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Nineteen analytic potential energy functions (PEFs) for aluminum (three pairwise additive ones, six nonpairwise
additive ones with three-body terms, and ten embedded atom-type PEFs) were obtained from the literature.
The PEFs were tested and reparametrized using a diverse training set that includes 20 potential energy curves
and a total of 224 geometries for five aluminum clusters AlN (N ) 2, 3, 4, 7, and 13) computed using hybrid
density functional theory, as well as the experimental face-centered cubic cohesive energy and lattice constant.
The best PEFs from the literature have mean unsigned errors (MUEs) over the clusters in the data set of
∼0.12 eV/atom. The best reparametrized PEFs from the literature have MUEs of 0.06 eV/atom. The data set
is also used to develop, parametrize, and systematically study the effectiveness of several functional forms
designed specifically to model many-body effects in clusters, including bond angle, screening, and coordination
number effects; a total of eighteen new PEFs are proposed and tested. The best potential overall has an MUE
of 0.05 eV/atom, explicitly includes screening and coordination number effects, features linear scaling, and
incorporates the accurate two-body and bulk limits.

I. Introduction

In a molecular dynamics simulation, a set of atomic coordi-
nates or a wave function evolves in time according to Newton’s
or Schrödinger’s equation of motion. Within the Born-
Oppenheimer approximation,1,2 all of the relevant information
for such a calculation is contained in the masses of the atoms
and in the potential energy function (PEF), which describes the
variation of the ground-state electronic energy as a function of
the nuclear coordinates. The evaluation of the accuracy of a
PEF is therefore a prerequisite for interpreting the results of
any dynamical calculation in which it is used.

Numerous methods exist for computing PEFs for metallic
systems and provide varying compromises of accuracy and
computational affordability. For aluminum systems containing
up to several hundred atoms, the PEF may be calculated using
quantum mechanical methods such as hybrid density functional
theory3,4 (HDFT) with an accurate basis set for small systems
(<20 atoms), HDFT with effective core potentials5-9 for systems
containing up to∼100 atoms, and tight-binding methods10 for
larger systems. For still larger systems, such as those used for
studying the mechanical properties of nanostructured materials,
simulations often contain at least 100 structural units of the
material, i.e., millions or even billions of atoms. Simulations
of this size require PEFs that may be evaluated rapidly and
inexpensively, such as analytic PEFs. Inexpensive PEFs are also
important for simulations of smaller systems when modeling
processes with long time scales or sampling various initial
conditions, temperatures, pressures, etc.

Analytic PEFs may be developed and justified in a variety
of ways, but for large systems they are most often validated by
comparing the results of a simulation with some set of known
(e.g., experimental) results. This method is often indirect, and
it may not be clear whether the success or failure of a PEF is
due to the PEF itself, the dynamical method, or uncertainties
in the experimental situation. More importantly, it is desirable
to develop PEFs that may be used to simulate events that cannot
be easily observed in the laboratory or that are not yet well
understood, and it is quite possible that there are no experimental
data available that are sensitive to the full domain of the PEF
that is required to simulate such processes. A second, more direct
method for validating PEFs involves comparing the energies
and forces predicted by a PEF over a range of geometries
representative of the simulation of interest with the results of
electronic structure calculations. It is often difficult to determine
beforehand which configurations will be important for a
simulation, and large numbers of expensive calculations using
high-level electronic structure calculations may be required to
sample the important geometries sufficiently. Furthermore, it
is often not clear if even high-level electronic structure calcula-
tions are themselves accurate, especially for systems involving
metals.

The goal of this paper is to test and develop analytic PEFs
for aluminum clusters using the second, more direct approach.
We have previously developed11 a data set of accurate aluminum
cluster energies using the PBE0 hybrid density functional
theory12-14 (HDFT) with the MG3 basis set,15,16 which was
found to be the most accurate of several HDFT methods tested
for small aluminum clusters.11 The data set has been augmented
slightly in the present work, and the augmented set includes
224 geometries for AlN clusters withN ) 2, 4, 5, 7, and 13.

A total of nineteen analytic PEFs that have previously been
developed for aluminum have been collected from the literature.
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We have attempted to include well-tested PEFs that feature
various theoretical models and parametrization schemes. First,
the collected PEFs are evaluated using the aluminum cluster
data set along with the experimental face centered cubic (FCC)
cohesive energy and lattice constant. Next, we evaluate the
relative applicability and flexibility of the various functional
forms themselves by reparametrizing the PEFs against the
aluminum cluster data set and the experimental cohesive energy
and lattice constant using a microgenetic17,18 algorithm.

Another goal of the present paper is to systematically study
many-body effects in aluminum clusters and test several
functional forms, not previously applied to aluminum, that were
designed specifically to model these effects.

The paper is organized as follows. Section II summarizes the
PBE0/MG3 aluminum cluster data set as well as the methods
used to evaluate the PEFs and optimize their parameters. Section
III summarizes the analytic PEFs obtained from the literature
and several additional functional forms that we designed to
model many-body effects in metal clusters. Section IV contains
results and discussion, and section V is a summary.

II. PEF Evaluation and Optimization

The test set is composed of several computed aluminum
cluster energies as well as the experimental FCC cohesive
energy and lattice constant. In a previous paper,11 the PBE0
hybrid density functional theory12-14 (HDFT) method with the
MG3 basis set15,16 was validated for aluminum clusters by
comparing the results of several HDFT methods with more
accurate calculations for a test set of small cluster energies. The
PBE0/MG3 method was found to be the most accurate of several
HDFT methods tested with an MUE of only 0.01 eV/atom
averaged over a data set of small clusters.11 The PBE0/MG3
method was then used11 to develop a data set of energies for
190 geometries, including five cluster sizes AlNk, whereNk )
2, 3, 4, 7, and 13 fork ) 1, ..., 5, respectively. The data set has
been augmented slightly in the present work with 34 additional
Al2 calculations for a total of 224 energies.

Also considered in the evaluation of the PEFs are the bulk
cohesive energiesEb for an FCC crystal with two different lattice
constants: the experimental lattice constantae, which equals
4.022 Å when finite-temperature and zero-point effects are
removed,19 and the lattice constant corresponding to the
minimum-energy lattice constant of the PEF, which we will
denoteam. The two energies are labeledEb(ae) andEb(am), and
their difference provides an indirect measure of the accuracy
of the fitted lattice constantam. The cohesive energy of a cluster
is the atomization energy of the cluster divided by the number
of atoms in the cluster. The bulk cohesive energyEb for an
arbitrary value ofa is approximated by computing the cohesive
energiesQN(a) for two FCC quasispherical clusters (QSCs) with
N ) 55 and 321 and lattice constanta and extrapolating to
infinite N by assuming a linear dependence onN-1/3, i.e.,

We verified that the linear relationship in eq 1 is a good
approximation for the analytic PEFs considered here and that
extrapolating from the two QSC energies (for Al55 and Al321)
provides a good estimate (forN g 55) of the value obtained by
fitting to a larger series of QSC energies with various large
values ofN. The lattice constantam predicted by the PEF is
obtained by finding the minimum ofEb(a) with respect toa.

Several mean unsigned errors (MUEs) were calculated using
the test set as follows. LetEk

i stand for the PBE0/MG3 energy
of geometryi for cluster sizeNk, wherei ) 1, ...,nk, i.e.,nk is
the number of geometries included in the test set of cluster size
Nk. Similarly, the corresponding energy computed for one of
the analytic PEFs isGk

i . In each case we take the zero of
energy as the energy of the infinitely separated atoms in the
ground state. Thus, if the absolute energies from the PBE0/
MG3 and analytic PEF calculations areek

i andgk
i , respectively,

we have

and

wheree1
1 and g1

1 are atomic energies. The unsigned error for
each geometry in the data set is

The unsigned error in the energy difference of any pair of
geometries,i and i′, of a single cluster sizeNk is

and this error measures the accuracy of the shape of the PEF.
The MUE per atom for each cluster sizeNk is defined as

The average error for the five cluster sizes (i.e., the average of
εk, k ) 1-5) is labeledεc. The unsigned error in the bulk
cohesive energy is given by

whereEb
e is the experimental FCC bulk cohesive energy for

aluminum20,21 (3.43 eV) and excludes vibrational zero-point
contributions as discussed elsewhere.11 The “total” MUE per
atomε is the weighted average ofεb and the five values ofεk:

where

In eq 8, the five per-atom MUEs for the clustersεk are weighted
according to their cluster sizes, thus giving more relative weight
to the Al13 data points than to the smaller clusters. The
experimental bulk cohesive energy and lattice constant are
included in the data set with a small relative weight to test
whether the analytic PEFs are reasonable for clusters larger than
Al13 and to ensure that the newly parametrized models extrapo-
late in a reasonable, even if not quantitative, way to the bulk
limit, but it is not the goal of this paper to develop analytic
PEFs that predict quantitative values for bulk properties.
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A microgenetic algorithm17,18 was used to optimize a set of
parameters using eq 8 as the unfitness function. Note that to
avoid a relatively expensive calculation,Eb(am) was ap-
proximated during the reparametrization procedure by fitting
Eb(a) with three different values ofa (1.1ae, ae, and 0.9ae) to a
parabola and settingam equal to the value ofa at the minimum
of the parabola. This approximation was used only during the
fitting procedure, and whenever errors are tabulated in the
present paper, eq 1 is minimized numerically to obtainam and
Eb(am).

Using a microgenetic algorithm does not guarantee that the
best set of parameters for a particular error function (unfitness
function) is found (because the optimization may converge to
a local minimum), and often several sets of parameters may be
found that give similar values for the unfitness function but have
varying distributions of errors over the data set. Furthermore,
the microgenetic algorithm may determine a “best” set of
parameters that no longer has a physically meaningful inter-
pretation. We have, however, attempted a thorough search of
parameter space by optimizing several initial guesses for the
parameters for each PEF, and in every case we continued the
optimization until we found a physically meaningful set of
parameters that gave the smallest value we could obtain forε.
Therefore, the results allow for a discussion of the relative
success of each type of PEF, which is a goal of the present
paper.

III. Potential Energy Functions

In this section, nineteen PEFs for aluminum that have been
collected from the literature are described and categorized. (Note
that the term PEF is used to indicate a particular functional form
and a particular choice of parameters.) We do not present an
exhaustive review of the available PEFs (see refs 22 and 23 for
recent reviews of PEFs parametrized for a variety of materials
systems, including aluminum), but we have attempted to include
PEFs featuring several different functional forms based on a
variety of different theoretical justifications or empirical strate-
gies. When PEFs are coded from the literature, it is always
possible that a typographical error is present in the published
work. We hope that we do not misrepresent the accuracy or
inaccuracy of any PEF due to such an error, and we encourage
authors to make their PEFs available in online databases such
as POTLIB-online24 (where all of the PEFs mentioned in this
article are available for download as Fortran routines). Several
PEFs that have not been previously parametrized for aluminum
are also presented and discussed.

III.A. Pairwise Additive PEFs. In the absence of external
forces, the total energy ofN interacting atoms may be written
as25

whereVN is the sum ofN-body interaction energies; i.e.,V1 is
the energy ofN infinitely separated atoms,

andRR denotes the coordinates of atomR. Note that the zero

of energy is defined such thatV1 ) 0 for all of the PEFs
considered in the present work.

It is not clear how quickly the sum in eq 10 converges,
especially for metals, which have long-range correlations.
Nevertheless it is a popular approach to truncate eq 10, often at
only two or a few terms. PEFs that truncate the expansion at
V2 are called pairwise additive (PA), and they are well-known
to be inadequate for quantitative work.26-29 Four pairwise-
additive PEFs are considered in the present work, three of which
have been previously parametrized for aluminum.

Halicioǧlu and Pound30 (HalP) parametrized a Lennard-Jones
PEF for cubic metals by fitting to the crystal properties of
aluminum. The PEF may be written in the general form

whereσ ) (n/m)1/(m-n)Re, Re denotes the minimum-energy bond
distance of the two-body interaction, andm > n.

The Pettifor-Ward (PetW) potential has the form

and it was developed for simple metals and applied to study
structural phase transitions.31 The parameters were obtained
using second-order pseudopotential theory.32,33

Hase and co-workers (deSPH) used a Morse curve with a
parametrized range parameter to model aluminum clusters.34 The
PEF (which we will call deSPH/M) has the form

where

and

The deSPH/M PEF was developed to model Al6 by fitting to
the bond distances and frequencies for Al6 predicted by a
Lennard-Jones/Axilrod-Teller analytic PEF (labeled deSPH/
LJAT and included in section III.D).

The extended Rydberg25,35 (ER) functional form is

whereYRâ is given in eq 18. This PEF has not previously been
parametrized for aluminum; it is introduced here because it is
flexible enough to provide an accurate representation ofV2.

Parameters for the PA PEFs obtained from the literature are
given in the first numerical column of Table 1; optimized values
in the tables are explained in section IV.B.

III.B. Functional Forms for Explicit Many-Body Effects.
One strategy for modeling many-body effects is to modify a
two-body interaction in the presence of nearby atoms, i.e.,

where f Râ
MB is a many-body function that is a function of all

bond distances in the system involving either atomR or atom
â; becausef Râ

MB is designed to model many-body effects, it

V ) V1 + V2 + ... + VN (10)

V2 ) ∑
R>â

U2(RRâ) (11)

V3 ) ∑
R>â>γ

U3(RRâ, Râγ, RRγ), etc. (12)

RRâ ) |RR - Râ| (13)

U2(RRâ) ) A[( σ
RRâ

)m
- ( σ

RRâ
)n] (14)

U2(RRâ) )
2Z2

RRâ
∑
n)1

3

An cos(knRRâ + an)e
-κnRRâ (15)

U2(RRâ) ) De(exp[-2aYRâ] - 2 exp[-aYRâ]) (16)

a ) a0 + a2YRâ
2 + a3YRâ

3 (17)

YRâ ) RRâ - Re (18)

U2(RRâ) ) -De(1 + a1YRâ + a2YRâ
2 + a3YRâ

3) exp(-a1YRâ)
(19)

V ) ∑
R>â

U2(RRâ)f Râ
MB (20)
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equals unity when atomsR andâ are close to each other and
are far from all other atoms. As an alternate to eq 20, one may
write

whereU′2(RRâ) need not be the same asU2(RRâ). Obviously,
eq 20 is simpler, but eq 21 provides additional flexibility, and
both strategies are pursued.

We consider three functional forms for the many-body
function; they are designed to model screening, bond-angle, and
coordination number effects, respectively. The screening func-
tion, developed by Ho and co-workers,36-39 has the form

where

Next, we consider two new many-body functions developed
specifically for the present work. First is a bond angle (BA)
function capable of modeling three- and four-body effects:

The screening and bond-angle functions are closely related, and
both model the physical effect of weakening the interaction of
two atoms in the presence of other atoms. Note that the
screening function in eq 22 depends on the bond distanceRRâ
of the interaction being weakened, whereas the bond angle
function in eq 24 does not.

Finally, we consider the effect of coordination number. The
effective coordination number of atomR is defined as

wheregR depends on all of the internuclear distances involving

atomR, and

i.e., eq 26 counts the number of atoms near atomR, weighted
by their distance from atomR using the weighting function in
eq 27. The functional form for the coordination number (CN)
term is

where

andd, γ, andg0 are adjustable parameters. It is convenient to
think of g0 as a reference coordination number. Equation 29
always has a value between zero and unity, so that the effect of
eq 28 is to weaken theR-â bond as the number of nearby
neighbors increases.

The screening function has not been previously parametrized
for aluminum, and the bond angle and coordination number
functions are newly presented in this work. All three functional
forms may be implemented using eq 20, where they will be
labeled S, BA, and CN, respectively, or using the extended (E)
form in eq 21, where they will be labeled ES, EBA, and ECN,
respectively.

III.C. Embedded-Atom (EA) Methods. Another approach
to developing analytic PEFs that is widely applied to bulk
systems incorporates many-body effects by considering the
energy required to place an impurity (an atom) into a lattice.40

In this approach the energetic effects of this placement are
represented by an embedding functionFR, which is a function
of the local electron density. PEFs based on this approach have
the general form

whereU2 is an effective two-body interaction, andFR is an
energy functional that, in general, depends on the local electron
density at atomR and therefore on the geometry of the system.
Several applications of eq 30 have appeared which vary in their
derivations and prescriptions forU2 and FR. Very often the
embedding functionFR is written as the square root of a density-
like quantity such as a sum of exponentials. We refer to PEFs
based on eq 30 as embedded-atom-type, or for simplicity, as
embedded atom (EA) methods, and this category includes the
“glue”,41,42Finnis-Sinclair,43 second-moment approximation to
tight binding,44,45Sutton-Chen,46 and several other related47-49

methods. Nine EA PEFs that have been previously parametrized
for aluminum are considered in the present work. In addition,
one PEF based on effective medium theory50 (EMT), which is
similar to the EA approach, is also included. (Note that for
convenience the EMT PEF is grouped with the EA PEFs.)

The Gollisch51 (Gol) PEF was used to study molecular,
cluster, and surface properties and uses an exponential embed-
ding function. It has

TABLE 1: Parameters for the Pairwise-Additive PEFs

PEF parameter literature value optimized value

HalP A (eV) 1.569 0.2396
Re (Å) 2.941 2.934
m 12.00 8.144
n 6.000 5.804

PetW Z 3.000 3.000
A1 7.964 67.16
A2 1.275 0.1641
A3 0.03000 57.38
a1/π -0.4410 15.13
a2/π 0.8320 30.84
a3/π 0.4310 23.90
k1/k2F 0.1560 0.7146
k2/k2F 0.6440 0.6642
k3/k2F 0.9580 0.1479
κ1/k2F 0.7930 1.889
κ2/k2F 0.6980 0.2771
κ3/k2F 0.2780 1.926
k2F (Å-1) 3.504 3.504

deSPH/M De (eV) 0.5608 0.7989
Re (Å) 2.834 3.183
a0 (Å-1) 0.5282 0.5457
a2 (Å-3) 0.004390 0.2995
a3 (Å-4) 5.109 1.749

V ) ∑
R>â

U2(RRâ) - ∑
R>â

U′2(RRâ)(1 - f Râ
MB) (21)

f Râ
S ) 1 - tanh(øRâ

S ) (22)

øRâ
S ) κ1 ∑

γ*R,â

exp[-κ2(RRγ + Râγ)
κ3/RRâ

κ3] (23)

f Râ
BA ) 1 - tanh(øRâ

BA) (24)

øRâ
BA ) κ1 ∑

γ*R,â
∑

δ*R,â

exp[-κ2(RRγ
κ3 + Rδâ

κ3 )] (25)

gR ) ∑
R′*R

fg(RRR′) (26)

fg(R) ) {exp(γ1 +
γ1γ2

R - γ2
) if R< γ2

0 if R g γ2

(27)

fCN ) 1 - d(1 - GRâ) (28)

GRâ ) 1

1 + (gR - fg(RRâ)

g0
)γ

1

1 + (gâ - fg(RRâ)

g0
)γ

(29)

V ) ∑
R>â

U2(RRâ) + ∑
R

FR (30)

U2(RRâ) ) A exp(-RRRâ) (31)
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and

The parameters for the Gol PEF were determined from the bulk
properties of aluminum.

The PEF of Betz and Husinsky (BetH) was used to simulate
collisions of aluminum clusters with a copper surface.52 The
functional form is mathematically identical to eqs 31 and 32
with n ) 1/2. The parameters for the BetH PEF were determined
by fitting to the lattice constant, cohesive energy, bulk modulus,
and average shear modulus of aluminum.

Three PEFs based on the second-moment approximation to
tight binding44,45 (TB-µ2) are included. The TB-µ2 functional
form is usually applied with

and

We note that eqs 33 and 34 are mathematically equivalent to
eqs 31 and 32 withn ) 1/2. The Cleri-Rosato53 (CleR) PEF
was applied to point-defect properties, lattice dynamics, and
finite temperature behavior of metals and alloys, and its
parameters were determined53 from the experimental values of
the cohesive energy, lattice parameter, and elastic constants of
aluminum. The Al-only limits of two TB-µ2 PEFs developed
by Papaconstantopoulos and co-workers (PapCEP and Pap-
KEP)54,55 that were developed to model Al-Ni alloys are also
tested. These PEFs were developed54,55 by fitting to ab initio
calculations of the bulk structure.

The Sutton-Chen46 (SutC) PEF uses

and terms involvingRRâ
-m in the embedding function

Parameters for the SutC PEF were determined46 by fitting to
the crystal structure, cohesive energy, bulk modulus, and elastic
constants of aluminum.

Mei and Davenport (MeiD) developed parameters for alu-
minum56 for a modified embedded atom PEF.57 The parameters
were determined to reproduce the experimental cohesive energy,
lattice constant, vacancy-formation energy, and elastic constants
at 0 K. The functional form is given by

where

andRn andRc equal 1.75R0 and 1.95R0, respectively.
Streitz and Mintmire (StrM) developed a PEF for use in

modeling the oxidation of bulk aluminum, which was fitted to
experimental data for the FCC crystal.58 The metal-only part
of the PEF is included in the present work. This PEF uses

and an embedding function equivalent to those given in eqs 32
and 34

Mishin, Farkas, Mehl, and Papaconstantopoulos (MisFMP)
developed and fit a PEF59 based on experimental and ab initio
calculations of the bulk metal. The PEF has

and

where

and

The Jacobsen (Jac) PEF60 is based on EMT and may be
written in the form of eq 30, but it less awkward to write it as
follows:

FR ) -B(∑
â*R

exp(-bRRâ))
n (32)

U2(RRâ) ) A exp[-p(RRâ/Re - 1)] (33)

FR ) -B(∑
â*R

exp[-2q(RRâ/Re - 1)])1/2 (34)

U2(RRâ) ) A( a
RRâ

)m
(35)

FR ) -B(∑â*R( a

RRâ
)n)1/2

(36)

U2(RRâ) ) φ0[1 - d(RRâ/R0 - 1)] ×
exp[-c(RRâ/R0 - 1)]∆CO(RRâ) (37)

FR ) -Ec[1 - (a/b) ln FR]FR
a/b + 1/2φ0∑

m)1

3

sm ×

exp[-(xm - 1)c][1 + (xm - 1)d - xm(d/b) ln FR]FR
m1/2c/b

(38)

FR ) ∑
â*R

∆(RRâ)∑
l)0

5

(Cl/12)(R0/RRâ)
l (39)

∆CO(R) ){1 R e Rn

(1 - x)3(1 + 3x + 6x2) Rn < R < Rc

0 R g Rc

(40)

x ) (R - Rn)/(Rc - Rn) (41)

U2(RRâ) ) 2A1 exp[-a1(RRâ - Re)/2] -
A2[1 + a2(RRâ - Re)] exp[-a2(RRâ - Re)] (42)

FR ) -B(∑
â*R

exp[-a1(RRâ - Re)])
1/2 (43)

U2(RRâ) ) [A1M(RRâ,R1,a1) +

A2M(RRâ,R2,a2) + A3]ψ(RRâ - Rc

h ) (44)

FR ) F0 + 1
2
F2(FjR - 1) + xR (45)

xR ) ∑
i)1

3

qi(FjR - 1)i+2 (46)

FjR ) ∑
â*R

[c exp(-b1(RRâ - R3)
2) +

exp(-b2(RRâ - R4))]ψ(RRâ - Rc

h ) (47)

M(RRâ,Ri,ai) ) exp[-2ai(RRâ - Ri)] -
2 exp[-ai(RRâ - Ri)] (48)

ψ(x) ) {0 for x g 0
x4/(1 + x4) for x < 0

(49)

V ) ∑
R

Ec(njR) + EAS (50)
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where

The parameters were determined60 with the help of local density
functional calculations. This PEF was used to study the cohesive
properties of metals.

Parameters for the EA PEFs obtained from the literature are
given in Table 2.

III.D. Nonpairwise Additive Potentials with Two- and
Three-Body Terms. Numerous other three-body terms have
been developed to model various physical effects, and several
PEFs that include such terms are considered in the present work.
We denote PEFs based on eq 10 and truncated atV3 as
nonpairwise additive (NPA) PEFs. Of course, the PEFs of
sections III.B and III.C can also be called nonpairwise, but we
will use NPA to refer to the PEFs discussed here because they
explicitly add two-body and three-body effects.

Erkoç proposed three PEFs for aluminum that are included
in the present paper. The first two PEFs (which he labeled IV
and V and which we will call ErkIV and ErkV) have the
form61-63

wherefRâγ is a heuristic three-body term given by

Parameters for the ErkIV PEF61,62 were obtained by fittingU2

TABLE 2: Parameters for the Embedded Atom PEFs

PEF parameter literature value optimized value PEF parameter literature value optimized value

Gol A (eV) 350.4 641.3 MeiD (cont’d) C3 -47.16 -43.63
B (eV) 10.38 12.22 C4 36.19 28.12
a (Å-1) 2.734 2.991 C5 -8.608 -6.751
b (Å-1) 1.368 1.364 s1 12.00 8.658
n 0.6000 0.6626 s2 6.000 4.170

BetH A (eV) 1220 2450 s3 24.00 27.91
B (eV) 13.25 7.085 StrM A1 (eV) 0.07502 0.08510
a (Å-1) 3.004 3.454 A2 (eV) 0.1595 0.4101
b (Å-1) 1.637 1.326 B (eV) 0.7639 0.6871
n 0.5000 0.5000 a1 (Å-1) 2.018 1.240

CleRa A (eV) 0.1221 a2 (Å-1) 1.767 2.026
B (eV) 1.316 Re (Å) 3.366 2.852
Re (Å) 2.864 MisFMP A1 (eV) 2.652 1.389
p 8.612 A2 (eV) 0.007672 0.001762
q 2.516 A3 (eV) 1.030 0.1095

PapCEPa A (eV) 0.05500 Rc (Å) 6.780 6.117
B (eV) 0.9564 h (Å) 1.416 4.788
Re (Å) 2.831 a1 (Å-1) 2.090 1.017
p 10.90 a2 (Å-1) 1.030 1.313
q 1.513 b1 (Å-2) 1.921 0.5742

PapKEPa A (eV) 0.03340 b2 (Å-1) 0.4259 0.2615
B (eV) 0.7981 c 0.05475 0.09980
Re (Å) 2.812 R1 (Å) 1.069 2.340
p 14.61 R2 (Å) 6.458 5.139
q 1.112 R3 (Å) 2.747 4.411

SutC A (eV) 0.03315 0.02304 R4 (Å) -6.926 -6.123
B (eV) 0.5436 0.5649 F0 (eV) -2.815 -3.139
a (Å) 4.050 4.050 F2 (eV) 5.577 4.718
m 7.000 6.853 q1 (eV) -6.247 -3.625
n 6.000 4.2056 q2 (eV) -21.53 -23.15

MeiD φ0 (eV) 0.1318 0.3958 q3 (eV) -15.30 -20.11
R0 (Å) 2.864 2.625 Jac E0 (eV) -3.280 -3.446
Ec (eV) 3.390 3.649 E2 (eV) 1.120 2.345
a 4.600 5.194 E3 (eV) -0.3500 -0.7848
b 7.100 4.749 n0 (Å-3) 0.04724 0.03536
c 7.348 5.754 η (Å-1) 3.780 2.657
d 7.350 7.664 η1 (Å-1) 0.5669 0.7111
C0 0.6409 0.01057 s0 (Å) 1.588 1.879
C1 -6.838 -7.999 a (eV Å-3) 189.7 262.2
C2 26.76 31.69 b 1.810 1.566

a The CleR, PapCEP, and PapKEP PEFs have functional forms that are mathematically equivalent the BetH PEF and were not individually
reparametrized.
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to diatomic data, and then using the remaining parameter inU3

to obtain the correct cohesive energy. The ErkV PEF63 differs
from the ErkIV PEF only in the values ofA andB, which were
reparametrized using a bulk stability condition.

The Axilrod-Teller (AT) triple-dipole term64 was designed
to model long-range dispersion interactions and has been shown
to be important for the quantitative modeling of rare gases and
inert condensed phase materials26,29including interactions with
carbon nanotubes.28 Three PEFs that include the AT term are
considered. Erkoc¸ developed65 a PEF called VIII (which we
call ErkVIII) for FCC systems and parametrized it to experi-
mental bulk quantities:

where

is the Axilrod-Teller triple-dipole term,64

is the next leading term in the triple-dipole expansion, andϑR
is theâ-R-γ bond angle (similarlyϑâ andϑγ are theR-â-γ
andR-γ-â bond angles).

The next two PEFs that are considered have the same
functional form but have different sets of parameters. The PEFs
of Pearson et al.66 (PeaTHT) and Hase and co-workers34 (deSPH/
LJAT) both use the Lennard-Jones two-body interaction in eq
14 and the Axilrod-Teller three-body term

whereGRâγ is given in eq 62. The parameters for the PeaTHT
PEF were obtained by fitting to the equilibrium bond lengths
of the dimer and trimer and the lattice parameter and cohesive
energy of bulk aluminum. The deSPH/LJAT PEF parameters
were obtained by fitting to ab initio calculations for AlN (N )
2-6, 13) clusters.

A PEF was developed by Cox, Johnston, and Murrell67,68

(CoxJM) for cubic solids and was parametrized to reproduce
the cohesive energy and bulk lattice spacing. The two-body term
is a Rydberg function of the form

where

and the three-body term has the form

where the generalized coordinatesQi are defined by the
transformation

and the damping function is

Parameters for the NPA PEFs obtained from the literature are
given in Table 3.

No PEFs based on eq 10 that explicitly include four-body or
higher terms in the expansion were found in the literature for
aluminum, and none are considered in the present work.

III.E. Linear Scaling. The computer cost associated with
evaluating the PEFs discussed in sections III.A and III.C scales
as fast asN2 for the PA and EA PEFs, and the cost scales asN3

for the NPA and many-body PEFs in sections III.B and III.D,
whereN is the number of atoms in the system. Physically, one
expects that any single atom in a large system interacts
significantly only with nearby atoms and that there is some
cutoff distance at which the interaction between two atoms may
be set to zero, i.e., the number of significant interactions scales
asN. This linear scaling may be introduced smoothly into an
analytic PEF using the cutoff function of Stillinger and Weber69

fCO, which is given by the formula

where ∆ is a positive adjustable parameter, andRCO is the
distance at which the cutoff goes exactly to zero. Note this
function has an infinite number of continuous derivatives for
all values ofR.

The cutoff function may be applied to two-body terms

to three-body terms

and to the EA embedding functions; e.g., eq 32 may be rewritten

When all of the terms are cut off in this way, the computational
cost of the algorithm scales linearly withN for largeN.

The cutoff functions in eqs 70-73 are incorporated in the
PEFs presented in section IV.C but not in those discussed in
sections IV.A and IV.B.

IV. Results and Discussion

IV.A. Literature PEFs. The MUEs defined in eqs 6-8 were
evaluated for all nineteen literature PEFs discussed in sections
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III.A -III.C, and the results are presented in Table 4. Also shown
are the average MUE for the cluster data (labeledεc), i.e., the
average of the errors over the five cluster data setsεk (k ) 1,
..., 5); a “nonclose” cluster average labeledε̃c that is explained
in the next paragraph; andε, Eb, and am that are defined in
section II. The calculatedam values in Table 4 may be compared
to the experimental value19 of 4.022 Å. (Note that the experi-
mental lattice constant corresponds to a bulk nearest-neighbor
distance of 2.844 Å.) Most of the literature PEFs were
parametrized for bulk properties, and many of the literature PEFs
perform poorly for aluminum clusters. The average value ofεc

for all of the literature PEFs is 1.7 eV/atom, and no PEF from
the literature has an MUE for the cluster data that is smaller
than 0.12 eV/atom.

We note that many of the literature PEFs fitted to experi-
mental data were parametrized using values for the bulk
cohesive energy and lattice constant determined at 298 K (3.39
eV and 4.050 Å, respectively). When the electronic energies
computed using a PEF are compared to these experimental
quantities, it is necessary to remove finite-temperature and zero-
point energy contributions, as discussed in ref 11 for the
cohesive energy and in ref 19 for the lattice constant.

The four PEFs that are the least accurate in reproducing the
aluminum cluster energies (εc g 3.9 eV/atom) are the HalP,
ErkVIII, PeaTHT, and deSPH/LJAT PEFs, and they all employ

a Lennard-Jones two-body interaction. This significant error is
largely due to several geometries in the data set with compressed
atom-atom distances for which the Lennard-Jones two-body
interaction predicts very high energies, resulting in large errors.
Certainly, an accurate representation of these geometries is
important, but the error due to these geometries obscures the
evaluation of the PEF for lower energy configurations. There-
fore, the MUE over the cluster data was recomputed excluding
geometries for which the smallest distance between any two
atomic centers is less than 1.98 Å. (The distance 1.98 Å
corresponds to the bond distance in the accurate PBE0/MG3
Al2 curve at which the energy of the repulsive wall is equal to
the energy of the dissociated atoms, i.e., it is the smallest
classically allowed bond distance for bound Al2.) This error is
denotedε̃c and is also given in Table 4. The errors are reduced
significantly for the PEFs with Lennard-Jones two-body interac-
tions, as well as for some of the other PEFs, when these
compressed geometries are not considered, but the overall trends
remain the same.

As expected, the PA PEFs are on average the least accurate
group of PEFs, with an average value ofεc of 4.0 eV/atom.
The HalP PEF reproduces the bulk properties (against which it
was parametrized) reasonably well but performs poorly over
the cluster data set. The PetW PEF was derived entirely from
theoretical considerations and was not fitted to any experimental
or computed data. The PetW PEF predicts a reasonably accurate
lattice constant, but the cohesive energy and cluster energies
are qualitatively incorrect. The deSPH/M PEF was parametrized
for Al6 clusters (which are not represented in our test set) and
is the most accurate of the PA literature PEFs tested withεc )
0.43 eV/atom. The deSPH/M PEF is also reasonably accurate
for the bulk data.

The NPA group of PEFs is more accurate than the PA group,
with an average value ofεc of 2.8 eV/atom. The best NPA PEF
from the literature is the ErkIV PEF, which was parametrized
to Al2 data as well as bulk data. Note that due to an error in the
bulk data that was used during the original parametrization,61

the ErkIV PEF does not reproduce the bulk data used here. The
ErkV PEF, although improved over the ErkIV PEF to include
more bulk properties, does substantially worse for aluminum
clusters.

The functional form for the ErkVIII, PeaTHT, and deSPH/
LJAT PEFs consists of a Lennard-Jones two-body interaction
and an Axilrod-Teller three-body PEF. The ErkVIII PEF
includes an additional three-body dispersion term. All three PEFs
perform poorly for aluminum clusters, due in part to the presence
of compressed atom-atom distances in the data set, as discussed
above. However, even when these data are not considered, as
in the ε̃c column, these PEFs do poorly for aluminum clusters.
The PeaTHT and ErkVIII PEFs were parametrized using bulk
data and reproduce the experimental lattice constant reasonably
well but have large MUEs (greater than 4.1 eV/atom) over the
cluster data in the test set. The deSPH/LJAT PEF was
parametrized using computed energies for several aluminum
cluster sizes but does not perform well for either the clusters or
the bulk data.

The CoxJM PEF has a general three-body functional form,
and it performs well for the bulk data (to which it was
parametrized) but does considerably less well for the cluster
data, although the error is approximately reduced by half when
geometries with compressed atom-atom distances are not
considered.

The EA PEFs perform much better as a group than the PA
and NPA groups of PEFs, with an average value ofεc of 0.42

TABLE 3: Parameters for the PEFs with Two- and
Three-Body Terms

PEF parameter literature value optimized value

ErkIV A (eV) 6.200 6.117
B -1.554 -1.589
Re (Å) 2.470 2.410
a 0.6931 0.6931
n 2.073 2.396

ErkVa A (eV) 1.634
B -0.6703
Re (Å) 2.470
a 0.6931
n 2.073

ErkVIII A1 (eV) 1.860 1.491
A2 (eV) 3.410 3.114
B1 (eV Å9) 1643 2522
B2 (eV Å11) 1921 86.90
Re (Å) 2.510 2.510
m 11.00 6.904
n 6.000 4.843

PeaTHT A (eV) 4.864 122.4
Re (Å) 2.520 2.408
n 6.000 4.949
m 12.00 5.052
B (eV Å9) 2241 203.4

deSPH/LJATb A (eV) 4.600
Re (Å) 2.635
n 6.000
m 12.00
B (eV Å9) 3525

CoxJM De (eV) 0.9073 1.250
Re (Å) 2.757 2.617
a2 7.000 4.751
a3 8.000 7.739
c0 0.2525 0.1822
c1 -0.4671 -0.3195
c2 4.4903 9.468
c3 -1.1717 -0.5022
c4 1.6498 1.590
c5 -5.3579 -4.893
c6 1.6327 1.200

a The ErkV PEF has the same functional form as the ErkIV PEF
and was not individually reparametrized.b The deSPH/LJAT PEF has
the same functional form as the PeaTHT PEF and was not individually
reparametrized.
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eV/atom. All of the EA PEFs were fitted to bulk properties,
and all but one (CleR) predicts reasonably accurate lattice
constants and cohesive energies. (The poor performance of the
CleR PEF could indicate a typographical error in the published
parameters for the CleR PEF; the original authors indicate that
the CleR PEF predicts these quantities accurately for alumi-
num.57) The cluster energies are reproduced with varying
accuracy for the various EA PEFs, and the errors are not very
sensitive to whether geometries with compressed atom-atom
distances are included in the test set. The best EA PEF from
the literature is the Gol PEF withεc ) 0.12 eV/atom.

None of the analytic PEFs obtained from the literature
performs accurately enough for aluminum clusters to allow for
quantitative work. Furthermore, it is clearly dangerous to employ
PEFs for studies outside of their intended range of application.

IV.B. Reparametrized Literature PEFs. The nineteen
literature PEFs discussed above were used for a variety of
different purposes and parametrized against a variety of different
data. It is not possible, therefore, to infer the success or failure
of any particular functional form based on the errors in Table
4. To study the relative flexibility of the various functional forms
themselves, the literature PEFs were reparametrized by mini-
mizing the total MUE (ε in eq 8) with respect to the available
adjustable parameters. The reoptimized parameters are listed
in Tables 1-3, and the MUEs for the reparametrized PEFs are
given in Table 5. Note that some of the eighteen PEFs from

the literature have equivalent functional forms, as indicated in
Tables 2, 3, and 5.

Optimizing the parameters for each PEF results in MUEs over
the cluster data in the test set that are up to 97% smaller than
those for the original PEFs from the literature, with an average
improvement of 70%. All three classes of PEFs (PA, NPA, and
EA) improve by roughly the same amount overall, with slightly
better improvement for the NPA group. Due to the intentionally
low weight given to the bulk properties, the errors in the bulk
properties occasionally increase upon reparametrization.

As seen from Table 5, the three PA PEFs are the least accurate
reparametrized PEFs overall (withεc g 0.33 eV/atom), clearly
demonstrating that an effective two-body term is unable to
model clusters of varying sizes with quantitative accuracy.

The NPA group is the second most accurate group of
reparametrized PEFs. Note that the PeaTHT and deSPH/LJAT
PEFs have identical functional forms, and this functional form
is labeled LJAT in Table 5. The most accurate reparametrized
NPA PEF (and fifth best reparametrized PEF overall) is the
CoxJM PEF withεc ) 0.095 eV/atom. The widely used LJAT
PEF performs poorly for aluminum clusters, and the additional
term in the ErkVIII PEF provides only a modest improvement
in ε (and no improvement inεc) over the LJAT approach.

Next we consider the three simplest EA PEFs: the Gol, GEA
(which labels the common functional form used in the BetH,
CleR, PapCEP, and PapKEP PEFs), and SutC PEFs. The SutC

TABLE 4: MUEs (eV/atom) and FCC Lattice Constant am (Å) for the Literature PEFs

PEF type PEF ε2 ε3 ε4 ε7 ε13 εc ε̃c εb ε am

PA HalP 4.396 16.64 6.641 22.89 0.596 10.23 1.783 0.162 8.449 4.05
PetW 0.707 1.111 1.353 2.045 1.422 1.328 1.085 4.320 1.576 4.12
deSPH/M 0.263 0.456 0.406 0.630 0.415 0.434 0.358 0.098 0.447 4.00

NPA ErkIV 0.090 0.150 0.058 0.170 0.119 0.118 0.095 1.332 0.165 4.31
ErkV 0.281 0.476 0.506 0.720 0.751 0.547 0.519 1.361 0.673 3.77
ErkVIII 1.453 5.917 2.735 8.624 0.672 3.880 0.892 1.184 3.396 4.40
PeaTHT 1.578 7.063 2.319 9.638 0.290 4.177 0.554 0.077 3.498 4.02
deSPH/LJAT 2.830 12.00 4.348 16.80 0.382 7.270 1.034 0.807 6.079 4.27
CoxJM 0.712 1.187 1.059 1.854 0.227 1.008 0.478 0.007 0.839 4.00

EA Gol 0.127 0.122 0.073 0.149 0.132 0.121 0.098 0.099 0.126 4.05
BetH 0.311 0.300 0.284 0.196 0.093 0.237 0.210 0.059 0.177 4.03
CleR 0.517 0.636 0.702 0.783 0.251 0.578 0.438 0.940 0.514 3.55
PapCEP 0.137 0.203 0.133 0.340 0.156 0.194 0.136 0.017 0.195 3.96
PapKEP 0.442 0.960 0.605 1.585 0.250 0.768 0.293 0.142 0.689 3.93
SutC 0.565 0.613 0.611 0.470 0.183 0.488 0.426 0.075 0.372 4.04
MeiD 0.552 0.567 0.534 0.380 0.242 0.455 0.439 0.035 0.359 4.05
StrM 0.388 0.438 0.389 0.373 0.098 0.337 0.249 0.023 0.252 4.04
MisFMP 0.313 0.613 0.451 0.872 0.091 0.468 0.194 0.035 0.386 4.00
Jac 0.885 0.701 0.474 0.334 0.427 0.564 0.560 0.161 0.461 3.94

TABLE 5: MUEs (eV/atom) and FCC Lattice Constant am (Å) for the Reparametrized PEFs

PEF type PEF ε2 ε3 ε4 ε7 ε13 εc ε̃c εb ε am

PA HalP 0.339 0.588 0.705 0.983 1.158 0.755 0.757 3.132 1.011 3.91
PetW 0.302 0.354 0.352 0.243 0.208 0.292 0.266 1.700 0.306 3.92
deSPH/M 0.194 0.394 0.356 0.575 0.118 0.327 0.230 2.028 0.353 3.99

NPA ErkIVa 0.125 0.242 0.090 0.101 0.058 0.123 0.097 1.020 0.127 4.20
ErkVIII 0.281 0.344 0.242 0.187 0.045 0.220 0.158 2.680 0.238 3.94
LJATb 0.290 0.388 0.255 0.264 0.049 0.249 0.164 3.193 0.282 3.95
CoxJM 0.123 0.132 0.118 0.071 0.031 0.095 0.089 0.157 0.072 4.48

EA Gol 0.086 0.068 0.076 0.062 0.027 0.063 0.058 0.674 0.071 3.86
GEAc 0.187 0.152 0.140 0.085 0.075 0.128 0.119 0.008 0.099 3.93
SutC 0.277 0.268 0.200 0.150 0.122 0.204 0.171 0.161 0.165 4.07
MeiD 0.047 0.063 0.088 0.047 0.028 0.056 0.053 0.001 0.046 4.00
StrM 0.058 0.064 0.084 0.050 0.038 0.059 0.058 0.079 0.052 3.84
MisFMP 0.089 0.079 0.094 0.044 0.032 0.068 0.069 0.000 0.051 4.05
Jac 0.195 0.144 0.092 0.077 0.040 0.110 0.097 0.871 0.104 3.97

a The ErkV PEF has the same functional form as the ErkIV PEF.b Lennard-Jones/Axilrod-Teller functional form. The PeaTHT and deSPH/
LJAT PEFs both use this functional form.c The general EA functional form with exponential embedding function given in eqs 31 and 32 withn
) 1/2. The BetH, CleR, PapCEP, and PapKEP PEFs use this functional form or an equivalent one.
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PEF uses an embedding function involving inverse powers of
the bond distance, and Table 5 shows that this approach is less
accurate than the Gol and GEA approaches that use exponential-
based embedding functions. The Gol and GEA PEFs differ only
in that the Gol PEF allows the exponent in the embedding
function (n in eq 32) to vary, whereas for the GEA PEF,n )
1/2. This additional flexibility results in a 51% smaller cluster
MUE for the Gol PEF as compared to the GEA PEF. It is
interesting to note that the GEA and Gol PEFs, although very
similar in their functional forms, have qualitatively different
distributions of errors over the data set. The Gol PEF does well
for the cluster energies and poorly for the bulk data, whereas
the situation is reversed for the GEA PEF, demonstrating the
ambiguity in finding the “best” set of parameters that minimizes
a particular error function. Clearly, more than one set of
parameters that gives a “small” error may be found with varying
error distributions.

The three best reparametrized PEFs overall are the MeiD,
StrM, and MisFMP PEFs, which have impressively small total
MUEs of only∼0.05 eV/atom. For all three PEFs, the error is
fairly evenly distributed over the data in the test set, but the
MeiD and StrM PEFs are slightly more accurate for the cluster
data. The StrM PEF uses the same embedding function as the
GEA PEF but has a more highly parametrized two-body
interaction. This additional flexibility allows for a total MUE
that is ∼50% smaller than that of the GEA PEF. The best
reparametrized PEF overall is the MeiD PEF, which performs
well for both the cluster and bulk data.

IV.C. Many-Body Effects. The most accurate reparametrized
PEFs identified in section IV.B (the Gol, MeiD, MisFMP, and
StrM PEFs) could be used with some confidence to model
aluminum clusters. It is not clear, however, how well these PEFs
would perform (i.e., how transferable the reoptimized parameters
would be) for systems similar to but not explicitly represented
in the data set. Therefore, in this section a systematic examina-
tion of the ability of several of the functional forms discussed
above to model many-body effects in general is presented.

Many-body effects are especially important for clusters and
nanoparticles. In the bulk metal and in the absence of defects,
vacancies, and dislocations, every atom has the same number
of neighbors, which, moreover, are distributed uniformly in
space. In clusters, however, atoms experience a greater variety
of exposure to the surface, and hence a larger fraction of these
atoms have coordination numbers lower than in the bulk. Table
6 shows the coordination number distribution of the atoms in
several quasispherical clusters. For clusters with diametersd e
5 nm, greater than 30% of atoms are surface atoms, and there
is a significant distribution of coordination numbers. If second-,
third-, etc. nearest neighbors are considered, there is even greater
diversity in atomic environments. Furthermore, when modeling
the dynamics of energetic processes such as collisions, combus-
tion, or cluster dynamics, high-energy configurations, which
involve large displacements from the bulk lattice sites, may be
important.

As a first step toward understanding many-body effects in
aluminum clusters, the Al2 data in our test set was used to
parametrize the extended Rydberg two-body functional form
discussed in section III.A, with linear scaling introduced using
the cutoff function in eq 70. Cutoff functions are often
introduced after the functional form has been fitted (such as
when the PEF is used during a simulation), and the parameters
of the cutoff function are chosen such that the magnitude of
the cutoff function is close to unity (or exactly unity if a step
function is used) when the magnitude of the PEF is appreciable

and goes to zero only when the magnitude of the PEF is
negligible. This approach requires that convergence with respect
to the cutoff distance must be demonstrated.

To avoid this future complication, the cutoff function is built
into the functional form, and the parameters of the two-body
term U2 are optimized along with those infCO. This approach,
in general, results in smaller cutoff thresholds, while retaining
smooth and accurate functional forms. Specifically, the five
parameters inU2 (see eqs 18 and 19) were optimized simulta-
neously with the range parameter∆ in the cutoff function in eq
70. The cutoff distanceRCO was not allowed to vary during
fitting, and several values ofRCO were tested from 5.5 to 7.0
Å. We found thatRCO ) 6.5 Å is the minimum distance at
which the error in the Al2 dataε2 was less than 0.015 eV/atom
and the potential remained smooth. This PEF (fitted to Al2 data
only) is labeled ER2. The fitted ER2 energy curve for Al2, the
accurate PBE0/MG3 energies for Al2, and the cutoff function
used in the ER2 PEF is shown in Figure 1, the MUEs for the
ER2 PEF are summarized in Table 7, and the parameters for
the ER2 PEF are in Table 8.

Note that the isolated Al2 curve involves a crossing of the
3Πu and3Σg

- electronic states near the equilibrium distance for
both curves, as discussed elsewhere68 and as seen in the accurate

TABLE 6: Percentage of Atoms Havingm ) 3, ..., 12
Nearest Neighbors in Several FCC Quasispherical Clusters
(QSCs) of SizeN and Approximate Diameter d

m

N d (nm)a 3 4 5 6 7 8 9 10 11 12

13 0.9 0 0 92 0 0 0 0 0 0 8
19 1.1 0 32 0 0 63 0 0 0 0 5
43 1.3 0 0 56 0 0 14 0 0 28 2
55 1.4 0 0 22 0 44 11 0 0 0 24
79 1.6 0 0 0 30 15 0 30 0 0 24
87 1.7 9 0 0 28 14 0 0 28 0 22

135 1.8 0 0 0 36 0 18 6 0 9 32
141 1.9 0 4 0 34 0 0 23 0 9 30
177 2.0 0 0 20 0 0 31 5 0 14 31
675 3.0 0 0 0 7 11 8 14 0 5 55

1601 4.0 0 0 0 6 8 4 10 1 6 63
3367 5.0 0 0 1 6 5 4 7 3 6 70
5979 6.0 0 0 0 5 4 4 4 4 4 75
9693 7.0 0 0 0 4 4 2 5 3 4 78

14363 8.0 0 0 0 3 4 3 4 3 4 81

a The diameterd is calculated asRmax + Rnn whereRmax is the largest
interatomic distance in the cluster andRnn is the nearest neighbor
distance for bulk aluminum.

Figure 1. Accurate and fitted two-body interaction for Al2. The PBE0/
MG3 data are shown as circles; the fitted data for the ER2 PEF are
shown as a thin solid line. The cutoff functionfCO used in the ER2
PEF is shown as a thick solid line.
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electronic structure data in Figure 1. We chose not to fit these
data to two curves, but rather to a curve that is smooth for all
values of the bond distance. The fitted equilibrium bond distance
2.65 Å is slightly smaller than the experimental value70,71 of
2.70 Å due to this effect. The dissociation energy was not
allowed to exceed 1.55 eV during the fitting procedure.

The extended Rydberg functional form provided a good fit
to the two-body interaction (ε2 ) 0.013 eV/atom), and other
functional forms for the diatomic curve were not pursued. It
can be seen from Table 7 that the ER2 PEF performs poorly
for all but the Al2 clusters, clearly demonstrating the presence
of many-body effects in our data set.

For comparison, the extended Rydberg functional form with
a 6.5 Å cutoff was parametrized against the entire data set, and
this PEF is labeled ER in Tables 7 and 8, where the errors and
parameters are given. The total MUE for the ER PEF is 0.32
eV/atom, which is slightly more accurate than the deSPH/M
PEF, the most accurate PA PEF discussed in section IV.B. The
extended Rydberg functional form, although quite flexible, is
not able to accurately fit the complicated many-body effects
present in the data set with an effective two-body interaction.

An analytic fit to the accurate two-body interaction allows
for a systematic study of the effectiveness of the various
functional forms discussed in section III in modeling many-
body effects. First, the ER2 two-body PEF was paired with three
of the three-body terms from section III.D: the AT term in eq
64, the extended AT (EAT) approach in eq 61, and the general
three-body term of Murrell (CoxJM) shown in eq 67. Parameters
for the three-body terms were obtained by minimizing the error
in eq 8 while keeping the parameters for the two-body
interaction fixed at their ER2 values. Cutoff functions were
introduced into the three-body terms, as shown in eq 72, with
a cutoff distance of 6.5 Å. The range parameter∆ in eq 70 was
allowed to vary. (Note: The highly flexible three-body term in
the CoxJM functional form gives unphysical oscillations in the
cohesive energy as a function of lattice constant when param-
etrized using the present data set and the accurate two-body
interaction. We therefore truncated eq 67 at terms that are
second-order in the bond distances; i.e.,c4, c5, andc6 were set
to zero. The resulting optimized total MUE for the CoxJM PEF
did not change significantly, and oscillations in the bulk cohesive
energy curve were reduced. We also leave out the damping
function in eq 69 due to the inclusion of the cutoff functions.)
The MUEs for these many-body PEFs are shown in Table 7
where the PEFs are labeled ER2+AT, ER2+EAT, and

ER2+CoxJM. Parameters for these many-body PEFs are
tabulated in Table 8.

The AT term, paired with the accurate two-body curve,
reduces the average error in the cluster data by∼37% (as
compared with the ER2 PEF) but does not provide quantitative
accuracy. The addition of the next-leading term (as in the EAT
PEF) has a negligible effect on the results. The three-body term
of Murrell and co-workers (CoxJM) is highly flexible and
reduces the error in the cluster data by 72% to 0.16 eV/atom.

Next we consider the general embedded atom function (GEA)
given in eq 32 as well as the more complicated embedding
functions of Mei and Davenport (MeiD) shown in eqs 38 and
39 and Mishin et al. (MisFMP) shown in eqs 45-47. Note that
the embedding function contains two-body interactions. We wish
to isolate the embedding function’s ability to model many-body
effects, so the two-body part of the embedding function is
subtracted from the full embedding function; e.g., the many-
body part of eq 32 is

Cutoff functions were added as in eq 73 with a cutoff distance
of 6.5 Å. The many-body part of the GEA, MeiD, and MisFMP
PEFs were combined with the accurate two-body expression
ER2, and the many-body and cutoff range parameter were
optimized, holding the two-body parameters fixed. The MUEs
for the optimized ER2+GEA, ER2+MeiD, and ER2+MisFMP
PEFs are given in Table 7, and the optimized parameters are
tabulated in Table 8.

The optimized GEA many-body term has an average MUE
for the cluster data of 0.075 eV/atom with smaller errors for
the larger clusters and the bulk data. The MisFMP and MeiD
PEFs, although they have more adjustable parameters, do not
perform as well as the simpler GEA form.

Finally, we consider the screening, bond angle, and coordina-
tion number many-body functions introduced in section III.B
as implemented using eq 20 and the extended formalism in eq
21 and using the ER2 two-body interaction. Linear scaling is
introduced using eq 70 with a cutoff distance of 6.5 Å.
Parameters for all of the many-body PEFs are tabulated in Table
8. [When the extended formalism is used (eq 21), the parameters
for U′2 are denoted with primes in Table 8.] The MUEs for
these PEFs are given in Table 7.

Five of the six functional forms designed to model specific
many-body effects (i.e., the S, ES, EBA, CN, and ECN

TABLE 7: MUEs (eV/atom) and FCC Lattice Constant am (Å) for the Many-Body PEFs

PEF ε2 ε3 ε4 ε7 ε13 εc ε̃c εb ε am

ER2 0.013 0.138 0.420 0.951 1.322 0.569 0.552 17.022 1.433 2.66
ER 0.239 0.405 0.427 0.319 0.133 0.305 0.292 2.081 0.315 3.95
ER2+AT 0.013 0.149 0.425 0.617 0.648 0.370 0.310 4.580 0.650 4.14
ER2+EAT 0.013 0.149 0.426 0.612 0.651 0.370 0.311 4.596 0.650 4.13
ER2+CoxJM 0.013 0.091 0.181 0.246 0.258 0.158 0.148 0.866 0.232 4.44
ER2+GEA 0.013 0.113 0.115 0.092 0.042 0.075 0.060 0.005 0.067 3.98
ER2+MeiD 0.013 0.079 0.100 0.199 0.027 0.083 0.070 0.276 0.089 4.14
ER2+MisFMP 0.013 0.124 0.188 0.371 0.129 0.165 0.070 0.002 0.181 4.05
ER2+S 0.013 0.075 0.099 0.140 0.067 0.079 0.059 0.028 0.084 3.83
ER2+ES 0.013 0.081 0.108 0.095 0.057 0.071 0.056 0.007 0.071 4.05
ER2+BA 0.013 0.136 0.406 0.859 1.131 0.509 0.492 4.683 0.915 4.15
ER2+EBA 0.013 0.108 0.188 0.092 0.077 0.095 0.089 0.020 0.092 4.15
ER2+CN 0.013 0.082 0.125 0.250 0.032 0.100 0.060 0.003 0.098 3.97
ER2+ECN 0.013 0.085 0.095 0.077 0.030 0.060 0.054 0.006 0.053 4.04
ER2+EACN 0.013 0.094 0.096 0.091 0.028 0.064 0.055 0.007 0.057 4.04
ER2+SCNm 0.013 0.073 0.102 0.107 0.032 0.066 0.054 0.042 0.062 4.15
ER2+ESCNm 0.013 0.075 0.096 0.072 0.028 0.057 0.054 0.001 0.050 4.06
ER2+SCNa 0.013 0.076 0.102 0.141 0.026 0.072 0.053 0.177 0.072 4.15
ER2+ESCNa 0.013 0.080 0.087 0.063 0.027 0.054 0.048 0.001 0.047 4.04

FR
MB ) -B(∑

â*R
exp(-bRRâ))

n + B∑
â*R

[exp(-bRRâ)]
n (74)
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TABLE 8: Parameters for the Many-Body PEFs

PEF two-body value many-body value PEF two-body value many-body value PEF two-body value many-body value

ER2 De (eV) 1.710 none ER2+S same as ER2 κ1 2.143 ER2+SCNm same as ER2 κ1 3.849
Re(Å) 2.689 κ2 0.4560 κ2 0.2425
a1 (Å-1) 2.345 κ3 2.505 κ3 3.781
a2 (Å-2) 1.971 ∆ 0.04400 ∆ 0.6157
a3 (Å-3) 0.8773 RCO (Å) 6.500 RCO (Å) 6.500
∆ 0.1432 ER2+ES same as ER2 D′e (eV) 1.710 γ1 0.4301
RCO (Å) 6.500 R′e (Å) 2.689 γ2 (Å) 6.500

ER De (eV) 1.125 none a′1 (Å-1) 2.345 d 0.7500
Re (Å) 3.000 a′2 (Å-2) 1.971 g 0.8332
a1 (Å-1) 3.120 a′3 (Å-3) 0.8773 g0 10.50
a2 (Å-2) 3.101 ∆′ 0.1432 ER2+ESCNm same as ER2 D′e (eV) 1.671
a3 (Å-3) 1.020 R′CO (Å) 6.500 R′e (Å) 2.717
∆ 0.3969 κ1 2.024 a′1 (Å-1) 2.289
RCO (Å) 6.500 κ2 0.4447 a′2 (Å-2) 2.262

ER2+AT same as ER2 B (eV Å9) 3537 κ3 2.378 a′3 (Å-3) 1.053
∆ 0.02077 ∆ 0.06659 ∆′ 0.2160
RCO (Å) 6.500 RCO (Å) 6.500 R′CO(Å) 6.500

ER2+EAT same as ER2 B1 (eV Å9) 3414 ER2+BA same as ER2 κ1 0.04372 κ1 3.772
B2 (eV Å11) 30.12 κ2 (Å-κ3) 0.02729 κ2 0.2540
∆ 0.01648 κ3 0.3345 κ3 3.713
RCO (Å) 6.500 ∆ 1.792 ∆ 0.6790
Re (Å) 2.186 RCO (Å) 6.500 RCO (Å) 6.500
c0 2.640 ER2+EBA same as ER2 D′e (eV) 0.7662 γ1 0.4318
c1 -0.6412 R′e (Å) 2.689 γ2 (Å) 6.500
c2 1.875 a′1 (Å-1) 1.263 d 0.7939
c3 -2.791 a′2 (Å-2) 2.904 g 0.8290
∆ 0.8063 a′3 (Å-3) 2.415 g0 10.97
RCO (Å) 6.500 ∆′ 0.5924 ER2+SCNa same as ER2 κ1 2.443

ER2+GEA same as ER2 B (eV) 4.051 R′CO (Å) 6.500 κ2 0.1534
a (Å-1) 1.129 κ1 2.247 κ3 4.420
n 0.5586 κ2 0.1510 ∆ 0.9535
∆ 0.2634 κ3 0.7052 RCO (Å) 6.500
RCO (Å) 6.500 ∆ 1.200 γ1 0.7254

ER2+MeiD same as ER2 φ0 (eV) 0.1102 RCO (Å) 6.500 γ2 (Å) 6.499
R0 (Å) 2.159 ER2+CN same as ER2 γ1 1.020 d 0.7745
Ec (eV) 2.002 γ2 (Å) 3.257 g 0.7994
a 7.063 d 1.000 g0 6.484
b 6.583 g 0.7792 ER2+ESCNa same as ER2 D′e (eV) 1.720
c 6.249 g0 6.497 R′e (Å) 2.697
d 6.391 ER2+ECN same as ER2 D′e (eV) 1.264 a′1 (Å-1) 2.243
C0 0.4070 R′e (Å) 2.390 a′2 (Å-2) 2.278
C1 -6.448 a′1 (Å-1) 1.448 a′3 (Å-3) 1.068
C2 36.12 a′2 (Å-2) 1.486 ∆′ 0.1143
C3 -47.85 a′3 (Å-3) 1.757 R′CO (Å) 6.500
C4 25.83 ∆′ 1.086 κ1 2.244
C5 -5.500 R′CO (Å) 6.500 κ2 0.1298
s1 12.69 γ1 1.809 κ3 4.104
s2 6.472 γ2 (Å) 6.097 ∆ 1.396
s3 26.97 d 2.218 RCO (Å) 6.500
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functional forms) perform well overall; the sixth, BA, term
performs poorly, but the remaining five terms all have an
average MUE for the cluster data that is less than∼0.10 eV/
atom. The CN term gives the smallest error for the bigger
clusters (which have the largest contribution to their total
energies from coordination effects), whereas the error for the S
term is more evenly distributed. The BA function, which was
designed to be more flexible than the screening function, does
not predict an accurate bulk cohesive energy and is much less
accurate overall than the simpler S function. The extended
version of the S functional form involves six additional
parameters but does not significantly improve the error in the
cluster data. The extended version of the BA functional form,
however, greatly reduces the error. This result may be interpreted
to indicate that the functional form of the S term is physically
motivated, whereas the BA term is not. The extended version
of the CN term shows a modest improvement over the CN term
for the smaller clusters.

We developed and evaluated several PEFs in which the
accurate ER2 two-body term was combined with two or more
of the many-body effects discussed above. The most accurate
PEF that consisted of the ER2 two-body term in combination
with the EA and one other many body term is the ER2+EACN
PEF, where

These errors and parameters for the ER2+EACN PEF are listed
in Tables 7 and 8, respectively.

It is pleasing that the physically motivated and fairly simple
S and CN functional forms are able to modify the accurate two-
body interaction such that the overall errors are on the order of
the best optimized PEFs discussed in section IV.D and that the
trends in the errors for the cluster data support their physical
interpretation. Therefore, we combine the S and CN approaches
and define two new many-body PEFs. Specifically, the two
terms may be combined multiplicatively as in the SCNm PEF,
where

or additively as in the SCNa PEF, where

Note that both the SCNm and SCNa methods may be imple-
mented with bothU2 and U′2 set equal to the accurate ER2
two-body interaction (these two PEFs are labeled ER2+SCNm
and ER2+SCNa), or with U2 equal to the ER2 two-body
interaction and withU′2 allowed to vary during fitting (these
two PEFs are labeled ER2+ESCNm and ER2+ESCNa). The
MUEs for these four new PEFs are included in Table 7, and
the optimized parameters are in Table 8.

In general, the four PEFs show reduced errors as compared
with the PEFs that include only one or the other of the S or the
CN function. The ER2+ESCNa PEF is the best overall of the
PEFs featuring an accurate two-body interaction with a total
MUE of 0.047 eV/atom, a MUE for the cluster data of 0.054
eV/atom, and a MUE for the bulk data of 0.001 eV/atom. To
verify the validity of the extrapolation in eq 1, the energies ofT
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27 QSCs from Al13 to Al3043 were computed using the
ER2+ESCNa PEF. The bulk cohesive energy estimated using
eq 1 (3.43 eV) agrees well with the bulk cohesive energies
computed from a least-squares fit to all 27 data points (3.44
eV) and from a least-squares fit including only those clusters
whose cohesive energies differ from the limiting value by less
than 50% of the difference between the limiting value and the
cohesive energy of Al13 (3.42 eV).

Finally, we tested the effect of allowing the two-body term
to vary in addition to the three-body terms for all of the PEFs
in Table 7. This strategy resulted in slightly smaller overall
errors for some of the PEFs. The “best” PEFs had errors
comparable to or slightly larger than those for the ER2+ESCNa
PEF, and so we do not consider this approach any further.

Overall, the best analytic PEF for aluminum clusters is the
ER2+ESCNa PEF, which features linear scaling, physically
motivated screening and coordination number terms, an average
error of 0.05 eV/atom in the cluster data, and accurate two-
body and bulk limits.

It is interesting to compare the performance of the methods
examined here to the performance of semiempirical molecular
orbital methods of the neglect-of-differential-overlap and tight-
binding types, as studied in ref 11. That reference, which used
a representative subset of the present test set, found mean
unsigned errors per atom of 0.25-3.64 eV for the six methods
tested, and only AM172,73 had a mean unsigned error per atom
of less than 0.41 eV. The methods examined here have mean
unsigned errors per atom that are 5 and 8 times more accurate
than the best (AM1) and second best (MSINDO74,75) of these
standard molecular orbital methods, respectively. Furthermore,
the molecular orbital methods are∼9000 (AM1) and∼20000
(MSINDO) times more expensive than the analytic PEFs for a
single Al13 energy calculation, and relatively even more
expensive for larger systems.

V. Conclusions

Several potential energy functions (PEFs) from the literature
that have been previously parametrized for aluminum have been
collected and tested using a data set composed of 224 aluminum
cluster energies and the FCC cohesive energy and lattice
constant. Several different functional forms were tested, includ-
ing pairwise additive (PA), nonpairwise additive (NPA) with
two- and three-body terms, and embedded atom (EA) PEFs.
The two best literature PEFs have total mean unsigned errors
(MUEs) averaged over the clusters in the test set of 0.12 eV/
atom.

All of the PEFs from the literature have been reparametrized
against the data in the test set, resulting in five PEFs with MUEs
for the cluster data of less than 0.10 eV/atom. Pairwise additive
PEFs are incapable of modeling the complicated many-body
effects found in clusters of various sizes. The best literature
PEF with an explicit three-body term includes the general
polynomial form of Murrell and co-workers and has a MUE
for the cluster data of 0.10 eV/atom. The widely used Lennard-
Jones two-body term coupled with the Axilrod-Teller disper-
sion term is incapable of accurately modeling aluminum clusters
and has a total MUE of 0.25 eV/atom. The reparametrized
embedded-atom PEFs perform well, and the best reparametrized
EA PEFs have MUEs of 0.06 eV/atom.

Finally, a systematic study of the ability of various functional
forms to model many-body effects has been presented. An
accurate fit to the diatomic molecule is presented and is used
to test the ability of several functional forms to correct the two-
body interaction in the presence various atomic environments.

The AT term is shown to be inaccurate for aluminum clusters
in this context as well. The screening function of Ho et al. and
the newly presented coordination number function both perform
well, and the results indicate that these functions incorporate
the important physical features. The best analytic potential
overall has a MUE over the cluster data of 0.05 eV/atom and
includes screening and coordination number effects, linear
scaling, and accurate two-body and bulk limits. This PEF,
labeled ER2+ESCNa, would be very efficient for dynamics
simulations of Al clusters, nanoparticles, and solids.
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