is constant to within 1%. The center of 

this interval is called 

)(tI

ft  and the width is called t∆ . (Details of the algorithm for finding ft  

are in Appendix D of supporting information.) We take )( ftI  as . 0=

Rather than compute  by the exact relation of Eq. 10, we use the separable-rotation 

approximation (48), which yields 

L

                         ,( 0
TS

== JL
BA

kπ                                                    [27] 

where  are the rotational constants of the transition state evaluated at the 

saddle point geometry. The values of  and C were 18.2 cm

TSTS  and , , CBA

,A ,/ TS hcB hc -1, 2.81 

cm-1, and 2.44 cm-1, respectively. These values are identical to the values used by Goldfield 

et al. (35). It is known form previous work (20, 35) that the separable-rotation approximation 

overestimates the rate constant by about 40% for this reaction. 

 



Finally, we consider three other factors in Eq. 3. The symmetry number σ  is 2, the 

electronic degeneracy d  is 2, and  TS
el

                                                                                              [28] ,R
rotvib

RelR
el

R
−Φ=Φ Qg

whereΦ is the relative translational partition function per unit volume, and  is the 

reactant electronic partition function given by 

Rel R
elg
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where  is the spin-orbit splitting of the OH radical and equals140  (49). Q  is 

the product of two diatomic vibrational-rotational partition functions Q  computed 

without considering identical-particle symmetry or nuclear spin (those effects are in 

∆ -1cm 

diat
vib

R
rotvib−

rot−

σ ). For 

consistency with Eq. 27, these are computed from the diatomic rotational constant and 

vibrational energy levels and diatomic rotational constant diatB  by  

                                            ,diat
vibdiat

Bdiat
rotvib Q

B

Tk
=−Q                          [30] 

with Q evaluated from the accurate diatomic energy levels for the given potential energy 

surface. 

diat
vib

 

VI.  RESULTS FOR OH + H2 Æ H2O + H 

This section discusses the convergence with respect to the HO basis functions in 

the nonreactive degrees of freedom and compares the results to previous calculations.  

The parameters for the basis functions used for the computation of thermal rate 

constant are shown in Table 2. Four-dimensional spaces of basis sets B1-B3 were 

 



obtained by a two-step procedure. In the first step, a cutoff parameter HO
Max

~E was defined, 

and all HO
kΦ  with HO

Max
HO ~~ EEk ≤  were selected for the next step. Among 

these HO
kΦ selected, only functions with three of the four , with mn ,5and,4,3,1=m  

equal to zero were selected. As an example, consider a basis set formed using 

.cm5000~ 1

5000

HO
Max

−E =  There are 91 four-dimensional HO functions with excitations 

energies less that or equal to  Out of these 91 functions, there are only 21 

functions with three or more 

.cm 1−

0=mn

max
5n

0,( max
1 kn +

. Basis sets B4-B8 are variations on basis B1. First, 

the maximum number of quanta in each of the four modes for the B1 set was labeled as 

, n , n , and , respectively. For Bmax
1n max

4
max
3 4 three new harmonics oscillator 

functions of the form  with )0,0, 3,,1 K=k  were formed and were 

combined with the 18 existing harmonic oscillator function in the B1 set to give a set of 

21 harmonic oscillator functions. Similar procedure was carried out with n , n , 

and to yield B

max max
43

max
5n 5-B7. Note that B4-B7 all contain 5103 6D functions, but they have 

different distributions of quanta in the four nonreactive modes. Table 3 shows good 

convergence of the thermal rate constants computed using B1-B7 sets.  

Convergence of the B1 set was also tested by using two-mode excited HO 

functions in the basis set. There are five possible combinations for exciting any two 

modes at the same time: , , , , 

, and ( . The three lowest energy states of the form 

 were combined with the 18 harmonic oscillator functions from the B

)0,0,,( 31 nn

), 54 nn

)0,,0,( 41 nn ),0,0,( 51 nn )0,,,0( 43 nn

),0,,0( 53 nn

)0,0,,( 31 nn

,0,0

1 set to 

 



obtain a new set of 21 harmonic oscillator functions. The direct product between these 21 

harmonic oscillator functions and 243 distributed Gaussian functions was formed and the 

resulting set of 5103 functions was labeled as B8. Similar calculations were also 

performed for the remaining four combinations, and the results for B9-B13 were found to 

agree well with those for B1-B7. The largest deviation for any of the results with bases 

B4–B13 from those obtained with our largest basis, B3 is 1%. 

The flux autocorrelation functions for the B1 set at 300 K and 1000 K are shown 

in Figs. 2 and 3. We see that in both cases fC rapidly approaches a small constant value 

and maintains that value, before showing the expected oscillations at large time. The 

plots for the corresponding  are also shown. These plots exhibit the broad stable 

region that is important for accurate determination of rate constants. 

)(tI

We have also calculated rate constants at 300 K and 500 K using dividing 

surfaces based on variational transition state theory (VTST). The results agree with those 

presented here within 1% in both cases. Figure 4 shows plots of the flux autocorrelation 

function obtained using the dividing surface at the saddle point and the variational 

dividing surface at 300 K. This provides a numerical verification of the fact that the 

results are independent of the location of the dividing surface. Details of these check 

calculations are provided in Appendix E of supporting information.  

Not only are the results well converged, but they agree well with the wave packet 

results of ref. 35. Over the temperature range 300–1000 K, the largest deviation and the 

mean unsigned deviation for any of the B1-B13 basis sets from the results obtained in ref. 

35 was 7% and 2%, respectively.  (In comparing to ref. 35, we compare to their 

 



separable-rotation results because the emphasis in the present paper is on calculation of 

the Laplace transform, not on improving on separable-rotation approximation.) 

 

VII.  CONCLUSIONS 

The thermal rate constant was computed for a full-dimensional four-body reaction 

using time-independent square-integrable basis functions, and the Laplace transform was 

found to be well converged and in good agreement with previous calculations based on time-

dependent wave packets. This is the first time that rate constants for a system with more than 

three atoms have been calculated by any method that uses time-independent basis functions. 

It was shown that an efficient basis set can be formed by using Gaussian basis functions for 

the two active stretch modes and HO functions for the remaining modes. We found that the 

number of HO functions needed in the nonreactive degrees of freedom to get converged 

results is very small as compared to the number of two-dimensional distributed Gaussian 

functions in the bond forming and bond breaking modes.  

Although much of the effort in quantum dynamics is currently focused on wave 

packet methods, the success of the present calculation opens the door to treating general 

multi-dimensional reactions by convenient time-independent basis set methods, and we 

anticipate that further reduction in the computational cost can be achieved by combining the 

present methods with new schemes (42, 43) for reducing the size of Gaussian basis sets for 

nuclear motion and with hierarchical representations of the potential (44-47). This 

comparison of time-independent to time-dependent approaches bears elaboration. It is a 

general question of working in the time domain or the energy domain, which are 

complementary in a Fourier sense. In the early days of quantum mechanical collision theory, 

 



time-independent methods, especially the close coupling method, received almost all of the 

attention and effort (50–52). Later, attention turned more to time-dependent quantum 

dynamics (53, 54), which is now considered by most workers to be the method of choice for 

accurate polyatomic dynamics (55, 56). Time-dependent quantum mechanics is especially 

efficient for generating results at a series of total energies, as required for thermally averaged 

rate constants, because a single wave packet carries information about a wide range of 

energies (54). The present application though shows that time-independent quantum 

mechanics can also be used for accurate polyatomic reaction dynamics. It is particularly 

important to point out that the method used here is not special to four-body reactions, and in 

fact it is based on straightforward use of vibrational configuration interaction. Thus, by 

taking advantage of recent advances in vibrational configuration interaction calculations 

(45-47) and the fast convergence of the calculations with respect to completing the basis in 

nonreactive degrees of freedom, it should be possible to extend the method used here to 

much larger systems. In this regard, we note that use of the flux autocorrelation method 

(1-3) is a general method for taking advantage of the fact that reaction rates are often 

dominated by short-time dynamics in a localized region around a transition state. This makes 

time-dependent methods like the time-dependent Hartree method (18-20, 22, 55-57) more 

affordable because the wave packet needs to be represented over only a short period of time, 

and time-independent methods like vibrational configuration also benefit greatly by the need 

to represent the wave function over only a localized region of space. We anticipate that 

vibrational-rotational configuration interaction calculations will provide a powerful general 

tool for calculating flux autocorrelation functions for many other polyatomic reactions.  
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