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Abstract 

Accurate quantum mechanical partition functions and absolute free energies of H2O2 are 

determined using a realistic potential energy surface [J. Koput, S. Carter, and N. C. 

Handy, J. Phys. Chem. A 102, 6325 (1998)] for temperatures ranging from 300 K to 2400 

K by using Monte Carlo path integral calculations with new, efficient polyatomic 

importance sampling methods.  The path centroids are sampled in Jacobi coordinates via 

a set of independent ziggurat schemes.  The calculations employed enhanced-same-path 

extrapolation of trapezoidal Trotter Fourier path integrals, and the paths were constructed 

using fast Fourier sine transforms.  Importance sampling was also used in Fourier 

coefficient space, and adaptively optimized stratified sampling was used in configuration 

space.  The free energy values obtained from the path integral calculations are compared 

to separable-mode approximations, to the Pitzer–Gwinn approximation, and to values in 

thermodynamic tables.  Our calculations support the recently proposed revisions to the 

JANAF tables.   
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I. INTRODUCTION  

 A key function of statistical mechanics is to provide methods for calculating 

thermodynamic properties, such as free energies and entropy, in terms of molecular 

properties.  Rotational-vibrational partition functions are the generator for 

thermodynamic and kinetic quantities such as free energies, equilibrium constants, and 

reaction rates.1-3  The standard method of calculating partition functions is to obtain or 

estimate the energy eigenvalues of a system and to sum their Boltzmann factors.  To 

obtain an accurate result, it is necessary to know a very large number of rovibrational 

energies.  This limits the applicability of the method to small systems unless one is 

willing to accept severe approximations such as the popular harmonic oscillator–rigid 

rotator approximation or the use of classical mechanics.  For many systems of current 

interest, these approximations are not even qualitatively correct; in many other cases, 

such as molecules with torsions, they are not quantitatively accurate.  Path integral 

methods4-7 provide an alternative approach that can be used without such approximations, 

and we have used them to calculate accurate rovibrational partition functions for H2O8,9 

and HCl.10,11   

 The vibrational-rotational, partition function of a molecule is defined as1-3 

  (1) ∑= −

n

TkE BneTQ /)(

where En is the energy of vibration-rotation state n, kB is Boltzmann’s constant, and T is 

the temperature.  The standard method of calculating partition functions by summing 

their Boltzmann factors becomes very difficult as the dimensionality of the system 

increases, partly because the number of rovibrational eigenvalues required becomes very 

large and partly because the calculation of accurate eigenvalues for large systems is a 
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demanding task.  Converged vibrational-rotational eigenvalue calculations have been 

successfully calculated this way for small systems such as H2O12 and CH4;13 however, it 

is very difficult to obtain enough accurate eigenvalues to calculate Q(T) for more 

complex systems14-24 unless additional approximations are made.  One such 

approximation often made is the harmonic oscillator–rigid rotator approximation.  Such 

approximations significantly reduce the computational cost; however, these methods are 

not accurate enough to treat many important systems quantitatively, for example, systems 

that include torsions, such as H2O2.  Path integral methods offer the ability to calculate 

accurate values of the vibrational-rotational partition function for systems with torsions 

and large anharmonicity with less computational cost than calculating the necessary 

energy eigenvalues.  The efficiency of Monte Carlo path integral calculations depends 

strongly on the sampling scheme employed.  In the present article, we will present a new 

scheme for importance sampling in Jacobi coordinates that greatly increases the 

efficiency compared to our prior25 approach.  

In Sections II–V, we review the theory and computational methods for calculating 

the partition function for a given potential energy surface (PES).  Section VI summarizes 

separable approximation methods, in particular the harmonic-oscillator approximation, 

the rigid-rotator approximation, and the Pitzer–Gwinn method.  Section VII compares the 

accurate results from path integral calculations on H2O2 to results obtained by the 

approximate methods of Sect. VI, with both sets of calculations based on the potential 

energy surface (PES) of Koput et al.24  The free energy values calculated from the path 

integral calculations are also compared to those available in thermodynamics tables, 

which are based, to the extent possible, on experiment.26,27   
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 II. THEORY 

II.A. Path integrals 

 If we neglect complications from nuclear spin statistics and dissociative states 

(both of which are unimportant for the present application), the exact expression for the 

quantum mechanical internal (vibrational-rotational) partition function of a molecule is4,5 
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where h  is Planck’s constant divided by 2π, σsym is the symmetry number of the 

system,28,29 ∫ ])([ sxD
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 is the integral over all closed paths x whose centroid position 

occurs at x, and  is the action integral of path and is given by the expression 
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where β is 1 , µ is the reduced mass of the system, V  is the potential energy at 

point x, and s is the distance along the path. 

TkB/  (x)

 Fourier path integral (FPI) methods4-11,25,30-41 represent the deviations of the paths 

from free-particle paths by a Fourier expansion.   The Fourier representation transforms 

the path integral into an infinite-dimensional Riemann integral.  The transformation from 

an integral over an infinite number of paths to an integral over Fourier coefficients has 

two advantages.  First, it provides a compact and well-ordered representation of all closed 

paths that have the centroid position x.  Second, the use of an infinite Fourier series to 

represent each path allows for straightforward approximate treatments based on 
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truncating the number of Fourier coefficients from infinity to some finite value K or 

based on integrating the paths with a finite number of points.  

 The conventional approach to FPI calculations truncates the expansion at K terms, 

and the results converge as O(1/K), i.e., in the limit that K → ∞, 
K

TQTQ K

/1
)()( ][−∞

 is 

finite.  A more efficient approach, introduced by Coalson,33 that also uses a finite 

expansion but additionally uses a K-dependent rescaling of the Fourier coefficients, 

results in P = K + 1 evenly spaced points on the paths being distributed as they would be 

in an infinite-dimensional Fourier expansion.  Coalson33 showed that if quadratures over 

such paths are evaluated using a P-point trapezoidal rule, the method is isomorphic to the 

widely used trapezoidal Trotter discretized path integral scheme; hence, we refer to this 

as the trapezoidal Trotter FPI (TT-FPI) method.  Partition function estimates obtained via 

TT-FPI converge as O(1/K2).  Recently, Predescu et al.39-40 have developed a scheme 

called re-weighted Weiner-FPI (RW-WFPI) by a different rescaling of the Fourier 

coefficients; formally this results in an O(1/K3) convergence for well behaved potentials, 

but the methods approach their asymptotic convergence rates more slowly than either the 

conventional or TT-FPI approaches do.  We have recently shown42 that using the TT-FPI 

approach allows one to construct lower-order path integral estimates at essentially no 

additional cost, and that appropriate sequences of these estimates converge monotonically 

on a path-by-path basis.  We further showed that these estimates display regular 

convergence that permits highly accurate extrapolation to the infinite-P limit. This 

property makes the TT-FPI approach very attractive for practical computations. 
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 In the TT-FPI method,11,33,42 we only need to determine the path at P = K + 1 

discretized points sn that are evenly spaced in imaginary time.  We expand the closed 

paths x(s) in a Fourier series, and the coordinate at point n is given by   

 C

1 1
)1(sin)( j

K

k
jkjnj x

K
knaxsx −∑ 








+
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+=
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π  (4) 

where  is a coefficient in the Fourier series, the summation term is called the relative 

path, is the centroid position of the relative path (which must be removed if the full 

path is to be centered on x) and, as above, K is the length of the Fourier expansion.  The 

fact that the path is closed is reflected by the fact that s1 equals sP+1.  Since we only 

require evenly spaced points, the relative paths can be readily constructed using a fast 

Fourier sine transform.

a jk

C
jx

11  The centroid of the relative path may be calculated by 

averaging the positions of the P = K + 1 discretized points which yields 
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Since we use Eq. (4), the configuration space coordinates, x, in equations like (2) and (3) 

refer to the centroid position rather than to a specific point on the path.  We note that in 

several previous papers8-11,25,38 we chose x to be the initial position of a path rather than 

its centroid.  In our importance sampling scheme that will be discussed below, we will 

sample paths based on the value of the single point x, and the centroid position of a path 

is a better way to characterize a path than any single point on the path.   

Upon simplification, and using mass-scaled Jacobi coordinates with all masses 

scaled to µ, Eq. (2) can then be expressed as11,33,42 
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where J(T) is the Jacobian4 of the transformation from the integral over paths to the 

integral over Fourier coefficients given by 
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 where σk;K  is a fluctuation parameter and is given by the equation 
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and S(x,a) is the contribution of the potential energy (with a P-point trapezoidal rule 

integration) to the action integral for a given path calculated by the expression  
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where V(x) is the potential energy.   

Equation (6) is an infinite-dimensional integral over an infinite domain.  To 

evaluate this by Monte Carlo methods, we define a finite region of space in which to 

sample.  The contribution to the total partition function should be greatest near and 

around the equilibrium geometry.  As the system gets further away from the equilibrium 

structure, the contribution to the partition function becomes negligible.  We can therefore 

define a finite volume of configuration space where the contribution to the partition 

function needs to be calculated.   
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If we convert the integral in Eq. (6) to an average and employ Monte Carlo 

methods, we can reduce the evaluation of the integral to the problem of sampling a region 

of space and summing the contribution from each sample.  We first restrict the N-

dimensional configuration space to a finite domain D of volume VD.  Then we choose the 

number, P, of points to be used in the integration of the paths, and adopt Coalson's 

rescaling11,33 which permits us to obtain these points on an infinite-dimensional path 

using only a finite Fourier expansion with K = P − 1 terms. This yields an approximate 

value, called )(][
int TQ P

[
fp

 or , for the internal partition function, where the P in 

the superscript indicates the number of quadrature points.  Then, by multiplying and 

dividing Eq. (6) by Q , the P-point approximation to the free particle partition 

function, and by recognizing that Q  corresponds to the same N-dimensional space, 

we obtain 
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which is in a form that can be readily used in Monte Carlo evaluation.  Note that the free 

particle partition function—which is independent of P—is given by4 
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where VD is the volume of the domain D.  It is worth noting that in prior work11 we have 

used a slightly different notation where we placed K instead of P in brackets to 

emphasize the Fourier-like approach for sampling the infinite-dimensional paths via a 

finite, but rescaled, Fourier expansion, but we have changed the notation since the 

relevant approximation is a quadrature approximation and with our new extrapolation 

approach42 it is more convenient to consider the results in this light.   

 

II.B. Extrapolation 

 The extrapolation of the path integral results to the infinite-P limit in the enhanced 

same-path extrapolation (ESPE) approach42 is done by fitting the Q  for the 

highest three available values of P (in the present article we use P, P/2, and P/3) to the 

asymptotic behavior 
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where C2 and C3 are fitting parameters.  As we shall demonstrate below, when 

appropriate values of P are used the accuracy of the extrapolated result is comparable to 

that of the  data, i.e., the extrapolation error is small compared to the 

statistical sampling errors.   
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III.  ALGORITHM 

 The choice of mass-scaled Jacobi coordinates is different than was used in our 

prior25 work.  We label H-O-O-H as A-B-C-D.  We remove the center-of-mass motion 

trivially, so the dimension, N, of the configuration space is 9, and this space is spanned by 

three 3-vectors.  We choose a basis in which one vector connects B to A, one connects C 

to D, and one connects the centers of mass of these two fragments (CD to BA).43  The 

magnitudes of these coordinates are the two OH bond distances and a distance that is 

similar to the OO bond distance; this identification with physical distances will be useful 

in the configuration space importance sampling introduced below.  Importance sampling 

is used in both the Fourier coefficient space and the configuration space.    

 In order to evaluate Eq. (10) with Monte Carlo methods, we first define a density 

function g(a).  For an N-dimensional system, the function g(a) is a normalized (N × K)-

dimensional Gaussian probability density function in Fourier coefficient (a) space given 

by  
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With this definition, our expression for the partition function becomes 
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Importance sampling provides an efficient method of sampling the Fourier coefficient 

degrees of freedom.  In general, the importance function should reflect the shape of the 
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integrand or a chief contributor to that shape; in the present work the importance function 

for the Fourier space is taken as g(a), defined in Eq. (13). 

 In addition to the importance sampling in Fourier space, importance sampling is 

used in the configuration space, with an importance function f(x), to be explained below.  

Multiplying and dividing Eq. (14) by f(x) and the average, f , of f(x), we obtain  
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where the average of f(x) is defined as 
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If we substitute (16) in the denominator of Eq. (15) we obtain 
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We now define another density function p(x) as 
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so that our expression for the partition function becomes 
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 The Monte Carlo estimate of Eq. (19) is obtained by choosing samples i in (x,a) 

space where the components of a are sampled with relative weight g(a), and the 
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components of the coordinate space, x, are sampled with relative weight p(x).  Then Eq. 

(19) becomes 

 ∑
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where  Nsamples is the number of samples.  Because we will use uncorrelated samples, the 

variance of the estimate of Eq. (20) is 
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which is the square of the standard error of )(][
int TQ P . 

 

IV. SAMPLING STRATEGY 

  The details of the scheme for sampling a with relative weight g(a) have been 

presented previously.11  In the present work, we use a new scheme for sampling x with 

relative weight f(x) defined later in this section.  In sampling the 9-dimensional 

configuration space, we define the domain of interest as a direct product of three 3-

dimensional annuli. It is useful to visualize a D-dimensional configuration space sample 

point (CSSP) as consisting of D/3 vectors (of length 3) corresponding to the Jacobi 

vectors43 that define the coordinate system.  Each of these vectors can be considered as a 

(generalized) Jacobi magnitude (the 2-norm of the vector) and a direction.  The Jacobi 

directions define the angular degrees of freedom, and the magnitudes define the Jacobi 

magnitude degrees of freedom (which we also refer to as "radial" degrees of freedom).  
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Each of the Jacobi directions corresponds to a unit 3-vector, and sampling these 

directions is equivalent to performing a uniform sample of the surface of a 3-sphere.  

Thus, each D-dimensional CSSP can be rewritten as: 

, where each Ri is a scalar corresponding 

to the magnitude of a Jacobi vector, and each Vi is a unit vector in 3-space corresponding 

to the direction of a Jacobi vector.  
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 The finite sampling domain may be defined by specifying upper and lower 

bounds, , on each of the Ri values.  The volume of the sampling domain is 

then given by 
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This approach permits a large reduction in the volume of the sampling domain as 

compared to a minimum-volume hyperannulus (which is the sampling domain we used 

for 3- and 4-body problems in prior work8,9,11,25,44), and it also permits considerable 

simplification in the calculation of the average values of the importance function on the 

various strata. The values of the lower limits can all be taken as 0 with safety and with 

only a very slight increase in cost, provided that we are using a good importance-

sampling scheme.  Good values of the upper limits are easily identified by trial, and the 

performance penalty (if we are using a good importance sampling function) for only 

lightly optimizing these parameters is modest.  

 The method of stratified sampling can be utilized, along with importance 

sampling, in evaluating the coordinate space integral in the partition function in order to 

further reduce the sampling error.  Stratification involves subdividing the configuration 
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space into disjoint strata.  The effect of combining importance sampling with stratified 

sampling allows a stratum where the contribution to the partition function is large or has 

a large sampling variance to be sampled more frequently.  In our calculations, we use an 

adaptively optimized stratified sampling (AOSS) scheme that has been presented 

previously;25,38 this is a one-dimensional scheme (previously the coordinate chosen was 

the hyperradius; the choice of stratification coordinate for the present work is explained 

below) with  strata.  In this scheme, after distributing a number of initial samples 

(typically 10–20% of the total number of intended samples) in a stratum-blind manner, 

the optimal distribution of the remaining samples that should minimize the variance is 

estimated.  As the calculation progresses, and more accurate information becomes 

available, these estimates are periodically updated.  This updating occurs  times, 

where, for the present set of calculations,  is taken as 20.   

strataN

sweepN

sweepN

Combining AOSS and importance sampling, the expression for the partition 

function becomes 
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where  is the number of samples in stratum n.  The total number of samples is nN ,samps
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where  is the domain corresponding to stratum n, and VnD n is its volume. 
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The variance of the estimate in stratum n is given by  
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and the overall variance is 

 . (27) ∑=
=

strata

1

2N

n
nww

The σ2  uncertainty in the partition function estimate is simply w2 . 

 In previous work,9,11,25,44 the importance-sampling scheme that was employed 

involved an importance function expressed in internal coordinates; in particular, we used 

a product of Gaussians in the atom-atom distances.  It is complicated to directly sample 

from such a distribution due to the nontrivial Jacobian between the internal and the Jacobi 

coordinates.  In practice, one is forced to sample via rejection.  For triatomic systems, this 

is affordable, but for 4-body and larger systems one must generate a very large number of 

candidate configurations to get one that will be accepted, and this makes the cost of 

selecting CSSPs dominate the overall cost; thus, the efficiency of the approach is much 

lower than the approach described next.   

 The importance function used for sampling the configuration space in the present 

work has the form 

 ),,(),,(),,,( 213/2121 KKK θθADRD fRRRfxxxf = , (28) 

where fR is of the form 
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where  and the angles θN iθ are defined below.  A key aspect is that these angles are 

defined in terms of the Jacobi direction vectors and are independent of the Jacobi 

magnitudes.   

 Certain details of our new importance sampling strategy will depend on the 

definition of the strata, and in the discussion that follows, we will assume that the strata 

boundaries are independent of the Jacobi magnitude degrees of freedom.  We 

experimented with a number of different stratification coordinates, and we eventually 

chose the angle between the plane defined by the B→A and CD→BA vectors and the 

plane defined by the C→D and CD→BA vectors, where CD and BA denote the centers 

of mass of CD and BA, respectively; we shall refer to this as the Jacobi dihedral angle, 

ϕ .  It can easily be calculated from the Jacobi coordinates.   

 Our prior importance sampling approach using general internal coordinates 

required selecting points uniformly from within the domain and then using rejection to 

reshape the distribution.  For D ≥ 9 this can require generating thousands of uniformly 

distributed CSSPs before obtaining one that is not rejected.  In the present approach we 

write our importance sampling function in a way that allows us to sample certain subsets 

of the coordinates independently from others, and this greatly reduces the amount of 

computational effort that is lost during rejection sampling. 
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 For a D-dimensional system, the D/3 Jacobi magnitudes can be selected 

independently of each other if we restrict ourselves to an importance function of the form 

of Eqs. (28)–(30).  We select points from distributions of the form 

 via a ziggurat scheme,)2/)(exp( 2202
iRiii RRR ∆−− 45,46 where the R2 prefactor is part of 

the Jacobian of a 3-sphere (this Jacobian is hidden in dx in eq. (19)).  The ziggurat 

sampling method45,46 is a robust and efficient method for rejection sampling from a 

distribution; the method was introduced for sampling monotonic or symmetric unimodal 

distributions, but for the present work it is generalized to sample asymmetric distributions 

with a single maximum.  The ziggurat scheme involves covering the desired distribution 

with a set (we use 256) of disjoint, equal volume, rectangles and then rejection sampling 

over that space; a detailed explanation of the method is given in an appendix.  For most 

samples the computational effort consists mainly of the generation of a single uniform 

random number and a couple of comparisons.  In a small percentage of cases, which for 

typical parameters is only ~2–3% of the time, one also needs to calculate a value of the 

sampling function and possibly reject the sample.  The overall rejection rate of this 

approach is typically ~1–2%, and thus the cost of generating samples is comparable to 

the cost of generating uniform random numbers.  The ziggurat approach requires the 

generation of a set of preliminary tables giving details of the set of covering rectangles, 

etc.; the cost to generate this information for each distribution is negligible since it needs 

to be done only once prior to the start of the Monte Carlo calculation.   

 Given a set of appropriate Jacobi magnitudes, we can complete the selection of 

the CSSP by randomly selecting D/3 Jacobi direction vectors.  This is equivalent to 

uniformly selecting D/3 points on the surface of a 3-sphere, and we do this either by the 
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angular importance sampling scheme discussed below or, if we don't importance sample 

in the angular coordinates, by the scheme of Marsaglia.47 

 The Jacobi magnitude sampling function provides a fast and effective way of 

limiting CSSPs to physically reasonable choices.  We can, however, increase our 

efficiency even further by importance sampling within the remaining 2D/3 Jacobi degrees 

of freedom.  Each individual Jacobi direction vector has no preferred orientation, but the 

angle between any two of the Jacobi directions can serve as an appropriate variable for 

further importance sampling.  The appropriate choice and number of angles to use will 

strongly depend on the system being studied.  We will limit further consideration to the 

special case of H2O2, and in particular to a scheme where we importance sample the 

angles between a particular H atom, the center of mass of the OH fragment that includes 

this H atom, and the center of mass of the other OH fragment (this is similar to, but not 

identical to, importance sampling in the HOO angles).  Thus, we choose  and we 

choose these two angles from a sin  distribution (where the 

sine term is the Jacobian for an angle between two vectors) via another ziggurat scheme.  

Next, we choose a stratum that still needs a sample (as determined by our stratified 

sampling scheme) and uniformly select a Jacobi dihedral angle, 

2=θN

)2/)()exp(( 220
iiii θθθθ ∆−−

ϕ , from within the 

chosen stratum.  We then use these six ( , , , 1R 2R 3R 1θ , 2θ , ϕ ) independently selected 

coordinates to define the configuration of the centroid position, except for an arbitrary 

overall rotation.  We arbitrarily assign a direction for the CD→BA Jacobi vector (we 

assume that the PES is invariant to overall rotations and translations) and choose the 

other two Jacobi vectors to be consistent with 1θ , 2θ , and ϕ, where the angle between 
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B→A and CD→BA must be 1θπ − , and the angle between C→D and CD→BA must be 

2θ .  A valid choice for the Jacobi coordinates of the centroid position is then simply 

given by [ )cos( 11 θπ −R , )11 sin( θπ −R , 0, )cos( 22 θR , )cos()sin( 22 ϕθR , 

)sin()sin( 22 ϕθR , R3, 0, 0].  The overall cost of this approach does not differ greatly 

from the cost of purely uniform sampling (i.e., the cost is dominated by the cost of 

generating six uniform random numbers and the six trigonometric functions needed 

above to completely specify the centroid position), but as we will see below, it is 

substantially more effective.   

∏
=

3/

1
,

D

i
iRj f= fjf

 Independently of how we do the importance sampling, we need to calculate the 

average value of the importance function over each of the strata since this appears in the 

numerator of eq. (23).  (The need for these average values arises from the requirement 

that the distribution we sample be normalized.)  Previously, we calculated9,11,25,44 these 

normalization factors via a preliminary Monte Carlo sampling calculation that did not 

take advantage of any special variance reduction strategies.  As the dimensionality 

increases, even these simple normalization factors can become expensive quantities to 

calculate.  An additional benefit of importance sampling in functions of the separable 

form of Eq. (28) together with strata boundaries that are independent of the Jacobi 

magnitudes, is that we can use (for each stratum j): 

 
jA  (31) 

to simplify the formation of the average values of the importance function on the various 

strata.  Reducing the dimensionality, via Eq. (31), over which the average values must be 

Monte Carlo sampled greatly reduces the cost of obtaining the required normalization 
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factors.  The average of each  can be calculated via a one-dimensional quadrature, 

but the average values of the angular parts of the importance function will usually need to 

be calculated via Monte Carlo.  However, for the particular choice of angles and 

stratification boundaries chosen here, we can also obtain the angular averages via one-

dimensional quadratures.  In particular, the average values of the angular part of the 

importance function are then strata independent and can be calculated by 

iRf ,

 
jAjAjA fff )()(),( 22,11,21 θθθθ =  (32) 

where  

 ( ) ( ) iiiiijiiAf θθθθθ
π

d2expsin
2
1)( 220

0
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

 ∆−−∫= . (33) 

 

V. COMPUTATIONAL DETAILS 

 The PES used for the present set of calculations is the second of the two surfaces 

presented by Koput, Carter, and Handy (i.e., the fit presented in Table 3 of their paper,24 

which is the same surface that was used for their eigenvalue calculations).  A FORTRAN 

version of this potential has been placed in the on-line POTLIB library.48,49  The 

functional form used for this fit does not account for the full permutational symmetry of 

the molecule (it is symmetric with respect to exchange of the two OH groups but not with 

respect to exchanges of just the two H atoms nor with respect to exchanges of just the 

two O atoms); thus, the correct symmetry number to use is . 2sym =σ

 It is also important to note that the functional form used for the PES does not 

yield an accurate global fit.  Therefore, outside the domain of validity (such as in 

asymptotic regions corresponding to any bond dissociation) it can give energies that are 
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highly inaccurate.  These regions of the surface do not contribute significantly to the 

partition function for the temperatures we consider here unless the fit returns spuriously 

low energies.  To partially alleviate such complications (which should be rare for well 

chosen domain boundaries), we zero out the contributions of any path for which a 

configuration has an HH distance below 0.7 a0, an OH distance below 1.0 a0 or above 4.0 

a0, or an OO distance below 1.8 a0 or above 4.0 a0 (converged calculations were not 

especially sensitive to the presence or absence of these parameters.)   

 The masses of H and O are assumed to be 1.00782503 and 15.9949146 amu, 

respectively.  The zero of energy is at the minimum of the potential, which occurs for the 

configuration with ROH = 0.96265 a0, ROO = 1.45248 a0, HOO angles of 99.906º, and a 

dihedral angle of 112.456º. 

 Table I gives the parameters used in calculating the FPI values for Q .  

The chosen domain-boundary parameters are conservative values since tight optimization of 

these parameters yields negligible savings in computer time.  The importance function width 

parameters were partially optimized in small initial trials.  The importance function center 

parameters were chosen to be those of the global minimum of the PES; further optimization 

of these parameters typically yields very little increased efficiency.  At each temperature an 

appropriate value of Pmax was chosen that is divisible by 6, and a simultaneous set of results 

was obtained for P = Pmax/3, Pmax/2, and Pmax points using the enhanced same path

)(][
FPITT TP

−

42 

(ESP) approach.   

 The classical (P = 1) results were obtained in separate calculations since for this 

special case the variance of the results obtained during an ESP calculation are much larger 

than those of other P values.  This is predominately because the optimal width parameters 
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for the distribution of the centroid positions are quite narrow, and the individual points on a 

path with P = Pmax points—which are used in the ESP approach to construct the P = 1 

result, can (at least for sufficiently low temperatures) be well removed from the optimal 

centroid position.   

 In past applications we have sometimes9,11,25 sampled the relative paths (i.e., the a 

space) less frequently than we sampled the configuration space.  For some applications and 

some path integral methods the path generation phase can dominate the overall 

computational effort, and reusing relative paths can provide the highest accuracy for a given 

computational cost, even though one then no longer has uncorrelated samples (which means 

that the confidence limits are no longer related in the usual way to the standard deviations); 

this is particularly true when unequally spaced quadrature nodes are required since then the 

paths must be generated using a matrix multiplication algorithm25 which has a much steeper 

computational scaling than the fast Fourier sine transform scheme25 that can be used to 

generate paths with equally spaced nodes (as in the case here).  In the present application, 

we have chosen to use each path only once; thus, our sampling is uncorrelated and our 

uncertainty estimates are rigorous.   

 For the calculation at T = 300 K, approximately 70% of the computational cost was 

for evaluation of the PES, 29% for the generation of the Fourier paths, and 1% for the 

generation of the configuration space samples.   
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VI. APPROXIMATE METHODS 

VI.A. Separable approximations 

To obtain a simple expression for the vibrational partition function, the harmonic 

oscillator (HO) approximation can be made.  The classical mechanical (CM) expression 

for the harmonic oscillator approximation to the vibrational partition function is2 

 ∏=
=

F

m m
Q

1

CHO
CMvib,

1
βωh

 (34) 

where ω  is the vibrational frequency of mode m, and F is the number of vibrational 

modes (F = 6 for H

m

2O2).  The quantum mechanical expression for the harmonic oscillator 

approximation to the vibrational partition function is 
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 In the strictly harmonic approach, denoted HO, the vibrational frequencies are 

obtained by normal mode analysis based on the Hessian of the potential energy at the 

equilibrium geometry.  Variations of Eq. (35) allow for improved accuracy.  Three other 

approximations are obtained by rewriting Eq. (35) as 
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where EG is the ground state energy or zero point energy (ZPE).  If the ZPE is calculated 

by  

 ∑=
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we again obtain Q .  If, however, we use the accurate ZPE value for the given PES, 

we denote the result as Q  where HO-Z denotes the zero point corrected harmonic 

oscillator approximation.  Instead of using the harmonic frequencies for 

HO
vib

ZHO
vib

−

mω  in Eq. (36), 

we could substitute the accurate fundamentals for the given PES.  It is interesting to test 

this approach because in some cases the fundamentals are the only data known; the 

resulting method is called  where the superscript HO-ZF represents the quasi-

harmonic oscillator based on an accurate ZPE and accurate fundamentals for 

QHO
vib

ZF−

mω .  The 

final approximation to be considered for the vibrational partition function involves using 

the accurate fundamentals (for the given PES) both for the frequencies in Eq. (36) and for 

the ZPE.  Equivalently, one can just use these fundamentals in Eq. (35).  The result is 

called  where the superscript HO-F denotes quasi-harmonic approximation based 

on fundamentals.   

Q FHO
vib

−

 The frequencies and zero point energies24,50-52 needed for all of these approximations 

are given in Tables II and III; the experimental values,53-57 are also given for comparison.  

Table IV lists the sources of the ZPE and frequency estimates that are used in calculating the 

various approximate vibrational partition functions.   Table II lists the values for the 

experimental53-57 and calculated24 fundamentals for H2O2 and the harmonic normal mode 

frequencies.  Note that the frequencies in the tables are in spectroscopic units, and are given 

by 

 cπων 2/= . (38) 
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The calculated fundamentals were obtained by Koput et al. using the same H2O2 PES24 as 

used here.  The harmonic normal mode frequencies were calculated using POLYRATE.50  

Table III lists the ZPE estimated by a variety of approaches.   

 Table II shows a comparison of the experimentally observed fundamentals to the 

fundamentals calculated24 from the PES.  We can see that the symmetric (ν1) and 

antisymmetric (ν5) OH stretches differ from experiment by about 14 cm−1.  The symmetric 

(ν2) and antisymmetric (ν6) HOO bend differ by about 1 cm−1 and 3 cm−1, respectively, and 

the symmetric OO stretch (ν3) differs by about 8 cm−1.  Finally, the HOOH torsional 

vibrational mode (ν4) differs by only 1 cm−1 from experiment.  Table III shows a 

comparison of the zero point energy calculated from the experimentally observed 

fundamentals and one calculated with the fundamentals calculated from the PES.  These two 

ZPE estimates differ by only 21 cm−1, but both differ significantly from the accurate ZPE 

determined by variational calculations;58 the differences are 146 and 167 cm−1. 

For an asymmetric top ( )CBA III ≠≠ , where  is the moment of inertia about 

principal axis X, the classical mechanical rigid-rotator approximation to the rotational 

partition function is

I X

2 
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where , , and  are the three principal moments of inertia evaluated at the 

equilibrium geometry, and e denotes that the geometry used to evaluate the moments of 

inertia is the equilibrium geometry.   Since two of the moments of inertia (  and ) 

for H

e
AI e

BI e
CI

e
BI e

CI

2O2 are of similar magnitude, we can make a symmetric top approximation.  The 
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symmetric top approximation takes an average, , of the two moments of inertia,  

and , and then the classical rotational partition function expression for a symmetric top 

can be used 
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In order to incorporate the effect of averaging the geometry over the vibrational 

wave functions, we can evaluate effective moments of inertia,  and , from the 

accurate relative energies of the J = K = 0, J = 1, K = 0, and J = 1, K = 1 rotational 

levels of the ground vibrational level, where J is the rotational quantum number, and K is 

the projection quantum number for a body-fixed axis.  The calculated spectroscopic 

constants can be used to determine the value of the effective moments of inertia.  (These 

accurate energies and spectroscopic constants are available in Koput et al.

0
MI 0

AI

24)  To 

determine the effective moments of inertia using the calculated spectroscopic constants 

we use the following expressions2 
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where A, B, and C are the rotational spectroscopic constants, c is the speed of light, and h 

is Plank’s constant.  Using these moments of inertia yields 

 

2/1

2

0
A

2

2

0
M

2

sym
2/1sym,0

CMrot,
88




















=

h

kTI

h

IQ
ππ

σ
π  (42) 

where 0 denotes the ground vibrational level. 
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 Alternatively, the expression for the quantum mechanical rotational partition 

function for a symmetric top, which is well known,2 can be used.  This yields  

 ( )∑ −−+−+∑=
∞

= −=0

2
MAMsym
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rot )()1(exp)12(1
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JK

s KJJJQ ααα
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where  

 Mor AX;
2

2
X ==

kTI X

hα . (44) 

As for the classical expression for the symmetric top rotational partition function, the 

principal moments of inertia in the quantum mechanical partition function can be 

evaluated at the equilibrium geometry or from the lowest rotational levels of the ground 

vibrational level, denoted e and 0, respectively.  Note that the approximations involving 

 may also be called rigid rotator (RR) approximations, and those involving  may 

be called vibrating rotator (VR) approximations.   

e
XI 0

XI

 The values of the moments of inertia needed for all these formulas are given in 

Table V.   

 The most basic separable approximation is to combine the HO approximation for 

vibration with the RR approximation.  This yields the classical harmonic-oscillator rigid-

rotor (CHO-RR) result: 

  (45) easym,
CMrot,

CHO
vib

RRCHO QQQ =−

and the quantum result: 

 . (46) esym,
rot

HO
vib

RRHO QQQ =−

We can also try to identify the best separable approximation to the vibrational-rotational 

partition function.  To attempt to identify this, we will consider the product of Eq. (36) 
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and Eq. (43), where the principal moments of inertia are evaluated in the VR 

approximation.  These products are denoted HO-Z-VR, HO-ZF-VR, and HO-F-VR.   

 

VI.B. Non-separable approximations 

 The Pitzer–Gwinn23,59-62 approximation can be used to approximate the value of 

the anharmonic quantum mechanical vibrational partition function 
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We can apply this by calculating the anharmonic classical vibrational-rotational classical 

partition function, , by setting P = 1 in the path integral algorithm.  However, the 

PG approximation also depends on the choice of the ZPE estimate.  We will test two 

approximations, one employing the accurate ZPE, to be called PG-AZPE, and one 

employing the harmonic ZPE, to be called PG-HZPE.   

Qanhar
CM

 

VII. RESULTS AND DISCUSSION 

VII.A. FPI Results 

 Table VI contains for several temperatures the value of Pmax used, the classical limit 

of the path integral calculation, Q )(]1[
FPITT TP=

− , the values of Q  for P = Pmax/2, 

Pmax/3, and Pmax, the extrapolated value, Q , and the 

)(][
FPITT TP

−

)(ESPE T σ2  statistical uncertainties 

for each of the partition function values, where σ  denotes standard deviation.  The small 

magnitudes of the σ2  statistical uncertainties given in Table VI result partly from the 

highly effective new importance-sampling scheme and partly because the calculations used 
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a large number (1×107–2×108) of Monte Carlo samples.  The uncertainties for the ESPE 

calculations were estimated by assuming these partition functions had the same relative 

uncertainty (i.e., the ratio of the absolute uncertainty and the partition function) as in the 

calculations with P = Pmax.  Additional uncertainties due to extrapolation error were 

assumed to be negligible; the validity of this assumption is considered further below. 

 It is interesting to note that in the high-temperature limit the relative uncertainty of 

the TT-FPI calculations is very similar to the relative uncertainty of the classical results, but 

that as the temperature decreases the relative uncertainties of the quantum calculations grow 

much more rapidly than that of the classical results.  The ratios of the quantal to classical 

uncertainties are 1.1, 3.3, 13.7, and 38.8 at T = 2400, 600, 400, and 300 K respectively.  

Thus, at 300 K the quantal calculation requires ~1500 times as many samples (and each of 

these requires 90 times as many PES evaluations) to achieve the same relative accuracy as a 

classical calculation.  This indicates that at moderate to high temperatures the present 

scheme of importance sampling the path centroids is sufficient to ensure efficient sampling 

of the full paths, but that at low temperatures—where the paths meander more widely over 

configuration space—more sophisticated importance-sampling schemes are desirable.   

 We monitored the effect of dissociated species on the calculated partition function 

by separately tabulating contributions from paths whose initial position was above the sum 

of the energy of the lowest energy dissociation channel63 and the accurate ZPE52 of the 

molecule (~0.1038 Eh).  At the highest temperature considered here (2400 K) these 

amounted to less than 0.014% of the total partition function, which is negligible for the 

present purposes.   
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 The maximum correction obtained via extrapolation was about 3.6% which, given 

the very high accuracy that the extrapolations typically achieve,9,11,42 is sufficiently small 

that errors introduced from the extrapolation are expected to be negligible (i.e., small 

compared to the statistical uncertainties).  Since in many contexts extrapolation is 

notoriously inaccurate, and our typical statistical uncertainties of ~0.1% are miniscule 

compared to the maximum extrapolation correction, it is worthwhile to provide a 

demonstration to support the plausibility of this expectation.  The largest extrapolation 

correction (~3.6%) in Table VI occurs at T = 600 K where we used a Pmax of 30; we 

repeated this calculation resetting Pmax to 60 and using a different seed for the random 

number generator.  The partition function estimates obtained from this new calculation were 

, 0.014 648 ± 0.000 012 011000.0003014.0 ± , and 0 011000.0620013. ±  at P = 20, 30, 

and 60 respectively.  The extrapolated result is , with an extrapolation correction 

of only ~0.93% (a reduction of about a factor of 4 from the Pmax = 30 calculation); we note 

that this value agrees with the extrapolated value presented in Table VI to within ~0.06%, 

which is within the limits of the statistical uncertainties and thus suggests that the 

extrapolation error is comparable to or smaller than this.  If, instead of extrapolation, we 

were to rely only on the use of a single large value of P, we would require P to be at least 6 

to 7 times larger than the value (Pmax = 30) used for the calculation in Table VI to reduce 

the truncation error to below that of the statistical uncertainty.   

493013.0

 The present calculations are intended as benchmarks—and thus warrant high 

precision—but for many applications a final uncertainty of several percent (or even larger) 

is perfectly acceptable, so one might be tempted to use significantly lower values of Pmax 

and rely on extrapolation for much larger corrections than those represented here.  This 
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might well be acceptable in some situations, but a word of caution is warranted.  The 

extrapolation correction of the ESPE approach42 is extremely accurate in the regime where 

the partition function has approached the asymptotic convergence rate indicated in Eq. (12).  

For sufficiently low values of P, this expression will not hold and dramatically poorer 

results will be achieved.  If, for instance, one chooses a Pmax of 12 for the calculation at T = 

600 K, the partition functions at P = 4, 6, and 12 are 0.052 613 ± 0.000 040, 

, and 0.028 142 ± 0.000 023 015000.0753016.0 ±  respectively.  Extrapolating these 

values yields a result of , which corresponds to an extrapolation correction of 

about 16.7% but results in an error of about 3.3% compared to the statistical uncertainty of 

only 0.09%.  The partition function for P = 4 is larger than the converged result by a factor 

of about 3.9, and thus P = 4 is not sufficiently near the asymptotic limit to permit accurate 

extrapolation.   

955013.0

 Table S-I (in supplementary material64) presents an extended table of extrapolated 

partition functions; only those values that are also present in Table VI will be considered 

further in the following sections.   

 Table VII compares the relative efficiencies of various subsets of importance 

sampling and stratification options for a calculation at T = 1000 K using the parameters 

presented in Tables I and VI.  The overall increase in efficiency of a factor of ~1600 

compared to purely uniform sampling is considerable.  Importance sampling in the three 

Jacobi magnitudes provides the largest single improvement, but importance sampling in two 

Jacobi angles also provides a very significant enhancement.  Stratification in the single 

Jacobi dihedral angle is observed to provide only a small benefit (factors of 1.4–1.7 

depending on the type of importance sampling used), but for the present application this is 
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the floppiest coordinate, and thus this is not entirely unexpected.  Interestingly, Table VII 

shows that importance sampling simultaneously in both the angular and radial coordinates 

improves the efficiency by more than the product of the efficiency gains for employing 

either of these techniques separately. 

 

VII. B. Comparison to results from the separable approximation 

 We have compared the FPI calculations with the separable mode and Pitzer–

Gwinn approximations which use the accurate fundamentals and harmonic frequencies of 

the Koput, Carter, and Handy surface.24     

 Table VIII lists the classical and quantum mechanical values for the vibrational 

partition function obtained using Eq. (34) and (36) at various temperatures.  It shows that 

there is a large improvement at low temperatures by replacingQ with .  The use 

of Q  might naively be expected to yield the most accurate harmonic value of the 

vibrational partition function since it uses both the accurate ZPE and the accurate 

fundamentals.  This approximation predicts the lowest few eigenvalues quite accurately (and 

thus yields excellent results at very low temperatures), but it tends to systematically 

overestimate the energies of the higher eigenvalues, and thus it systematically 

underestimates the true partition function.   

HO
vib Q Z-HO

vib

ZFHO
vib

−

 Estimating the ZPE using the fundamental frequencies tends to overestimate the 

effects of anharmonicity, resulting in predicted values that are too low.  For H2O2, this 

estimate is too low by 146 cm-1, whereas the harmonic approximation is too high by 112 

cm-1.  This error causes the Q FHO
vib

−  values to be higher than those of the HO-ZF 
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approximation, and a fortuitous cancellation of errors often results in the HO-F values being 

more accurate (as is the case here).  This same kind of cancellation has been noted 

previously for other systems.60 

 Table IX shows the classical and quantum mechanical values for the rotational 

partition function according to Eqs. (37)–(41).  (A longer version of this table is in 

supplementary material.64)  We can see that even though the B and C rotational constants 

differ by about 2.6%, the symmetric top approximation agrees extremely well with the 

asymmetric result since IM is larger than CBII  by only about 0.008%.  The classical and 

quantum mechanical symmetric partition functions agree within about 0.14%, and the 

difference between the vibrating rotator and rigid rotator approximations is about 1.9%.  

Thus, Q(T) will be relatively insensitive to the choice of methods used to treat the rotational 

part of the partition function.   

 Table X gives values for separable approximations to the vibrational-rotational 

partition function and compares them to the TT-FPI-ESPE result and the accurate classical 

mechanical result.  (A longer version of this table is in supplementary material.64)  At 300 K, 

we find that the classical harmonic (CHO-RR) result differs from the accurate result by six 

orders of magnitude, while at 2400 K, the error between the CHO-RR result and the 

accurate result is 35%.  A similar trend is observed when comparing the accurate classical 

results to the accurate QM results, with the classical result being nearly seven orders of 

magnitude too large at 300 K and 55% too large at 2400 K.  The quantal HO-RR result 

show a dramatic improvement compared to the CHO-RR results.  The deviation of the HO-

RR partition function from the FPI result ranges from 73% at 300 K to 60% at 2400 K.  

Thus the HO-RR results still leave much room for improvement.  We first improve upon the 
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HO-RR result by pulling out the harmonic ZPE estimate in the vibrational partition function 

according to Eq. (36) and replacing it with the accurate value.  We also replace the rigid-

rotator rotational partition function with that of the vibrating rotator approximation.  A large 

improvement is observed in proceeding from the HO-RR method to the HO-Z-VR method 

due to these small changes.  The errors in the partition function for the HO-Z-VR result 

(compared to the accurate FPI result) range from 53% at 300 K to 57% at 2400 K. The HO-

Z-VR results show a small improvement compared to the HO-ZF-VR results due to the use 

of the calculated fundamentals instead of the harmonic frequencies in the vibrational 

partition function.  The errors in the partition function for the HO-ZF-VR results range from 

52% at 300 K to 51% at 2400 K.  The best overall results are obtained from the HO-F-VR 

method; however, this is partly due to a fortuitous cancellation of errors as explained above.  

The errors in the partition function for the HO-F-VR result range from 4% at 300 K to 46% 

at 2400 K.   

 

VII. C. Comparison to the Pitzer–Gwinn Approximation 

 Table XI shows values for the Pitzer–Gwinn approximation.  The error in the  

PG-HZPE value of the partition function as compared to the FPI result is 38% at 300 K and 

5% at 2400 K.  The error in the PG-AZPE value of the partition function as compared to the 

FPI result is only 7% at 300 K and 1.7% at 2400 K.   
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VII. D. Free energies 

 Tables VI, X, and XI give the path integral results for the internal partition function 

.  From these we can calculate the standard-state Gibbs free energy at temperature T, intQ

o
TG , by 

 
A

T N
TQTQ

RTG
)()(

ln inttrans
o

o −=  (48) 

where R is the universal gas constant, Q  is the translational partition function evaluated 

under standard-state conditions (taken here as an ideal gas at a pressure of 0.1 MPa), and N

o
trans

A 

is Avogadro’s number.  However, we have taken the zero of energy at the minimum of the 

potential surface, whereas the values in the thermodynamic tables, °
TG~ , are consistent with 

putting the zero of energy at the ground state.  We denote this shift in the zero of energy by a 

tilde.  Rewriting Eq. (48) with this shift gives 

 
A

T N
TQTQ

RTG
)(~)(

ln~ inttrans
o

o −=  (49) 

where 

 . (50) 
G

)(~
intint

EeTQQ β=

We use the accurate value (for this PES) of 5726.1 cm−1 for EG.  The last column of Table 

XII gives the resulting path integral values of o
TG~ .  Table XII contains the standard-state 

Gibbs free energy values for the corresponding partition functions in Table X and compares 

them to the accurate calculations and the accurate classical mechanical calculation. The 

errors in free energy calculated by exact classical mechanics, as compared to the FPI results, 



 36

which represent exact quantum mechanics for the given PES, are 39 kJ/mol at 300 K and 

13.9 kJ/mol at 1500 K. 

 Table XI shows the standard-state Gibbs free energy values for various separable 

methods.  We see that the errors in the CHO-RR free energy value range from 37 kJ/mol at 

300 K to 8.6 kJ/mol at 2400 K.  We find that the errors in the standard-state free energy 

calculated by the quantum mechanical HO-RR approximation, for the chosen PES, range 

from 3.3 kJ/mol at 300 K to 18.4 kJ/mol at 2400 K. The errors decrease greatly at lower 

temperatures where the separable approximation is more appropriate.  The errors in the 

standard-state free energy values calculated by the HO-ZF-VR approximation range from 

1.9 kJ/mol at 300 K to 16.6 kJ/mol at 2400 K.  The errors in standard-state free energy 

values calculated by the HO-F-VR approximation range from 0.1 kJ/mol at 300 K to 12.3 

kJ/mol at 2400 K.   

 Table XIII gives the standard-state Gibbs free energy values for the Pitzer–Gwinn 

approximations and compares them to the FPI results and to the data available from 

thermodynamic tables.26,27 The Pitzer–Gwinn approximations provides a dramatic 

improvement from the exact classical anharmonic values.  The errors in the PG-HZPE result 

range from 1.2 kJ/mol at 300 K to 1.0 kJ/mol at 2400 K.  The errors in the PG-AZPE result 

range from 0.16 kJ/mol at 300 K to 0.39 kJ/mol at 2400 K.   

 

VII. E. Comparison to experiment   

 Although the first goal of this project was to obtain accurate partition functions and 

standard-state free energies for a known realistic PES, the PES used in the calculations is 

good enough that we can also compare the results to experiment.   
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 The quantities used in the thermodynamic
 
tables26,27 to which we will make 

comparison are, in the notation used here, 
T

HG ]~[ 298T
oo −−

 and , where oo
2980 HH − o

TH  is 

the standard-state enthalpy at temperature T.  Using these values, one can calculate the 

Gibbs free energy function65,66 
defined as 

 
T

HG
T

]~[
)(gef 0T

oo −
−= . (51) 

At 0 K, the standard state enthalpy, , is zero.  At any temperature, the standard state 

Gibbs free energy, 

o
0H

o
T

~G , with the zero of energy at the ground state is obtained by 

multiplying the Gibbs free energy function by the temperature. 

 Table XII shows that the present calculations of the standard-state free energy agree 

with prior tabulations26,27 based partly on experimental data within 1.2 kcal/mol for 300–

2400 K, whereas the harmonic oscillator-rigid rotator approximation has errors of 3–12 

kcal/mol.  Our calculations show systematically better agreement with the tabulations of 

Dorofeeva et al.27 than the earlier JANAF26 values. 

 

VIII. CONCLUDING REMARKS 

 This paper presents the first example of converged accurate quantal rovibrational 

partition functions for a polyatomic molecule with a torsion.  The calculations are carried 

out by the TT-FPI-ESPE path integral method, and the statistical errors in the free energies 

are about 0.1% from 400 K to 2400 K; the calculations are most difficult at the lowest 

temperature (300 K) where the statistical error is 0.4%.  Our results for the standard-state 
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free energies show excellent agreement with the recent data of Dorofeeva et al.,27 much 

better than with the earlier26 JANAF tabulations.   

 The availability of well-converged results allows us, for the first time, to test the 

effect of anharmonicity and vibrational-rotational coupling for a molecule with a torsion.  

We find that the errors in the standard-state free energy calculated by the quantum 

mechanical harmonic oscillator-rigid rotator approximation range from 3.3 kJ/mol at 300 K 

to 18.4 kJ/mol at 2400 K, and for the “best” separable rotation approximation (i.e., the HO-

ZF-VR approximation) the errors range from 1.9 kJ/mol at 300 K to 14.0 kJ/mol at 2400 K.  

The classical harmonic oscillator-rigid rotator approximation to the standard-state free 

energy yields errors ranging from 37 kJ/mol at 300 K to 8.6 kJ/mol at 2400 K.  The 

standard-state free energy calculated from the anharmonic quantum mechanical partition 

function obtained using the Pitzer–Gwinn approximation gives a slight overestimation for 

the PG-AZPE method and a slight underestimation for the PG-HZPE method.  The errors in 

the PG-HZPE result range from 1.2 kJ/mol at 300 K to 1.0 kJ/mol at 2400 K.  The errors in 

the PG-AZPE result range from 0.2 kJ/mol at 300 K to 0.4 kJ/mol at 2400 K.   

 We presented a very efficient new scheme for uncorrelated importance sampling in 

the configuration space when using Jacobi coordinates.  This approach permits Monte Carlo 

samples of the configuration space to be chosen with minimal losses from rejection.  The 

cost of choosing such samples is only slightly greater than the cost of uniform sampling (and 

requires only a very small percentage of the overall computational cost), but the efficiency 

can be about three orders of magnitude greater than uniform sampling.  We expect that this 

approach will permit calculations of significantly larger systems than the one presented here.   

 



 39

ACKNOWLEDGMENTS 

 We thank Jacek Koput for providing us with a copy of the potential parameters 

and unpublished data on the zero-point energy.  This work was supported in part by the 

National Science Foundation under grant no. CHE00-92019. 

 

APPENDIX 

 In this article we have made frequent use of a slight extension of the ziggurat 

sampling scheme of Marsaglia and Tsang.45,46  For completeness we will give here a brief 

statement of the method.  We restrict attention to a one-dimensional, non-negative 

function y = f(x) having a single finite maximum and a finite domain [0, xmax]; the 

method can also be applied to functions with a finite area and an infinite domain as 

discussed elsewhere.45,46  The original ziggurat method45,46 was restricted to monotonic 

functions but it is easily and efficiently extended to functions with a single relative 

maximum.   

 The method works by covering the curve y = f(x) with a set of equal-volume 

disjoint rectangles (we use a set of 256).  These rectangles are oriented in a vertical stack 

with a single rectangle at any given height, y.  The vertices of rectangle i are ( , yi),  xi
l

( , yi+1), ( , yi), and ( , yi+1), where the values yi are constructed via xi
l xi

h xi
h

 01 =y  (A1) 

 )  (A2) /(1
l
i

h
iii xxVyy −+=+

where V is the volume of the individual rectangles, and  and  are, respectively, the 

lowest and highest values of x such that .  The vertices of the rectangles are 

l
ix h

ix

iyxf ≥)(
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uniquely defined by the above equations and the value of V.  We choose V to be the 

smallest value such that 256 rectangles entirely covers the area under the curve.   

 Sampling proceeds by choosing a random rectangle, i, and then a random 

distance, x, between  and .  If x also lies between  and , then clearly every 

point in this rectangle with that value of x lies below the curve f(x) and x can be accepted 

as a valid sample.  Otherwise, we choose a random value, ytrial, between yi and yi+1 and if 

ytrial is less than f(x) we also accept x as a valid sample.  If, instead, ytrial is greater than 

f(x) then we reject this value of x and start from scratch.  

l
ix h

ix l
ix 1+

h
ix 1+
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TABLE I.  Parameters used in calculating Q[P](T) at various temperatures. 
———————————————————————————————————— 
Parameter 300 K 400 K 600–800 K 1000 K 1500 K 2400 K 
———————————————————————————————————— 
Nsamples a 2×108 2×108 5×107 1×107 1×107 1×107 

min
OHR b 60 60 60 60 50 50 
max
OHR b 100 100 100 100 105 105 
min

OH-OHR c 290 290 290 290 270 270 
max

OH-OHR c 450 450 450 450 480 480 

OHR∆ d 0.05 0.055 0.08 0.09 0.12 0.18 

OHOH−∆ R e 0.08 0.09 0.13 0.15 0.20 0.27 

iθ∆ f 5 5 7 9 10 16 

———————————————————————————————————— 
a The number of Monte Carlo samples; 10% are distributed in a strata-blind manner in 
the initial phase, the remaining samples are adaptively distributed among 20 equal-
volume strata during 20 subsequent sampling phases. 
b The minimum and maximum allowed OH distance in mass-scaled bohr.  The 
coordintates are scaled to a reduced mass of 1 me (i.e., the mass of an electron). 
c The minimum and maximum allowed OH–OH distance in mass-scaled bohr. 
d The OH importance function width parameter (in bohr) in the importance function; the 
center is always taken as 1.8192 a0. 
e The OH–OH importance function width parameter (in bohr) in the importance function; 
the center is always taken as 2.77611 a0. 
f The importance function width parameter (in degrees) for sampling either of the two 
Jacobi angles; the center is always taken as 102.934º.  
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TABLE II.  Calculated and experimentally observed fundamentals and harmonic normal 

mode frequencies (in cm−1).   
________________________________________________________________________ 

 Modea Harmonicb Fundamentalsc Experimental 
 
 ν1 3807.7 3624.3 3609.80e 

 ν2 1437.2 1396.9 1395.88f 

 ν3 910.9 874.4 865.94g 

 ν4 381.9 371.6 370.89h 

 ν5 3809.2 3625.1 3610.66d 

 ν6 1329.8 1267.8 1264.58f 

________________________________________________________________________ 
a The vibrational modes are symmetric (ν1) and antisymmetric (ν5) OH stretches, 
symmetric (ν2) and antisymmetric (ν6) HOO bends, symmetric OO stretch (ν3), and the 
HOOH torsion (ν4). 
b The harmonic normal mode frequencies as calculated using the POLYRATE v9.1 
program. 
c The calculated fundamentals as obtained by Koput, Carter, and Handy using their H2O2 
potential energy surface.24 
dRef. 53 
eRef. 54 
fRef. 55 
gRef. 56 
hRef. 57 
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TABLE III.  Comparison of zero-point energies of H2O2 from various sources.   
 
 
 Source ZPE (cm−1) 

 

 From calculated fundamentals 5580.1 

 From harmonic frequencies 5838.4 

 Accurate for this PESa 5726.1 
 
a the variational result of Ref. 52. 
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TABLE IV.  Source of zero point energies and frequency values used for various 

approximate partition functions 

 
 
 Method ZPE frequencies 

 
  harmonic harmonic QHO

vib

  accurate harmonic Q Z-HO
vib

  accurate fundamentals Q ZFHO
vib

−

  from fundamentals fundamentals Q FHO
vib

−

 
 

 ____________________________________________________________________________________________________________ 
____________________________________________________________________________________________________________
____________________________________________________________________________________________________________ 

 
 
 
 
TABLE V.  Values of the moments of inertia used in the calculations (in kg m2).a   
________________________________________________________________________ 
  2.76 (-47) e

AI

  3.18 (-46) e
BI

  3.27 (-46) e
CI

  3.23 (-46) e
MI

  2.78 (-47) 0
AI

  3.27 (-46) 0
MI

________________________________________________________________________ 
a Powers of ten are in parentheses. 
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TABLE VI.  TT-FPI partition functions and the 2σ statistical uncertainties for various values of P and various temperatures.   
—————————————————————————————————————————————————————— 
 300 K 400 K 600 K 800 K 
—————————————————————————————————————————————————————— 
Pmax 90 60 30 30 

]1[Q  (1.90264±0.00021)×10−2 1.66816±0.00014)×10−1 3.50548±0.00090 30.2048±0.0051 

]3/[ maxPQ  (3.984±0.018)×10−9 (6.8927±0.0073)×10−6 (1.8298±0.0014)×10−2 1.08642±0.00047 

]2/[ maxPQ  (3.409±0.015)×10−9 (5.9612±0.0065)×10−6 (1.5567±0.0013)×10−2 1.01020±0.00044 

][ maxPQ  (3.092±0.013)×10−9 (5.4381±0.0061)×10−6 (1.4001±0.0012)×10−2 0.96477±0.00043 

ESPEQ  (2.995±0.013)×10−9 (5.2746±0.0059)×10−6 (1.3501±0.0011)×10−2 0.94972±0.00042 

—————————————————————————————————————————————————————— 
—————————————————————————————————— 
 1000 K 1500 K 2400 K 
—————————————————————————————————— 
Pmax 30 18 18 

]1[Q  160.499±0.071 3358.6±1.6 116785±81 

Q[Pmax /3] 16.481±0.013 1174.18±0.72 76478±59 

]2/[ maxPQ  15.856±0.013 1136.06±0.69 75744±58 

][ maxPQ  15.479±0.012 1112.91±0.66 75301±58 

ESPEQ  15.354±0.012 1105.11±0.66 75152±58 

——————————————————————————————————
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TABLE VII.  Relative efficiencies of various subsets of configuration space importance 

sampling and stratification options for a calculation at T = 1000 K using the parameters in 

Tables I and VI.   
———————————————————————— 
CSIS scheme stratification relative efficiencya 
———————————————————————— 
Ab and Rc yes 1600 
A only yes 27 
R only yes 56 
none yes 1.4 
A and R no 930 
A only no 19 
R only no 39 
none no 1.0 
———————————————————————— 
a The efficiency is relative to a calculation without stratification or either type (radial, R, 
or angular, A) of configuration space importance sampling (CSIS).  All calculations 
included importance sampling in the Fourier coefficient space.   
b Denotes importance sampling in the two Jacobi angles as further discussed in the text. 
c Denotes importance sampling in the three Jacobi magnitudes as further discussed in the 
text 
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TABLE VIII.  Classical mechanical and quantum mechanical values of Qvib at various 

temperaturesa 

 
 
 T(K)   QCHO

vib QHO
vib Q ZHO

vib
−  Q ZFHO

vib
−  Q FHO

vib
−  

 
 300 8.52(−6) 8.36(−13) 1.43(−12) 1.45(−12) 2.92(−12) 

 800 3.06(−3) 8.21(−5) 1.00(−4) 1.06(−4) 1.38(−4) 

 2400 2.23 1.37 1.47 1.67 1.82 

a Powers of ten are in parentheses.  
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TABLE IX.  Classical mechanical and quantum mechanical values of  at various 

temperatures

)(rot TQ
 

 
 
 T(K)      Q easym,

CMrot, Q esym,
CMrot, Q esym,

rot Qsym,0
CMrot, Qsym,0

rot

 
 300 965.3 965.3 966.6 983.6 985.0 

 800 4203.3 4203.7 4205.8 4283.4 4285.6 

 2400 21841.2 21843.1 21846.8 22257.4 22261.1 
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TABLE X.  Vibrational-rotational partition functions at various temperaturesa 

 
 T(K) CHO-RR HO-RR HO-Z-VR HO-ZF-VR CM, anhar.b HO-F-VR ESPE 

 
 300 8.23(−3) 8.08(−10) 1.41(−9) 1.43(−9) 1.90(−2) 2.88(−9) 3.00(−9) 

 400 7.12(−2) 1.59(−6) 2.43(−6) 2.48(−6) 1.67(−1) 4.20(−6) 5.27(−6) 

 600 1.49 4.60(−3) 6.13(−3) 6.38(−3) 3.51 9.05(−3) 1.35(−2) 

 800 1.29(+1) 3.45(−1) 4.30(−1) 4.54(−1) 3.02(+1) 5.91(−1) 9.50(−1) 

 1000 6.87(+1) 5.80 6.94 7.43 1.60(+2) 9.17 1.54(+1) 

 1500 1.44(+3) 4.37(+2) 4.96(+2) 5.46(+2) 3.36(+3) 6.28(+2) 1.11(+3) 

 2400 4.88(+4) 2.99(+4) 3.26(+4) 3.72(+4) 1.17(+5) 4.06(+4) 7.52(+4) 

a Powers of ten in parentheses. 
b The accurate classical result obtained by a TT-FPI calculation with P = 1.   
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TABLE XI.  Partition functions obtained by the Pitzer–Gwinn approximation compared 

to the accurate path integral results at various temperaturesa 

_______________________________________________________________ 
 
 T(K) PG-HZPE PG-AZPE  )(ESPE TQ
_______________________________________________________________ 
 300 1.87(−9) 3.20(−9) 3.00(−9) 

 400 3.73(−6) 5.58(−6) 5.27(−6) 

 600 1.08(−2) 1.42(−2) 1.35(−2) 

 800 8.09(−1) 9.90(−1) 9.50(−1) 

 1000 1.35(+1) 1.59(+1) 1.54(+1) 

 1500 1.02(+3) 1.14(+3) 1.11(+3) 

 2400 7.16(+4) 7.66(+4) 7.52(+4) 
_______________________________________________________________ 
a Powers of ten in parentheses. 
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TABLE XII.  Standard-state Gibbs free energy values, °
TG~ , (in kJ/mol) at various 

temperatures.   
———————————————————————————————————— 
 T(K) CHO-RR HO-RR HO-Z-VR HO-ZF-VR 
———————————————————————————————————— 
 300 −96.18 −55.93 −57.32 −57.35 

 400 −114.97  −79.36 −80.77 −80.84 

 600 −158.44 −129.60 −131.04 −131.23 

 800 −207.55 −183.48 −184.94 −185.31 

 1000 −260.87 −240.31 −241.81 −242.38 

 1500 −407.62 −392.77 −394.34 −395.55 

 2400 −704.88 −695.14 −696.86 −699.48 

———————————————————————————————————— 
———————————————————————————————————— 
 T(K) HO-F-VR CM, anhar.a ESPEb 
———————————————————————————————————— 
 300 −59.10 −98.27 −59.20 

 400 −82.59 −117.81 −83.35 

 600 −132.98 −162.71 −134.98 

 800 −187.05 −213.22 −190.21 

 1000 −244.13 −267.93 −248.41 

 1500 −397.29 −418.21 −404.35 

 2400 −701.23 −722.30 −713.50 

a The accurate classical result obtained by a TT-FPI calculation with P = 1.  
b The enhanced same path extrapolated TT-FPI results 
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TABLE XIII.  Standard-state Gibbs free energy values, °

TG~ , (in kJ/mol) at various temperatures  
____________________________________________________________________________________________________ 
 T(K) PG-HZPE PG-AZPE ESPEa JANAFb JPCRDc 
____________________________________________________________________________________________________ 
 300 −58.02 −59.36 −59.20 −59.04 −59.20 

 400 −82.19 −83.53 −83.35 −83.05 −83.34 

 600 −133.87 −135.21 −134.98 −134.54 −134.97 

 800 −189.14 −190.48 −190.21 −189.78 −190.19 

 1000 −247.37 −248.71 −248.41 −248.03 −248.36 

 1500 −403.35 −404.69 −404.35 −404.03 −404.09 

 2400 −712.55 −713.89 −713.50 N/A −712.29 
____________________________________________________________________________________________________ 
a The enhanced same path extrapolated TT-FPI results  
bRef. 26 
cRef. 27 


	bDepartment of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
	II.B. Extrapolation
	III.  ALGORITHM
	IV. SAMPLING STRATEGY
	V. COMPUTATIONAL DETAILS
	VI. APPROXIMATE METHODS
	VI.A. Separable approximations
	VI.B. Non-separable approximations
	VII. RESULTS AND DISCUSSION
	
	ACKNOWLEDGMENTS


	APPENDIX

