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ABSTRACT. We consider three aspects of potential energy surface repre-
sentations for dynamics calculations on polyatomic systems, with special
emphasis on generalized transition state theory and tunneling calcula-
tions. (i) We present methods for calculating the vibrational energies
of generalized transition states from either a cartesian or internmal-
coordinate force field and including the effect of mode-mode couplings
on the rate constant by perturbation theory and the Pitzer-Gwinn approx-
.imation. (ii) We discuss practical aspects in the use of ab initio

gradient-based electronic structure calculations for the calculation of
cartesian force fields for a set of stationary points on the potential

energy surface or for a sequence of generalized transition states. (iii)
We discuss recent progress on the development of global analytic repre-
sentations for potential energy surfaces of polyatomic reactions. Such

global representations can be used to generate either cartesian or
internal-coordinate force fields for generalized transition states, and
they can also be used to compute the potential energy surface far from
the minimum energy path as may be required for tunneling calculations in
some cases.

1. INTRODUCTION

The calculation of reaction rates is generally carried out in two steps.
In the first step one calculates or models the potential energy sur-—
face,l!2 PES (or surfaces; however #n the present report we limit our
attention to electronically adiabatic reactions for which only a single
surface is involved). 1In the second step one calculates dynamical quan-
tities, using the PES as given.1’3 It is becoming increasingly clear,
however, that these two steps should not be performed independently.

In the first place, the dynamics calculations are expected to be more
sensitive to some features of the PES than to others, and it would be
desirable (in the practical case where the PES is not equally accurate
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for all possible geometries) to expend the greatest fraction of the
theoretical effort on those features of the PES that are expected to have
the greatest effect on the dynamical results of interest. In the
second place, when the PES is based on ab initio electronic structure
calculations it is not practical economically to perform calculations
for all possible geometries of the reacting molecule or molecules. The
disparity between the number of calculations needed to map a reasonable
grid of all relevant geometrical parameters and the number of affordable
calculations grows rapidly with the number N of atoms involved. To span
each internal coordinate with only 10 points already requires 103N-
geometries to be considered, which is unaffordable for N 2 4. Of course
an accurate PES is not needed at all possible geometries, and thus, when
using the ab initio approach, we want to calculate--and fit or represent
——-the potential only where it is really important.

One approach to circumvent the problems mentioned above is to com-
bine a local representation of the PES in the vicinity of the reaction
path with dynamics calculations based on localized bottlenecks and
localized semiclassical tunneling paths. A large amount of experience
has been gained with these methods =10 for reactions with only a few
atoms. In our group we have made extensive tests of the reliability of
such methods by comparing the results to those from accurate quantal
dynamics calculations for simple systems and to experiment. On the
basis of these tests we can conclude that methods based on localized
dynamical bottlenecks and localized semiclassical tunneling paths are
capable of accurate predictions of thermal and some state-selected reac-
tion rates, kinetic isotope effects, and threshold energies for overall
reaction9-22 and sometimes for reaction into specific product vibration-
al states,19:23,24 a5 well as predictions of resonance energies and
lifetimes and branching ratios for decay25_29 and spectroscopic tunnel-
ing splittings. O Reaction path methods have also been applied to treat
energy transfer in nonreactive processes.31"33 Methods based on an
expansion in reaction-path coordinates about the minimum—energz path_are
sometimes called reaction-path Hamiltonian (RPH) methods,8’27’ 8,34-36
although the idea is older than the name.> /=3 The emphasis in much RPH
research is on a correct formulation of the kinetic energy in reaction-
path coordinates.3%:3%540  1n the present paper, however, we wish to
emphasize the representation of the potentials, especially for systems
with four or more atoms. We also wish to emphasize that in many cases
the PES must be known in regions beyond those where it can be predicted
by a quadratic or other expansion about the minimum-energy path, e.g.,
even in regions where reaction-path coordinates are not unique.15,18-22
These wider regions are still localized though and can be identified
with reasonable confidence so that we do not need a complete global
representation of the PES.

There are two reasons why one needs to go beyond a quadratic expan-
sion about the minimum-energy path. The first is anharmonicity, which
may be especially important for low-frequency modes, and which is essen-
tial for even a qualitatively correct treatment of bifurcating reaction
paths. It is also very important for quantitative calculations of low-
temperature rate constants to include anharmonicity of high-frequency
modes. The second is tunneling in systems with intermediate and large
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curvature of the reaction path. In such systems the best semiclassical
tunneling paths may be very far from the reaction path. 1In such regions
reaction-path coordinates can become multivalued, making the RPH kinetic
energy operator invalid. To treat such regions we transform locally to
mass-scaled cartesians, which are valid everywhere. For systems with
large reaction-path curvature [for short, we call these large-curvature
(LC) systems], the region over which we require the potential may be
envisioned as a multidimensional tube surrounding the minimum-energy
path and including extra wide regions for possible tunneling paths on
the concave sides of elbows. It is convenient to call this extended
region around the reaction path the reaction swath, and we arrive at the
reaction-swath potential (RSP) as an intermediate construct, or level of
required knowledge, between the RPH on one hand and the global PES on
the other.

Two quantities which play a primary role in the use of an RPH for
dynamics calculations are the generalized free energy of activation
curves AGET»0(s) and the vibrationally adiabatic potential curves
V%(ni,s). The former are used for variational transition state theory
(VIST) calculations of thermal reaction rates with classical reaction-
coordinate motion, and the latter are used for calculating overall and
state-specific threshold energies, tunneling probabilities, and the pro-
perties of resonance states. Section 2 reviews the basic definitions of
these quantities and also reviews the independent-normal-mode (INM)
approximation that provides the simplest way to actually calculate
AG%T’O(S) and V%(ni,s) for polyatomic systems. The INM approximation
may be implemented harmonically or anharmonically but it includes only
principal force constants’ in normal coordinates. Then we discuss a
better method to treat anharmonicity by first modelling the potential
energy in curvilinear internal coordinates and then transforming it to a
normal coordinate representation. The motivations for this approach are
presented, and the practical procedures necessary for calculations are
outlined in detail.

Section 2 also includes a brief review of the large-curvature and
least-action tunneling approximations with emphasis on delineating the
regions of the PES required for such calculations.

Sections 3 and 4 are concerned with the representation of the
potential energy information that is needed as input for the calcula-
tions of Section 2. 1In particular, to carry out the calculations of
Section 2 we must be able to generate the PES at any point near the
reaction path for small-curvature (SC) systems and at any point in the
reaction swath, as defined above, for LC systems.

Section 3 discusses ab initio calculations of the RPH by so-called
""gradient methods', which are algorithms for the direct calculation of

tWe use the convention, from spectroscopy, that 'principal' force
constants describe the potential within a single normal or internal-
coordinate mode whereas "interaction" force constants describe mode-mode
coupling. This convention avoids confusion with 'diagonal' and "off-
diagonal' matrix elements in a perturbation theory treatment of anhar-
monicity.
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PES derivatives. Gradient techniques are better suited to calculating
expansions about the reaction path than to calculating the full RSP, and
we will limit this initial discussion to the RPH. 1In a calculation
based on ab initio gradient methods, the potential may conveniently be
represented in terms of a finite number of force constant matrices, each
corresponding to an expansion about a different point on or near the
minimum-energy path. This obviates the need for choosing specific func-
tional forms, but it raises a number of new questions about computa-
tional economics and step sizes. These will be discussed and simulated
gradient calculations based on global PES's will be presented to demon-
strate some practical difficulties.

Section 4 discusses methods of representing the PES, or at least
the full RSP, in terms of globally defined functional forms. This sec-—
tion begins with a review of methods for fitting atom-diatom PES's and
methods developed previously for representing polyatomic PES's. Then we
discuss a new approach. The most important elements in the new approach
are that the globally defined functional form is required to be accurate
only in the reaction swath, and it is flexibilized in this swath by
making globally significant potential parameters explicit functions of
selected coordinates. Illustrative examples and possible pitfalls are
also included.

2. DYNAMICAL CALCULATIONS

2.1. Variational Transition State Theory, Vibrationally Adiabatic ‘
Potential Curves, and Tunneling

In canonical variational transition state theory (CVTIST or, for short,
CVT) the rate constant for a temperature T is calculated in three steps.
First one calculates the hybrid generalized transition state theory
(GTST or, for short, GT) rate constant kGT(T,SGT) as a function of the
location S of the generalized transition state. s41-44 The yword
"hybrid" here refers to the fact that in this calculation the reaction
coordinate is treated classically but all other degrees of freedom are
quantized, and the word '"generalized" refers to the fact that the gen-
eralized transition state is not required to pass through the saddle
point as in conventional®#5 transition state theory. In the second step
one minimizes kGT(T,SCT) with respect to sGT yielding the hybrid CVT
rate constant »41-4

kCVT(T) = min kGT(T,S

sGT

€Ty . (1)

The words ''canonical' and '"'variational" in CVT refer to the fact that in
this step the dividing surface is variationally optimized for the canon-
ical ensemble specified by T. 1In the third step one multiplies kCVI(T)
by a transmission coefficient «(T) to account for quantal effects on the
reaction coordinate, yielding the final estimated rate constant:9,42-44
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YRy - ey OV (2)

In principle the generalized transition state can be any hyper-
surface in phase space except for the constraint that it must divide
reactants from products. However, in practice it would be difficult
to calculate kG (T,SGT) for arbitrary dividing surfaces as well as to
perform the variational step of eq. (1) for all possible surfaces. To
make VTST practical one must define a subset of all possible dividing
surfaces forwhich these steps are realizable and yet which is capable of
yielding the required accuracy. It is our contention, based on exten-
sive computational experience, that such a subset is provided by a one-
parameter sequence of surfaces perpendicular to a physically chosen
reference path that leads from reactants to products. In most cases
this reference path is chosen to be the minimum-energy path through
mass—scaled or mass-weighted cartesians.38:47-50t Here we call this
path the MEP; sometimes it is called the intrinsic reaction coordinate
(IRC). The distance along the MEP from a reference point (which is
usually defined as the highest saddle point if there is one) is called
the reaction coordinate s, and the dividing surfaces are parametrized by
the value of s at which they intersect the MEP. 1In the vicinity of
their intersection with the MEP, the dividing surfaces are taken to be
hyperplanes in the mass-scaled cartesian space that are perpendicular to
the MEP; more globally they are bent if necessary to insure that they
separate reactants from products.

‘ The thI‘ld GTST rate constant for the generalized transition state
at s is*

ST, s) = (RT/h)KT* Cexpl- AG 0¢s) /kT] (3)

where K is Boltzmann's constant, h is Planck's constant, Kt’ois unity for
unimolecular reactions and the reciprocal of the standard-state concen-
tration for bimolecular reactions, and AG%T (s) is the generalized
standard-state free energy of activation. The subscript on AG%T 10(s)
denotes the temperature. The generalized free energy of activation is
expressed as 1

T O(s) = -KT 1n [ng(T,s)/K¢’o] (@)

where Kgg(T,s) is a quasiequilibrium constant for forming generalized

tIn mass-scaled cartesians the three cartesian coordinates of atom
A are scaled by (mA/p)% where m, is the mass of A and p is an arbitrary
convenient mass. In mass-weighted cartesians the coordinates of atom A
are weighted by mA/ Mass-scaled coordinates have units of length;
mass—welghted coordinates have units of mass? length, and are usually
given as u? R or uﬁ an, where 1 u = 1 universal ( 2C) atomic mass unit =
1822.887 me, and 1 ag = 1 bohr = 0.5291771 8.
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transition states from reactants. For a unimolecular reaction
GT
k8T(r,s) - L8 (nry () /RT) (5)
eq QR(T) MEP

and for a bimolecular one

Ql(r,0)

@R(T)

exp[-V, . (s)/KT] (6)

GT
Keq(T’S) = MEP

where QGT(T,S) and QR(T) are the partition functions for the generalized
transition state and reactants, respectively, oR(T) is QR(T) per unit
volume, and VMgp(s) is the Born-Oppenheimer potential at the point where
the generalized transition state intersects the MEP.

In eqs. (5) and (6) the zero of energy for Vygp(s), QR(T), and
oR(T) is at the equilibrium geometry of reactants, and the zero of
energy for QCT(T,s) is Vmep(s) . It is also very popular to define
partition functions with respect to the local zero point energy. For
this purpose we define

VS(S) = Vyp(s) + Ss) (7

®
RG

Avi(s) = Vg(s) - € (8)

where ¢8(s) is the zero point energy at s, and eRG is the zero point
energy of reactants. [Avg(s) is called the ground-state adiabatic
potential curve.] Then eqs. (5) and (6) become

~GT
<Cler,) = L) el avS(s) k] (9)

) or (M

where, for example,

QGT(T,S) = QGT(T,S) exp[eG(s)/ﬁT] (10a)
= ] d_ exp{-[e(a,s) - S(s) )k (10b)
o

In eq. (10b), e(a,s) is the energy of level a of the generalized transi-
tion state and dy is the degeneracy of level a.

In calculating QGT(T,S), we fix the system in a hypersurface ortho-
gonal to the reaction path at a fixed value of s. This is equivalent to
an adiabatic approximation with all generalized-transition-state modes
treated as adjusting adiabatically to changes in s. The usual
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approximation is to further assume that e(a,s) is a sum of electronic,
vibrational, and rotational energies. The vibrational modes may be
additionally decoupled from each other by the harmonic adiabatic approx-
imation but are coupled nonadiabatically in the kinetic energy operator
and anharmonically by the potential. The kinetic coupling element for
modes k and k' is denoted by Bkk'(s) and it arises from the twisting of
the normal modes around the MEP and into each other. Each element
Bkk'(s) is the scalar product of the generalized normal mode vector for
mode k' and the derivative of the generalized normal mode vector for
mode k with respect to the reaction coordinate at s. Since the MEP is
curved, there are also coupling elements between the generalized normal
mode motions and motion along the reaction coordinate. These elements
are called BkF(s), where F indexes the reaction coordinate and there are
F-1 generalized normal modes (F =3N-5 or 3N-6 for N-atom generalized
transition states that are linear or nonlinear, respectively). Each
term BkF(s) can be written in terms of the scalar product of the
generalized normal mode vector of vibration k and the derivative of the
gradient (representing motion along the reaction path) with respect to
the reaction coordinate at s.

So far we have outlined the CVT formalism for calculating thermal
reaction rates. In our CVT calculations we have neglected the nonadia-
batic coupling elements, in which case CVT calculations require only
the potential energy along the MEP and the energy levels for a sequence
of generalized transition states. Transmission coefficients in the
small-curvature semiclassical adiabatic (SCSA) approximationlo’52’53
depend on these same quantities plus the By p(s) curvature elements.
Several other interesting reaction attributes may also be calculated
from Vygp(s), e(a,s), and BkF(S)' For example, for interpretative pur-
poses we are often interested in the location of the variationally opti-
mized dividing surface; this is called the canonical variational transi-
tion state, and it is located at the maximum of AG%T’O(S). The overall
translational threshold energy in the absence of tunneling is given in
the VTST approximation by the maximum of AVa(s). Threshold energies for
reactant or product molecules with a specific vibrational quantum number
n for some high-frequency mode are sometimes given by the maxima of

vg(n,s) = (s) + sg(ni,s) (11)

VMEP

where eg(ni,s) is the energy of the level of the generalized transition
state that has quantum number nj for the mode, i, that correlates to the
specific reactant or product mode and quantum number O for all other
modes. (The superscript g denotes the system is in the ground state for
all modes whose quantum numbers are not explicitly specified whereas G
denotes ground state for all modes.) Resonance energies are sometimes
given by the energy levels ofvg(s), and this quantity also sometimes
serves as an effective potential for tunneling. Resonance decay proba-
bilities depend on the Byp(s) as well.

When the canonical variational transition state is strongly depen-
dent on temperature, a more consistent theory is provided by improved
canonical variational transition state theory (ICVTST or, for short,
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ICVT).44 As for the quantities discussed in the last paragraph, the
ICVT approximation to the thermal rate constant may be calculated from
Vyep(s) and the set of e(a,s).

We mentioned in Sect. 1 that for LC systems the semiclassical tun-
neling paths may pass through regions where the RPH breaks down. We
originally proposed two somewhat complicated schemes for calculating the
tunneling probabilities in LC systems,zo’21 but later work?2 showed that
almost identical results could be obtained with a simpler prescription
for the tunneling paths. The approximation incorporating this simpler
prescription is called the large-curvature approximation, version 3, or
LC3.9% In this approximation the semiclassical tunneling paths are
straight lines through mass-scaled coordinates from an adiabatic trans-
lational turning point on the MEP in the entrance channel to a transla-
tional turning point on the MEP in the exit channel. For ground-state
reactants or products the adiabatic translational turning points are
defined as the points where an energy parameter E equals V3(s); for
excited states they are computed from V%(ni,s) or its generalization.
The energy parameter takes on all values from e to the total energy.
The region of coordinate space between the LC3 path at the lowest total
energy for which tunneling must be considered and the region where a
quadratic expansion about the MEP is valid is included in the reaction
swath; clearly the swath becomes wider when lower-energy tunneling pro-
cesses must be considered.

For intermediate reaction-path curvature, one may use either the
SCSA or LC3 approximation, but even more accurate results are obtained
by a-least-action (LA) methocl.zz’54 In the LA method, the tunneling ‘
paths are linear interpolations between the MEP and the LC3 paths. Thus
this method does not require knowing the potential over a wider swath
than is necessary for the LC3 method.

Babamov and Marcus?> have proposed tunneling models in which the
tunneling paths correspond to a fixed hyper-radius, where the hyper-
radius is the distance from the origin in mass-scaled hyperspherical
coordinates. These require a knowledge of the potential over about the
same swath as required for LGC3 calculations.

2.2. Independent-Normal-Mode Approximation

It should be clear from Sect. 2.1 that the generalized-transition-state
energy levels e(a,s) play a central role in VTST and related theories.
Usually one writes e(a,s) as a sum of electronic, vibrational, and rota-
tional energies, in which case the partition functions become products
of electronic, vibrational, and rotational factors. The electronic
problem is often well approximated by assuming that reaction occurs with
appreciable probability only on a single potential energy surface, and
the rotational problemis usually treated accurately enough by simple
classical approximations. The vibrational energies, €vib(“1""’nF—1’S)’
where n_ is a vibrational quantum number, and vibrational partition
functions, ngb(T,s), however, are not obtained as straightforwardly,
at least if one desires high accuracy.

In many respects the vibrations of generalized transition states
are like those of ordinary molecules, and thus the generalized-
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transition-state vibrational partition function Q b(T s) may be calcu-
lated by many statistical methods developed for ordlnary molecules (see
Ref. 54 and references therein). One important distinction between a
generalized transition state and an ordinary molecule, though, is that
the former, being a hypersurface orthogonal to the reaction path, is
missing one vibrational degree of freedom, which corresponds to the
reaction-coordinate motion. To account for this we must calculate
evib(ng,«..,0p_1,s) and QGlb(T,s) in the (F-1)-dimensional subspace that
is orthogonal not only to overall translations and rotations, as for a
real molecule, but also to the reaction path. To accomplish the dimension-
ality reduction we use the projection operator method of Miller et al.

In this method the harmonic frequencies and corresponding generallzed
normal modes are determined by diagonalizing the projected force con-
stant matrix F (s). This matrix is related to the force constant matrix
F(s), defined as the matrix of second derivatives of the potential
energy with respect to mass-scaled cartesians, by

F'(s) = [L - R()IE(s)[L - B(s)] (12)

where L is the unit matrix and P(s) is the projector which projects onto
the mode directions corresponding to the three overall translations, the
two or three rotations, and the motion along the reaction path. Thus,
diagonalizing EP will yield 6 or 7 zero eigenvalues corresponding to the
projected motions and 3N-6 or 3N-7 generalized normal mode frequencies
which correspond to the vibrations orthogonal to the reaction path.

. The simplest approach to treating the bound vibrational motions, in
terms of both the computational effort and the amount of information
required about the PES, is the harmonic approximation, under which the
vibrational energy levels are given by

(nl,nz,...,nF_1

- v i L v
€,ib yS) = f (ﬁm +2)hcvm(s) (13)
where n, and Y (s) are the vibrational gquantum number and frequency in
cm—1 for mode m, respectively, c is the speed of light in cm per unit
time, and the energy is measured from the bottom of the vibrational
well. The vibrational partition function,

GT
Qvib(T,s) = ¥ exp[—BeVib(nl,nz,...,nF_l,s)] (14)
nl,nz,...,nF_1
where B = (ET)“l, is thus separable in the harmonic approximation and
equals
F-1
GT
b(T,s) = I v1b m(A,s) (15)
m=1

where the vibrational partition function for mode m is given by
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GT
Qvib,m(T’S) = ! exp[—SeVlb m m’s)] (16)
nm
with €vib, m(n ,S) = (n +/)hcv (s) in the harmonic approximation. The

summation in eq. (16) should be terminated with the last term for which
€vib,m(nNm>s) is less than D-Vygp(s), where D is the lowest dissociation
energy of the system.Sl’ However, assuming that the contributions from
energy levels above D-Vygp(s) are negligible for the temperature being
considered and extending the summation in eq. (16) over all harmonic
levels, it can be summed analytically to yield

GT
vib,m

-1

Q (T,s) = exp[-hcV (5)8/2]{1 - exp[-hchv (s)B]} . (7

Since, in general, the vibrational degrees of freedom are anhar-
monic, substantial errors can be obtained in CVT rate constants computed
under the harmonic ::1pproximation.“3a57‘59 As an example of the effect
of including anharmonicity in the calculation of quantal CVT rate con-
stants, we consider the reaction OH + Hy + H,O + H, which has been
studied>? using the analytic PES obtained by Schatz and Elgersmaéo by a
fit to the ab initio calculations of Walch and Dunning. 61 For this
reaction, the CVT/SCSAG rate constants obtained with the harmonic
approximation for the bound vibrational motions were found to overesti-
mate the best anharmonic results [obtained within the independent-normal-
mode (INM) framework described below] by factors of 2.27 at 298 K and
1.32 at 2400 K. [Note: The G at the end of SCSAG or other tunneling
method abbreviations denotes that «(T) is based on ground-state tunnel-
ing probabilities. ]

One practical approach to the inclusion of vibrational anharmoni-
city is to neglect the mode-mode coupling of the normal modes and to
employ an approximate anharmonic potential curve to describe the motion
along each generalized normal mode of the reacting system independently.
This is called the INM method.3%:39 1In this approach, the vibrational
energy is just the sum of the vibrational energies within each mode,

F-1
(nl,nz,...,nF_l,s) = ¥

»S) (18)

€ . € . n
vib v1b,m( m

sc that eqs. (15) and (16) are still valid. In order to compute the
approximate anharmonic vibrational energy levels of mode m, we must con-
sider the potential energy along this mode, i.e., along the generalized
normal coordinate Q(s). This coordinate can be expressed as a linear
combination of mass-scaled cartesian displacements Ax from the bottom

of the vibrational well,

Qm(S) = Ax ’Em(S) (19)

where Lm(s) is a column of the unitary matrix L(s) that diagonalizes the
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projected matrix FF(s) of eq. (12):34’59’62

(L)) EP()L(s) = ACs) | (20)

where a superscript T denotes a transpose. The nonzero eigenvalues

(5) of the diagonal matrix A(s) are the principal normal-coordinate
quadratlc force constants, which are related to the normal-mode frequen—
cies (in cm—1) by

Sa(s) = D (s)ul?/2me (21)

where yu is defined in Sect. 2.1. The potential energy along mode m can
be expressed as

v [Q ()5 = Bk ()[Q ()17 + k. (s)[Q ()7

+ ko a800Q, ()1* (22)
where kpmm(s), Kppumm(s), etc. are higher—order principal normal-
coordinate force constants, and are related to the third, fourth, etc.
directional derivatives of the potential energy along the normal-mode
direction Lp(s). While formally correct, eq. (22) is not directly use-
ful for the present discussion because even if sufficient information
about the potential energy in the region of the bottom of the well is
available for the calculation of the higher-order force constants in eq.
(22), for a general polyatomic system with a relatively large number of
vibrational modes there is no practical way to use these force constants
to obtain accurately the large number of energy levels required by eq.
(16). For this purpose, in modes possessing cubic anharmonicity [i.e.,
Komm(s) # 0] it is useful to replace the general potential of eq. (22)
by a Morse function,

Vi, nlQu(5)58] = D () {expl -8, (5)Q ()] - 1) (23)

where the dissociation energy Dg(s) = D -Vygp(s) and where the range
parameter BM m(s) is chosen so that the Morse potential has the correct
quadratic force constant at its minimum:

1
2

By n(3) = [k .(s)/2D, (s)] (24)

We refer to this method of choosing De(s) and By p(s) as the Morse I
approximation. 42,51,59 The energy 1evels of this potential are given by

€

(nm,s) = hcsm(s)(nm +5)[1 - Xy (s)(n +%5)] (25)

vib,m

where Gm(s) is the harmonic frequency of eq. (21) and XM,m(S) is the
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unitless Morse anharmonicity constant given by
xM,m(s) = hcvm(s)/ADe(s) . (26)

This approach has been shown to provide satisfactory treatments for the
bound stretching motion in collinear atom-diatom collisions 0,42, as
well as for the four vibrational modes of the OH + Hj System59 that
possess cubic anharmonicity. It should also be pointed out that in many
cases the results obtained using the Morse I approximation agree well
with those obtained by fitting the Morse function to the true quadratic
and cubic force constants of the potential. The Morse 1 approximation
appears to be suitable for general application to vibrational modes
possessing cubic anharmonicity, and it has the advantage that it does
not require derivatives of the potential higher than second.

Some vibrational modes that, due to symmetry, have no cubic anhar-
monicity [i.e., kyum(s)=0] cannot be described well by the Morse model.
Examples of such modes include bends of linear systems, out-of-plane
bends of planar systems, and certain stretching motions (such as the
asymmetric stretch in the water molecule). In cases where kpymm(s) is
known, either from differentiating the actual PES or from fitting the
potential along the mode to some simple functional form, such modes can
be treated by a quadratic-quartic model, which has been shown to provide
satisfactory results in atom-diatom systemsa3344r57’58 and for the out-
of-plane bending motion in the OH + Hjp system.59 In this approach, the
potential of eq. (22) is truncated after the quartic term and the energy
levels for the resulting quadratic—quartic potential are approximated
accurately by an analytic procedure obtained by a perturbation-variation
method discussed elsewhere.3557s

Although the INM approach allows for the inclusion of anharmonic
effects within each individual mode in a practical and relatively accu-
rate manner, it ignores the couplings between the modes, which have been
shown to be quite important for obtaining accurate vibrational partition
functions in the Hy0 and SO, molecules and which are probably also
important in describing the bound vibrational motions of a reacting
system along the reaction path. Mode-mode couplings are considered in
the next subsection.

2.3. Mode-Mode Couplings and Vibrational Energy Calculations for an
Internal-Coordinate Force Field

The majority of VTST calculations performed to date have been for atom-
diatom collisions.l! For that kind of collision, reasonably accurate
calculations of the vibrational energy levels are possible without
excessive labor. For example, for a collinear minimum-energy path the
vibrations orthogonal to the path consist of one stretch and a twofold
degenerate bend. Use of a curvilinear bend coordinate%3,44,57,65
reduces the bend-stretch coupling, and principal anharmonicity can be
included accurately in the bend by the harmonic-quartic approximation
described above or by the WKB approximation. The stretch can also be
treated accurately by the WKB approximation.15 It is also possible to
estimate the effect of bend-rotational coupling,57 and in particularly
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interesting cases one could realistically do even better. For poly-
atomic systems, the effort to systematically improve the quantal or
semiclassical calculation of the multidimensional bound vibrational
energy levels rapidly becomes impractical as the number of atoms in-
creases, especially in the context of canonical VTST calculations, for
which a knowledge of a large number of energy levels is required at each
location of the dividing surface along the reaction path. Furthermore,
the quantal or semiclassical calculation of vibrational energy levels
requires detailed information about the PES, while for many polyatomic
systems the available information may consist only of a set of geome-
tries, energies, gradients, and quadratic force constants (frequencies)
along the reaction path. Strategies different from those used for atom-
diatom collisions are thus clearly required for treating the bound
vibrational motions in polyatomic reacting systems. One possible ele-
ment of commonality, however, would be to use curvilinear internal
coordinates to reduce mode-mode coupling.

One possible way to include mode-mode couplings in normal coordi-
nates is by perturbation theory. The perturbation-theory expressions
for the energies of a polyatomic system are usually given in terms of
dimensionless normal coordinates, {qm(s), n=1,2,...,F~1}. These are
related to the mass-scaled normal-coordinates {Q,(s), m=1,2,...,F-1} of
eq. (19) by

q (s) = 2n[cu3m(s)/h]5Qm(s) . (27)

‘In these coordinates the vibrational potential energy can be evaluated
in cm~1 by

[V(ayrap0e 00 y®) = Vygp())/he = 4 1 v ()a, ()17 +

b1 R (900,090 ()q(s)

i<j<k M
+ ifj%kfl Eijk%(S)qi(S)qj(S)qk(s)qg(s) (28)

where Ei’k(s) and ﬁijkl(s) are the cubic and quartic dimensionless nor-
mal cooréinate force constants (in cm~1), respectively, which are
related to the appropriate third and fourth derivatives, respectively,
of the potential energy with respect to the dimensionless normal coordi-
nates. We also define kpqyg :E112’ etc. Although force constants with
i >j do not appear in eq. (28), they do appear below in eq. (30). In
eq. (28) we have followed the usual practice of truncating the Taylor
series expansion of the potential energy at quartic terms. If the
cubic and quartic force constants in eq. (28) are known, they can be
related to the vibrational energy via perturbation theory. A standard
procedure is to treat cubic terms to second order and quartic terms to
first order. This yields:66
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- V3 L
evib(nl,nz,...,nF_l,s)/hc = é \)i(s)(ni +%) +

T 1 L
+ iLj Xij(s)(ni +2)(nj +%) (29)
2

where, omitting the dependencies on s to simplify the expressions,

15E§ii Efij ssi - 33?
_ 1 T —— = _ v
xyy = B0k 5 -7 D i e (30)
j#i v, 4y — v
1 J 1 J
and
_ 2 - -
Lok K..V, k.. k ..
x. = Y{k. . . - iiiijj iij i T iik kjj
] RN Vi 4y — v k#1,j ;k
2 <222
-y 1 S
ki, j 3 (vorv 49 ) (v +v =y J(v =, +v ) (Vv =V =y )
i 73 Tk i 7] Tk i j kWi )k

(31)

Equations (29)-(31) are for the case of nondegenerate vibrations; the
modifications in these equations for degenerate vibrations may be found
elsewhere.06~68 For the discussion below we emphasize that eqgs. (29)- ‘
(31) are based on a knowledge of the cubic and some of the quartic
dimensionless normal coordinate force constants.

As discussed above, the neglect of the normal coordinate inter-
action force constants often causes a great loss of accuracy. However,
for a moderate-sized polyatomic reacting system, the direct calculation
of the large number of normal-coordinate interaction force constants at
each location of the dividing surface along the reaction path is not
only impractical, but also requires more information about the potential
energy surface than is usually available. It may be useful in such
cases to consider the representation of the potential energy surface in
terms of more physically meaningful curvilinear internal coordinates S
(e.g., bond stretches and bond-angle bends). If we use 3N-6 internal
coordinates for an N-atom reactant molecule we may write its potential
as:

+ S 5,5 +

Y
L K S 5,5 8
abc”a"b c
asbsc

a<biecq tabed®a®h®e’d

Vi= ] K.ss

a<h ab”a’b

(32)

In the present treatment we will pay special attention to the case where
the s, are "valence coordinates', which consist of bond stretches, bond-
angle bends, out-of-plane bends, and bond torsions. (In the more
general case one could also include interpair distances for nonbonded
atoms.) If the cubic and quartic interaction force constants are
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neglected in such a representation, far less loss of accuracy occurs
than when they are neglected in the normal-coordinate representation.
This has been explicitly demonstrated in a recent study of the vibra-
tional partition functions for the Hy0 and SO molecules. As an
example of the differences between the normal coordinate and curvilinear
internal coordinate representations of the potential energy embodied in
eqs. (28) and (32), respectively, consider the bending and stretching
motions in the CO)p molecule. For geometries near linear, Pariseau et
al. showed that, up to the energy corresponding to about ten bending
vibrational quanta, the minimum in the potential energy along a C-0O bond
stretching coordinate, as the bending angle is varied, describes a
nearly circular path with a radius equal to the C-0 equilibrium bond
distance. Thus, in the internal-coordinate representation of the poten-
tial energy, the effects of bending and stretching motions are nearly
separable (i.e., the interaction internal-coordinate force constants
involving the bending and stretching internal coordinates are quite
small), while in normal coordinates, which are linear combinations of
mass—scaled or mass-weighted cartesians, a circular bending path can
result only by substantial bend-stretch couplings of the uncoupled
straight-line motions of the nuclei.

A further advantage of representing the potential energy in the
internal coordinates is that if the principal anharmonic internal coor-
dinate force constants K5, and Kjz55 cannot be calculated directly from
the available information, they can often be predicted sufficiently
accurately by modelling the potential energy along a particular curvi-
linear internal coordinate direction by a simple functional form.%% For
example, bond stretches can be modelled in terms of the quadratic force
constant K, and the dissociation energy D, by the Morse I approximation
described above, and linear A-B-C bending motions can be modelled in
terms of the AC diatomic Morse parameters D?C, Bﬁc, and r?c by the anti-
Morse bend approximation: ‘

AC

AC
AM[rAC(¢)] - VAM[rAC(¢:ﬂ)] , (33)

VAM(Q) =V

where ¢ is the bond angle,

AC AC
r

/ AC AC
VAM(rAC) = (YDe /2){2 exp[—BM (rAC - ) o+
+ exp[—ZBQC(rAC-—r:C)]} ) (34)

y is adjusted to reproduce Kgg, and Kggppe 15 obtained by differentia-
tion. Sometimes even quadratic force constants can be esti-
mated;57’58’70’71 for example, for Cl-H-H generalized transition states,
satisfactory results have been obtained with a value of 0.5 for y.

Neglecting all of the higher-order (cubic and quartic) cross terms
in eq. (32) yields the harmonic-general-plus-anharmonic valence force
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field (HG/AVFF):'

R

Vo o= v 3 K 4

S s + 4 i S + S
aaa a aaaa a

azb Kab a’b (35)

By repeated application of the chain rule for derivatives, this poten-—
tial energy can be transformed through quartic terms to the representa—
tion in dimensionless normal coordinates of eq. (28) in the standard
way.66’67’72‘74 Since the internal coordinates are curvilinear while
the normal coordinates are not, this transformation is necessarily non-
linear.

In general the potential may be written as a function of 3N-6
internal coordinates. In_some cases, e.g., CH4, there are more than
3N-6 valence coordinates.’% One may always delete sufficient coordi-
nates from the list to obtain an independent set.’5 1In some cases, how-
ever, either to take advantage of symmetry or obtain or use transferable
and physically meaningful force constants, it is convenient to use more
than 3N-6 internal coordinates. 1In such a case one or more coordinates
are redundant. Another possibility is that a redundancy condition is
satisfied only for a restricted range of geometries, including the ref-
erence geometry of the force field; this is sometimes called a con-
straint.’®577 "If redundant coordinates are retained or there is a con-
straint, linear force constants need not be zero [i.e., terms of the
form X, s, may appear in eq. (35)].75’76 Both linear and higher-order
force constants become nonunique when redundant coordinates are
used, 8>

To use the HG/AVFF as described above, we must first determine the
quadratic force field from the available information about the PES.

Then the anharmonic terms can be modelled or calculated directly in
internal coordinates. If the internal coordinates are independent there
is a unique transformation from the normal-coordinate force field to the
internal-coordinate one, and in particular a harmonic general force
field may be calculated from the normal-coordinate one; alternatively
the harmonic general force field may be calculated uniquely from any
global PES by the chain rule. 1If there are redundancies, then these
procedures do not yield unique force constants. In such cases one
should model the force field directly in internal coordinates or intro-
duce subsidiary conditions on the force constants.

In order to apply the HG/AVFF model to polyatomic generalized tran-
sition states, we must reference the bond stretches and bend coordinates
to an arbitrary point on the MEP, making them functions of s. We then
obtain

TA valence force field includes only valence coordinates and principal
force constants; a general force field also includes interactions. Thus
the harmonic valence terms are the principal ones in the first sum in
eq. (35), the harmonic general field consists of the whole first sum,
and the anharmonic valence terms comprise the second sum.
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vV = E Ka(s)sa(s) + azb Kab(S)Sa(S)Sb(5> +

+ {Kaaa(s)[sa(s)]3 + K (s)[sa(s)]h} (36)

aaaa
a

where we have included the linear force constants Ka(s) because the
first derivatives do not vanish at a general location on the MEP, even
for independent, unconstrained internal coordinates. The extension of
eq. (36) to include internal-coordinate anharmonic mode-mode couplings
is straightforward and simply consists of adding terms like
Kabc(s)sa(s)sb(s)sc(s) to eq. (36).

The transformation from the internal coordinate force constants
Ky(s), Kab(s), etc. to the dimensionless normal coordinate force con-
stants ki(s), k (s), etc. can be accomplished through a set of several
steps. For thlS purpose it is convenient to employ a dual notation for
the atomic cartesian coordinates. Let 1 =AY, be an index such that Aj
can denote any of the atoms A,B,C,..., and yj can be x, y, or z. Then
the unscaled atomic cartesian coordinates are denoted Xj such that X,
Xp, and X5 denote the x, vy, and z coordinates of the first atom, X4, X5,
and X, denote the x, y, and z coordinates of the second atom, etc. We
then define difference cartesians Xij for i#£j and Yi=Yj as

X.. =X =X, - X, . (37)
ij AlylAJYJ i j
These quantities are not needed for i=j or yj#y;.
For the first step of the transformation, we express the internal
coordinates in terms of the difference cartesians. The length of the
A-B bond is thus given by

2 £
_ T
rp = O L Xy (38)
Y=X,¥s2

while the angle A-B-C can be expressed as

o = cos_l[( ¥ X X )/ x

ABC BYCY "BYAY 1. (39)
Y=X,¥,2

BA'BC

Corresponding expressions for the other two types of internmal coordi-
nates (out-of-plane bending and torsional angles) are given elsewhere.’8
The difference cartesian force constants kgg, 1Jkl’ lemmn,..., are
the derivatives of V with respect to the difference cartesians X; 1J
and Xpeps Xij’ Xigs and Xppse«-. These are related to the 1nterna1 coor—
dinate force constants by the nonlinear transformations:

" — a

li = z bina (40)
" — a T a b

Y jie = E b raka N b5 iPreXab (41)
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" _ a a b a b a b
Ky Skamn = g By jicamn®a * azb Crgmn®i 3 * P4 jmn ke * 24 kaPmn Kab *
a.,b . c
+ ¥ bo.b X (42)
a<b<c ij k& mn abc
and
a a b a b
" - b ¥ b
kijk%mnop ) ijk%mnopKa * aéb ( i jk% mnop * ijmn kfop *
a b a b b3 b a b .
ijop k&mn * k&mnop 1ij * i jmnop k& * ijktop mn
a b N a b .c
iijmnbop)Kab * a<é<c (bijkl mn op *
a b .c a b ,c a b . ¢

ijmn k& op * ijop k& mn * Pramn ij op *

a b ¢ a b . ¢
kfop ij mn +bmnop ijbk%)Kabc *

a.b _c . d
* ) bijbk%bmnbopKabcd (43)

asb<csd

where we have omitted the argument s on all coefficients, and the new
coefficients, by, bijk%’ etc. are the partial derivatives of internal
coordinate a witg respect to difference cartesian Xijs difference
cartesians Xj; and Xy,, etc. These coefficients may be expressed ana-
lytically for each type of internal coordinate.07:74:78 gome examples
are given in the Appendix.

In the second step of the transformation, the difference cartesian
force constants k;-(s), k;-k (s), etc. are converted to mass—scaled
cartesian force constants ki s), k{~(s), etc. From the definition of
the difference cartesians given in eq. (37), it is easily seen that this
transformation is linear and that the transformation coefficients are

given by (with X; a mass—scaled cartesian):

39X
i L %
L O I G- KT (44)
op Bxi on oi mAp pi

where my_ is the mass of atom Ap and p is defined in Sect. 2. This
transformation may then be written explicity as

v _ v " i
ki(s) = kmn(s)tmn (45)
m<n
Ki(s) = 1 kv (s)eh e (46)
ij m<n<o<p mnop mn op
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Dk
(s) = ) K (s)tr tJ ¢ (47)
k m<n<o<p<q<r mnopqr mn op qr
and
i j k &
(s) = y K (s)tl e3 £ " L (48)
1 jk m<n<o<p<q<r<s<t mnopqrst mn op qr st

The array kj(s) is just grad V in mass-scaled cartesians. In the third
step of the force constant transformation, we project out of k{j(s) the
contributions from motion along the reaction path and from overall rota-
tions and translations,34’59 as discussed above, and diagonalize the
projected matrix. The nonzero eigenvalues kpn(s) provide the general-
ized normal-mode frequencies vy(s) via eq. (21), and the associated
eigenvectors Lm(s) [the columns of the matrix L(s) of eq. (20)] yield
the generalized normal modes. The dimensionless normal coordinates are
then given by

qm(S) = Ax '5m(8) (49)

where

L (s) = 2afcps (s)/h]L () (50)

The fourth and final step of the transformation of the force constants
from difference cartesians to dimensionless normal coordinates, i.e.,
the transformation from mass-scaled cartesian coordinates to dimension-
less normal coordinates, is thus linear and is given for the cubic and
quartic force constants appearing in eqs. (30) and (31) by

Eijk(s) = mSESr k&nr(s)kim(S)Ljn(S)zkr(s) (51)
and

Te _ Y '

kijkl(s) = msnérSu kmnru(s)ﬁ (s)l (s)l (s)lgu(s) . (52)

Having obtained the dimensionless normal coordinate force constants
from those in internal coordinates, egs. (29)-(31) can be used to obtain
the perturbation theory approximation to the vibrational energy levels.

In many cases the energy levels predicted by perturbation theory
will be sufficiently accurate and the above scheme will be completely
satlsfactory This will be true especially for calculating V (s) or

GGT’ (s) at low T. However for moderately large anharmon1c1ty or
hlgher —energy levels, the accuracy of perturbation theory becomes
worse.64,68,80 An alternative procedure for estimating the vibrational
partition function in such cases is the Pitzer-Gwinn method 64,81,82
This method is based on the fact that the ratio QVlb(T s)/QVlb(T s) of
the anharmonic to harmonic quantal partition functions, with the zero of
energy located at the zero-point level (indicated by the tilde), is
given correctly by the corresponding ratio Quib, c(T, S)/Q51b,C(T s) of
classical (C) partition functions in both the 1ow-— and high-temperature
limits. The approximation is to assume that this relationship holds at
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all temperatures. The quantal anharmonic partition function Qvib(T,s)
is thus approximated as

N . AH H
Qvib(T’S> - Qvib(T’S)[Qvib,C(T’s)/Qvib,C(T’s)] ) (53)

This approach has already been shown to provide accurate results for the
vibrational partition functions of the bound molecules Hy0 and SO,,

and eq. (53) should be equally applicable for generalized transition
states. The harmonic partition functions are given by81

F-1
H ~ -
Qvib,C(T’S> = iil kT/[hcvi(s)] (54)
and . Fo1 .
G;ib(T’S) = 121 {1 - exp[—hcsi(s)ﬁ]}_ (55)

The classical anharmonic partition function for the potential of eq.
(28) is83

(F-1)/2

(T,s) = (2mpkT/h) fdq,(s)...dq,_, (s)

Qib,c F-1

x exp{=B[V - V__ (s)]} (56)

MEP

where the integrations are over the range (-w,+w) in mass-scaled normal .
coordinates defined by

Qm(s) = [h/Cme(s)]%qm(s)/Zw . (57)

Contributions from energies greater than D-Vygp(s) should be excluded
from the integrand. For small systems the integration can be performed
conveniently by Gauss-Hermite quadrature formulas, while for larger
systems Monte Carlo numerical integration8 “°% may be more efficient.
The anharmonic partition function Quib(Tss), with the zero of energy
located at the bottom of the well, can then be obtained by combining
Qvib(T,s) with the zero point energy calculated from eq. (29) by:

Qvib(T’S) = Qvib(T,s)exp[—Be (0,0,...,0,s)] . (58)

vib
A possible pitfall in the approach discussed above is that the effective
potential energy surface of eq. (28) may not provide an accurate repre-
sentation of the true potential energy surface in a large enough region
about the bottom of the vibrational well, i.e., in the region about the
bottom of the well where the integrand of eq. (56) is significant. For
example, large cubic or large negative quartic force constants can lead
to large, anomalous wells in the effective potential energy that cause
great difficulty in the convergence of the numerical integration for
Quib,c(T,s). 1In such cases, one may need to resort to different choices
for the models assumed for the potential energy along the internal-
coordinate directions, or to calculating explicitly the third and fourth
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derivatives of the potential energy with respect to the internal coordi-
nates, or to global fitting techniques such as discussed in Sect. 4. In
such cases it may be advantageous to use eq. (56) but with V in internal
coordinates. Thus, rather than transform the internal-coordinate
expression for V to normal coordinates through quartic terms before
evaluating eq. (56), one may numerically calculate the internal coordi-
nates and the untransformed V for each point in the quadrature grid as
eq. (56) is evaluated. This has the advantage that globally meaningful
untruncated potential approximations (like the Morse I approxima-
tion*42”+) may be employed in internal coordinates to ensure a well
behaved potential for eq. (56), and the truncated normal-coordinate
expression need be used only to estimate the zero point energy.

Since we have emphasized second-order perturbation theory in this
section, it might be useful to point out that the effect of the By (s)
nonadiabatic coupling elements could also be included by second-order
perturbationtheory, using a procedure analogous to that of Barton and
Howard.B87

We have concentrated on vibrations in this section and have not
considered hindered rotations, Coriolis coupling, or related complica-
tions. These kinds of complications will be at least as important for
generalized transition states as for bound molecules, and these compli-
cations will have to be addressed in future work.

Another approach to including mode-mode coupling in the hybrid rate
constant is to perform a multidimensional, nonseparable quantal Monte
Carlo calculation. Voter88 has recently given a convenient formulation
that could be applied to AG%T’O(S>. It includes quantal effects by a

.Fourier expansion of Feynmann path integra158 and allows for importance
sampling as required for Monte Carlo calculations on processes with high
activation energy. This formulation would be expected to be particu-
larly convenient if the transmission coefficient is close to unity and
hence need not be evaluated. When the transmission coefficient is to
be calculated also, one requires VG(s). This can be calculated from
the zero-temperature limit of AGSTsO(s) or by calculating the zero
point energies from a reaction- path Hamiltonian. The use of different
methods for AGGT O(s) at T40 and V (s) may be justified by (i) the sen-
sitivity of low—temperature results to very small energy errors, which
are hard to make completely negligible in a Monte Carlo calculation,
and (ii) the increasing importance of anharmonicity, and hence non-
separability of the normal modes, as T increases.

3. DETERMINATION OF THE REACTION-PATH HAMILTONIAN FROM AB INITIO
CALCULATIONS

One of the most important advances achieved in ab initio electronic
structure theory in the last 15 or so years has been the capability of
determining analytic gradients of energies computed from many types of
wavefunctions.90-100 The gradient of the energy is the vector of par-
tial derivatives of the energy with respect to each of the cartesian
coordinates of the molecule or an equivalent set of internal coordi-
nates.?! Gradients are extremely valuable in locating and
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characterizing stationary points on multidimensional PES's.101-104
There are two advantages of using analytic gradients rather than multi-
ple evaluations of the energy followed by numerical differentiation.
First, the analytic gradients are more reliable because there are no
artifacts caused by a poor choice of step size. Second, the use of ana-
lytic gradients is computationally much more efficient. Using a crude
approximation to numerically determine the gradient for a nonlinear
polyatomic molecule with N atoms and 3N-6 degrees of freedom requires
3N-5 energy calculations while only one calculation, which is 2 to 5
times longer than one energy calculation, is required for determining
analytic gradients.91 Thus the use of analytic gradients becomes more
efficient computationally as the number of atoms N increases. The use
of analytic gradients makes the calculation of stationary points (reac-
tant, product, and saddle point geometries) computationally feasible for
a large number of reacting systems with 3 or more atoms.

With the availability of analytic gradients, numerical second deri-
vative matrices have been determined and employed in more efficient
algorithms for locating stationary points.101-106 a}so, for many types
of wavefunctions analytic second derivatives are computationally feasi-
ble to determine.93,97,98,107-111 ope gains the same advantages over
numerical differentiation using analytic second derivatives as already
discussed for using analytic gradients. Furthermore, analytic second
derivatives do not contain artifacts from a non-optimal distribution of
points used in the numerical determination of the second-derivative
matrix. Finally, it should be noted that even though ab initio analytic
second derivatives are not currently coded for all types of correlated
wavefunctions, the general formulas for determining analytic second
derivatives for most types of wavefunctions have been derivedl12,113 and
we can look forward to their computer implementation. (Even higher
derivatives are realizable with the recent calculation of analytic third
derivatives for an SCF H,0 calculation.!! ) In summary, state-of-the-
art ab initio techniques can provide analytic gradients for most types
of wavefunctions and analytic second-derivative matrices for many types
of wavefunctions for systems with several (2 <N <10) atoms.

Given these techniques, the determination of a useful RPH for a
chemical reaction can proceed at several levels of approximation. The
first step in determining the RPH is locating the stationary points that
correspond to the reactant, product, and saddle point geometries of
the reaction system. The vibrational frequencies and normal mode direc-
tions as well as the imaginary frequency corresponding to the reaction
coordinate can be determined by diagonalizing the second derivative
matrix for the system, and cubic force fields can be obtained by numeri-
cal first derivatives of second derivative matrices. In Subsect. 3.1 we
discuss determining the RPH from this first level of information;
namely, the potential energy and quadratic or cubic force fields at the
reactants, products, and saddle point geometries. At each of these geo-
metries the gradient is zero. To calculate the potential along the
reaction path (MEP) requires following the path of steepest descent in
mass-scaled or mass-weighted coordinates from the saddle point to both
the reactant and product geometries. Computationally, this requires
taking an initial step off the saddle point in both the product and
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reactant directions along the direction of the normal mode with the ima-
ginary frequency and then following the path of steepest descent along
the direction of the negative gradient. At each point along the reac-
tion path, the frequencies of the vibrations that are orthogonal to the
reaction path can be determined by egs. (20) and (21). Thus, using
state-of-the-art computer hardware and ab initio methods, the determina-
tion of the reaction path and RPH is feasible for many systems of chemi-
cal interest. In Subsect. 3.2 we will discuss some significant practi-
cal problems to consider when using ab initio methods to determine an
RPH.

3.1. Simple Interpolatory Methods for Reaction Path Calculations

Although RPH's based upon ab initio calculations of the reaction path
and the vibrational frequencies perpendicular to the reaction path have
been determined for several polyatomic systems (see, e.g., Refs. 7, 115-
119), there are many polyatomic reactions for which a set of high qual-
ity ab initio calculations along the reaction path iscurrently not com-
putationally feasible. However, for many such systems it is feasible to
optimize the geometries and determine the vibrational frequencies at the
set of stationary points along the reaction path, including any saddle
point geometries. In such cases one possible way of constructing an RPH
is by interpolating the geometry, the potential energy, and the vibra-
tional frequencies along the reaction path by using information either
pertaining solely to the stationary points or based on a small number of
points including the stationary points.1 0 This approach has been
pplied successfully to collinear A + BC reactions. 20 For the high-
barrier reactions H + Hp + Hp + H and Cl + HD » HCl + D, the potential
energy and the real vibrational frequency in the vicinity of the saddle
point were fit to quadratic functions in s. For the reactions F + Hy »
HF + H and I + Hy + HI + H, which have small intrinsic barrier heights,
an asymmetric Eckart barrierl?1,122 gpq 5 gaussian form were used to
model the barrier while an exponential form similar to that used by
Quack and Troel23:124 f4r triatomic dissociation reactions was used to
represent the vibrational frequency. Reaction probabilities based upon
classical microcanonical variational transition state theory51 were
determined and compared for both the interpolated RPH and the exact RPH
of the global potential energy surfaces -1 for each of these reac-
tions. The results from this investigation indicate that the interpola-
tion method works reasonably well for estimating the reaction probabil-
ity, even though it fails to predict the position of the generalized
transition state dividing surface with high accuracy. In particular,
for the systems studied, the error in the reaction probabilities is at
most 18% while the predicted deviation of the variational transition
state from the saddle point differs as much as 260% from the predicted
position using the noninterpolated RPH. Nonetheless, it is very encour-
aging that reasonable reaction probabilities could be obtained using
this interpolation scheme based upon a minimal amount of information
concerning the reaction path. Notice that because three points were
used in the vicinity of the saddle point, the method is equivalent to
using numerical differentiation of the saddle point quadratic force
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field. 1If anharmonicity is neglected, one can perform conventional
transition state theory calculations based on quadratic force fields for
reactants and products, but with a generalization of the method of Ref.
120, one can perform approximate VTST calculations if one simply adds
the cubic or cubic and quartic force constants at the saddle point.

An even simpler method, but one which will often be much less reli-
able, is to interpolate based only on quadratic force fields at the sta-
tionary points. Recently, Carrington et al. 129 nave approximated the
RPH for the isomerization of vinylidene to o acetylene using an interpola-
tion method based solely on a set of ab initio energies and force con-
stants at four stationary points along the reaction path (vinylidene,
acetylene, and two symmetrically equivalent transition states). The
potential energy along the reaction path was interpolated by an even
sixth-order polynomial, and a quadratic form was used for interpolating
the vibrational frequencies of the vibrational modes perpendicular to
the reaction path. These authors also included the Byp(s) curvature
components and the Bkku(s) nonadiabatic coupling coefficients in their
RPH, and they fit these to a quadratic form.

Other workers!30 have employed gaussian-type functions for fitting
the curvature as a function of the reaction coordinate. In many A + BC
reactions, curvature is not a simple function of s and the reaction
probabilities are very sensitive to it. Attempts to approximate the
curvature in such cases led to large quantitative errors; 131 however,
Carrington et 21.129 used their RPH to calculate the lifetime of vinyl-
idene and these lifetime calculations were not as sensitive to reaction-
path curvature as are most of the tunneling probabilities that have been
studied in our group. Thus Ref. 129 provides an instructive example of
obtaining an interpolated RPH from a minimal amount of ab initio data.

In this subsection we have presented two examples of calculations
where the RPH required for dynamical calculations has been based upon an
interpolation of the potential energy, vibrational frequencies, and cur-
vature and nonadiabatic coupling coefficients from a knowledge of PES
properties at a small number of points along the reaction path. We
pointed out, however, that if attention is restricted only to stationary
points, one will generally obtain an accurate approximation to the
dependence of the vibrational frequencies on the reaction coordinate in
the vicinity of the saddle point only if the input data includes at
least some of the third and fourth, as well as the second, derivatives
at the saddle point.120 Simple interpolatory schemes may be the only
feasible method for investigating systems with many atoms and degrees of
freedom. Nonetheless, further work comparing and refining these schemes
is needed before the results can be considered reliable.

3.2. Steepest-Descent-Path Calculations for Constructing RPH's

In this subsection we discuss several practical considerations that

arise when constructing RPH's for polyatomic systems from a set of ab
initio calculations of the energy, gradient, and force constant matrix

at a series of points along a reaction coordinate. To illustrate some

of these considerations, we will use the CHy + Hy » CH, + H reaction and
the inversion ''reaction'" of NH3 as examples. For the CH3 + Hp reaction,
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two different kinds of empirical global PES's have been proposed in the
literaturel32-134 (and are discussed in Sect. 4), and several sets of ab
initio calculations have also been carried out. 117 135-147  For the NH3
inversion, Wolfsberg and coworkers1%48 have proposed an empirical PES
based in part on an accurate anharmonic force field. We have used
Raff's global PES for the CH3 + Hp reaction and Wolfsberg's for the
ammonia inversion to construct RPH's. We used the former RPH for VTST
and semiclassical tunneling calculations of the abstraction rate con-
stant, and we used the latter to calculate the splitting of the two
lowest—-energy vibrational levels caused by tunneling through the low
(5.2 kcal/mol) inversion barrier.

First, we consider the problem of following the gradient to deter-—
mine the MEP and the functions VWEP(S) and VG(s) As mentioned above,
this requires following the path of steepest descent by taking steps in
the direction of the negative gradient. However, when one uses a finite
step size, one 'zigzags' back and forth across the true MEP. Thus a
compromise must be reached between using a small enough step size that
the true MEP is followed very closely, and using a large enough step
size that the number of ab initio calculations is affordable.

For ab initio calculations of RPH's in the literature, it has not
always been stated what step size was used, but practical considerations
have apparently dictated the use of fairly large steps. We will now
discuss a few examples where step sizes are given in the literature, in
each case expressing the step size in mass-weighted cartesians rather
than mass-—scaled cartesians because the mass-weighted choice makes it
easier to compare different systems. Gray et al. 116 ysed a step size of
0.19 u%ao for studying the HNC + HCN isomerization, and they did find
oscillations of the computed MEP; however, they were able to smooth
these oscillations by "hand" since only a small portion of the reaction
path was required for determining tunneling probabilities in their
application. Sln11ar1y, Schmidt gE_gl.lag stated that they typically
used steps of 0.15 uzao in their study of the rotational barrier in
silaethylene. 1In this study, these authors used the method of Ishida
et 31.150 for stabilizing the oscillations in the calculated MEP. 1In
particular, they performed an energy minimization along the bisector of
the angle formed by the normalized negative gradients from two adjacent

calculated points to return to the true MEP. In another example, for
the isomerization CH40 > CHyOH, Colwell and Handy118,151 ysed a step
size of 0.05 ¥2a near the saddle point and followed the gradient with a
step of 0.1 uZag when Vypp(s) was about 40% below the value of the
Vyep(s) at s=0.

Experience in our group in studying the dynamics of many A + BC
type reactionsl0,13,15,16,18-28,42,4 % 53,70,122,131 has indicated
that small step sizes are necessary, especially when the oscillations
are not stabilized. For production runs on A + BC reactions we have
used step sizes in the range 4 x 1072 to 2 x10-3 uZan. To investigate
this point further for the present discussion, we have graphically
examlned the convergence properties of the calculated MEP and Vygp(s)
and V (s) curves with respect to the step size for the reactions H + Hp,
OH + H2, and CHy + Hp. 1In these studies we used the global PES's of
Truhlar and Horowitz,152 Schatz and Elgersma, O and Raff,132
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respectively; the gradients were analytically evaluated; and the force
constants were determined by converged numerical differentiation. The
harmonic oscillator approximation was used in treating the vibrations
that are perpendicular to the reaction path. The MEP's were computed
using step sizes ranging from7 x107° to 1.3 x 104 uﬁao. Figures 1 and 2
iilustrate the resulting computed Vygp(s) and Vg(s) curves, respective-—
ly, for the CH3 + Hy reaction. These figures show that both VMEP(S) and
Vg(s) are quite sensitive to the step size, and they are only well con-
verged when the step size is 1 x 10-3 uﬁao or less. Severe oscillations
occur in the Vg(s) curve computed using step sizes greater than 1 x 1073
uZag, and these would have a large effect on rate constant calculations.
Figure 1 also illustrates the cautionary fact that, even though the
VMEP(S) curve resulting from a calculation with a large step size may be
smooth, it is not necessarily converged. Similar results were obtained
for the H + Hy and OH + Hy reactions, for which the MEP's seem reason-
ably well converged for step sizes of 1 x10-2 to 1 x1073 uﬁao, respec—
tively. 1In previous work on the OH + Hy system where more str}ngent
converéence criteria were employed, a step size of 1.3 x 10=4 uZay was
used.d Furthermore, it was demonstrated for this system that, when
using very small step sizes, the stabilization method of Ishida et
3l.150 actually slowed convergence of the calculated MEP. 9 These
results are all consistent in indicating that relatively small step
sizes are required for obtaining converged MEP and Vygp(s) and Vg(s)
curves for reactive systems.

A second point to consider in constructing Vg(s) is that if numeri-
cal differentiation is used to calculate the force constant matrix, then
the results may be sensitive to the distribution of points and the step .
size used in the difference formulas. We have found that frequencies
calculated using the GAMESS133 codes can vary significantly based upon
using 2- or 3-point numerical differentiation formulas and a step size
ranging from 0.01 to 0.0001 ag. Of course, for SCF calculations this
problem is eliminated with the use of analytic second derivatives as
used by Colwell and Handy.118,151

Another kind of difficulty emerges in calculating the MEP and
VMEP(S) and Vg(s) curves for an isomerization reaction. For such reac-
tions, VMEP(S) and Vg(s) have double-well character. We will use the
inversion of NH3 as an example. In this case, because of symmetry, we
need to compute the RPH only for one side of the saddle point. We will
use the left side for our example. To determine the MEP in the barrier
region between the well and the saddle point, one follows the negative
gradient from the D3} saddle point structure towards the C3, equilibrium
structure. In this case since one is proceeding to the left, s is
decremented at each step, starting at zero. To determine the MEP on the
other side of the minimum, one starts from points high on the repulsive
wall beyond the well and follows the negative gradient in toward the
well. While carrying out this step we don't know an absolute origin for
s that is consistent with the scale to the right of the minimum so we
use a temporary origin at the initial point. The reaction coordinate
referred to this temporary origin is called 5. Since we are proceeding
to the right, § is incremented at every step. One places the initial
points higher and higher on the potential until VMEP(g) and Vg(g) in the
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1. The potential energy as a function of the distance along the

calculated MEP (through mass-scaled coordinates with u =
mCH3mH2/mCH5) for the CH3 + HH' + CHy4 + H' reaction on the Raff
potential energy surface. The zero of Vygp is taken to be at
the CH3 + HH' asymptote. The different curves correspond to
using different step sizes in following the path of steepest
descent to determine the MEP. The step sizes of the curves are:
0.050 ag (— --), 0.025 ag (— -), 0.010 ag (= —~—), and 0.001
ag (—). Results for 0.0001 ap would be superimposable on
those for 0.001 ag to within plotting accuracy. To convert
thesg step sizes to mass-weighted coordinate space, multiply
by wz.
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The ground-state adiabatic potential energy as a function of
the distance along the calculated MEP for the CHy + HH' + CH,

+ H' reaction on the Raff potential energy surface. The zero
of energy is CH3 + HH' at classical equilibrium; thus the

curve tends to the zero point energy of the reactants at s =-w.
The different curves correspond to using different step sizes
in following the gradient to determine the MEP. The key for
the curves is the same as in Fig. 1, and again the results for
0.001 ay and 0.0001 agy are superimposable within plotting accu-
racy.
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low-energy region of dynamical interest have converged with respect to
the location of the starting point.

To perform the tunneling calculations we require a smooth Vg(s)
curve for this double-well system. From following the negative gradient
starting at the saddle point we determined Vygp(s) and Vg(s) for the
region to the right of the equilibrium NHj structure. Similarly, by
following the negative gradient starting from high on the potential and
proceeding to the well, we determined Vygp(S) and Vg(g) to the left of
the equilibrium structure. However, a special problem arises in fol-
lowing the negative gradient as one approaches the minimum from either
direction, since the gradient approaches zero, and the reaction path
calculated with practical-sized steps may show significant zigzagging.
This causes the distance along such a path to be artificially longer
than the distance along the true MEP and also introduces other errors.
Thus we must handle three problems: (i) correct for the elongation of
Vg(g) and Vg(s) near the minimum, (ii) convert § values to s values, and
(iii) smoothly join Vg(g) and Vg(s) at the minimum to form a continuous
Vg(s) curve.

Tc correct for the elongation of the MEP and the resultant errors
in Vg(g) and Vi(s) we assume that the elongation only occurs when
VMEP(g) or Vygp(s) is less than 0.1 kcal/mol above VMEP(S) at the equi-
librium structure, which is taken to be the zero of energy. Therefore
we fit Vygp(8) and Vygp(s) from regions where they lie between 0.1 and
0.2 kcal/mol to the following forms:

(3) = 8(5-8)% 4 B(8-5)3

o o (59a)

VMEP

and

VMEP(S) = a(s —50)2 + b(s —30)3 . (59b)

In these equations a, a, b, g, S0» and §O are the fitting parameters, of
which only the last two will be used. The value obtained for sg
represents the location along the reaction coordinate of the equilibrium
structure of NHy. Then S is converted to s by the following change of
origin:

s = § - gO +Sg - (60)
At this point we have two segments of Vg(s) available, one for s <sgy and
one for s >sp. We also know Va(so) accurately from astandard vibra-
tional analysis at the equilibrium geometr%; this was performed prior to
any MEP calculations. By connecting the Va(s) functions smoothly
together at sp, consistent with Vg(so), we will have corrected for the
effects of numerical zigzagging. This is accomplished by simultaneously
fitting the data from both sides of sy, using only data where the values
of these curves are between 0.1 and 0.2 kcal/mol above Va(so). These
data are then fit to the following functional form:
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Va(s) = Va(so) + A(s —so) + B(s —so) + C(s —so) . (61)

The final Vg(s) curve is a spline fit to a set of values on a grid.

When Vg(s) at the grid point isgreater than VG(SO) +0.2 kcal/mol, the
directly computed value is used as input to tﬁe spline routine; but when
Vg(s) is less than this the input to the spline routine is calculated
from eq. (61). The final vibrational energy level splitting was the
same when this procedure was repeated with the cubic term missing in eq.
(61) so we assume that the order of the polynomial in eq. (61) is suffi-
ciently high to represent the Va(s) curve within 0.2 kcal/mol of its
minimum.

With the continuing development of computer hardware and ab initio
methods and codes, the construction of RPH's for polyatomic systems may
become routine. However, at present, care must be exercised in using
ab initio results to achieve a practical balance between affordability
and distortions in the results because of errors in following the gra-
dient with an unconverged step size. One avenue that might provide fer-
tile ground for exploration would be to use interpolation methods like
those discussed in Subsect. 3.1 in conjunction with input data at
increasing numbers of ab initio points along the reaction coordinate.
This might provide a reliable and cost effective method for constructing
RPH's based upon ab initio data.

4. GLOBAL POTENTIALS

Although, as discussed in Sect. 2, there are still significant difficul-
ties in the practical treatment of anharmonicity and mode coupling, VTST
and semiclassical tunneling calculations have reached a high enough
state of development that in practical applications the accuracy of a
calculated thermal rate constant will usually be more limited by the
uncertainties in the potential energy surface than by the errors intro-
duced by the approximate treatment of the dynamics. The ab initio
steepest—descent-path techniques discussed in Sect. 3 provide one pro-
mising avenue for supplying the required PES data. In many cases though
one will require a more global PES, either because large-curvature tun-
neling paths must be considered or because semiempirical adjustments are
to be considered or both. 1In attempting either to construct semiempiri-
cal surfaces or to fit ab initio calculations, we require flexible ana-
lytic procedures. The difficulty of reliably representing PES data in
an analytic form when it is available or obtainable has been just as
serious of a stumbling block in recent years as has been the uncertainty
in, and the difficulty of generating, the original data. 1In this sec-
tion we will address some of the issues involved in the analytic repre-
sentation of PES's or RSP's for polyatomic systems.

A promising starting point in the design of polyatomic PES's is to
extend in some manner the methods that have been used with success for
atom-diatom PES's. This should be an especially promising approach when
one only requires an accurate potential in the reaction swath for an
atom-transfer reaction where at most two bond lengths differ
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significantly from their equilibrium values. One example of this
approach was developed by Raff132 and applied to CHz + HT «+ CHy + T.
This method, which is a polyatomic generalization of the multiparameter
LEPS scheme (MLEPS)1345155 that has been applied so successfully to

A + BC reactions, seems to us to have a number of practical advantages.
One advantage of this procedure is that the MLEPS scheme can be made
very flexible by making the Sato parameters explicit functions of local
variables such as internal angles or bond lengths.156,157 For A + BC
this allows one to make localized changes in the PES, and the hope is
that one can embed this same flexibility in a polyatomic surface by
starting with the MLEPS function for the dependence of the potential on
the lengths of bonds that are made and broken. A worthwhile goal for
this kind of treatment is to obtain a functional form for which one can
refine one area of the surface in order to agree with ab initio calcula-
tions or experimental data without changing the rest of the surface.

In Raff's PES for CHy + HT, the potential is a sum of four three-
center MLEPS potentials, one for each of the C-H-T moieties, and an
angle-dependent term to control the change of the methyl moiety from
trigonal planar to tetrahedral. By breaking up the potential in this
manner, Raff reduced the problem of modelling a six-body interaction to
that of modelling several three-body ones.

Table I compares the saddle point characteristics of the Raff sur—
face to those calculated by the ab initio polarization-configuration-
interaction (PolCl) method.144,1%5 "The Raff surface has a lower and
earlier, but also thinner barrier. Since, all other things being equal,

'one. expects higher barriers to have higher imaginary frequencies, it

TABLE I

Saddle point characteristics

Quantity Polc1® Raffb
R (a,) 2.04 2.07
C-H, ,Hy,H, "0
RC_H4 (ao) 2.78 3.02
R (a,.) 1.74 1.48
H4~H5 6]
$ c
V' (kcal/mol) 10.7 9.4
—% -1 . .
(cm ) 9741 14781

%Ref. 144 and 145
PRef. 132

c .
relative to CH3 + H2.
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poses an interesting challenge to try to adjust the Raff surface to
agree better with the ab initio one for all these characteristics.

The basic design of the Raff surface suggests that the methods for
localized adjustments mentioned above for atom-diatom MLEPS potentials
could be used to correct the discrepancies between the Raff surface and
the PolCI calculations. 1In these methods single parameters in the MLEPS
function are replaced by functional forms. The functional forms used
should be chosen such that except for a localized region of strong
interaction, they go smoothly to the values required to give the surface
its correct asymptotic limits and general global form. The '"turning off
and on' of these localized functional forms is best accomplished through
the use of switching functions. When choosing an appropriate switching
function it is important to maintain the analyticity of the PES at least
through second derivatives and preferably through fourth derivatives.
Flexibility can be built in by using adjustable parameters in exponen-—
tial, hyperbolic, and gaussian functions.

A problem that sometimes occurs inreaction-path Hamiltonians, espe~
cially for bend potentials,118,151,158 j5the bifurcation of the reaction
path. This occurs when a harmonic frequency becomes imaginary, and for
the Raff surface this occurs for bends on both sides of the saddle
point. Ab initio calculations can be helpful in determining if the
bifurcation is anartifact of the form of the analytic potential func-
tion or if it is present in the actual system. When the MEP bifurcates
it is probably best to base the RPH on a reference path centered on the
ridge between two equivalent MEP's.20,158  This requires extra effort
when computing vibrational energy levels since the vibrational potential
becomes a double-minimum one, but it probably reduces mode-mode
coupling, which (see Sect. 2) is hard to treat accurately.

In making adjustments to the Raff surface we found that while we
are indeed able to make localized changes, the changes caused by varying
individual Sato parameters are not nearly as independent of each other
as was the casel37 with the atom-diatom reaction F + Hy. To raise the
saddle point to approximately the height of the PolCI one, all three
Sato parameters need to beadjusted simultaneously in order to prevent
other local maxima and minima from occurring.

An important consideration in the design of an analytic polyatomic
PES is to know which region of the PES is most important for the dyna-
mics. In VTST, an accurate PES is necessary only in the reaction swath.
Thus, for the hybrid rate constants it is necessary to have an accurate
representation of the potential along the MEP and for small deviations from
it inthe vicinity of dynamical bottlenecks, and for semiclassical tun-
neling calculations it is sometimes necessary to know the PES for larger
deviations from the MEP along a lengthy segment of it. For VIST/x cal-
culations it is especially important that the frequencies as functions
of s go smoothly and realistically from their reactant values to realis-—
tic saddle point values and then to their product values. This is an
area where ab initio calculations can be very useful.

In Sect. 2 we discussed the practical advantages of valence coordi-
nates for modelling anharmonicity. As discussed there, when the valence
coordinates are non-redundant the valence-coordinate force field can be
calculated directly from a global PES in any internal coordinate system,
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e.g., interpair distances, as have been widely employed. Hase and co-
workers159-166 have made great progress, however, in modelling PES's
directly in terms of valence coordinates. So far they have concentrated
on association, dissociation, and isomerization reactions, but their
methods could also be used, for example, in conjunction with MLEPS func-
tions, for some of the interactions in atom-~transfer reactions. The
basic idea in all of Hase's valence-coordinate surfaces is to write the
potential as a sum of Morse functions for all bonds, and harmonic,
harmonic~-quartic, or Taylor series potentials for all bends and tor-
sions. The parameters in these terms are optimized using least-squares
techniques with ab initio or spectroscopic input data.

Cobos and Troel67 have demonstrated a strong sensitivity of the
calculated rate constant for the dissociation of methane to arange para-
meter that they used to control the decay of the force constants involv-
ing the breaking bond to their asymptotic values. The same sensitivity
to force constants can occur in atom-transfer reactions. Just as in the
CHy, dissociation, when an atom B is transferred between A and C, one
must model the rate of decrease of an A-B-C bend potential as the AB or
BC bond is broken. One of the first attempts to do this was by Johnston
and Goldfinger.168 They modelled the bending force constant by attenu-
ating the equilibrium value according to the bond order of AB and BC.
Sims and coworkers169:170 have further tested the validity of this kind
of .model of the bending force constants for various hydrocarbons. They
checked the effect of using both the square root of the product of the
bond orders or the product of the bond orders when computing the force
constants and then compared toexperimental values. It was found that
the product of the bond orders is the preferred choice if either of the
bonds is undergoing a major change as the case would be during a chemi-
cal reaction. This suggests that some method of smoothly varying the
bond order from O to 1 during the course of a reaction would be useful
for modelling a bend potential on a polyatomic PES for VTST/k calcula-
tions. Quack and Troel?3 used this same kind of idea in their statisti-
cal adiabatic channel model calculations of triatomic dissociation, for
which they modelled the bond order as an exponential function of the
deviation of the bond length from equilibrium. The exponential function
they used contains an adjustable range parameter. More recently, how-
ever, Duchovic et 31.,166 in the course of designing a surface for the
dissociation of methane, have performed ab initio calculations that
indicate that the bending force constant may decay to zero more like a
gaussian than an exponential.

Of course once one decides how to model the variation of a bending
force constant with bond distance, this variation is easily incorporated
into the PES if it is expressed in valence coordinates. As a final
example of the flexibility of MLEPS functions, however, we point out
that this can also be done by varying the Sato parameters in Raff's
potential for CHy + HT. In particular we were able to adjust the C-H-T
bend potential for a 400 deviation from collinearity to agree quite well
with ab initio bend potentials for a 1.6 apy segment of the MEP by making
one of the C-T triplet parameters a function of both the C-H-T bend
angle and the H-T bond length. Although this procedure is mathemati-
cally quite different from the anti-Morse bend potential discussed in
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Fig. 3. Minimum-energy path and related quantities for CH3 + HH' -+ .
CH, + H'. All quantities for this figure are computed in the
harmonic approximation for the vibrations. The abscissa is
the distance from C to the center of mass of HH' and the ordi-
nate is the scaled HH' distance, where the scale factor is
(m/p)%, m::mH/Z, and U::mCH3mH2/mCH5' The solid curve is the
MEP, and the labels on it denote the values of the reaction
coordinate s, where s is the distance along the MEP through
mass—scaled coordinates with u :mCH3mH2/mCH . The chain line
and the dashed line are the ground-state LC; tunneling paths
for tunneling from one translational turning point of VZ(s) to
the other at the most probable tunneling energies (31.52 and
34.59 kcal/mol) at 350 and 250 K, respectively. The triangles
denote coordinates of systems with zero amplitude in all their
vibrational coordinates except the C-H-H' stretch, which is
placed at the classical turning point on the concave side of
the MEP. One of the points on the MEP and one of the triangles
have been changed to squares to denote s=0. The other tri-
angles are evenly spaced in s with interval As =0.2 ag. The
light curve connects the coordinates of systems with s=0.5-0.8
ag with zero amplitude in all vibrational coordinates except
the C-H-H' stretch, which is placed at the radii of curvature
for this mode.
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Sect. 2, it is physically quite similar since the repulsive triplet C-T
interaction potential in a C-H-T MLEPS function controls the bending
potential for a C-H-T bend.

The final practical problem that we wish to emphasize in this chap-
ter is the necessity to consider the whole reaction swath. We will use
the PES of Raff for CH3 +HH' to illustrate how one may estimate the
region over which the potential must be known. First of all we calcu-
lated the RPH for this system using the harmonic approximation and
general methods presented elsewhere.5% (This RPH is also discussed in
Sect. 2.) At every point along the MEP, we calculated the C-H and H-H'
bond lengths for the bonds being made and broken, and from them we cal-
culated the Jacobi-like coordinates used as abscissa and ordinate irn
Fig. 3. The MEP is plotted as a solid curve in Fig. 3, which thereby
becomes a two-dimensional internal-coordinate projection of the full-
dimensional steepest descent path through mass-scaled coordinates. The
distance s measured through the full set of mass-scaled coordinates along
the MEP is shown at intervals of 0.2-0.3 ag. Next, at every 0.2 ap along
the MEP, we displaced the system through the full set of mass-scaled
cartesian coordinates to the classical turning point (on the concave side
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Fig. 4. Same as Fig. 3 except for CH3 + HT + CH4 + T, m = mymp/myy,
u = mCHgmHT/mCHQT’ the most probable tunneling energies are
32.07 and 34.40 kcal/mol, and the light curve is shown for
s = 0.3-0.4 ap.
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of the MEP) of the generalized normal mode corresponding to the bound
C-H-H' motion. We calculated the ordinate and abscissa of Fig. 3 for
these geometries and plotted these points as triangles. A curve (not
shown explicitly) passing through these triangles_is an analog of the
Marcus-Coltrin tunneling path originally found”»1 variationally for
collinear H + Hy. The loci where the locally multivalued region of the
reaction-path coordinate system, as estimated by the curvature of just
the C-H-H' vibrational mode, gets closest to the MEP are shown in Fig. 3
as a short light curve. Two LC3 tunneling paths are also shown. In
this case neither the analog of the Marcus-Coltrin path nor the LC3 tun-
neling paths reach into the region of locally multivalued coordinates,
i.e., they are between the MEP and the light curve. Thus it appears
sufficient to know the potential in regions where the RPH is valid. 1In
Fig. 4 we give an analogous set of curves for CH3 + HT - CHy + T, again
using the Raff surface. The location where the boundary for the multi-
valued region gets closest to the MEP is shown between s =0.3 and 0.4
ag; again neither the analog of the Marcus-Coltrin path nor the LC3 tun-
neling paths enter the multivalued region. We conclude that an RPH
formulation is adequate for CH3y + Hp - CH, + H and isotopic analogs, at
least according to the Raff surface. A surface with a broader barrier
would have more widely spread turning points, however, and for such a
surface the LC3 path might enter the multivalued region. Furthermore,
for other systems with much smaller skew angles, it becomes very likely
that the tunneling paths will enter the multivalued region where the
reaction~path coordinates break down. (Examples have been observed for
atom-diatom collisions.19‘21) In such cases, no RPH can be valid and we
must consider a whole reaction swath, not just a local expansion about ‘
the MEP.
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APPENDIX

In this appendix we give some examples of the coordinate transformation
coefficient Shat appear in eqs. (40)-(43). For convenience we define
Xij = Xij/rAi ‘e o) o

For the bgnd stretch Arpp = AR ~TaR the coefficients can be
obtained by differentiation of eq. (38) with respect to the difference
cartesians Xij' For Aj =A =Ap=A, Aj=A) =A, =B, and v #Yy # Yy this
yields:67
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g/ = Xy
3°r /axz = (1 - %2 )/r(o)
AB' "Tij ij’""AB

2 s = (0)
8 rAB/aXijaxkE = _Xinkz/rAB ’

3 3 .5 22 (0),2
3 rAB/axij ¢3xij(xij - 1)/(rAB )7,

Sr _saxtax =% (3%, - 1)/(rtO)?

AB "7 ke T Tk AB >

3 P (0),2

3 rAB/BXijBXkEBan = 3xijxk2xmn/(rAB 7,

4 4 b =2 (0),3

3 rAB/axij = —3(5xij - 6Xij + 1)/(rAB )T,

4 3 .z 3 =2 (0),3

3 rAB/axijaxkl = ‘3Xijka(sxij - 3)/(rAB )7,

4 2 .2 52 =2 =2 =2 (0).3
3 rAB/axijaku = (—15xijxkz + 3xij + 3ka - 1)/(rAB >,

‘ and
4 2 - - -2 (0),3
3 rAB/axijakaaxmn = -3xk£xmn(5xij - 1)/(rAB )T .

For the angle deformation A®ppgc = ®aABC — ¢£g%, we carry out a simi-
lar differentiation process with respect to eq. (39). For Aj=Ap =4y =
A, Aj :ASL :An:Aiv :Akv =B, A :él' =C, C= cos QABC, S=sin QABC’ and
Yi =Yg ;éykzyk.;éymzym., this yields:67

= S (0)
30 /axij = (Cxij - Xi,j{)/SrAB ,

ABC
- - (0)
a@ABC/axi,j, = (Cxi,j, - Xij)/srBC ;
2 20 o< (0),2 2
3 @ABC/axij = [zxijxi,j,/(rAB o o+ C(1 -3xij) -

2
-C(a@ABc/axij) 1/ 8,

v EN _ Y ¥
ink'%‘ + 1'j'ke 3XinkQC)/(rAB

- C(a¢

ABC/axij)(kz)]/S ;
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2 32 R - (0)_(0)
8 QABC/BXijaXi'j‘ = [(Xij A Xijxi'j'c - D/ryprpe’ -
- C(awABC/axij)(i'j')]/s )
2 - RN v (O) (O)
3 @ABC/axijaxk,l, = [(X1J PRI A% B A le g O/ AB TBC
- C(3¢ABC/aXij)(k'2')]/S ,
3 3 - (0> 3
3 @ABC/axij = 3[xi,j, - (C +X1JX1 i ) +SCX ]/S& +
3
+ (3®ABC/aXij) - 3C(3¢ABC/3Xij)(3 o /aX )/S s
3 2 = )
] °ABc/aXij3an = {X Ky 3[Cx 1Jx1 I Xia +xij x
- - (0).,3
x (X 1g0 =5CX 1Y/ S(r,p”)” - C[2(9¢ABC/axij) x
2
x (9 ¢ABC/axijaxkl) +(a¢ /ax )(a e, /ax )]/s +
2
+ (3¢ABC/aXij) (BQABC/axkl) ,

3 — ¥ X 3 X P il tg!
3 ¢ABC/axijax X = 3[5cxi.x X -(X +1ijk'e'mn +

ke i'j’xkkxmn
0
( ))3

+ ijkam'n')]/S(r CE(3¢ABC/3xij)(32¢ABC/3Xk13an) +

+ keijmn + mnijke]/S + (3¢

ABC/aXij)(kE)(mn) ,

3 2 = ) S = 32
3 @ABC/axijaxi,j, =[3xi.(1_xij + cxijxi,j,) -2xijxi,j,

(O) 2 (O) 2
- ]/S( )r —2C[(a¢ C/axi.)(a oABC/axijaxi,j,)
+ i15'1313]/8 «+ (30,507 3%, 4 )2 (30,50/3%; 1 5.)
350 /ax>.axX = [X , -2X..X X - X +
ABC “*i3%%krar T Mk i35 ke k'%'
32 (s G (0),2 (o)
+ 3xij(ka,l, —sz)]/S( Yr -2C[(a¢ABc/axij) x

2
x (3 QABCXBXiJ ,2,) +k'8'ijij]/8S +
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2
+ (aQABc/axij) (aoABC/axk,%.) ,
020 JaX. .oX, 9X.,., = [X, (1 -3%2. +3CK. K., ..) =K. .4 %
ABG’ %%13% kg %ty kg ij 15710 ity
-~ - i (0),2 (0)
x (Xi.j,Xk% +1ijk'g )]/S(rAB )rpel - C[(a@ABC/aXij) x

< (32°ABc/anzaxi'j'> s KRIGETI 41t igke]/g +

+ (394p0/3%; D (kD)

3 3 5 Vo ts s - T
3 oABC/BXijanlaXm‘n' = —[xm,n,(xi,j,xkl +k'2'i5) + BXinkz x
- = (0)y2_(0)
* X = Oy V178G g D e = CLCRe, 5 o/0X, )

2 e
x (9 QABC/anEBXm'n') +kfijm'n' +m'n'ijke]/S +

¥ (a@ABC/axij)(kz)(m'n')

and so on for the higher derivatives. 1In writing these expressions we
used the convention that if a term or factor is identical to the pre-
vious one except for the lower case subscripts, we only repeat those.
Because of the 8~! factors in these equations they cannot be used for

‘ a linear angle. One possible set of modifications that is useful in
such a case is described in Ref. 67. Similar equations to those given
above but for out-of-plane bending and torsional angle internal coordi-
nates are given elsewhere./4,78

REFERENCES

1. Potential Energy Surfaces and Dynamics Calculations, edited by D.G.
Truhlar (Plenum, New York, 1981).

2. J.N. Murrell, S. Carter, S.C. Farantos, P. Huxley, and A.J.C.
Varandas, Molecular Potential Energy Functions (John Wiley and
Sons, Chichester, 1984).

3. Dynamics of Molecular Collisions, Part B, edited by W.H. Miller
(Plenum, New York, 1976).

4, D.G. Truhlar, F.B. Brown, D.W. Schwenke, R. Steckler, and B.C.

Garrett, in Comparison of Ab Initio Quantum Chemistry with Experi-

ment, edited by R.J. Bartlett (D. Reidel, Dordrecht, Holland), in

press.

R.A. Marcus, J. Phys. Chem. 83, 204 (1979).

K. Fukui, Acc. Chem. Res. l§7‘363 (1981).

7. K. Morokuma and S. Kato, in Potential Energy Surfaces and Dynamics

Calculations, edited by D.G. Truhlar (Plenum, New York, 1981), p.

243,

W.H. Miller, J. Phys. Chem. 87, 3811 (1983).

9. D.G. Truhlar and B.C. Garrett, Acc. Chem. Res. 13, 440 (1980).

[e) IS, ]
o .

0]




324 D.G. TRUHLAR ET AL.

10. D.G. Truhlar; A.D. Isaacson, R.T. Skodje, and B.C. Garrett, J. Phys.
Chem. 86, 2252 (1982), 87, 4554E (1983).

11. D.G. Truhlar and B.C. Garrett, Annu. Rev. Phys. Chem. 35, 159
(1984). T

12. D.G. Truhlar and A.D. Isaacson, J. Chem. Phys. 77, 3516 (1982).

13. D.C. Clary, B.C. Garrett, and D.G. Truhlar, J. Chem. Phys. 78, 777
(1983).

14. D.G. Truhlar, W.L. Hase, and J.T. Hynes, J. Phys. Chem. 87, 2664,
5523E (1983).

15. B.C. Garrett and D.G. Truhlar, J. Chem. Phys. 81, 309 (1984).

16. D.G. Truhlar, B.C. Garrett, P.G. Hipes, and A._Euppermann, J. Chem.
Phys. 81, 3542 (1984).

17. A.D. Isaacson, M.T. Sund, S.N. Rai, and D.G. Truhlar, J. Chem.
Phys. 82, 1338 (1985).

18. B.C. Garrett and D.G. Truhlar, J. Phys. Chem. 89, 2204 (1985).

19. B.C. Garrett, N. Abusalbi, D.J. Kouri, and D.G. Truhlar. J. Chem.
Phys. 83, in press.

20. B.C. Garrett, D.G. Truhlar, A.F. Wagner, and T.H. Dunning, Jr.,

J. Chem. Phys. 78, 4400 (1983).

21. D.K. Bondi, J.N.L. Connor, B.C. Garrett, and D.G. Truhlar, J. Chem.
Phys. 78, 5981 (1983).

22. B.C. Garrett and D.G. Truhlar, J. Chem. Phys. 79, 4931 (1983).

23. R. Steckler, D.G. Truhlar, B.C. Garrett, N.C. Blais, and R.B.
Walker, J. Chem. Phys. 81, 5700 (1984).

24. TF.B. Brown, R. Steckler, D.W. Schwenke, D.G. Truhlar, and B.C.
Garrett, J. Chem. Phys. 82, 188 (1985). ‘

25. B.C. Garrett and D.G. Truhlar, J. Phys. Chem. 86, 1136 (1982), 87,
4554E (1983). o -

26. B.C. Garrett, D.G. Truhlar, R.S. Grev, G.C. Schatz, and R.B.
Walker, J. Phys. Chem. 85, 3806 (1981).

27. R.T. Skodje, D.W. Schwenke, D.G. Truhlar, and B.C. Garrett, J.
Phys. Chem. 88, 628 (1984).

28. R.T. Skodje, D.W. Schwenke, D.G. Truhlar, and B.C. Garrett, J.
Chem. Phys. 80, 3569 (1984).

29. B.C. Garrett, D.W. Schwenke, R.T. Skodje, D. Thirumalai, T.C.
Thompson, and D.G. Truhlar, in Resonances, edited by D.G. Truhlar
(Anerican Chemical Society, Washington, 1984), p. 375,

30. F.B. Brown, S.C. Tucker, and D.G. Truhlar, J. Chem. Phys. 83, in
press. ==

31, W.d. Miller and S.-H. Shi, J. Chem. Phys. 715, 2258 (1981).

32. C.J. Cerjan, S. Shi, and W.H. Miller, J. Phys. Chem. 86, 2244
(1982). =

33. K. Morokuma, S. Kato, K. Kitaura, S. Obara, K. Ohta, and M.
Hanamura, in New Horizons of Quantum Chemistry, edited by P.-0.
Lowdin and B. Pullman (D. Reidel, Dordrecht, Holland, 1983), p. 221.

34. W.H. Miller, N.C. Handy, and J.E. Adams, J. Chem. Phys. 72, 99
(1980). =

35. G. Natanson, Mol. Phys. 46, 481 (1982).

36. D.G. Truhlar, Int. J. Quantum Chem. Symp. 17, 77 (1983).

37. G.L. Hofacker, Z. Naturforsch. A 18, 607 (1963).

38. R.A. Marcus, J. Chem. Phys. 45, 4493, 4500 (1966).




THE REPRESENTATION AND USE OF POTENTIAL ENERGY SURFACES 325

39.
40.

41.
42.

43.

44.

45.

46,
47.

48.
49.

50.
51.

52.
53.
S4.
55.
56.
57.
58.
59.
60.
61.
62.

63.
64.

65.
66.
67.
68.
69.
70.

71.

D.G. Truhlar, J. Chem. Phys. 53, 2041 (1970).

K. Fukui, A. Tachibana, and K. Yamashita, Int. J. Quantum Chem.
Symp. 15, 621 (1981).

A. Tweedale andK.J. Laidler, J. Chem. Phys. 53, 2045 (1970).

B.C. Garrett and D.G. Truhlar, J. Phys. ChemT_§§, 1079 (1979), 84,
682E (1980), 87, 4553E (1983). o -
B.C. Garrett and D.G. Truhlar, J. Amer. Chem. Soc. 101, 4534
(1979). T

B.C. Garrett, D.G. Truhlar, R.S. Grev, and A.W. Magnuson, J. Phys.
Chem. 84, 1730 (1980), 87, 4554E (1983).

S. Glasstone, K.J. Laidler, and H. Eyring, Theory of Rate

Processes (McGraw-Hill, New York, 1941).

J.G. Keck, Adv. Chem. Phys. 13, 85 (1967).

1. Shavitt, Theoretical Chemistry Laboratory Report WIS-AEC-23,
University of Wisconsin, 11 August 1959 (unpublished).

D.G. Truhlar and A. Kuppermann, J. Amer. Chem. Soc. 93, 1840 (1971).
K. Fukui, S. Kato, and H. Fujimoto, J. Amer. Chem. Soc. 97, 1
(1975). -

H.F. Schaefer III, Chem. Brit. 11, 227 (1975).

B.C. Garrett and D.G. Truhlar, J. Phys. Chem. 83, 1052, 3058E
(1979), 87, 4553E (1983). -

R.T. Skodje, D.G. Truhlar, and B.C. Garrett, J. Phys. Chem. 85,
3019 (1981). -

R.T. Skodje, D.G. Truhlar, and B.C. Garrett, J. Chem. Phys. 77,
5955 (1982). -

D.G. Truhlar, A.D. Isaacson, and B.C. Garrett, in The Theory of
Chemical Reaction Dynamics, edited by M. Baer (CRC Press, Boca
Raton, FL, 1985), Vol. 4, p. 1.

V.K. Babamov and R.A. Marcus, J. Chem. Phys. 74, 1790 (1978).

P. Pechukas and F.J. McLafferty, J. Chem. Phys. 58, 1622 (1973).
B.C. Garrett and D.G. Truhlar, J. Phys. Chem. 83, 1915 (1979).

B.C. Garrett and D.G. Truhlar, J. Amer. Chem. Soc. 101, 5207 (1979).
A.D. Isaacson and D.G. Truhlar, J. Chem. Phys. 76, 1380 (1982).
G
S
W

.C. Schatz and H. Elgersma, Chem. Phys. Lett. Z§, 21 (1980).

.P. Walch and T.H. Dunning, J. Chem. Phys. 72, 1303 (1980).

.B. Wilson, Jr., J.C. Decius, and P.C. Cross, Molecular Vibrations
(McGraw-Hill, New York, 1955), p. 19, (a) p. 172.
D.G. Truhlar, J. Mol. Spectrosc. 38, 415 (1971).

A.D. Isaacson, D.G. Truhlar, XK. Szgnlon, and J. Overend, J. Chem.
Phys. 75, 3017 (1981).

B.C. Garrett and D.G. Truhlar, J. Chem. Phys. 72, 3460 (1980).
H.H. Nielsen, Encycl. Phys. 37/part one, 173 (1959).

M.A. Pariseau, I. Suzuki, and J. Overend, J. Chem. Phys. 42, 2335
(1965). o

D.G. Truhlar, R.W. Olson, A.C. Jeannotte, and J. Overend, J. Amer.
Chem. Soc. 98, 2373 (1976).

D. Papousek and M.R. Aliev, Molecular Vibrational-Rotational
Spectra (Elsevier, Amsterdam, 1982), p. 38.

B.C. Garrett, D.G. Truhlar, and A.W. Magnuson, J. Chem. Phys. 76,
2321 (1982). o
H.S. Johnston and C.A. Parr, J. Amer. Chem. Soc. 85, 2544 (1963).




326

72.
73.

74.
75.
76.
77.

78.
79.

81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.

95.
96.

97.
98.
99.
100.
101.
102.
103.

104.

105.
106.

D.G. TRUHLAR ET AL.

A.R. Hoy, I.M. Mills, and G. Strey, Mol. Phys. 24, 1265 (1972).

M.A. Pariseau, I. Suzuki, and J. Overend, J. Chem. Phys. 44, 3561
(1966). o

S. Califano, Vibrational States (Wiley, London, 1976).

B. Crawford, Jr. and J. Overend, J. Mol. Spectrosc. 12, 307 (1964).

W.B. Brown and E. Steiner, J. Mol. Spectrosc. 10, 348 (1963).

S. Brodersen and J. Christoffersen, J. Mol. Spectrosc. 12, 303

(1964). o

K. Machida, J. Chem. Phys. 44, 4186 (1966).

1. Suzuki and J. Overend. Spectrochim. Acta 3, 1093 (1981).

N.W. Bazley and D.W. Fox, Phys. Rev. 124, 483 (1961).

K.S. Pitzer and W.D. Gwinn, J. Chem. Phys. 10, 428 (1942).

A.D. Isaacson and D.G. Truhlar, J. Chem. Phys. 75, 4090 (1981).

D.A. McQuarrie, Statistical Mechanics (Harper and Row, New York,

1976).

D.L. Bunker, J. Chem. Phys. 37, 393 (1962).

W.L. Hase and D.G. Buckowski, Chem. Phys. Lett. 74, 284 (1980).

J.E. Adams and J.D. Doll, J. Chem. Phys. 74, 5332 (1981).

A.E. Barton and B.J. Howard, Faraday Discuss. Chem. Soc. 73, 45

(1982). -

A.F. Voter, J. Chem. Phys. 82, 1890 (1985).

D.L. Freeman and J.D. Doll, J. Chem. Phys. 80, 5709 (1984).

P. Pulay, Mol. Phys. 17, 197 (1969). o

P. Pulay, in Applications of Electronic Structure Theory, edited

by H.F. Schaefer (Plenum, New York, 1977), p. 153.

P. Pulay, in The Force Concept in Chemistry, edited by B.M. Deb .
(Van Nostrand Reinhold, New York, 1981), p. 449.

J.A. Pople, R. Krishnan, H.B. Schlegel, and J.B. Binkley, Int. J.

Quantum Chem. Symp. 13, 225 (1979).

J.D. Goddard, N.C. Handy, and H.F. Schaefer, J. Chem. Phys. 71,

1525 (1979). -

S. Kato and K. Morokuma, Chem. Phys. Lett. 65, 19 (1979).

B.R. Brooks, W.D. Laidig, P. Saxe, J.D. Goddard, Y. Yamaguchi,

and H.F. Schaefer, J. Chem. Phys. 72, 4652 (1980).

R. Krishnan, H.B. Schlegel, and J.A. Pople, J. Chem. Phys. 72,
4654 (1980). B
Y. Osamura, Y. Yamaguchi, and H.F. Schaefer, J. Chem. Phys. 77,
383 (1982). -
M. Page, P. Saxe, G.F. Adams, and B.H. Lengsfield, J. Chem. Phys.
81, 434 (1984).

G. Fitzgerald, R. Harrison, W.D. Laidig, and R.J. Bartlett, J.
Chem. Phys. 82, 4379 (1985).

J.W. McIver, Jr. and A. Komornicki, Chem. Phys. Lett. 10, 303
(1971). o

D. Poppinger, Chem. Phys. Lett. 34, 332 (1975).

D. Poppinger, Chem. Phys. Lett. 35, 550 (1975).

A. Xomornicki, K. Ishida, K. Morokuma, R. Ditchfield, and M.
Conrad, Chem. Phys. Lett. 45, 595 (1977).

B. Schlegel, J. Comput. Chem. 3, 214 (1982).

A. Banerjee, N. Adams, J. Simons, and R. Shepard, J. Phys. Chem.
89, 52 (1985).




THE REPRESENTATION AND USE OF POTENTIAL ENERGY SURFACES 327

107.

108.

109.

112.
113.
114.

115.

116.

118.
119.

121.
122.
123.
124,

125.
126.

127.
128.
129.

130.
131.

132.
133.
134.
135.

136.
137.
138.

Y. Osamura, Y. Yamaguchi, P. Saxe, M.A. Vincent, J.F. Gaw, and
H.F. Schaefer, Chem. Phys. 72, 131 (1982).

Y. Yamaguchi, Y. Osamura, G. Fitzgerald, and H.F. Schaefer, J.
Chem. Phys. 18, 1607 (1983).

R.N. Camp, H.F. King, J.W. Mclver, Jr., and D. Mullally, J. Chem.
Phys. 79, 1088 (1983).

D.J. Fox, Y. Osamura, M.R. Hoffman, J.F. Gaw, G. Fitzgerald, Y.
Yamaguchi, and H.F. Schaefer, Chem. Phys. Lett. 102, 17 (1983).
M.R. Hoffman, D.J. Fox, J.F. Gaw, Y. Osamura, Y.‘?Emaguchi, R.S.
Grev, G. Fitzgerald, H.F. Schaefer, P.J. Knowles, and N.C. Handy,
J. Chem. Phys. 80, 2660 (1984).

P. Pulay, J. Chem. Phys. 78, 5043 (1983).

P. Jérgensen and J. Simons, J. Chem. Phys. 79, 334 (1983).

J.F. Gaw, Y. Yamaguchi, and H.F. Schaefer, J. Chem. Phys. 81, 6395
(1984). o

S. Kato, H. Kato, and H. Fukui, J. Amer. Chem. Soc. 99, 684
(1977). -

S.K. Gray, W.H. Miller, Y. Yamaguchi, and H.F. Schaefer, J. Chem.
Phys. 73, 2733 (1980).

K. Yamashita and Y. Yamabe, Int. J. Quantum Chem. Symp. 17, 177
(1983). T

S.M. Colwell and N.C. Handy, J. Chem. Phys. 82, 1281 (1985).

A. Tachibana, T. Okazaki, M. Koizumi, K. Hori, and T. Yamabe, J.
Amer. Chem. Soc. 107, 1190 (1985).

D.G. Truhlar, N.Jf_ﬁilpatrick, and B.C. Garrett, J. Chem. Phys.
78, 2438 (1983).

H.S. Johnston and J. Heicklen, J. Phys. Chem. 66, 532 (1962).
B.C. Garrett and D.G. Truhlar, J. Phys. Chem. 83, 2921 (1979).

M. Quack and J. Troe, Ber. Bunsenges. Phys. Chem. 78, 240 (1974).
M. Quack and J. Troe, Ber. Bunsenges. Phys. Chem. 79, 170, 469
(1975). -

D.G. Truhlar and A. Kuppermann, J. Chem. Phys. 52, 2232 (1970).
M.J. Stern, A. Persky, and F.S. Klein, J. Chem. Phys. 58, 5697
(1973). -

J.T. Muckerman, Theor. Chem. Adv. Perspect. A 6, 1 (1981).

J.W. Duff and D.G. Truhlar, J. Chem. Phys. 62, 2477 (1975).

T. Carrington, Jr., L.M. Hubbard, H.F. Schaefer III, and W.H.
Miller, J. Chem. Phys. 80, 4347 (1984).

M.V. Basilevsky and V.M. Ryaboy, Chem. Phys. 41, 461 (1979).

B.C. Garrett, R.T. Skodje, and D.G. Truhlar, unpublished calcula-
tions.

L.M. Raff, J. Chem. Phys. 60, 2220 (1974).

T. Valencich and D.L. Bunker, J. Chem. Phys. 61, 21 (1974).

S. Chapman and D.L. Bunker, J. Chem. Phys. 62, 2890 (1975).

W.A. Lathan, W.J. Hehre, L.A. Curtiss, and J.A. Pople, J. Amer.
Chem. Soc. 93, 6377 (1971).

S. Ehrenson and M.D. Newton, Chem. Phys. Lett. 13, 24 (1972).

K. Morokuma and R.E. Davis, J. Amer. Chem. Soc. 94, 1060 (1972).
K. Fukui, S. Kato, and H. Fujimoto, J. Amer. Chem. Soc. 97, 1
(1975). ="



328

139.
140.
141.
142,
143.
144.
145.
146.
147.
148.
149.
150.

151.
152.

153.

154,

155.
156.

157.

158.
159.

160.

161.

162.
163.
164.
165.
166.

167.
168.
169.

170.

D.G. TRUHLAR ET AL.

K. Niblaeus, B.0. Roos,and P.E.M. Siegbahn, Chem. Phys. 26, 59
(1977). -

P. Carsky and R. Zahradnik, J. Mol. Struct. 54, 247 (1979).

P. Cirsky and R. Zahradnik, Int. J. Quantum Chem. 16, 243 (1979).
P. Carsky, Coll. Czech. Chem. Comm. 44, 3452 (1979).

S.P. Walch, J. Chem. Phys. 72, 4932 (1980).

G.C. Schatz, S.P. Walch, and A.F. Wagner, J. Chem. Phys. 73, 4536
(1980). =

G.C. Schatz, A.F. Wagner, and T.H. Dunning, Jr., J. Phys. Chem.
88, 221 (1984).

M.S. Gordon, D.R. Gano, and J.A. Boatz, J. Amer. Chem. Soc. 105,
5771 (1983).

S. Sana, G. Leroy, and J.L. Villaveces, Theoret. Chim. Acta 65,
109 (1984). o

B. Maessen, P. Bopp, D.R. McLaughlin, and M. Wolfsberg, Z.
Naturfor. 39a, 1005 (1984).

M.W. Schmidt, M.S. Gordon, and M. Dupuis, J. Amer. Chem. Soc. 107,
2585 (1985). -
K. Ishida, K. Morokuma, and A. Komornicki, J. Chem. Phys. 66, 2153
(1977). o

S.M. Colwell, Mol. Phys. 51, 1217 (1984).

D.G. Truhlar and C.J. Horowitz, J. Chem. Phys. 68, 2466 (1978),
71, 1514E (1979). -

M. Dupuis, D. Spangler, and J.J. Wendoloski, Program QGOl, in NRCC
Software Catalog (Lawrence Berkeley Laboratory technical report
LBL-10811, Berkeley, CA, 1980), p. 60.

P.J. Kuntz, E.M. Nemeth, J.C. Polanyi, S.D. Rosner, and C.E.
Young, J. Phys. Chem. 44, 1168 (1966).

C.A. Parr and D.G. Truhlar, J. Phys. Chem. 75, 1844 (1971).

N.C. Blais and D.G. Truhlar, J. Chem. Phys._§§, 4186 (1974), 65,
3803E (1976). - -
F.B. Brown, R. Steckler, D.W. Schwenke, D.G. Truhlar, and B.C.
Garrett, J. Chem. Phys. 82, 188 (1985).

W.H. Miller, J. Phys. Chem. 87, 21 (1983).

D.L. Bunker and W.L. Hase, J. Chem. Phys. 59, 4621 (1973), 69,

4711E (1978). -
W.L. Hase, G. Mrowka, R.J. Brudzynski, and C.S. Sloane, J. Chem.
Phys. 69, 3548 (1978).

W.L. Hase, D.M. Ludlow, R.J. Wolf, and T. Schlick, J. Phys. Chem.
85, 958 (1981).

E.R. Grant and D.L. Bunker, J. Chem. Phys. 68, 628 (1978).

C.S. Sloane and W.L. Hase, Discuss. Faraday Soc. 62, 210 (1977).
P.J. Nagy and W.L. Hase, Chem. Phys. Lett. 54, 73 (1978).

W.L. Hase and K.C. Bhalla, J. Chem. Phys. 75, 2807 (1981).

R.J. Duchovic, W.L. Hase, and H.B. Schlegel, J. Phys. Chem. 88,
1339 (1984). -
C.J. Cobos and J. Troe, Chem. Phys. Lett. 113, 41 (1985).

H.S. Johnston and P. Goldfinger, J. Chem. Phys. 37, 700 (1962).
G.W. Burton, L.B. Sims, J.C. Wilson, and A. Fry, J. Amer. Chem.
. 99, 3371 (1977).

c
.B. Sims and D.E. Lewis, Isotopes in Organic Chemistry, Vol. 6,




THE REPRESENTATION AND USE OF POTENTIAL ENERGY SURFACES 329

"Isotopic Effects: Recent Developments in Theory and Experiment',
edited by E. Buncel and C.C. Lee (Elsevier, Amsterdam, 1984),

p. 161.
R.A. Marcus and M.E. Coltrin, J. Chem. Phys. 67, 2609 (1977).






