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Abstract 

The most widely used algorithm for Monte Carlo sampling of electronic transitions in 

trajectory surface hopping (TSH) calculations is the so-called anteater algorithm, which is 

inefficient for sampling low-probability nonadiabatic events. We present a new sampling 

scheme (called the army ants algorithm) for carrying out TSH calculations that is 

applicable to systems with any strength of coupling. The army ants algorithm is a form of 

rare event sampling whose efficiency is controlled by an input parameter. By choosing a 

suitable value of the input parameter the army ants algorithm can be reduced to the anteater 

algorithm (which is efficient for strongly coupled cases), and by optimizing the parameter 

the army ants algorithm may be efficiently applied to systems with low-probability events. 

To demonstrate the efficiency of the army ants algorithm, we performed atom-diatom 

scattering calculations on a model system involving weakly coupled electronic states. Fully 

converged quantum mechanical calculations were performed, and the probabilities for 

nonadiabatic reaction and nonreactive de-excitation (quenching) were found to be on the 

order of 10−8. For such low-probability events the anteater sampling scheme requires a 

large number of trajectories (~1010) to obtain good statistics and converged semiclassical 

results. In contrast by using the new army ants algorithm converged results were obtained 

by running 105 trajectories. Furthermore, the results were found to be in excellent 

agreement with the quantum mechanical results. Sampling errors were estimated using the 

bootstrap method, which is validated for use with the army ants algorithm.  
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I.  INTRODUCTION 
The most accurate way to describe a chemical system theoretically is to treat the 

entire system quantum mechanically. Currently, however, exact quantum mechanical 

calculations on chemical systems have been restricted to small chemical systems 

(involving two to six atoms for electronically adiabatic processes and two or three 

atoms for electronically nonadiabatic processes) because of the computational cost 

involved. On the other hand, classical mechanics may be used to model much larger 

systems but this is inadequate for systems where quantum effects play an important 

role. “Semiclassical” dynamical methods attempt to find an effective compromise 

between an entirely quantum mechanical treatment and completely classical treatment. 

In the present paper we are concerned with semiclassical trajectory methods, in which 

quantum mechanics is used to treat the electronic degrees of freedom, and the nuclear 

degrees of freedom are modeled as an ensemble of classical trajectories. This kind of 

semiclassical method has been widely used for electronically nonadiabatic collisions 

and photochemical reactions, and several reviews are available.1−13 

Trajectory surface hopping methods14−54 are one group of semiclassical trajectory 

methods which incorporate electronic transitions into the overall dynamics by allowing 

the classical trajectories in the ensemble to make sudden hops (also called switches) 

between the coupled potential energy surfaces. Specifically, each trajectory in the 

ensemble is propagated independently, and at small time intervals along each trajectory, 

a hopping probability is computed. Tully proposed a fewest-switches prescription for 

the hopping probability such that the nuclear and electronic degrees of freedom evolve 

self-consistently.22 In the widely-used anteater implementation of TSH, trajectories hop 

between states according to the hopping probability. 

In general, the strength of the coupling between the potential energy surfaces 

governs the probability of nonadiabatic events and also the number of trajectories 

required in the ensemble to obtain converged results using the anteater implementation 

of TSH. For example, if the probability of a nonadiabatic event is on the order of 10−1 or 

10−2, then three to five thousand trajectories are required to obtain good statistics., 

whereas in cases where the potential energy surfaces are very weakly coupled, and 

nonadiabatic events are rare, e.g., on the order of 10−8, the anteater algorithm requires 
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on the order of 108 trajectories to sample even a single nonadiabatic event, and 

sampling with good statistics is impractical. In fact, adequate sampling is already 

impractical for nonadiabatic probabilities on the order of 10−5. Therefore, it has not been 

possible to model polyatomic systems with weakly coupled surfaces using the available 

TSH algorithms. In this paper, we present a new algorithm (called the army ants 

algorithm) that is designed to efficiently handle weakly coupled systems. This new 

algorithm may be considered a form of rare event sampling for the nonadiabatic 

processes. Although rare event sampling has been widely studied, and many algorithms 

are available,55−63 essentially all previous work has been based on transition state 

concepts where the sampling occurs at a reasonably well-localized dynamical 

bottleneck, whereas the present algorithm can treat rare and delocalized nonadiabatic 

events that may occur at any point along a trajectory. 

One motivation for our recent studies of TSH methods has been to test them 

against accurate quantum dynamics.25,27,32−34,36,41−44,46,53 Because it has been impractical 

to study dynamics for systems with very small semiclassical transition probabilities, 

these tests have been carried out for systems with nonadiabatic probabilities of 3 × 10−4 

and larger. The army ants algorithm allows us to extend these tests down to much lower 

probabilities; for example, in the present paper we present well-converged calculations 

for a system with a nonadiabatic transition probability of 1 × 10−8. We will test not only 

the TFS surface hopping method, but also a variant of the TFS method called the 

fewest-switches with time uncertainty (FSTU) surface hopping method46 that was 

previously shown46,53 to be more accurate than the TFS method for nonadiabatic 

probabilities in the range 1 × 10−2 to 3 × 10−4. In particular we test the original version 

of the TFS method (TFS with reflection at frustrated hops, called TFS-) and three 

versions of the FSTU method (FSTU-, FSTU+, and FSTU∇V). All of these methods 

can be applied with either the anteater scheme (which was first denoted “anteater” by 

Tully22) or the new army ants sampling scheme. 

In addition, we validate the bootstrap method for estimating Monte Carlo 

sampling errors. Although formulas for sampling errors can be derived for many of the 

quantities and algorithms employed in trajectory calculations,3 there are many other 

cases where error formulas are hard to derive. The army ants algorithm provides an 
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example of such a problem. The bootstrap method64−66 provides a general solution to the 

problem of estimating sampling errors, and in the present article we validate it and use it 

successfully for this purpose. 

We summarize the existing sampling algorithms in Sec. II, and present the details 

of the army ants algorithm in Sec. III. The model system used for the calculations is 

described in Sec. IV. Section V contains the formulas for analysis of final product 

states. The bootstrap method of error analysis is presented in Sec. VI. Section VII 

provides details of all calculations performed and the results obtained. A discussion is 

provided in Sec. VIII and conclusions are presented in Sec. IX. 

 

II.  SAMPLING ALGORITHMS FOR TSH 
In the TSH method, an ensemble of trajectories is used to model the nuclear 

dynamics, and each trajectory evolves classically under the influence of a single potential 

energy surface. The single surface propagation is interrupted, at small time intervals by 

decision points at which electronic transitions may occur. At each decision point (which 

we label by their times t ) the electronic transition probability  is computed, 

where a is the occupied potential energy surface and b is the target potential energy 

surface. The TFS method defines  based on the local net flux of probability 

density such that the self-consistency of electronic and nuclear motions is 

maintained.

n )( nba tP →

)( nba tP →

(ba tP →

22,23,30 (Actually, when “frustrated hops” are encountered, this self-

consistency is also frustrated. We defer consideration of this aspect to Sec. III.) Tully15,22 

proposed two schemes for sampling  along the classical trajectory, which he 

called the ants and the anteater algorithms. 

)n

Before we discuss the ants and the anteater algorithms, it is useful to introduce the 

concept of extended trajectory space. For electronically adiabatic processes, trajectories 

are specified by a sequence of points in phase space. One can sample trajectory space by 

sampling initial conditions of the trajectories, i.e., by sampling phase space. Surface 

hopping trajectories in contrast, are specified not only by their initial phase points and 

initial surface but also by the times on phase points at which the hops occur. The space of 

all surface hopping trajectories will be called extended trajectory space, and the ants 
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algorithm, anteater algorithm, and new algorithm are all methods for sampling extended 

trajectory space. 

 

II.A.  Ants algorithm 

In the ants algorithm15 each trajectory in the ensemble begins the simulation on a 

particular potential energy surface and is integrated to the first decision point t , at which 

it splits into two branches. One branch continues to follow the initial potential energy 

surface and is called the nonhopping branch, whereas the other branch hops to follow the 

unoccupied potential surface and is called the hopping branch. Each of these resulting 

branches is assigned a weight according to the transition probability  such that 

the total weight of both branches adds up to one, i.e.,  

1

)( 1tP ba→

                                    
,)(1

)(

non

hop

nba

nba

tPw

tPw

→

→

−=

=
                                                  (1) 

where  is the weight assigned to the hopping branch, and  is the weight 

assigned to the nonhopping branch. The branches are independent, and each of them 

proceeds to additional decision points. The weight of each branch is the product of all 

weights assigned at every decision point in that branch’s history. As a result, the weights 

assigned to each branch get smaller and smaller as the number of branches gets larger and 

larger. The repeated branching process results into a swarm of trajectories that is 

analogous to a swarm of ants—hence the name, ants method. The advantage of this 

method is that it allows a trajectory to follow all nonadiabatic events independent of the 

weights of the resulting branches. However, this is also the major disadvantage of the 

ants method. A trajectory with  decision points would result in  branches. 

When the ants method was first proposed, the primitive trajectory surface hopping 

algorithms then in use restricted surface transitions to predefined seams, thus keeping 

 small. However the modern algorithms based on fewest-switches considerations 

allow hopping decisions after every time step.  

hopw nonw

decN dec2 N

decN
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II.B.  Anteater algorithm 

The anteater method is the most widely used sampling algorithm for TSH 

simulations. In the anteater algorithm, the branching event is replaced by a stochastic 

event. Specifically, the nonadiabatic transition probability  at each decision 

point  is compared to a random number 

)( nba tP →

nt λ , between 0 and 1. If  is greater 

than 

)( nb t→aP

λ , the hopping branch is followed and is assigned weight 1. The nonhopping branch 

is not followed and is assigned a weight of 0, i.e.,  

                                                           
0

1

non

hop

=

=

w

w
   .                                        (2) 

If is less than )( nba tP → λ , the nonhopping branch is followed, and the trajectory 

remains on the initial potential surface with weights  

 
1

0

non

hop

=

=

w

w
 . (3)  

This scheme gets the name anteater from the analogy that an anteater is most likely to 

follow the path where the probability of finding ants is greatest. 

 Each anteater trajectory finishes with a weight of unity on one of the two 

potential energy surfaces and final results are obtained by averaging over many anteater 

trajectories.The anteater implementation of TSH is widely used and is entirely 

satisfactory for systems where the coupling between the potential energy surfaces is large 

enough that the probability of nonadiabatic events is on the order of 10−1−10−3.   

 

II.C.  Generalization to more that two electronic states 

In cases with more than two coupled potential energy surfaces, the ants and the 

anteater algorithms are slightly more complicated. Consider a system with S coupled 

potential energy surfaces, where surface 1 is occupied initially. At the first decision point, 

the transition probabilities from surface 1 to each of the other target surfaces are 

. For the case of multiple potential energy surfaces the 

variable  is the sum  over all 

Sg PPPP →→→→ 113121 ,,,,, KK

hopw jiP→ ji ≠ , where  is the current surface.  i

In the anteater algorithm, the transition probabilities are compared to a random 

number λ (between 0 and 1) to determine the surface on which to continue the trajectory. 
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A hop to surface 2 occurs if 21→< Pλ , a hop to surface 3 if 312121 →→→ +<< PPP λ , 

and so on. If no hop occurs, the trajectory remains on surface 1. In any event the 

trajectory then moves on to the next decision point.  

In the ants algorithm, branching is allowed at every decision point from potential 

energy surface 1 to all the other unoccupied potential energy surfaces. The weight of a 

hopping branch w  from surface 1 to surface g, shown explicitly by the superscript 

, is determined by the transition probability for that surface, i.e., . 

The total weight of all of the hopping branches and the nonhopping branch is one, i.e., the 

weight of the nonhopping branch is . 

Each of the hopping branches and nonhopping branch propagate independently, 

branching further at decision points. Thus the total number of branches would be  

g→1
hop

g→1 g
g Pw →

→
1

1
hop  =

),, 1 Sg P →→ + K

decNS

,,(1 13121
11

non PPPw →→
→ ++−= K

.

 

III.  ARMY ANTS ALGORITHM 
Consider a weakly coupled system with a nonadiabatic reaction probability of 

~10−8. Since it requires on the order of 100 trajectories to obtain reasonable final-state 

statistics for a given final electronic state, the anteater algorithm would require a 

minimum of 1010 trajectories to obtain reasonably converged results. In the ants 

algorithm, every trajectory would sample the low-probability events, but the large 

number of resultant branches makes the ants method computationally expensive to 

implement, as described earlier. We propose a new algorithm, called the army ants 

algorithm, that is capable of performing calculations for systems with weakly coupled 

electronic states. 

The army ants algorithm is designed to incorporate the strengths both the ants and 

the anteater algorithms. Specifically, by allowing branches to propagate with fractional 

weights, the ants algorithm is able to sample the critical regions of extended trajectory 

space; including those associated with low-probability events that the anteater algorithm 

“misses” when the number of trajectories is too small; therefore this aspect was crucial to 

incorporate in the new algorithm. Also, it is important to keep the algorithm tractable; 
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therefore, the ants aspect of branching at every time step was replaced by the stochastic 

anteater scheme of randomly choosing to follow only one of the possible branches.  

In essence, an army ants trajectory is propagated using stochastic elements of the 

anteater algorithm at every time step along with the feature of fractional weights as in the 

case of the ants algorithm. In fact the army ants algorithm reduces in certain limits to the 

ants or anteater algorithms, as described later in this section.  

The army ants algorithm is defined in terms of a parameter  such that η ≤0 η 1≤ . 

The value of  is compared to the nonadiabatic probability  at each decision point 

 The greater of the two values is called 

η baP →

.nt nγ : 

                                             .                                                (4) 




=
→ )(

max
nba

n tP
η

γ

In order to determine whether branching is allowed at that decision point a random number 

λ between 0 and 1 is drawn and compared to nγ  with the following consequences: 

                                                       λ > nγ : no branching                                               (5)  

            λ  < nγ : branching      . 

In a non-branching case, the trajectory moves on to the next decision point while remaining 

on the current surface. If, on the other hand, branching occurs, then the branch weights 

 for the hopping branch and  for the nonhopping branch are calculated as 

follows: 

hopw nonw

                                                  
.

)(
1

)(

non

hop

n

nba

n

nba

tP
w

tP
w

γ

γ

→

→

−=

=

                                         (6) 

Another random number is drawn and the hopping branch is propagated if the random 

number is greater than 0.5, otherwise the non-hopping branch is followed, i.e., one follows 

each branch 50% of the time, even though they have different weights. We can summarize 

a successful branching event as follows: 

Step 1.  Initiate a trajectory from the ensemble on the appropriate potential energy 

surface, and at each decision point t  compute . n )( nba tP →
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Step 2. Obtain nγ = max [ ] )(, nba tPη →

Step 3. Generate a random number λ1 between 0 and 1. 

Step 4. Compare nγ  and λ. Branch if λ1 < nγ  and calculate  and . hopw nonw

Step 5. Generate another random number λ2 between 0 and 1. 

Step 6. Choose the hopping branch if λ2 > 0.5, and choose the nonhopping branch 

otherwise. 

It should be noted that the army ants algorithm reduces to the anteater algorithm 

for  since the maximum of [ ] at every decision point yields ,0=η )(,0 nba tP → nγ = 

 which on substitution in Eq. (6) results in branch weights for the anteater 

algorithm as in Eqs. (2) and (3).  On the other hand the army ants algorithm can be reduced 

to the ants algorithm by choosing

)( nb t→aP

.1=η  In this case, the value of nγ  is equal to 1 (since 

nγ = max [1 ]) at every time step, and substitution in Eq. (6) then results in ants 

algorithm weights as in Eq. (1). The parameter  therefore plays a role in the efficiency of 

the calculation, and in fact  may be optimized for this purpose. Depending upon the 

magnitude of coupling, the amount of branching character can be regulated by choosing the 

most appropriate value of  This attribute makes the algorithm universally applicable to 

any kind of system, irrespective of the strength of coupling between the electronic states.  

)(, nba tP →

η

η

.η

It is important to notice that all three trajectory surface hopping sampling 

algorithms (ants , anteater)1( =η )0( =η , and army ants (non integer )) achieve the same 

results in the limit of infinite sampling, i.e., the choice of does not affect the results for a 

large sample.  

η

η

The army ants algorithm can be implemented in two different ways, depending on 

how  is chosen. We label the first implementation as “fixed-η η  mode” and the second 

method as “k mode,” the reasons for which are given below. 

(1) In fixed-η  mode,  at every step is set equal to , which is an input parameter 

in this mode. This parameter is the target value of the fraction of decision points at which a 

branch occurs. For example, in the system considered in this paper, a typical trajectory 

encounters about = 900 decision points. If one’s target is for every trajectory to 

branch (ants method) at 6 time steps and not branch (anteater method) at the remaining 

η oη

decN
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steps, one should set  equal to 6/900 or about 7 . Depending upon the amount of 

branching desired, any value can be chosen for , provided only that it is a number 

between 0 and 1.  

oη
310−×

oη

(2) In k mode, the distribution of branching points is independent of the time step 

taken by the integrator. The input parameter in this implementation is a constant k that has 

units of inverse time (and can be considered analogous to a first-order rate constant). The 

input k value is then multiplied by the instantaneous time step nt∆  at each decision point n, 

to obtain a unitless time-dependent variable given by 

                                                            η ntk∆= .                                                              (7) 

By allowing  to vary in this way at each decision point, we can regulate the branching 

because an integrator with variable step size can take small steps on the potential energy 

surface where the potential is steep, but a smaller value of η  in this region will prevent 

excessive branching events. Conversely, k mode allows for more branching in the areas on 

the potential energy surface where the potential is flat and the integrator takes large steps.  

η

The input parameter k can have any value, but a good value for k can be obtained 

from  

                                                    
avg

opt

t
η
∆

=k .                                                                    (8) 

where  is an optimal value for  and optη ,η avgt∆  is the average time step of the integrator. 

For the present paper, this approach was used to obtain the k parameter for the k mode 

army ants calculations. 

It should be noted that decision points occur all along the classical trajectory, even 

when the system is far from the region of maximum coupling. When this is the case,  

may be several orders of magnitude smaller than probabilities of interest. In the army ants 

algorithm, the hopping branch is followed 50% of the time independent of the magnitudes 

of weights, but the branch may have a very small weight such that it will not contribute 

significantly to the final results. We therefore introduce a cutoff parameter  such that if 

hopw

cutw
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cuthop ww <  at , the hopping decision is ignored at . For all calculations in the present 

article we set  equal to 1  

nt

cut

nt

w .10 20−×

Since the new algorithm is more evolved and more efficient than the previous ones, 

we named it the army ants algorithm in recognition of a highly organized species of ants 

called army ants inhabiting the equatorial forest of planet Earth. In particular, a collection 

of army ants, taken as a whole, functions as a well integrated social entity with the 

extraordinary ability of forging into unknown territory, and we can hope that our collection 

of trajectories is equally adept at sampling an unknown extended-trajectory-space and 

discovering its most significant features.  

The extension of army ants algorithm to more than two surfaces is straightforward. 

For example, for three surfaces one would follow each surface one third of the time (at 

random) at each branching point. Actually, one will stay unbiased even if one changes the 

fraction of the time that each surface is followed. If one were especially interested in the 

detailed product distribution on surface 2, one could follow surface 2 at 70% of the 

branches (chosen at random) and surfaces 1 and 3 at 15% each. In the present paper we 

have two surfaces, and we follow each surface at 50% of the branches. 

We have discussed three sampling schemes (ants, anteater, and army ants) for TSH. 

We next discuss several variants of the TSH approach that differ in their treatment of 

frustrated hops. Any of the sampling schemes can be combined with any of these variants, 

and in the present article we will illustrate the new army ants algorithm with four of the 

variants, namely TFS-, FSTU-, FSTU+, and FSTU∇V. 

In trajectory surface hopping calculations, trajectories make sudden hops from an 

occupied surface to a target potential energy surface, and the potential energy of the system 

changes discontinuously when the system hops. To conserve the total energy of the system, 

the kinetic energy of the system on the new surface is adjusted by changing the nuclear 

momentum along the hopping vector. (In the present paper, the hopping vector is always a 

unit vector parallel to the nonadiabatic coupling vector d , a choice that has been previously 

been justified by theoretical arguments19,24 and by testing33 against accurate quantum 

mechanical calculations.) At certain points along a trajectory, a hopping attempt from a 

lower-energy to a higher-energy electronic state may occur such that the kinetic energy 
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associated with the component of nuclear momentum along the hopping vector h  is less 

than the potential energy gap between the occupied and the target electronic states. Such 

hops are classically forbidden, and are called “frustrated hops.” Frustrated hops are 

common in semiclassical trajectory calculations, and various prescriptions have been 

proposed to treat frustrated hops. Earlier treatments include ignoring the frustrated hop, 

denoted by “+”, or reflecting the nuclear momentum along  denoted by “-”. When 

implemented with the TFS method, these choices are labeled TFS+ and TFS-. The TFS- 

scheme is the original version of TFS,

,h

22,67 and TFS+ was introduced later,26 although a 

combination of + and - was used even earlier in a general surface hopping scheme.18 In our 

group, we compared the performance of these variants systematically44 and then introduced 

a new method of treating the frustrated hops, called the fewest-switches time uncertainty 

(FSTU) method.46 The FSTU method is like TFS except that where frustrated hops are 

encountered the system may hop nonlocally. In the FSTU method, some hops remain 

frustrated, and these can be ignored (+) or cause reflection (-), yielding FSTU+ and 

FSTU-. Another FSTU prescription proposed recently is the FSTU∇V53 scheme that uses 

the gradient information of the target potential surface to determine how momentum will be 

treated at frustrated hops. 

*

We performed calculations on a realistic model system called the YRH system 

using the above variants of the TSH approach along with the anteater and army ants 

sampling algorithms. Details of the YRH system are provided in the following section. 

 

IV.  THE YRH MODEL SYSTEM 
The YRH model system44 is a three-body system that has been developed in our 

group to study weakly coupled systems. The model reaction is an electronically 

nonadiabatic scattering process between an excited atom Y  and a ground-electronic state 

diatomic molecule RH in a specific quantum state ),( jν , where ν  the vibrational 

quantum number, and  j is the rotational quantum number. The collision can result in two 

possible outcomes as shown in the following equations:  

                         




′′′′+

′′+
→+

,quenching),,(RHY
reaction),,(YHR

),(RHY*
j
j

j
ν
ν

ν                     (9) 
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where Y, R and H are model atoms, the asterisk denotes electronic excitation, and the 

primes and double primes denote the quantum numbers of the diatomic molecules 

associated with the reactive and quenched molecular arrangements, respectively.  

The probability of the scattering process resulting in reaction is called RP , 

whereas the probability of a quenching process is represented as . The sum of these 

probabilities is the total nonadiabatic probability  for a system to emerge in the 

ground electronic state in a scattering event, i.e., 

QP

NP

                                                        QRN PPP += .                                                   (10) 

The details of the model YRH system have been reported in earlier work44 in 

which a family of four YRH potential energy matrices (PEMs) was introduced. Briefly, 

the masses of Y, R, and H are taken as 10, 6, and 1.00783 amu, respectively. The model 

Y atom is electronically excited with energy equal to 0.36 eV, and the equilibrium bond 

energies for of RH and YH molecules are 3.9 and 4.3 eV, respectively. The zero point 

energies of RH and YH are 0.18 and 0.19 eV, respectively. The coupled potential energy 

surfaces are defined in the diabatic representation to have qualitatively similar shapes to 

those for the B *r  + H2 system.32 Figure 1 provides the plots for the elements of the 

diabatic potential energy matrix. The energy gap between the two potential energy 

surfaces U11 and U22 remains almost constant at 0.36 eV, and the diabatic coupling U12 is 

small and localized in the interaction region. Adiabatic potential energy surfaces were 

obtained by diagonalizing the diabatic potential energy matrix, as described 

elsewhere.2,11,44 

Each member of the family differs from the others only in the magnitude of the 

diabatic  coupling surface, and each may be labeled by the maximum value of its diabatic 

coupling U . For the present work, we have extended the YRH family of four 

surfaces (U = 0.2, 0.10, 0.03, or 0.01 eV) to include a very weakly coupled system 

with the maximum diabatic coupling U = 0.0001 eV. We will focus specifically for 

the present work on the set of coupled potential energy surfaces with U = 0.0001 eV 

max
12

max
12

max
12

max
12

 13



in order to demonstrate the efficiency of the army ants algorithm, although we also report 

some preliminary calculations with U = 0.2 eV. max
12

i

trajN

i
∑

=

∑=
traj

tot
N

i

 

V. FINAL STATE ANALYSIS 
The final product analysis for army ants trajectories requires an ensemble of 

trajectories, for which information about the final arrangement and the final weight is 

known for each trajectory. Each trajectory in the ensemble, denoted by index i, finishes 

the simulation with some weight W  that is the product of the weights assigned to it at 

every decision point along the propagation of the trajectory. By using the histogram 

method,3,27 each electronically nonadiabatic trajectory is also assigned values riµ  for 

three of the applicable final quantum number ,rµ  where νµ ′=2 , j′=3µ , νµ ′′=4 ,  

j ′′=5µ , and 1µ  is the final electronic-arrangement quantum number ,α  which is 

assigned as 1 for , 2 for R + YH and 3 for Y + RH. Note that RHY* + i1µ , i2µ , and i3µ  

are assigned if 2=α , and i1µ , i4µ , and i5µ  are assigned if .3=α  

If the total number of trajectories is , then the probability of a given 

electronic arrangement is 

trajN

                                              
tot

1

W

W
P

i iαµ

α

δ
,                                           (11) 

where  

                                                W .                                                     (12) iW

We also label  as 2P RP  (R denotes reaction) and  as  (Q denotes quenching). The 

total probability of an electronically nonadiabatic outcome is  and is defined in Eq. 

(10). The final quantum states of the diatomic products are calculated according to the 

following equations using the energy non-conserving histogram method, as discussed 

elsewhere.

3P QP

NP

27 The first moments of the final vibrational and rotational quantum numbers 

rµ  are given by 

 14



                                 
r

ri

PW

W
N

i
iri

r
α

αµδµ
µ

tot

traj

1∑
= ,                                                (13)  

where 232 ==αα  and .354 ==αα  Note that  is the mean over all the trajectories, 

and 

αP

rµ  is the mean over the relevant subset of trajectories. To estimate the sampling 

errors in all the above observable quantities, we use a new method described in the 

following section. 

 

VI. BOOTSTRAP RESAMPLING: METHOD OF ERROR ANALYSIS 

The bootstrap method64-66 of error analysis is a resampling technique that can be 

used to estimate the sampling distribution of any well-defined function of sampled data. 

In general, resampling techniques are widely used statistical tools that are favored by 

virtue of their robustness and simplicity. In cases where there is no information about the 

underlying distribution of the sample and no analytical formulas are available, this 

method proves to be very useful.  

In the army ants method, branching is a stochastic process, but due to the 

fractional weight carried by the trajectories the usual Monte Carlo error formulas3 cannot 

be applied. Error analysis was therefore carried out by the bootstrap resampling method. 

The bootstrap method was first introduced by Efron and was named with the 

notion of pulling oneself out of the mud by one’s own bootstraps.64 In particular, in cases 

where the knowledge of the distribution is lacking, the sample itself may be taken as the 

best guide to the sampling distribution. The bootstrap method is applicable to our 

problem because our sample is unbiased and also is uncorrelated. In the bootstrap 

method, the initial sample is resampled by creating large number of bootstrap samples. 

The bootstrap estimation procedure consists of the following steps: 

1) Take the original data set with N data points: (  and call it 

B

),,,,, 21 Ni xxxx KK

0. Calculate the statistic of interest, which in this example is the mean x . 

2) Draw a sample of N data points at random “with replacement” from the initial 

set B0 and name the new set bootstrap sample 1 (B1). All data points for B1 are selected 

from B0 at random, using a random number generator, in such a way that once a data 

point has been drawn its value is recorded in B1, and it is replaced back in B0 to assure 
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that in the next draw all the data points again have equal probability of being drawn. It is 

therefore likely that some data points in the new set will occur more than once. Calculate 

the statistic of interest ( x ) for B1 just as it was done for B0. Call this 1x . 

3) Repeat, the second step M times, where M is a large number, to 

produce  Calculate the statistic of interest (.B,,B,,B2 Mm KK x ) for each of them. Label 

these mx . 

4) Calculate the average value of the statistic of interest over all the bootstrap 

cycles by 

                                        
M

x
M

m
m∑

= =1
bootstrapµ    .        (14) 

5) Calculate the standard deviation of the calculated value of the statistic using  

 

 . (15) 

 
1

)( 2
bootstrap

bootstrap −

∑ −
=

M

x
M

m
m µ

σ

The bootstrap method is a very general. We expect, for example, that the 

bootstrap method will be very useful for calculations employing smooth sampling 

methods,3 because standard error formulae are not applicable to smooth sampling results. 

In both histogram and smooth sampling calculations the final observables are weighted 

means, but the bootstrap analysis does not require this, and it can be used to estimate the 

sampling distribution of any well-defined function of the sample data. 

 
VII.  CALCULATIONS AND RESULTS         

The semiclassical calculations were done using version 7.0 of the nonadiabatic 

trajectory surface hopping code NAT.68 Our first objective was to confirm that both 

anteater and army ants results converge to the same semiclassical result. Also, we wanted 

to compare the army ants bootstrap error estimates with the anteater error estimates that 

were obtained using the analytical3 formula. Therefore, we applied both the anteater and 

army ants sampling schemes to the YRH system with relatively strong coupling 
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2.0max
12 =U  eV for which anteater results have already been reported.53 Calculations 

were performed using the FSTU∇V method for the original, unmodified, anteater 

algorithm and for the new army ants algorithm in the anteater limit in the fixed- η  

implementation with ; in both cases we propagated 100000 trajectories, and we 

used the adiabatic representation. The results obtained by both of the methods are shown 

in Table I. The nonadiabatic probabilities, 

0=oη

RP  and , with their respective vibrational 

and rotational moments, show very good agreement between the methods. The error 

analysis for the observable quantities in the army ants case was done by the bootstrap 

technique using 10000 bootstrap cycles. (A study of convergence with respect to the 

number of bootstrap cycles is given in Appendix A.) The bootstrap error estimates of 

army ants run, shown in Table I, match well with the anteater analytical error estimates. 

This confirms that in the limit of = 0, the bootstrap method can be successfully applied 

to obtain the same error estimates as from the analytical formula.  

QP

oη

To check the bootstrap method for the army ants calculations for values of  

other than 0, we performed calculations on larger sets of army ants trajectories for the 

optimum  value of 1 . The aim of this calculation was to validate that the 

bootstrap method is applicable for the army ants algorithm. The error estimates are 

presented in Table II, and it can be seen that in most cases the bootstrap error estimates 

for the observable quantities decrease approximately by the inverse of the square root of 

the number of trajectories used for the calculations, which is the Monte Carlo result that 

is expected on general principles. This further validates the use of the bootstrap method 

for analyzing the results of army ants calculations. 

oη

oη
210−×

To test the merit of the new algorithm we applied the army ants algorithm to a 

system for which anteater calculations are not computationally affordable. In particular, 

the army ants algorithm was used for + RH (*Y ν  = 0, j = 0) with a scattering energy of 

1.1 eV and with U  eV. Table III shows the results obtained and the 

computer time taken for the calculations using TFS-, FSTU-, FSTU+, and FSTU V 

method in the fixed-

0001.0max
12 =

∇

η  mode of army ants and a value of  value of 1 . The oη
210−×
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criterion used for the choice of  is discussed in the Appendix B. The army ants results 

are very converged well for 100000 trajectories. In contrast, the anteater calculations 

failed to provide any electronically nonadiabatic final states in 100000 trajectories. The 

error estimates on the observable quantities, i.e., 

oη

,,,, QR >′<>′< jPP ν  >′′<ν , and 

 were calculated using the bootstrap resampling technique described in Sec. VI. 

For the purpose of comparison the quantum mechanical scattering results at scattering 

energy 1.10 eV are also shown in Table III. 

>′′< j

121095.7 ×=k

2
opt 101 −×=η

*Y

η ×

In order to demonstrate the alternative k mode implementation of the army ants 

algorithm, we performed the FSTU∇V calculations with same initial conditions as those 

for the fixed- η  mode in Table IV. We used a variable-step-size Bulrisch-Stoer33,73 

integrator, and the value of the input parameter was s-1, which was 

obtained using Eq. (8) with the optimum value of  and an average 

integrator time step, t = 1.26 fs (obtained by taking an average over a small set of 

trajectories). The results for both fixed-

avg

η  mode and k mode calculations are summarized 

in Table IV. Both methods require about the same computer time and converge to the 

same results, therefore confirming that the two implementations can be used 

interchangeably. 

Since quantum mechanical scattering results sometimes oscillate as a function of 

scattering energy,44 we carried out quantum mechanical calculations at seven energies. 

Appendix C shows that the results vary systematically with energy without significant 

oscillations so for testing the semiclassical methods we need not be concerned with 

oscillations. Therefore, we compared the semiclassical army ants algorithm results and 

quantum mechanical scattering calculations at three different scattering energies centered 

at 1.10 eV. In particular, for both methods, the results were obtained for + RH (ν  = 0,  

j = 0) with U  eV at three values of the total energy, namely 1.07, 1.10, and 

1.13 eV. The army ants calculations were performed using the FSTU

0001.0max
12 =

∇V method in the 

fixed-  mode with  equal to1 . All quantum mechanical calculations were 

obtained by the outgoing wave variational principle

oη
210−

69−71 using version 18.8 of the VP 
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computer code.72 The calculations involve 18934 basis functions (13884 square-

integrable functions and 5050 non-square-integrable functions) in 334 channels (73 

channels corresponding to + RH, 107 corresponding to Y + RH, and 154 

corresponding to R + YH); other details of the calculations have been reported earlier.

*Y

271

10×

44   

The accurate quantum calculations are well converged to at least the number of 

significant figures shown in the tables, as demonstrated by their stability to increasing the 

number of basis functions and channels in each arrangement and increasing the number 

of quadrature points. The comparison of quantal and semiclassical results is presented in 

Table V. 

 
VIII.  DISCUSSION 

The results obtained by the army ants calculations indicate a very significant 

improvement in efficiency as compared to the existing surface hopping algorithms. It was 

found that 100000 army ants trajectories running in parallel on four 375 MHz Power 3 

WinterHawk+ processors of IBM SP supercomputer take about 10 hours to complete. 

There are three slave processors running trajectories and one master processor in control 

which is not load balanced; therefore the computer time is between 30 and 40 processor 

hours. For the purpose of demonstration we hypothetically assume propagating 

trajectories by the existing anteater and ants methods and compare the time required for 

each of them to give a converged result for the YRH system with U = 0.0001 eV. In 

the ants method a single initial trajectory taking to  number of decision points equal 

to 900 results in 2 branches. In order to average over the initial conditions we 

will need a minimum of 500 trajectories which leads to an extraordinarily large number 

of resultant branches,500 , each of which (on an average) would be 

integrated for half as long as an army ants or anteater trajectory. The time taken to 

complete this ants simulation is shown in Table VI. Consider now running anteater 

trajectories for the system with the nonadiabatic probability of the order of magnitude 

~10

max
12

decN

900 10≈

273271 105×≈

−8. This also requires a large number of trajectories because a single nonadiabatic 

event will be experienced in approximately 108 trajectories and in order to get good 

statistics we would need a total of at least hundred nonadiabatic events which leads to 
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~1010 trajectories. (Recall that we want enough reactive and quenched trajectories to 

converge the quantum number moments.) The calculated time required for this 

hypothetical simulation is also reported in Table VI.  

The huge computational requirements of the anteater (~106 hours) and ants (~3 

×10269  hours) methods were an insuperable impediment to carrying out semiclassical 

trajectory surface hopping calculations on weakly coupled systems. In contrast, the new 

and flexible army ants algorithm can be adapted to systems with any kind of coupling, 

ranging from weak to strong. 

The availability of well converged surface hopping calculations for a system with 

such a small probability of electronically nonadiabatic events allows us to test the 

semiclassical simulations in a new dynamical regime where they have never before been 

able to be tested. Table VII shows the mean unsigned relative errors. The average 

absolute error in the nonadiabatic reaction probability is only 15%, and that in the 

nonreactive quenching probability is only 8%. The average errors in the moments range 

from 7 to 58%. Considering the highly quantal character of these weakly allowed 

processes, the semiclassical methods are surprisingly accurate. 

 
 
IX.  CONCLUSIONS 

The army ants algorithm is an efficient method for computing the probabilities of 

nonadiabatic events in weakly coupled systems. Since all trajectory surface hopping 

algorithms, i.e., anteater, ants, and army ants, give the same converged results in the limit 

of infinite sampling, one may choose the algorithm that is most efficient. The present 

study shows that the army ants algorithm is useful and accurate for systems that are 

intractable by the two other sampling algorithms that have been proposed.  

The army ants algorithm successfully captures the most desirable aspects of both 

the ants and anteater algorithms. The new army ants algorithm retains the ants feature of 

assigning fractional weights to the daughter trajectories, and it also incorporates the 

stochastic nature of the anteater algorithm. The method is designed in such a way that it 

can be applied to systems irrespective of the strength of the coupling between the 
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potential energy surfaces, thus providing a general algorithm for performing trajectory 

surface hopping calculations.  

The present article also provides the first application of the bootstrap method for 

error estimation in molecular trajectory calculations. The method is quite successful, and 

it should be useful for error estimation in general, not just for army ants calculations. 

Finally, the new algorithm allows us to test the trajectory surface hopping method 

for much weaker transition probabilities than has been ever before been possible. For a 

transition probability of the order 10−8, the mean unsigned relative error in the six 

observables that were calculated is only 26%. 
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APPENDIX  A: CONVERGENCE WITH RESPECT TO NUMBER OF BOOTSTRAP 
CYCLES  

The bootstrap method of error analysis resamples the original data set by 

randomly selecting data points from the original sample, with replacement, to generate a 

large number of bootstrap cycles, as explained in Sec. VI. To determine the number of 

bootstrap cycles required for the error analysis of the army ants runs, convergence studies 

of the error estimates with respect to the number of bootstrap cycles were performed. 

Bootstrap analyses were carried out for various numbers of cycles using the results 

obtained by the FSTU∇V method with the army ants algorithm in the fixed- η  mode 

with equal to 1 × 10oη
−2 for + RH (*Y )0,0 == jν  with U  eV at 

scattering energy 1.10 eV. Table A-I shows the values of the bootstrap averages and error 

estimates for 5000, 10000, and 20000 bootstrap cycles and the computer time taken by 

0001.0max
12 =
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each of the runs. Notice that the computer times for analyses are less that 1% of the 

computer time required to run the trajectories, which is between 30 and 40 processor 

hours for 105 trajectories. It was found that 10000 bootstrap cycles yields good 

convergence, and therefore 10000 bootstrap cycles are used for the bootstrap analyses in 

this paper.     

 
APPENDIX  B: CHOICE OF INPUT PARAMETER FOR BRANCHING 

In the fixed- η  mode of the army ants algorithm, the value of the input parameter 

 controls the number of branching events that occur along each trajectory. The amount 

of branching that is desired can depend upon the strength of the coupling between the 

potential energy surfaces. As mentioned in Sec. III, the value of  can be any number 

such that 0 , but the efficiency of the calculation can depend strongly on . An 

efficient value of η  is one that requires the least number of trajectories  to obtain 

results for the observable quantities  and 

oη

oη

≤ oη 1≤ oη

o trajN

αP >< rµ  that are converged to same small 

errors rε∆ . To determine the most efficient value of  for the weakly coupled model 

systems studied here [specifically for + RH (

oη

,0*Y )0== jν  at scattering energy 1.10 

eV with U  eV], calculations were performed for a range of  values using 

the FSTU∇V method, as shown in Table B-I. The results for the probabilities, i.e.,

0001.0max
12 = oη

RP , 

, and for the moments, i.e., QP ,>′<ν  >′< j , >′′<ν , and >′′< j , along with the error 

estimates, are shown in Table B-I.  Error analyses were carried out using the bootstrap 

method with 10000 bootstrap cycles for each  value. oη

With = 1 × 10oη
−4, good convergence was obtained with 500000 trajectories, 

which is a fairly large number due to the fact that at small values of  the number of 

branching events encountered by each trajectory is small. Since = 1 × 10

oη

oη
−4 provided 

the largest sampled space, we used the values in row 1 along with the Monte Carlo error 

formula 
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traj

1
N

∝∆ε   .                                                       (B1) 

to estimate the number of trajectories needed to obtain the at least as small as in row 1 for 

RP  and , and the larger of the two values is listed as  in Table B-I. Similarly, the 

maximum value of the estimated number of trajectories needed for good convergence of  

(at least as good as row 1) <

QP P
trajN

,>′ν  >′< j , >′′<ν , and >′′< j

oη

 is listed as  in Table 

B-I. From Table B-I, it can be concluded that the least number of trajectories required to 

obtain the same relative errors as obtained in the run with 500,000 trajectories and = 1 

× 10

M
trajN

optη

oη

10×

−4 is obtained using = 2 × 10oη

o

−2 for the probabilities and using η = 1 × 10o
−2  for the 

moments. Since using = 1 × 10η −2 performs best on average for both probabilities and 

moments, it was concluded that this is the most efficient value, that is, . 

With equal to 1 × 10

21 −=

oη
−2, only 25000 trajectories are required to obtain good 

convergence. 

 
 
 
 
APPENDIX  C 

Quantum mechanical scattering calculations for + RH (*Y )0,0 == jν  with 

 eV were performed at seven different values of the total energy centered 

at 1.10 eV, as shown in Table C-I. The average values for the observable quantities over 

the entire set of scattering energies are also shown in Table C-I. 

0001.0max
12 =U
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Table I. Results for anteater and army ants )0( o =η  calculations using the FSTU V method, for the + RH∇ *Y )0,0( == jν system 

with a total energy of 1.10 eV and with = 0.2 eV using 100000 trajectories.max
12U  

 

Method   oη RP  ν ′  j′  QP  ν ′′  j ′′  

Anteatera  

  

- (1.38 ± 0.03) × 10−2 1.11 ± 0.02 12.8 ± 0.13 (4.39 ± 0.07) × 10−2 0.98 ± 0.01 6.31 ± 0.07 

Army antsb 0.0 (1.41 ± 0.03) × 10−2 1.12 ± 0.02 12.8 ± 0.13 (4.42 ± 0.06) × 10−2 0.97 ± 0.01 6.30 ± 0.07 

        

 

aAnteater calculations using the original, unmodified method and the Monte Carlo error formula of Ref. 3. 

bAnteater calculations were done using the army ants algorithm with η = 0. The errors were estimated using 10000 bootstrap cycles. 
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Table II. Bootstrap analysis resultsa for army ants calculations.b  

 

trajN  RP  ν ′  j′  QP  ν ′′  j ′′  

100000 (1.36 ± 0.034) × 10−8 1.33 ± 0.019 12.5 ± 0.115 (3.28 ± 0.046) × 10−8 1.13 ± 0.010 4.83 ± 0.071 

200000 (1.34 ± 0.023) × 10−8 1.30 ± 0.014 12.7 ± 0.09 (3.31 ± 0.031) × 10−8 1.14 ± 0.007 4.83 ± 0.059 

300000 (1.35 ± 0.020) × 10−8 1.31 ± 0.011 12.7 ± 0.067 (3.33 ± 0.025) × 10−8 1.13 ± 0.006 4.84 ± 0.041 

400000 (1.36 ± 0.019) × 10−8 1.31 ± 0.008 12.6 ± 0.051 (3.30 ± 0.021) × 10−8 1.13 ± 0.006 4.87 ± 0.037 

       

 

aError estimates were calculated using 10000 bootstrap cycles. 

bArmy ants calculations were performed in the fixed- η  mode with = 1 × 10oη
−2  using the FSTU∇V method for + RH *Y

)0,0( == jν , for the total energy 1.10 eV with = 0.0001.max
12U a
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Table III. Results for + RH *Y )0,0( == jν  system for the total energy 1.10 eV with = 0.0001 eV in the fixed-  mode of 

army ants algorithm, for 100000 trajectories.

max
12U η

a 

j ′′

 

 

Method   oη RP  ν ′  j′  QP  ν ′′   
Timeb 

(hours) 

Quantum       

          

- 1.21 × 10−8 0.90 11.6 3.35 × 10−8 0.93 3.28 -

Anteaterc 0.0 0 - - 0 - - 9.4

TFS- 1.0 × 10−2 (1.35 ± 0.04) × 10−8 1.30 ± 0.02 13.4 ± 0.11 (3.59 ± 0.05) × 10−8 1.19 ± 0.02 5.03 ± 0.07 10.2 

FSTU- 1.0 × 10−2 (1.39 ± 0.03) × 10−8 1.23 ± 0.02 12.3 ± 0.09 (3.39 ± 0.05) × 10−8 1.07 ± 0.01 5.17 ± 0.09   9.9 

FSTU+ 1.0 × 10−2 (1.38 ± 0.03) × 10−8 1.24 ± 0.02 12.2 ± 0.10 (3.38 ± 0.05) × 10−8 1.07 ± 0.01 5.17 ± 0.09 10.0 

FSTU V ∇ 1.0 × 10−2 (1.33 ± 0.03) × 10−8 1.33 ± 0.02 12.5 ± 0.11 (3.28 ± 0.05) × 10−8 1.13 ± 0.02 4.83 ± 0.07 10.0 

         

aError estimates were calculated using 10000 bootstrap cycles. 
bOn four processors. 
cAnteater calculations for 100000 trajectories fail to show any statistics. 
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Table IV. Results for calculations using FSTU∇V method for + RH *Y )0,0( == jν , for the scattering energy 1.10 eV with = 

0.0001, using 100000 trajectories for both modes of army ants algorithm.

max
12U

a 

 

mode 
Input 

parameter 

 

 

 

 

 

 

 

 

 

 

 

 

Time 

(hours)

fixed- η  1.0 × 10−2 (1.33 ± 0.03) × 10−8 1.33 ± 0.02    12.5 ± 0.11 (3.28 ± 0.05) × 10−8  1.13 ± 0.02  4.83 ± 0.07 10.0 

kb 7.95 × 1012 (1.34 ± 0.03) × 10−8 1.34 ± 0.02 12.3 ± 0.11 (3.34 ± 0.05) × 10−8 1.15 ± 0.01 4.65 ± 0.07 10.2 

ν ′ ′′ ′′

         

RP QP′ jνj

 
aError estimates were calculated using 10000 bootstrap cycles. 

bOn four processors 
cIn units of s−1. 
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Table V. Results for quantum mechanical scattering and semiclassical army ants calculations for + RH *Y )0,0( == jν  with = 

0.0001 eV. The results are compared at the three energies and also averaged over three values of scattering energy. 

max
12U

 

Method  Energy (eV) RP  ν ′  j′  QP  ν ′′  j ′′  

1.07 8.64 × 10−9 1.01    

    

    

    
    

11.4 2.87 × 10−8 0.97 2.24

1.10 1.21 × 10−8 0.90 11.6 3.35 × 10−8 0.93 3.28

1.13 1.33 × 10−8 0.78 12.4 3.28 × 10−8 0.90 3.60

Quantum 

Average 1.13 × 10−8 0.89 11.8 3.16 × 10−8 0.93 3.04
   

1.07 (1.16 ± 0.03) × 10−8 1.41 ± 0.02 12.0 ± 0.12 (3.64 ± 0.05) × 10−8 1.16 ± 0.01 4.48 ± 0.06 

1.10 (1.33 ± 0.03) × 10−8 1.33 ± 0.02 12.5 ± 0.11 (3.28 ± 0.05) × 10−8 1.13 ± 0.02 4.83 ± 0.07 

1.13 (1.29 ± 0.03) × 10−8 1.40 ± 0.02 12.5 ± 0.12 (3.04 ± 0.05) × 10−8 1.15 ± 0.01 4.84 ± 0.08 

Army antsa 

Average (1.26 ± 0.03) × 10−8 1.38 ± 0.02 12.3 ± 0.12 (3.32 ± 0.05) × 10−8 1.15 ± 0.01 4.72 ± 0.07 

       

aCalculations were performed in the fixed- η  mode of the army ants algorithm with = 1 × 10oη
−2  using the FSTU∇V method for 

100000 trajectories. 
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Table VI. Time required for calculations on + RH *Y )0,0( == jν , for the scattering energy 1.10 eV with = 0.0001 eV using 

either the fixed-

max
12U

η  mode or the k mode implementation of army ants algorithm, and estimated time requirement to obtain similar 

converged results with the anteater and the ants methods.  

 

Number of trajectories  Time required 
Method 

Initial Final       Hours 

      
Army antsa    105   105        ~10 

Anteaterb     1010    1010        ~106 

Antsc  500 5×10273    ~3×10269 

 

aTime required to run in parallel on four 375 MHz Power 3 WinterHawk+ processors on the IBM SP supercomputer. 
bEstimated time required to finish the anteater calculations using the same number of processors as in the army ants calculations. 
cEstimated time required to finish the initial ants trajectories and all the resulting branches, using the same number and type of 

processors as in the army ants calculations. 
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Table VII. Mean unsigned relative errors (in %) for reaction probability, reactive moments, quenching probability, and quenching 

moments. 

 

Cases RP  ν ′  j′  QP  ν ′′  j ′′  
All 6a       15 48 7 8 21 58

 
aResults are averaged over the four cases in Table III and the three cases in Table V (for a total of six cases since FSTU∇V at 1.10 eV 

occurs in both tables). 
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Table A-I. Convergence test with respect to number of bootstrap cycles. The army ants calculations were carried out in the fixed- η  

mode with = 1.0 × 10oη
−2, using the FSTU∇V method, for + RH *Y )0,0( == jν , with scattering energy 1.10 eV and = 

0.0001.

max
12U

a 

 

Number of 

bootstrap cycles 

 

 

 

 

 

 

 

 

 

 

 

 

Timeb 

(mins) 
        

5000 (1.33 ± 0.032) × 10−8 1.33 ± 0.02    12.5 ± 0.11 (3.28 ± 0.048) × 10−8  1.13 ± 0.02  4.83 ± 0.08 5.3 

10000 (1.33 ± 0.034) × 10−8 1.33 ± 0.02    12.5 ± 0.11 (3.28 ± 0.046) × 10−8  1.13 ± 0.02  4.83 ± 0.07 9.8 

20000 (1.33 ± 0.034) × 10−8 1.33 ± 0.02    12.5 ± 0.11 (3.28 ± 0.046) × 10−8  1.13 ± 0.02  4.83 ± 0.07 21.2 

νRP QP j ′′′ ν ′′j ′

 

a100000 trajectories used for the bootstrap analysis. 
bComputer time for the bootstrap analysis on a single processor. 
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Table B-I. Effect of the parameter  in the fixed-oη η  mode army ants algorithm calculations, for + RH *Y )0,0( == jν , with 

scattering energy 1.10 eV and = 0.0001, using the FSTUmax
12U ∇V method.a 

oη  trajN b 
 

 

 

 

 

 

 

 

 

 

 

 
P
trajN  c M

trajN  d 

1 × 10−4 500000 (1.16 ± 0.101) × 10−8 1.24 ± 0.05 13.1 ± 0.33 (3.51 ± 0.121) × 10−8 1.04 ± 0.02 5.47 ± 0.18 500000 500000 

5 × 10−4 300000 (1.23 ± 0.091) × 10−8 1.30 ± 0.05 13.2 ± 0.29 (3.23 ± 0.110) × 10−8 1.05 ± 0.02 5.12 ± 0.16 247116 300000 

1 × 10−3 200000 (1.21 ± 0.092) × 10−8 1.33 ± 0.05 12.8 ± 0.27 (2.83 ± 0.111) × 10−8 1.10 ± 0.02 5.28 ± 0.21 167029 272222 

5 × 10−3 100000 (1.25 ± 0.045) × 10−8 1.30 ± 0.03 13.0 ± 0.16 (3.12 ± 0.057) × 10−8 1.13 ± 0.01 5.10 ± 0.10 22429 30864 

8 × 10−3 100000 (1.28 ± 0.034) × 10−8 1.32 ± 0.02 12.5 ± 0.12 (3.18 ± 0.048) × 10−8 1.15 ± 0.01 4.67 ± 0.08 15554 30250 

1 × 10−2 100000 (1.33 ± 0.034) × 10−8 1.33 ± 0.02 12.5 ± 0.11 (3.28 ± 0.046) × 10−8 1.13 ± 0.01 4.83 ± 0.07 14280 25000 

2 × 10−2 150000 (1.36 ± 0.022) × 10−8 1.32 ± 0.01 12.4 ± 0.07 (3.31 ± 0.032) × 10−8 1.17 ± 0.01 4.30 ± 0.05 10261 37500 

5 × 10−2 400000 (1.19 ± 0.021) × 10−8 1.24 ± 0.01 11.9 ± 0.08 (3.08 ± 0.033) × 10−8 1.16 ± 0.01 4.50 ± 0.06 29475 100000 

1 × 10−1 500000 (1.29 ± 0.032) × 10−8 1.31 ± 0.06 12.1 ± 0.11 (3.21 ± 0.033) × 10−8 1.13 ± 0.02 4.77 ± 0.07 50821 500000 

′

          

RP QP j ′ν ′ ν ′′j ′

 

aError estimates were calculated using 10000 bootstrap cycles. 
bNumber of trajectories used for this row of results. 
cMaximum of the two values of the number of trajectories required to converge and  to the same levels as row 1, as estimated 
by using Eq. (B1). 

RP QP

dMaximum number of trajectories required for convergence of all moment quantities ( >′′<>′<>′< νν ,, j , and >′′< j ) to the levels 
of row 1, as estimated by using Eq. (B1). 
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Energy (eV) RP  ν ′  j′  QP  ν ′′  j ′′  

1.07 8.64 × 10−9 1.01    

    

    

    

    

    

    

    

11.4 2.87 × 10−8 0.97 2.24

1.08 8.63 × 10−9 0.80 12.5 3.00 × 10−8 0.95 2.52

1.09 9.77 × 10−9 0.85 12.1 3.25 × 10−8 0.93 3.00

1.10 1.21 × 10−8 0.90 11.6 3.35 × 10−8 0.93 3.28

1.11 1.32 × 10−8 0.83 11.9 3.32 × 10−8 0.91 3.54

1.12 1.32 × 10−8 0.77 12.3 3.29 × 10−8 0.90 3.61

1.13 1.33 × 10−8 0.78 12.4 3.28 × 10−8 0.90 3.60

Average  1.12 × 10−8 0.85 12.0 3.19 × 10−8 0.93 3.11
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Table C-I. Results for quantum mechanical calculations as a function of scattering energy for the initial condition + RH  *Y
max)0,0( == jν  with = 0.0001 eV. 12U
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