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I.  INTRODUCTION 

 The reduction potential is a direct measure of the thermodynamic feasibility of an 

oxidation–reduction half-reaction; and it is fundamentally important in many aspects of organic, 

bioinorganic, and environmental chemistry, as well as in biology and materials science. The 

design of rational strategies for tuning the redox properties of compounds depends on 

understanding the key molecular features that dictate the reduction potential. As an example, in 

environmental chemistry, chlorinated aliphatic compounds are common environmental 

contaminants due to their widespread use as solvents and degreasers and are known to degrade 

via a reductive dehalogenation;[1,2] the environmental persistence of these compounds has been 

found to correlate with their relative reduction potentials, and the computation and measurement 

of these quantities is therefore valuable for understanding structure-activity trends and the design 

of environmentally friendly derivatives of these compounds.[1,3-8] Similarly, in biochemistry, 

nitroxides are a class of kinetically stable free radicals that have been widely studied as potential 

antioxidants against reactive oxygen species, which can lead to tissue injury and even cell death; 

both oxidation and reduction processes involving nitroxides appear to be biologically relevant,[9-

12] and the ability to predict the redox potentials of nitroxides with various substituents and 

embedded in rings can help prioritize synthetic targets for potentially biologically relevant 

antioxidants.[13,14]  

 Reduction potentials are most straightforwardly defined when associated with readily 

reversible equilibria; in such instances, they contain equivalent information to equilibrium 

constants or free energy changes for electrochemical half-reactions. In practice, the high 

reactivity of many species (e.g., organic radicals) participating in electrochemical reactions or 

the irreversibility or mechanistic complexity of redox reactions can make the direct experimental 

measurement of a corresponding reduction potential difficult. For this reason, computational 

chemistry offers a valuable alternative to experiment for the characterization of redox reactions. 

The theoretical calculation of any thermochemical quantity, including free energies and therefore 

including reduction potentials, usually takes advantage of the Born-Oppenheimer separation of 
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electronic and nuclear motion, which ultimately reduces the problem to three steps: (i) the 

calculation of molecular potential energy surfaces by electronic structure calculations, (ii) the 

treatment of nuclear motion, e.g., vibrations, and (iii) statistical mechanical averaging over 

relevant configurations, conformations, or solvent structures. Step (iii) is often carried out by 

classical statistical mechanics and step (ii) by quasiharmonic methods, whereas step (i) generally 

requires more expensive quantum mechanical (QM) calculations, which can limit the accuracy of 

predictions if sufficiently large systems make the application of accurate QM models 

impractical. However, the relatively recent development of efficient quantum chemical 

algorithms and powerful computer architectures has facilitated the quantitatively useful study of 

many reactions. Because most redox processes of practical interest occur in condensed phases, 

the development of reliable solvation models has also been critical to progress, and both implicit 

and explicit solvent models are now available such that well chosen combinations of theoretical 

models have the potential to be used to make quantitative predictions of electrochemical 

quantities like reduction potentials. 

 Although the present chapter is concerned with thermodynamics, the reader should keep 

in mind that reactivity and biological activity also depend on kinetics. While kinetics is often 

correlated with thermodynamic descriptors such as reduction potentials, it also includes other 

factors whose complete discussion is beyond the scope of this chapter. Nevertheless we will 

mention kinetic effects in some places because they are relevant to interpreting measurements. 

 There are several approaches to calculating a condensed-phase reduction potential, 

ranging from phenomenological or theoretically guided linear free energy relationships (LFERs) 

correlating reduction potentials with other computed (or experimental) observables to direct 

calculations of reduction potentials. When using LFERs, computed properties are again often 

obtained by QM electronic structure calculations. Calculated or measured properties that may be 

correlated with reduction potentials include ionization energies and electron affinities in the gas 

phase, as well as energies of the frontier molecular orbitals (e.g. the highest occupied molecular 

orbital or HOMO), and these quantities may be regressed on solution-phase reduction potentials 
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in order to develop a predictive equation.[15-28] LFERs are appealing because they allow for 

very rapid evaluation of reduction potentials, which is especially important, for example, in high-

throughput screening of large databases of drug candidates. The implicit assumption of such an 

approach is that the errors associated with neglecting contributions to the reduction potential that 

do not correlate with the chosen independent variables are negligible, as are errors associated 

with the level of theory used to compute these variables. In practice, LFERs may work well if the 

compounds under consideration are sufficiently similar to those used in the regression. The semi-

empirical nature of this approach means that it may be difficult to estimate the errors associated 

with these models, particularly when they are applied on compounds outside of the training set.  

 When one attempts to calculate the reduction potentials directly, without linear regression 

against simpler quantities, typically only the most active portion of the system, e.g., the solute 

and perhaps the first solvent shell, are treated explicitly by quantum mechanics. The rest of the 

system is treated by molecular mechanics (MM), classical electrostatics, or both (although 

occasionally the whole system is treated by explicit quantum mechanics). Combining quantum 

mechanics for a primary subsystem with MM for the rest of the system is labeled QM/MM, and 

if the MM subsystem is the solvent, it is an example of an explicit solvent method that requires 

molecular dynamics (MD) or Monte Carlo (MC) methods to ensemble average the solvent. MD 

and MC free energy simulations permit examination of solvent structure and reorganization.[29-

32] Methods based on classical electrostatics usually replace the discrete solvent molecules by a 

dielectric continuum, so that the solvent and the ensemble average over solvent configurations 

both become implicit. QM/MM and implicit-solvent treatments are the methods of choice for the 

study of redox potentials in condensed-phase and biological systems because treating the entire 

system quantum mechanically raises the cost so much that one is usually forced to use less 

reliable methods or to skimp on ensemble averaging. 

 In this chapter, we will focus exclusively on methods based on thermodynamic cycles 

where solution-phase reduction Gibbs free energies are computed by combining gas-phase 

energetics with solvation free energies of the products and reactants. Such methods are also used 
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extensively in solution-phase pKa  predictions[33-35] as well as in studies of other condensed-

phase reactions such as free-radical polymerization.[36,37]  

 In the following, Section II presents some formal concepts in equilibrium electrochemical 

thermodynamics. Section III is concerned with the implementation of the computational 

protocols. Section IV presents some worked examples. 

 
II.  FORMAL DEFINITIONS, ELECTROCHEMICAL CONCEPTS, AND BASIC 

CONSIDERATIONS  

 This section introduces some formal concepts in equilibrium electrochemical 

thermodynamics that are important for calculating solution-phase reduction potentials. 

II.A.  Ionization potentials and electron affinities  

 The adiabatic ionization energy, usually called the ionization potential (IP), is the energy 

required to form a molecular or atomic cation in its ground state via the loss of an electron from 

the ground state of the neutral system in the gas phase. The vertical ionization energy applies to 

the change in electronic energy upon removal of an electron from the equilibrium structure of the 

neutral without change in geometry, again in the gas phase. For this reason, the two quantities 

are identical for an atom, and for a molecule the vertical ionization energy is almost always 

higher than its adiabatic counterpart. The electron affinity (EA) is defined similarly to the 

adiabatic ionization energy, and the vertical electron attachment energy is similar to the vertical 

ionization energy, but these quantities refer to minus the change in energy when a neutral system 

gains an electron. The adiabatic quantities correspond to enthalpy changes at 0 K.  

 
M(g)   M+ (g) + e ,  H0 = IP

M(g) + e   M(g), H0=EA
 (1) 

where the subscript denotes temperature in units of Kelvin. 
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II.B.  Standard versus formal potentials  

 At the heart of electrochemical thermodynamics is the chemical potential (), which 

equals the molar Gibbs energy (G) for a pure substance and the partial molar Gibbs free energy 

for a component of a solution. For a species A in a solution,  

 

 A =A
 RT ln

C
C








  A

 RT ln(a)  (2) 

where C is concentration, a small circle in a superscript denotes the value of a quantity in the 

standard state, and a and   are the activity and activity coefficient respectively. The usual 

standard states in the gas phase are an ideal gas at a pressure of 1 atm or 1 bar (0.987 atm), and 

the usual standard states for solutes in liquid-phase solutions are ideal solutions at a 

concentration of 1 molar (1 mol per liter of solution) or 1 molal (1 mol of solute per kg of 

solvent). Notice that we have introduced the dimensionless activity coefficients  i  defined 

by[38]  

 ai   i

ci

ci
  (2a) 

 If we apply Eq (2) to the reaction 

  Ox  e  Red (3) 

where Ox is the oxidant and Red is the reductant, the free molar energy of reaction is given by 
 
 
 

 G  GRT lnQ GRT ln
aRed

aOx









  (4) 

where Q is the dimensionless reaction quotient. The relation between free energy and the 

maximum electrical work that can be performed, as expressed in terms of the electrode potential 

E of a half cell,[39] is  
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 G nFE  (5) 

where F is the Faraday constant (96485 C mol1), and n is the number of electrons in the half-

reaction. Combining this with Eq 4 yields the Nernst equation:[40]  
 

 E  E RT

F
ln

aOx

aRed









  (6) 

Eis the standard electrode potential, also called the half-cell potential.  

 Notice that E equals E when the activities of all species are 1. However, such standard 

state conditions are often difficult to achieve in practice, and standard-state potentials are often 

replaced by formal potentials, E . Formal potentials are sometimes called conditional potentials 

to denote that they apply under specified conditions rather than under standard conditions.[38] 

Specifically, this quantity is the measured potential of the half-cell when the ratio of the total 

concentrations of oxidized and reduced species is unity and other specified substances (e.g. 

proton) are present at designated concentrations. For example they can be defined to correspond 

to the half-cell potentials when the concentration quotients (Qc ) in the Nernst equation equal 1:   

 

  E  E  RT

F
lnQc  E  RT

F
ln

COx

CRed









 (7) 

Then the formal potential ( E) is related to the standard reduction potential ( E) as follows: 
 

  E  E  RT

F
ln

Ox

Red









 (8) 

 For example, the absolute potential of the normal hydrogen electrode (NHE) is based on 

a concentration of the proton equal to 1 mol L1 and is therefore a formal potential. This may be 

corrected to give the absolute potential of the standard hydrogen electrode (SHE) by taking into 

account the activity coefficient for a 1 mol L1 solution of [H+ ] in water, which has been 

estimated to be 0.8:[41] 
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  ESHE
  ENHE 

RT

F
ln(

H+ )  ENHE 0.006 V  (9) 

In this particular instance, activity effects account for only a small change (6 mV) in the 

potential.[42] As an example of a more extreme case, the formal potential of the Fe3+ /Fe2+  

couple varies from 0.53 to 0.7 V in 10 mol L1 and 1 mol L1 HCl solutions, respectively.[43]  

 Typically, experimental standard reduction potentials are obtained by assuming a 

functional form that models the dependence of the potential on ionic strength. A series of formal 

potential measurements is then carried out at different values of ionic strength, and they are 

extrapolated to zero ionic strength where the activity coefficients approach unity.[43]  

II.C.  Cyclic voltammetry 

 Cyclic voltammetry is commonly used in the determination of formal potentials, which 

may be extracted directly from a fully reversible cyclic voltammogram as the average 

(“midpoint”) of the anodic and cathodic peak potentials, Epa 
and Epc, or from the half-wave 

potential of a sigmoid curve in steady-state voltammetry,[43] to give a half-wave or mid-point 

potential, E1/2 . Because the measured half-wave potential is affected by diffusion (a non-

thermodynamic effect), it is related to the formal potential by  
 

 E1/2 
Epc Epa

2
 E   RT

2nF
ln

DRed

DOx









 (10) 

where DOx  is the diffusion coefficient of Ox. When the diffusion coefficients of the oxidized 

and reduced species are very similar, the half-wave potential provides a good approximation to 

the formal potential. 

II.D.  Effects of protonation  

 In aqueous solution, thermodynamically favored proton transfer is usually rapid, and 

electrochemical measurements usually give reduction potentials for half-reactions that include 

any thermodynamically favorable proton addition or loss. As such, an n-electron, m-proton half-

reaction can be represented in two possible ways 

  Ox ne Oxn  (11a) 
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  Ox ne mH+  HmOx(nm)  (11b) 

with corresponding standard reduction potentials denoted E(Ox/Oxn )and 

E(Ox,mH+ / HmOx(nm) )  respectively. The potential for Eq (11b) is directly dependent on pH 

and is equal to the formal potential E(Ox,mH+ / HmOx(nm) )  when the concentrations of all 

species are 1 mol L1:  
 

  E  E  RT

nF
ln

[Ox][H+ ]m

[HmOx]
 E  RT

nF
ln

[Ox]

[HmOx]
 2.303

RT

F

m

n









pH  (11c) 

By monitoring how this cell potential varies with pH, it is possible to determine the electron-

proton stoichiometry (m/n) of the electrochemical measurement. For example, consider quinones 

and their derivatives, which are electroactive organic compounds that play a vital role in a 

number of biochemical processes. These compounds can undergo either a two-electron reduction 

(Ox/Ox2-) , a two-electron-one-proton reduction (Ox,H /HOx-) , or a two-electron-two-proton 

reduction (Ox,2H /H2Ox) , depending on the pH of the solution.[44] In Section IV.C, we 

illustrate how one constructs an E versus pH diagram, which is called a Pourbaix diagram[45-47] 

and is analogous to a chemical speciation plot or predominance zone diagram determined by pH. 

 A measured formal potential is a good approximation to the standard reduction potential 

only when activity and kinetic effects associated with chemical reaction(s) are relatively minor. 

Where this is not the case, explicit treatment of these effects should be included in the 

calculations, or comparisons should be made with other experimental potentials that correspond 

more closely to infinite dilution and to thermodynamic control.  

 Consider the reduction of nitroxide radicals in aqueous solution in Figure 1: 
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FIGURE 1. The microspecies present in the one-electron reduction of a nitroxide radical in 

aqueous solution. 
 

The measured half-wave potential, E1/2 is related to the formal potential for the one-electron-

two-proton (1e, 2H+ ) transfer reaction as follows[48,49] 
 

  E1/2  E(Ox,2H /H2Ox ) RT

F
ln(K1K2 K1[H

+ ][H+ ]2)  (12) 

where K1  and K2are the equilibrium constants associated with the protonation steps. In previous 

work it was found that explicit consideration of the prototropic equilibria was necessary to obtain 

good agreement with the experimental half-wave potentials.[14] In some cases, the experimental 

potential corresponds to that for a one-electron (1e) transfer E(Ox/Ox) and this is related to 

the formal potential of the (1e, 2H+ ) reduction potential E(Ox,2H+ /H2Ox )  by 

 

  E(Ox/Ox )   E(Ox,2H+ /H2Ox ) RT

F
ln(K1K2 )  (13) 

II.E.  Reversible and irreversible redox processes 

 Occasionally, half-wave potentials are also reported for quasi-reversible cyclic 

voltammetry experiments with a back wave partially present; however, the reader should note 

that these are usually estimated values and therefore may not be well suited for quantitative 

comparisons. It is impossible to extract E1/2  from completely irreversible processes (no back 

wave) because of kinetic control of the current such that Nernst equilibrium is established less 
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quickly than the change in potential or because there are fast follow-up (side) reactions 

consuming the pertinent species.  

 There are instances where transfer of an electron to or from a neutral precursor leaves the 

resulting radical ion in an electronic ground state that is dissociative.[1,50] (The former process 

is called dissociative attachment,[51] and the latter is called dissociative ionization.[52]) 

Following the electron-transfer event, which is rapid on the time scale of nuclear motion, the ion 

relaxes along the dissociative coordinate, leading to the scission of one or more bonds. Typically, 

the energetics associated with this fragmentation are such that the electron-transfer event is 

effectively irreversible. Depending on whether the ion lives long enough to be 

reoxidized/rereduced on the return sweep, the back-wave may be only partially present or 

completely absent in a cyclic voltammogram, in which case it is not possible to extract a half-

wave potential. An example of such a chemically irreversible process is the reductive 

dehalogenation of haloalkanes. For such processes, the equilibrium potential may alternatively 

be defined as the Gibbs free energy associated with the overall process, which in this case is 
 

   (14) 
 

II.F.  Liquid junction potentials 

 The liquid junction potential arises whenever solutions with two different compositions 

come into contact. Its magnitude depends on the relative concentrations of the various ions at the 

boundary and on their relative mobilities. These potentials may be significant in cases where the 

solvent system changes across a junction (e.g., from acetonitrile or dimethyl formamide on one 

side to aqueous on the other). The liquid junction potentials of a number of dissimilar solvent 

junctions have been determined to range from 10 mV to 200 mV depending on the junction.[53]  
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II.G.  Reference electrodes 

 The conventional reference electrode for aqueous systems is the standard hydrogen 

electrode (SHE), which has been assigned a potential of zero in experimental measurements. In 

theoretical calculations, the absolute (rather than relative) reduction potentials are often 

computed, and knowledge of the absolute potential of the SHE is essential for comparing 

computations with experiment. A schematic of a cell with the aqueous SHE as reference and an 

Ox/Red couple in solvent S is as follows: 

 

 Pt | H+ (aq) (a
H+ =1); H2(g) (pH2

=1 atm) | Ox(S)(aOx ); Red(aRed ) | Pt  (15) 

 

In Eq (15), the SHE is the anode (where oxidation takes place, on the left), and the Ox/Red 

couple is the cathode (where reduction takes place, on the right). The vertical lines indicate phase 

boundaries. The cell voltage ( ECathode EAnode ) is given by Eq (16) where EOx/Red


 is the 

standard potential of the Ox/Red couple (see Eq (6)), and Ej  
is the liquid junction potential 

between the aqueous SHE and the solvent/electrolyte containing Ox and Red. 
 

  Ecell  EOx/Red ESHE
 Ej  EOx/Red

 ESHE
  RT

F
ln

aOx

aRed









Ej  (16) 

If all species are in their respective standard states, with activity (or concentration, as an estimate 

for activity) = 1 mol L1 for solutions, and fugacity (or pressure, as an estimate for fugacity) = 1 

bar for gases, then Eq (16) simplifies into 
 

  Ecell  EOx/Red
 ESHE

 Ej  (17) 

 Since the physical set-up of an SHE is somewhat cumbersome, reduction potentials are 

often referenced to other electrodes. In laboratory measurements, a secondary reference electrode 

whose potential versus the SHE(aq) is well-known is usually used. Examples include the (KCl) 

saturated calomel electrode (SCE) and the saturated silver/silver chloride electrode (ACE); the 

presence of saturated KCl in these electrodes leads to sharply reduced values of Ej . As such, in 
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comparing with experiment, it is also important to examine the details of the experimental 

measurement to ascertain whether a correction for Ej  is necessary in theoretical calculations. 

The conversion constants between different electrodes in aqueous solvents have been 

measured,[54] and these may be used to convert reduction potentials that are referenced to SHE 

to other reference electrodes. For example, the potential of the SCE is 0.244 V relative to the 

SHE at 298 K in aqueous solution. Therefore to convert values based on SHE to SCE, one needs 

to subtract 0.244 V.  

III.  COMPUTATION OF REDUCTION POTENTIALS 

 As indicated in Eqs (4) and (5), the standard-state Gibbs free energy change for a half-

reaction is the quantity required for computing a standard reduction potential. Since experimental 

reduction potentials are not measured in isolation but are instead measured relative to the 

potential of a reference electrode, theoretical calculations of reduction potentials are typically 

carried out for either a half-cell reaction (Figure 2 cycle A) with the subtraction of the reduction 

potential of the reference electrode (e.g., SHE), or on a full-cell reaction (Figure 2, cycle B). In 

Figure 2 we have introduced the general notation GS
  for a standard-state free energy of 

solvation, which is the free energy change upon transfer from the gas-phase (sometimes called 

"air" in the transfer literature) to the liquid solution. 
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M (aq)    +     e-(g)                                M -(aq)

M (g)     +     e-(g)                                M -(g)

-G (M ) G=0

Grxn

Cycle A

M (aq)    +     1/2H 2(g)                               M -(aq)    +     H +(aq)

M (g)     +     1/2H 2(g)                               M -(g)     +     H +(g)

G=0

Grxn

Cycle B

S
 G (M

-)
S

G
gas

G
gas

 G (M
-)

S
 G (H

+)
S-G (M )

S

 
 
Figure 2. Thermodynamic cycles for calculating an absolute and relative reduction potential.  
 
 

The corresponding reduction potentials are  

 Ecell  Grxn A  / nF ESHE  (cycle A)  (18) 

and 

 Ecell  Grxn B  / nF  (cycle B) (19) 

In principle, both cycles yield the same result. However, cycle B effectively uses calculated 

values of ESHE and GS
(H+) , whereas cycle A effectively uses empirical (accurate) values. 

Thus cycle A is simpler, and in this cycle the key ingredients for the calculation of a reduction 

potential are the gas-phase Gibbs free energy of reaction and the free energies of solvation of the 

reagents, that is, of the reactants and products. 

 

III.A.  Gas-phase free energies of reaction 

III.A.1.  Gibbs free energy and the treatment of nuclear motion 
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 The Gibbs energy change of the gas-phase reaction shown in Cycle A is simply the 

electron affinity of M, EA(M), plus the thermal contribution to the Gibbs free energy (Gtherm ) 

of M- less that of M: 
 

 

Ggas
 = G(M )G(M)

          = [Ue (M ) + ZPE(M ) + Gtherm (M )][Ue (M) + ZPE(M) + Gtherm (M)]

          = EA(M) + [Gtherm (M)Gtherm (M)]

          = EA(M)Gtherm

(20) 

where Ue  denotes the Born-Oppenheimer equilibrium potential energy, ZPE denotes vibrational 

zero point energy, and Gtherm  denotes the thermal contribution to the free energy, i.e., the part 

that vanishes at 0 K. The thermal contribution includes the free energy due to multiple 

conformations (if present), rotations, and vibrational and electronic excitation. Note that the 

change in ZPE is included in the EA. We have neglected nuclear spin considerations, since the 

effect of nuclear spin cancels out in almost all cases, the main exception being the H2  molecule. 

 It is useful to introduce the enthalpy at 0 K, which is labeled H0 . Then  

  H0 Ue  ZPE  (21a) 

and Eq (20) becomes 
 

  Ggas
  H0(M)Gtherm (M)H0(M)Gtherm(M)  (21b) 

 If the conformations, geometries, and vibrational frequencies of the charged molecule are 

very similar to those of the neutral, and neither has low-lying electronically excited states, then 

the thermal correction to the Gibbs energy of M- and M are likely to be similar and one could 

roughly estimate Ggas
  as approximately equal to EA(M). In some cases however, the gain (or 

loss) of an electron can result in significant changes to the electronic structure of a molecule 

(e.g., quinones acquire an aromatic ring structure upon the gain of two electrons), and this 

approximation becomes unreliable. In such situations, the thermal corrections are sometimes 

calculated by assuming ideal gas behavior and the rigid-rotor harmonic oscillator approximation, 

to arrive at analytic expressions for the molecular partition function ( ˜ Q), from which one can 
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calculate the entropy (S), and the thermal contributions to the enthalpy (Htherm ) and the Gibbs 

free energy (Gtherm ), which are evaluated from the following expressions: 

 

  

S R ln QT
ln Q

T










V











H therm  RT2 ln Q

T










V

RT

Gtherm  H therm TS

 (22) 

where ˜ Q is the molecular partition function with zero of energy at the ground state, and the 

equivalent expression for the Gibbs free energy in terms of ˜ Q is 
 

  G Ue ZPEPV RT ln Q (23) 

Furthermore, if one assumes that there is only one conformation and negligible coupling between 

electronic excitation, vibrations, and rotations, the molecular partition function can be separated 

into a product of partition functions associated with the translational, rotational, vibrational, and 

electronic motions: 

  Q qtransqrotqvibqelec  (24) 

 If we assume separability, the electronic partition function is 

  qelec 1 i exp(i / kBT)
i2



  (25)  

where i  is the electronic energy (including nuclear repulsion but not vibrational energy) of level 

i, and i  is the degeneracy of that level. When the first electronic excitation is thermally 

inaccessible at room temperature, the electronic partition is well approximated by the degeneracy 

associated with the electronic ground state.   

  qelec 1  (26) 

For monatomic species, if the total electronic angular momentum associated with electronic state 

i is Ji , we have i =2Ji 1. For example, the ground state of a halogen atom is 2 P3/2 with 

J1=3/2 , so 1=4 , and the first excited state is 2 P1/2  with J2 =1/2  and 2 =2 . Based on Eq (25) 
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and the excitation energy of 0.109 eV of the first electronically excited state, the electronic 

partition function for chlorine atom at 298 K is therefore 
 

  qelec  4 2e4.2  4.03 (27a) 

Higher excited states make a negligible contribution in this case. 

 The vibrational partition function is usually treated by the harmonic oscillator 

approximation or by a quasiharmonic approximation in which one uses the harmonic oscillator 

formulas but scales the frequencies[55-57] to account for anharmonicity (and for systematic 

deficiencies of the electronic structure method used to calculate the frequencies). 

 The rotational partition function is usually treated classically. 

 For molecules where there are multiple conformers that are close in energy to the lowest 

energy structure, the conformational flexibility contributes to the Gtherm . If we again make a 

separable approximation we can include this by putting another factor in Eq (24), yielding 
 

  Q qtransqrotqvibqelecqconf  (27b) 

 

  qconf  exp
j1

Nconf

 (U j / kBT) (27c) 

where U j  is the potential energy difference of conformation j from the lowest one, and the 

conformational partition function is summed over all the conformational space of the molecule, 

which is equivalent to performing a Boltzmann average over the Gibbs free energies of all the 

conformers. A much better approximation is to use Eq (24)—or a more accurate analog with less 

separability approximations—to calculate a free energy Gj  for each conformer. Then the free 

energy including all conformers is 
  G  RT ln exp(Gj / kBT)

j

  (27d) 

One should only include distinguishable conformers. However, even the number of 

distinguishable conformers grows rapidly with molecule size for chain molecules. For example, 

n-heptane has 59 distinguishable conformations.[58] Glucose has 2916 potential 
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conformations.[59] Even the approximation of Eq (27d) is far from realistic, though, if the 

barriers separating the conformers are not all high compared to kBT , both because the 

contributions of any one conformer are no longer independent and because the individual 

contributions differ from their harmonic values. If the barriers are low, the system must be 

treated as having one or more internal rotations. A theoretical formalism, based on internal 

coordinates and including intermode coupling, is available.[60]  

 In practice, a full conformational search typically involves at least 3N  geometry 

optimizations where N is the number of rotatable bonds in the molecule that yield distinguishable 

structures. (For example the C-3–C-4 torsion in 1-butanol does not yield distinguishable 

structures.) Additional considerations apply if one must consider ring isomerism as well as 

torsional isomerism. Therefore a full conformational search is usually restricted to molecules 

with N ≤ 5. It is worth noting that a rough approximate upper bound on the effect of considering 

higher conformers is given by the case where there are Nconf  conformers with energies, 

structures, and frequencies identical to those of the lowest-energy structure; then the error 

associated with not including the conformational partition function is RT ln(Nconf ).  

 A variety of methods such as simulated annealing,[61] Monte Carlo methods,[62] and an 

energy-directed tree search algorithm[63] have been developed for locating the lowest-energy 

conformer without having to sample the entire conformational space of the molecule. In 

principle, one should rank the conformers in terms of their Gibbs free energies as in Eq (23); 

however, this entails relatively expensive Hessian calculations and in practice, the conformers 

are usually ranked in terms of their electronic energies (Ue ). As a precaution, one could, at the 

end of the search, perform Hessian calculations only on conformers that are within some energy 

difference from the lowest-energy structure and re-rank the conformers in terms of their Gibbs 

energies.  

 The expressions for the partition functions as derived from the ideal gas, rigid-rotor 

harmonic oscillator approximation can be found in standard textbooks[64] and will not be 

presented here. A discussion of the potential sources of error in the application of these partition 
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functions (e.g. breakdown of the harmonic oscillator approximation) and the errors that could 

arise from the assumptions used to derive them has been discussed elsewhere.[65,66] These 

treatments assume that the torsions are separable and may be identified with specific normal 

modes. When this is not the case, one must use the internal-coordinate nonseparable treatment 

mentioned above.[60] 

 Having laid out the key ingredients for calculating a gas-phase Gibbs free energy, we 

now discuss possible levels of theory for calculating geometries, Born-Oppenheimer (electronic) 

energies, and free energies.  

 Geometries are often calculated at lower levels of theory such as density functional 

theory (DFT) with a small basis set which can predict equilibrium geometries and vibrational 

frequencies (when scaled by appropriate scale factors[56,57,60]) reasonably well but is not 

usually sufficiently accurate for reaction energies. However it is also usually possible to calculate 

geometries at the same level as reasonably reliable energies if one uses DFT with a modern 

density functional and a good basis set. 

III.A.2.  Electronic energies of atoms and molecules 

 Chemically accurate (errors of 5 kJ mol1or less) electronic energies of reaction can 

usually be achieved for small- and moderate-sized systems provided that electronic energies are 

calculated at high levels of theory, e.g. CCSD(T) or QCISD(T) with very large one-electron 

basis sets incorporating high angular momentum basis functions. Here CC denotes coupled 

cluster theory, QCI denotes quadratic configuration interaction, SD denotes the inclusion of 

single and double excitations, and (T) denotes a quasiperturbative treatment of connected triple 

excitations.[67] One difficulty with electronic wave function theory (WFT) methods of this sort 

is the very slow convergence of the energies with respect to the size of the one-electron basis set. 

Furthermore, a CCSD(T) calculation formally scales as the seventh power of the number of 

atoms in the system[67] and is therefore restricted to relatively small molecular systems. Popular 

alternatives to large-basis-set CCSD(T) calculations are composite methods that have been 

designed to approximate high-level-correlated calculations using a series of lower-cost 
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calculations in conjunction with additivity and/or extrapolation routines. The Gaussian-n (e.g. 

G4,[68] G3,[69] G3(MP2),[70] and G3(MP2)-RAD[71,72]) methods with high-level corrections, 

multi-coefficient correlation methods,[73-82] the correlation-consistent composite approach 

(CCCA)[83,84] and CBS-X (e.g. where X is QB3[85]) are examples of such methods. These 

methods involve some degree of empirical parameterization and are practical for medium-sized 

systems. By comparison, the Wn (n=1 to 4) methods[86-89] have been designed to compute 

thermochemical properties with even higher accuracy (ca. 1 kJ mol1 ), without empirical 

parameterization, but are also considerably more expensive and therefore limited to relatively 

small systems. For larger systems where even composite methods become computationally 

expensive, one could employ an ONIOM approximation[90,91] where the chemical system is 

partitioned into layers. The innermost layer is usually defined by the reaction center and its 

nearby substituents so that the chemistry of the reaction is modeled accurately. This layer is 

treated at the highest level of theory. The subsequent layer(s) are then treated at lower levels of 

theories. As an example, this approach has been successfully used to approximate the G3(MP2)-

RAD calculations for a test set of 112 different radical reactions with a mean absolute deviation 

of 1.2 kJ mol1.[92] There are a large number of other shortcuts and “tricks of the trade”, e.g., 

basis-set extrapolation[93-96] to ameliorate the slow convergence mentioned above, but these 

are too numerous to mention. 

 An important alternative to WFT is density functional theory (DFT). Here the 

computational work scales as Natom
3  or Natom

4  rather than Natom
7 , where Natom  is the number of 

atoms in the system, but the accuracy depends on the quality of the exchange-correlation 

functional.[97] This quality is improving rapidly.[98]  

 We next address relativistic effects, which begin to be energetically important at the level 

of chemical accuracy near the end of the first transition-metal series. There are two kinds of 

relativistic effects, namely scalar relativistic effects and spin-orbit coupling.[99] Scalar 

relativistic effects are most simply handled by replacing the core electrons with appropriate 

effective core potentials,[100-105] however, the accuracy can be low.[106] If all electrons are to 
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be treated, the most rigorous approach makes use of the four-component Dirac spinor operator. 

More efficient approaches are based on two-component spinors; such methods can be derived 

from the four-component formulation through various transformations that lead either to the 

Douglas-Kroll-Hess (DKH) Hamiltonian[107-109] or the zero-order-regular approximation 

(ZORA).[110] Additional reduction to a one-component formulation yields the spin-orbit 

operator in its usual form, and also a spin-spin interaction term.[111]  

 Spin-orbit effects, associated with the coupling of spin and orbital angular momenta in a 

relativistic framework, are sometimes neglected in electronic structure calculations that make use 

of basis sets including relativistic pseudopotentials.[99] Rather, only scalar relativistic effects 

are included and computed energies represent averages over spin-orbit states, it they exist. Spin-

orbit effects can be included through either perturbation theory or variational methods without 

sacrificing the simplicity of one-component computational models. When the relevant transition-

metal compounds may be viewed as substantially ionic in character, a particularly simple 

approach is to estimate spin-orbit effects on standard reduction potentials by assuming the same 

spin-orbit coupling in the complexes as that for the bare ions, where the latter are usually 

available from experiment. 

III.A.3.  The electron 

 In calculating ionization energies and electron attachment energies at nonzero 

temperatures or when calculating the free energy of reaction of processes like Eq (3) one needs 

to take into account the Gibbs free energy of the electron. There are two thermochemical 

conventions concerning the thermodynamics of the electron, namely the electron convention and 

the ion convention. There are various literature reports giving slightly different calculated 

reduction potentials depending on which thermochemical convention of the electron is used. 

However, this should not be the case, and it originates from confusion regarding the definition of 

the zero of energy in the two conventions. An important point is that the Gibbs free energy 

obtained from a particular convention must be compatible with the quantum chemical 

calculation, i.e., they need to have the same zero of energy. In quantum chemistry, it is 
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convenient to define a zero of energy, at least temporarily, as corresponding to all nuclei and 

electrons being infinitely separated and at rest. With regard to the zero of energy for the free 

electron, the two conventions primarily differ in their definition of the formation enthalpy of the 

electron. The electron convention (EC) treats the reference state for electrons in the same way as 

for elements, i.e., the enthalpy of formation is defined to be zero at all temperatures, 

f HT
(e )=0 . On the other hand, the ion convention (IC) defines the enthalpy of formation of 

the electron to be equal to its integrated heat capacity at all temperatures.[112,113] Accordingly, 

under the two conventions the enthalpy of formation of ions differs by the integrated heat 

capacity of the electron; the actual value depends on the statistical formalism used to treat the 

electron. Using Boltzmann statistics and the ideal gas model, the Gibbs energy of the electron is 

0 kJ mol1  at 298 K. However, since electrons are fermions, Fermi-Dirac statistics are more 

appropriate, and this yields a Gibbs energy of -3.6 kJ mol1 at 298 K. Contrary to the earlier 

report by Bartmess,[114] these values are the same under both conventions and the 

thermochemistry of the electron is summarized in Table 1. In the calculation of reduction 

potentials, it makes no difference which formalism or convention is used as long as these are 

used consistently for both the half-cell and the reference electrode. 

 
Table 1.  Thermodynamics of the electron under the various thermochemical conventionsa 

___________________________________________________________________ 

 EC-B IC (Bartmess) IC-B EC/IC-FD 
_____________________________________________________________________ 

f H298
  0 0 6.197 0 

fG298
  0 (0)b 0 0 

S298
  20.979 (0)b 20.979 22.734 

[H298
 H0

] 6.197 0 6.197 3.146 

G298
  -0.058 (0) b -0.058 -3.632 

____________________________________________________________________ 
aEnthalpies and free energies in kJ mol1, entropies in J mol1K1. EC: Electron convention; 
IC: Ion convention; B: Boltzmann statistics; FD: Fermi-Dirac statistics.  

bDefined values.[114] 
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 III.B.  Free energies of solvation 

 Continuum solvation models[115-118] have been designed to make accurate predictions 

of free energies of solvation. Free energies of solvation can then be combined with the gas-phase 

Gibbs energies in Eqs (20) and (21) to obtain the Gibbs free energy of reaction in solution.  

 In continuum solvation models, the solute is encapsulated in a molecular-shaped cavity 

embedded in a dielectric continuum. The solute is acted on by a reaction field, which is the field 

exerted on the solute by the polarized dielectric continuum, and the polarization of the solute by 

this field is calculated via Poisson equation for a nonhomogeneous dielectric medium (the 

nonhomogeneous formulation[119] is required because  is unity inside the cavity–because 

polarization is treated explicitly–but not unity outside the cavity where it is given the value of the 

solvent’s bulk dielectric constant). The reaction field is used to calculate the bulk-electrostatic 

contribution, which is then combined with the non-bulk-electrostatic terms to yield the solvation 

free energy. There are two contributions to the non-bulk-electrostatics. One is the deviation of 

the true electrostatics from the electrostatics calculated using the bulk dielectric constant. The 

other is the nonelectrostatic portion of the solvation free energy. Some continuum solvent models 

such as the PCM models (e.g. IEF-PCM[120] and CPCM[121,122]) model the non-bulk-

electrostatic and electrostatic terms independently; such models are called[123] type-3 models. 

Such models are less accurate than type-4 models,[49,118,123-131] which are models in which 

the non-bulk-electrostatic terms are adjusted to be consistent with a particular choice of the 

cavity boundary. This adjustment is necessary because that boundary is intrinsically arbitrary, 

but the bulk electrostatic contribution is very sensitive to it. The most accurate of the type-4 

continuum solvation models are SM8,[129] SM8AD,[128] and SMD.[127] (These are sometimes 

called SMx models where x specifies which one.) The COSMO-RS model[132,133] adopts a 

different strategy in which a conductor-like screening calculation is performed on a molecule to 

generate a set of screening charges on the molecular cavity. The distribution of these charges 

forms a unique ‘electrostatic fingerprint’ (called the -profile) that is characteristic of that 

molecule. The solvation free energy is then evaluated from a statistical mechanical procedure 
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involving the interaction of the screening charges of the solute and those of the solvent. The 

COSMO-RS model has good accuracy (similar to the SMx models), at least for neutral solutes. 

 The coupling of the solute to the solvent is directly related to Gibbs free energy change 

associated with the transfer of a particle in the gas phase to the solvent in a process in which the 

concentration in moles per liter does not change.[134] Therefore it is sometimes convenient to 

use a standard state where the solute concentration in both phases is 1 mol L1, and this standard 

state is denoted by “*” in GS
*, to distinguish it from GS

 , which corresponds to a gas-phase 

partial pressure of the solute of 1 atm or 1 bar. 

 We note that when metal complexes have open coordination sites, it is generally 

inaccurate to assume that a continuum solvation approach will accurately reflect the interactions 

of the metal with the “missing” first solvation shell. In principle, first-shell solvent molecules 

could be regarded as ligands that are explicitly included in the atomistic model. Indeed, for 

small, highly charged ions, it may be necessary for highest accuracy to include explicitly not 

only the first solvation shell, but also the second.[135,136] However inclusion of even the first 

shell raises questions about conformational averaging, and the best practical way to address these 

questions has not yet been convincingly demonstrated.  

 The option of adding explicit solvent is more general than just filling open coordination 

sites. It has been concluded that continuum solvent models become quantitatively inaccurate near 

highly concentrated regions of charge.[33,130] Therefore it was recommended that one should 

add a single explicit water molecule to any anion containing three or fewer atoms, to any anion 

with one or more oxygen atoms bearing a more negative partial atomic charge than the partial 

atomic charge on oxygen in water, and to any (substituted or unsubstituted) ammonium or 

oxonium ion.[130]  

 Next we comment on the issue of molecular geometry. Many solvation calculations use 

the gas-phase geometry in both phases. This is often reasonable because the difference in 

solvation energies calculated with gas-phase geometries and liquid-phase geometries is often less 

than other uncertainties in the calculations. However it is safer to optimize the geometry 
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separately in each phase. In cases where the conformational change associated with solvation is 

large, one can include this contribution to the solvation free energy computed on the solution 

phase optimized geometry as follows: 

 

 
GS  GS(soln geom)Egas (soln geom)Egas (gas geom)

 (29) 

Discussions of the use of gas-phase and solution-phase frequencies are given 

elsewhere.[137,138]  

 

III.B.1  The absolute potential of the aqueous SHE 

 In calculating free energies of solvation of ionic species (with charge z), a distinction is 

made between absolute or intrinsic free energy of solvation and the real free energy of solvation, 

where the latter includes the contribution associated with the surface potential () of the 

solvent.[139] The surface potential of water is controversial, and a rather large scatter of values, 

differing by more than 1 eV, has been reported.[139-143]  The choice of  directly affects the 

real solvation free energy of the proton and therefore also the value of ESHE, which is determined 

by the cycle in Figure 3. 

 

 
 
Figure 3. Thermodynamic cycle for the standard hydrogen electrode.  
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 At present, the ESHE values of 4.28 V and 4.42 V are most commonly used; these are 

derived from values of GS
*(H+) of -1112.5[144,145] and -1098.9 kJ mol1,[140] respectively 

in conjunction with a value of fG
(H+) of 1517.0 kJ mol-1. The reader should note that the 

values of the two terms in Eq (28b) depend on the choice of statistical formalism used to treat the 

electron, and the above values are based on Boltzmann statistics. The corresponding GS
*(H+) 

and fG
(H+)  values based on Fermi-Dirac statistics are -1108.9[42], -1095.3 and 1513.3 

kJ mol1.[114] The quantity GS
*(H+) is positively shifted by 3.6 kJ mol1, and fG

(H+) is 

negatively shifted by the same amount; therefore the value of ESHE  is independent of 

convention.  

 The ESHE value of 4.42 V includes an estimate of the contribution due to the surface 

potential of water. More recent experimental estimates of ESHE  (4.05, 4.11, and 4.21 V)[146-

148] derived from nanocalorimetric measurements have been reported; however, the uncertainty 

associated with this technique is still relatively large. Because the total charge is conserved in a 

reaction, the contribution due to the surface potential cancels out in a chemically balanced 

chemical reaction that occurs in a single phase. As such, where calculation of equilibrium 

reduction potentials involving a single phase is concerned, it should not matter whether the 

contribution from surface potential is included in the solvation free energy, as long as this is 

done consistently for all reacting species and products. This raises the question as to whether 

continuum solvent models are designed to predict real or absolute solvation free energies. 

Continuum solvent models generally contain parameters (e.g., atomic radii used to construct the 

molecular cavity) that have been optimized to reproduce experimental solvation free energies. 

However, the experimental solvation free energies of ionic solutes are indirectly obtained via 

thermochemical cycles involving, for example, the solvation free energy of the proton, aqueous 

pKa values, and gas-phase reaction energies. Accordingly, the ESHE  values that should be used 

with a continuum model is that that is based on a consistent GS(H+ ) . 

 Table 2 provides an overview of several continuum solvent models typically used in 

aqueous calculations, the GS(H+)  upon which they are based, and examples of the levels of 
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theory for which they have been most extensively benchmarked. As shown, some continuum 

solvent models such as the (C)PCM-UAHF and (C)PCM-UAKS models are based on a 

GS
*(H+ )  values that are slightly different from those used to derive the ESHE  values of 4.28 V 

and 4.42 V. In such cases, where the difference is significant, one could adjust the value of the 

ESHE  to make it compatible with the continuum solvent model as shown in Table 2. The 

COSMO-RS model was parameterized using solvation free energies (and related data) of neutral 

solutes,[133] and therefore its compatibility with a particular ESHE  is unclear.  

 
Table 2. Examples of commonly used solvent models and the levels of theory at which they are 
applied. The value of the solvation free energy of the proton upon which the model is based and 
corresponding aqueous ESHE  values are also shown. 

Solvent model 
GS

*(H+) 

kJ mol1 

Level of Theory ESHE  (V) 

(C)-PCM-

UAHF[149] 
-1093.7 

HF/6-31G(d) for neutrals and 

HF/6-31+G(d) for ions 4.47 

(C)-PCM-UAKS -1093.7a B3LYP or PBE0/6-31+G(d) 4.47 

SM6[130] -1105.8 

MPW25/MIDI!6D or 6-31G(d) or 

6-31+G(d) 

4.34 

B3LYP/6-31+G(d,p) 

B3PW91/6-31+G(d,p) and any DFT 

method that can deliver a reasonably 

accurate electronic density for the solute 

of interest. 

SMD[127] -1112.5 

Any electronic structure model delivering 

a reasonable continuous density 

distribution 
4.28 

SM8[129] and 

SM8AD[128] 
-1112.5 

HF theory and many local and hybrid 

density functionals with basis sets of up to 

minimally augmented polarized valence 

double-zeta quality 

4.28 

COSMO-RS[133] - BP/TZP // BP/TZP - 
a Assumed value. 
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III.B.2  Non-aqueous systems 

In non-aqueous solution, there is no primary reference electrode equivalent to the 

aqueous SHE or SCE. Non-aqueous silver electrodes using silver nitrate or perchlorate are 

reliable reference electrodes for non-aqueous solutions; however, details on the actual Ag+  

concentration or salt anion in the Ag+ /Ag  are often not reported, making it difficult to directly 

compare potentials obtained from different studies.[54] Although aqueous reference electrodes 

are often used for non-aqueous systems, the liquid junction potential between the aqueous and 

non-aqueous solutions can affect the measurements. For these reasons, the IUPAC Commission 

on Electrochemstry has recommended that the ferricenium/ferrocene (Fc / Fc)  couple be used 

as an internal reference for reporting electrode potentials in non-aqueous solutions,[150] and 

knowledge of its absolute potential is therefore essential for calculations to be referenced to this 

electrode.  

The absolute potential of the Fc / Fc  couple in a non-aqueous solvent can be quite 

simply obtained from ESHE  and the conversion constant between aqueous SHE and (Fc / Fc)  

in a non-aqueous solvent. Pavlishchuk and Addison determined the conversion constants 

between various reference electrodes, including the Fc / Fc  couple in acetonitrile and aqueous 

SCE (and SHE).[54] Thus, using ESHE  values of 4.28 and 4.42 V in conjunction with the 

conversion constant of 0.624 V leads to Fc / Fc  potentials of 4.90 and 5.04 V respectively. 

More recent calculations using the SMD and COSMO-RS solvent models (in conjunction with 

gas-phase free energies calculated at G3(MP2)-RAD-Full-TZ and Fermi-Dirac statistics for the 

electron) provided estimates of 4.96 and 4.99 V for the Fc / Fc  potential in acetonitrile 

respectively.[151] These values are generally in good agreement with the two “experimental” 

values of the Fc / Fc  potential (within a 100 mV). The choice of Fc / Fc  potential for 

continuum-solvent-based predictions is less obvious, and one could instead adopt an approach 

analogous to cycle B in Figure 2 where both half-cells are treated using the same continuum 

solvent model.  
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Related to this point, the reader should note that not all solvent models have been 

designed to predict solvation free energies in non-aqueous solvents. Examples of models that 

have been designed to treat nonaqueous solutions are the SMD[127] and the COSMO-RS 

models[132,133]. The PCM-UAKS and PCM-UAHF models were designed specifically for 

predicting aqueous free energies of solvation,[149] although there have been attempts[152] to 

extend these models to non-aqueous solvents through the manipulation of other parameters 

within the solvent model such as the scaling factor () which relates to the solvent-inaccessible 

cavity.  

III.C.  Standard states 

 When calculating solution-phase reaction energies using a thermodynamic cycle that 

combines quantities obtained from different sources and/or calculations, it is important to pay 

attention to the standard state of these quantities. The literature on calculating solvation free 

energies by quantum mechanics usually uses a solute standard state concentration of 1 mol L1, 

whereas 1 molal is more common in some other subfields of chemical thermodynamics. The 

approximation of molality by molarity is reasonable for aqueous solutions since the density of 

water is approximately 1 kg L-1 for quite a large range of temperatures. This is not necessarily 

true for solutions involving organic solvents since the density of these solvents are typically 

much lower. 

 As noted above, the quantity yielded directly by continuum solvation models without a 

concentration term is the Gibbs free energy change associated with the transfer of a particle in 

the gas phase to the solvent, where the molarity of the solute is the same in both phases. On the 

other hand, gas phase thermodynamic quantities are conventionally calculated using a standard 

state of 1 atm. The conversion between free energies of solvation in the two conventions is 

straightforward when we recall the standard states are actually ideal gases and ideal solutions. 

Thus the standard state quantities correspond to measurements at infinite dilution followed by 

extrapolation to unit activity as if the activity coefficient were unity (ideal behavior). Therefore 
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  GS
  GS

* Gconc
  (30) 

where 

  Gconc
  RT ln

RT

P






  (30a) 

where R is the gas constant, and P is the standard-state pressure. At 298 K we get Gconc
 = 

7.96 kJ/mol for P= 1 bar and Gconc
 = 7.93 kJ/mol for P= 1 atm. 

 A separate issue relating to standard states is that experimental measurements are not 

usually made at either an activity of one or a molarity of one. For example, they may be made in 

systems buffered to keep particular reactant and/or product concentrations at some convenient 

concentration. For example, reductive chlorination potentials are nearly always measured with 

the chloride ion concentration at about 103M – these are conditional potentials, but they are not 

standard or formal potentials; however they can be converted to standard concentrations. 

Similarly, to use thermodynamic data in applications, one must convert from tabulated standard-

state quantities to quantities pertaining to real experimental conditions. To facilitate the 

comparison between standard free energies and those pertaining to nonstandard conditions, we 

note that the Gibbs free energies of reaction at nonstandard concentrations and those at standard 

concentrations are related by  
 

  G G RT ln
Q

Q









 (31) 

where Q is the reaction quotient; G and Q are for nonstandard concentrations, and Gand Q  

are for standard states. At equilibrium, G = 0 and Q becomes the equilibrium constant K, so Eq 

(31) yields 

  G  RT ln(K / Q) (31a) 

 

III.D.  Rates of electron transfer 

 The focus of this chapter is on the prediction of standard reduction potentials, and not on 

kinetics, but we note here that the sum of two standard half reactions defines the standard 
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“driving force” Go for an electron transfer reaction between a donor D and an acceptor A. For 

convenience of notation we will here write D and A as neutral species and the post-electron 

transfer products D and A  as singly positively and negatively charged species, respectively, 

but there is no restriction on the initial and final charge states beyond the obvious one that after a 

single electron transfer D will be one unit more positively charged and A one unit more 

negatively charged. 

 In Marcus theory, the driving force is a key variable for the prediction of free energies of 

activation associated with electron transfer reactions. This free energy of activation can be used 

in a transition-state theory equation or a diabatic collision theory approach to compute rate 

constants for electron transfer reactions. In particular, Marcus theory[153] takes the free energy 

of activation to be 

  

G‡ 

 G 2
4

 (32) 

where we have omitted some work terms necessary to bring the reagents together, and where  is 

the “reorganization energy” associated with the electron transfer reaction. The reorganization 

energy may be taken as the sum of two components, an “outer-sphere” and an “inner sphere” 

reorganization energy. The former is associated with the change in solvation free energy that 

occurs when a generalized bulk solvent coordinate equilibrated with the pre-electron-transfer 

state is confronted “instantaneously” with the post-electron-transfer state. Such changes in 

solvation free energy may be computed using two-time-scale continuum solvation models[154-

156] that permit the fast (optical) component of the solvent reaction field to be equilibrated to the 

post-electron-transfer state while the slow (bulk) component remains frozen as it was 

equilibrated to the pre-electron transfer state. The free energy of solvation of the charge-transfer 

state interacting with the non-equilibrium two-time-scale reaction field minus the free energy of 

solvation of the pre-charge-transfer state interacting with its fully equilibrated reaction field 

defines the outer-sphere reorganization energy. The inner-sphere reorganization energy, on the 

other hand, is associated with changes in the donor and acceptor structures (including possibly 
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their first solvation shells) as they relax following the electron transfer. 

 From a computational standpoint, these various quantities are readily computed. Thus, for 

instance, by computing the energy change as D relaxes from the geometry of D to that of D 

(which in some instances may involve including the first solvation shell of D / D), one may 

compute the contribution of the donor molecule to the inner-sphere reorganization energy. Since 

kinetics is a digression from our main subject, we will not develop this topic further, but we 

emphasize that the computational techniques outlined here to compute electron-transfer driving 

forces, combined with approaches to compute reorganization energies, offer a practical avenue to 

addressing electron-transfer rate questions. 

 

IV.  EXAMPLES 

 This section contains examples of calculations of reduction potential. All calculations 

were performed using Gaussian09[157] or Molpro 2009.[158] 

 
IV.A. Aqueous Standard 1-electron reduction potentials of nitroxides and 

quinones  

 In this example, we calculate the standard potentials of the following 1-electron reduction 

half-reactions in aqueous solution: 
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Figure 4. Species studied with their experimental reduction potentials (see Table 3 for details). 

 

The relevant computational data is shown in Table 3. The gas-phase Gibbs free energies were 

computed at the G3(MP2)-RAD(+) level of theory which is a modification of the G3(MP2)-

RAD[71] method. The (+) signifies that calculations originally defined to involve the 6-31G(d) 

basis set have been carried with the 6-31+G(d) basis set so as to allow for an improved 

description of anionic species. The aqueous-phase Gibbs free energy of reaction, Gsoln
 , is 

calculated using cycle A in Figure 2: 
 

Gsoln
 Ggas

 (Red)Ggas
 (Ox)Ggas

 (e)GS
(Red)GS

(Ox)   (33)

 

 

 

By substituting the appropriate values into the above expression, one obtains the Gsoln
  in Table 

3 and the corresponding standard reduction potentials. The values of 4.47 V and 4.28 V for 

ESHE  were used in conjunction with calculations employing the CPCM-UAHF and SMD 

solvent models as outlined in Table 2.  
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Table 3. Computational data for the calculation of standard reduction potentials at 298 K and relative to SHE.a Signed errors are shown in 
parentheses. 

 4-COOH-TEMPOg 3-CONH2-TCPOg Benzoquinone 2,3-dimethylnapthoquinone 

 Ox Red Ox Red Ox Red Ox Red 
H0 (kJ mol-1) -1761669.5 -1762348.8 -1603319.8 -1604000.7 -1000069.2 -1000250.1 -1608881.0 -1609042.0 

Gtherm (kJ mol-1) -108.5 -110.2 -105.6 -107.6 -78.5 -79.1 -102.5 -101.0 

Ggas
 (kJ mol-1)b -1761778.0 -1762459.0 -1603425.4 -1604108.3 -1000147.8 -1000329.2 -1608983.5 -1609143.0 

GS
  (UAHF; kJ mol-1)c -233.2 -42.2 -212.3 -39.9 -28.1 -243.3 -13.5 -209.9 

GS
  (SMD; kJ mol-1)c -242.6 -44.7 -241.9 -52.5 -24.9 -233.0 -19.7 -215.6 

Gsoln
  (UAHF; kJ mol-1)d  -486.3  -506.9  -393.1  -352.2 

Gsoln
  (SMD; kJ mol-1)d  -479.5  -489.9  -386.0  -351.8 

         

E (UAHF) rel. SHEe (V)  0.57 (-0.24)  0.78 (-0.18)  -0.40 (-0.50)  -0.82 (-0.58) 

E (SMD) rel. SHEf (V)  0.69 (-0.12)  0.80 (-0.16)  -0.28 (-0.38)  -0.63 (-0.39) 

E (Expt)  0.81[159]  0.96[159]  0.10[160]  -0.24[160] 

         

a The gas phase energies were computed at the G3(MP2)-RAD(+) level. Solvation calculations using the CPCM-UAHF and SMD models were performed by the HF/6-
31+G(d) and B3LYP/6-31+G(d) methods on the respective solution phase optimized geometries. CPCM-UAHF solvation free energies were performed at the ROHF/6-
31+G(d) level on UHF/6-31+G(d) solution optimized geometries for open-shell species. 
b Ggas

o  H0 Gtherm   

c Solvation free energies printed in Gaussian09 correspond to GS
*

 and Eq (30) is used to obtain GS
. 

d Gsoln
 calculated from Eq (32). e ESHE  = 4.47 V f ESHE  = 4.28 V

 

g 4-COOH-TEMPO = 2,2,6,6-tetramethylpiperidinoxyl; 3-CONH2-TCPO= 2,2,5,5-tetramethyl-3-carbamido-3-pyrroline-1-oxyl 
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The table shows that while the approach performs reasonably well for nitroxides, its performance 

is much less satisfactory for the quinones where the magnitude of the errors is 380 mV or larger 

for both solvent models. This example illustrates the difficulty associated with the direct 

calculation of absolute reduction potentials where performance depends heavily on the 

accuracies of absolute solvation free energies of the reactants and products. In particular, all half-

reactions generate or consume a charged species, and because the uncertainty in the solvation 

free energies associated of these species are significantly higher, this directly impacts the 

accuracy of absolute potentials. The present example also illustrates that the good performance 

of directly calculated reduction potentials by a given method for a particular class of compounds 

does not necessarily extend to other types of compounds. An interesting observation for the four 

cases in Table 3 is that in every instance, the reduced product would be expected to be a much 

stronger hydrogen bond acceptor than the oxidized precursor. Thus first-solvent shell water 

molecules are very important.  

 An alternative approach is to calculate relative reduction potentials, which can be more 

accurate by systematic error cancellation. For example, the data in Table 3 reveal that 

calculations based on the CPCM-UAHF model under-estimate the standard potentials for 

quinones by about 600 mV. Such a systematic error will largely cancel out for the reaction 

shown in Figure 5. 
 

 

Figure 5. An isodesmic charge transfer reaction. 

The potential associated with this reaction is readily obtained from the data in Table 2 as the 

reduction potential of 2,3-dimethylnaphthoquinone less that of benzoquinone. Using the CPCM-

UAHF model, this charge-transfer (CT) potential is -0.42 V. Thus, by using benzoquinone as a 

reference molecule for which the experimental standard potential is known (0.10 V), one can 
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estimate the standard potential of 2,3-dimethylnaphthoquinone by adding the charge-transfer 

potential to E (benzoquinone) to give E (2,3-dimethylnaphthoquinone) = -0.32 V. This 

approach brings the error down from 580 mV to 80 mV. More generally, for the charge-transfer 

reaction between A and a reference molecule (Ref) with known E , the standard potential 

E(A/A-) may be obtained from the thermodynamic cycle in Figure 6 and Eq (34a). 
 

 
 
Figure 6. Thermodynamic cycle for a charge transfer reaction.  
 
 

GCT  Ggas
 GS

(A•-)GS
(Ref )GS

(A)GS
(Ref •-)  (34) 

  E(A/A-)  GCT

96.5 C mol-1
 + Eexpt

 (Ref/Ref-)  (34a) 

 

An added advantage of this approach is that ESHE
  is no longer needed, thereby eliminating a 

source of uncertainty. However, since the method relies on systematic error cancellation, it is 

expected to work best when the reference molecule is structurally similar to A. The major 

limitation of this approach is that a structurally similar reference with accurately known E  may 

not always be available. 

 

IV.B.  Chemically irreversible processes – Reductive dechlorination 

 Next we show how the reduction potentials corresponding to the dissociative electron 

transfer reactions of some alkyl halides in aqueous and non-aqueous solutions (Figure 7) are 

calculated. The relevant computational data and results are presented in Tables 4 and 5 

respectively. 



 

Figure 7. Species studied with their experimental reduction potentials (see Table 5 for details) 
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Table 4. Calculated gas phase Gibbs free energies and solvation free energies at 298 K.a  

 Cl Cl / Cl H2O CCl4  CCl3
  CHCl3  CHCl2

  

Ggas
  ( kJ mol1)a -1206953.9c -1207306.1 / -1407825.0 -4928225.9 -3721026.3 -3722725.7 -2515500.8 

GS
  (SMD) H2Ob 8.4 - / -260.3 - - - - 

GS
  (SMD) DMFb 1.8 -264.8 / - -4.2 2.1 -12.9 -0.8 

 

 C2Cl6  C2Cl5
•  C2HCl5  C2Cl4 H+  H2O  

 Ggas
  ( kJ mol1)a -7442299.2 -6235086.3 -6236794.9 -5028088.6 -26.3 -200483.0 

GS
  (SMD) H2Ob 13.2 13.9 3.0 15.7 -1104.6 - 

a Computed at the G3(MP2)-RAD(+) level of theory. b Calculations performed by the B3LYP/6-31+G(d) method on solution phase optimized geometries. c 

Includes spin-orbit correction (-1.34 mHartee). 

 

Table 5. Calculated reduction potentials and experimental values. 

    E(calc) E(Expt) 

1 Cl•(dmf) + e- Cl-(dmf)   2.03 2.12[161] 

2 Cl•(aq) + H2O(l) + e-  [Cl(H2O)]-(aq)   2.40c 2.59[161] 

3 CCl4(dmf) + e- CCl3
 (dmf)Cl-(dmf)   -0.60 -0.58[162] 

4 CHCl3(dmf) + e- CHCl2
 (dmf)Cl-(dmf)   -0.93 -0.84[162] 
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5 C2Cl6 (aq) + H2O(l) e(g)C2Cl5
• (aq) + [Cl(H2O)]-(aq)   -0.20 b,c 0.11b,[1] 

6 C2Cl6 (aq) + 2H2O(l) 2e(g)C2Cl4(aq) + 2[Cl(H2O)]-(aq)     0.91 b,c 1.15b,[1] 

7 C2Cl6 (aq) + H2O(l)  H(aq) 2e(g)C2HCl5(aq) + [Cl(H2O)]-(aq)  0.58b,c 0.67b,[1] 

a Reactions in DMF and aqueous solution are referenced to SCE(aq) and SHE(aq) respectively. 

b These potentials correspond to the experimental conditions [Cl]103mol L-1 and pH=7.  

c Calculations that include an explicit water of hydration. The experimental solvation free energy of the water (-8.6 kJ mol-1) which corresponds to a standard 

state of [H2O] = 55 mol L-1 (i.e. pure water) and 1 atm in the liquid and gas phase, was used in these calculations. 
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 Since the potentials of reactions (1), (3) and (4) are measured in dimethyl 

formamide (DMF) and are referenced to the aqueous saturated calomel electrode, a 0.172 

V[53] correction for a liquid junction potential was applied to the calculations. 

Accordingly, using the reductive cleavage of carbon tetrachloride (reaction 3) as example, 

its reduction potential was calculated as follows: 
 

Gsoln  = -361.4 kJmol-1

E 
Gsoln

96.5
ESHE

 E(SCE/SHE)Ej

     3.75 4.280.2410.172  0.60 V     (35)

 

where the calculations are referenced to the aqueous saturated calomel electrode and 

E(SCE/SHE)  is its potential relative to aqueous SHE (0.241 V).[42] 

 As mentioned earlier, first-solvent shell interactions are likely to be very important 

for species with regions of concentrated charge such that a continuum model is likely to be 

inadequate. The reader should therefore note that the SMD, SM6, and SM8 solvent models 

are to be used as mixed discrete-continuum models in such cases; in particular, they have 

been parameterized to reproduce the experimental aqueous solvation free energy of the 

Cl H2O  cluster and (H2O)2  dimer, not the solvation free energy of bare Cl  or 

H2O .[33,127,129,130] As such, for the aqueous reactions that involve a bare chloride ion, 

i.e. reactions (2) and (5) to (7), the calculations were carried out with the addition of a 

water of hydration, as shown in Table 5. Using the last reaction as example, the calculated 

Gsoln
  was obtained as follows: 

Gsoln
  Ggas

 GS
  = -961.5 kJ mol-1   (36) 

where  

GS
= GS

(Cl•H2O-) GS
(C2HCl5) GS

(H+ ) GS
(C2Cl6 ) GS(H2O)

          = 842.6 kJ mol1 
(37) 

Note that in these calculations we have used the experimental value for the solvation free 

energy for water (-8.6 kJ mol1 )[163] under the conventional standard state for pure 

liquids, i.e. mole fraction of 1 in the liquid phase and 1 atm in the gas phase. In these 

reactions, the experimental potentials for the reductive cleavage of hexachloroethane were 
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referenced to SHE and therefore no correction for Ej  was applied. However, the potentials 

corresponded to non-standard conditions of [Cl]103mol L-1 and pH 7, and a correction 

using Eq (31) was applied to arrive at the values in Table 5. 

Gsoln  Gsoln
 RT ln

[1M C2HCl5][10-3M Cl- ]
[1M C2Cl6 ][10-7M H+ ]
[1M C2HCl5][1M Cl- ]
[1M C2Cl6 ][1M H+ ]



















           Gsoln
 RT ln(104 )  -938.7 kJmol-1    (38)

 

Accordingly, the potential for this two-electron reduction is 
 

  E   938.7

2 96.5
 4.28  0.58 V

 (39)
 

 

 
IV.C.  Constructing a Pourbaix diagram for the two-electron reduction of 

o-chloranil 

 Consider the two-electron reduction of o-chloranil (OCA) in aqueous solution.[164] 

Depending on the pH of the solution, the reduction process can be represented in one of the 

following ways as shown in Figure 8. 
 

 
 
Figure 8. The micro-species present in the two-electron reduction of o-chloranil in 
aqueous solution. 
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The corresponding standard reduction potentials are denoted 

E(OCA/OCA2-) , E(OCA,H+ /OCAH-)  and E(OCA,2H+ /OCAH2 )  and these are 

related to each other as follows: 
 

  E(OCA/OCA2 )  E(OCA,H+ /OCAH) RT

2F
ln K2  (40) 

 

  E(OCA/OCA2 )  E(OCA,2H+ /OCAH2) RT

2F
ln K1K2   (41) 

 

where K1and K2 are the first and second acid dissociation constants of OCAH2. From Eq 

(11), the potential for the E(OCA,2H+ /OCAH2 )  is 
 

  E  E(OCA,2H+ /OCAH2) RT

2F
ln

[OCA2-][H+ ]2

[OCAH2]
 (42) 

 

Equation (42) can alternatively be expressed in terms of the acid dissociation constants  

( K1  and K2) of the conjugate acid of the reduced product ( H2A).  

 

E  E(OCA,2H+ /OCA2-) RT

2F
ln (K1K2 K1[H

+ ][H+ ]2) RT

2F
ln

SOx

SRed

     (43) 

SOx  [OCA] (43a) 

SRed  [OCA2-]+[OCAH-]+[OCAH2 ]                            (43b) 

Using techniques such as cyclic voltammetry, one can measure a half-wave potential  

( E1/2) where the concentrations of the reductant is approximately equal to the oxidant, i.e. 

SOx  = SRed , and Eq (43) becomes 

  E1/2  E(OCA,2H+ /OCA2-) RT

2F
ln (K1K2 K1[H+ ][H+ ]2)        (44) 
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From the calculated reduction potentials in Eqs (40) and (41) as well as the acid 

dissociation constants ( K1  and K2) of the diprotic acid, OCAH2, a chemical speciation 

plot denoting the dominant microspecies in a particular pH range can be obtained. The data 

needed for such a plot are shown in Table 6. 

Table 6. Calculateda reduction potentials and pKa values. Experimental values, where 
available, are shown in parentheses. 

 

E(OCA,2H /OCAH2) 0.83 (0.79)[164] 

E(OCA,H /OCAH)  0.63 (0.67)[164] 

E(OCA/OCA2 )  0.41b 

pK1 (5)[164] 

pK2  9.2c 
aCalculations are based on the G3(MP2)-RAD(+) gas phase energies with SMD solvation energies 
obtained at the B3LYP/6-31+G(d) level and ESHE of 4.28 V. c Calculated from Eq (40) using the 
data in this Table.  c Calculated using a proton exchange method[34,35] using ortho-quinone (expt 
pKa=13.4)[165] as the reference. 

 

 From Eq (43), three distinct linear pH ranges can readily be identified. Where pH < 

pK1, [H+ ]  >> K1  >> K2 , OCAH2is the predominant form of the reduced product and 

the mid-point potential has a pH dependence based on Eq (44) 
 

  E1/2  E(OCA,2H+ /OCAH2) RT

2F
ln[H+ ]2  (45) 

In the other two linear segments at pK1 < pH < pK2  and pH > pK2 , the reduced product 

exists predominantly as OCAH and OCA2  respectively, and the corresponding half-

wave potentials have pH dependence following Eqs (46) and (47). 
 

   E1/2  E(OCA,2H+ /OCAH2 ) RT

2F
ln(K1[H

+ ]) (46) 

 

  E1/2  E(OCA,2H+ /OCAH2) RT

2F
ln(K1K2) (47) 

 

Extrapolation of the three linear segments (with theoretical slopes -2.303mRT/2F where m 

is the number protons involved in the reaction) to pH 0 yields the formal potential 
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E(OCA,2H+ /OCAH2) , E(OCA,H+ /OCAH)  and E(OCA/OCA2 ) respectively. 

Collectively, this information can be used to construct a E versus pH (Pourbaix diagram) 

as shown in Figure 9. The vertical lines correspond to the pKas of the diprotic 

OCAH2acid. 
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Figure 9.  An E versus pH diagram (Pourbaix diagram) for o-chloranil. The vertical 
dotted lines correspond to the pKas of OCAH2 and indicate the pH regions in which various 
stable species predominate. 

 The reader should note that the formal potential E  is pH-invariant since the 

condition [H+ ]  = 1 mol L1  applies. However, half-wave potentials are strongly pH 

dependent, and these are quite often reported instead of standard or formal reduction 

potentials. Thus, in comparing with experiment, it is also important to examine the details 

of the experimental measurement to ascertain whether the calculation corresponds to the 

same quantity as the one reported.  

 

V.  CONCLUDING REMARKS 

 We have presented an introductory guide to carrying out quantum mechanical 

continuum solvent prediction of solution-phase reduction potentials. We stress that 

reduction potentials are equilibrium thermochemical parameters. We discussed issues 
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pertaining to thermochemical conventions for the electron, the choice of standard 

electrode, and the limitations of methods based on thermodynamic cycles for calculating 

reduction potentials. Just as in experimental work, a key consideration for predicting 

chemically accurate reduction potentials is the difficulty of obtaining accurate estimates of 

the solvation free energies of ionic species. Careful work often involves including (or 

expanding) a first solvation shell, particularly in solvents donating or accepting strong 

hydrogen bonds. Relative reduction potential calculations can partly remedy this problem 

by exploiting systematic error cancellation in the solvation calculations. 
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