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6 Theoretical Calculation 
of Reduction Potentials

Junming Ho, Michelle L. Coote, 
Christopher J. Cramer, and Donald G. Truhlar

I.  Introduction

The reduction potential is a direct measure of the thermodynamic feasibility of an oxidation–
reduction half reaction; and it is fundamentally important in many aspects of organic, bioin-
organic, and environmental chemistry, as well as in biology and materials science. The design 
of rational strategies for tuning the redox properties of compounds depends on understanding 
the key molecular features that dictate the reduction potential. As an example, in environmen-
tal chemistry, chlorinated aliphatic compounds are common environmental contaminants due 
to their widespread use as solvents and degreasers and are known to degrade via a reductive 
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230 Organic Electrochemistry

dehalogenation [1,2]; the environmental persistence of these compounds has been found to cor-
relate with their relative reduction potentials, and the computation and measurement of these 
quantities is therefore valuable for understanding structure–activity trends and the design of 
environmentally friendly derivatives of these compounds [1,3–8]. Similarly, in biochemistry, 
nitroxides are a class of kinetically stable free radicals that have been widely studied as potential 
antioxidants against reactive oxygen species, which can lead to tissue injury and even cell death; 
both oxidation and reduction processes involving nitroxides are biologically relevant [9–12], 
and the ability to predict the redox potentials of nitroxides with various substituents and those 
embedded in rings can help prioritize synthetic targets for potentially biologically relevant anti-
oxidants [13,14].

Reduction potentials are most straightforwardly defined when associated with readily reversible 
equilibria; in such instances, they contain equivalent information to equilibrium constants or free 
energy changes for electrochemical half reactions. In practice, the high reactivity of many species 
(e.g., organic radicals) participating in electrochemical reactions or the irreversibility or mechanistic 
complexity of redox reactions can make the direct experimental measurement of a corresponding 
reduction potential difficult. For this reason, computational chemistry offers a valuable alternative 
to experiment for the characterization of redox reactions. The theoretical calculation of any ther-
mochemical quantity, including free energies and therefore including reduction potentials, usually 
takes advantage of the Born–Oppenheimer separation of electronic and nuclear motion, which ulti-
mately reduces the problem to three steps: (1) the calculation of molecular potential energy surfaces 
by electronic structure calculations; (2) the treatment of nuclear motion, for example, vibrations; and 
(3) statistical mechanical averaging over relevant configurations, conformations, or solvent struc-
tures. Step (3) is often carried out by classical statistical mechanics and step (2) by quasiharmonic 
methods, whereas step (1) generally requires more expensive quantum mechanical (QM) calcula-
tions, which can limit the accuracy of predictions if sufficiently large systems make the application 
of accurate QM models impractical. However, the relatively recent development of efficient quan-
tum chemical algorithms and powerful computer architectures has facilitated the quantitatively 
useful study of many reactions. Because most redox processes of practical interest occur in con-
densed phases, the development of reliable solvation models has also been critical to progress, and 
both implicit and explicit solvent models are now available such that well-chosen combinations of 
theoretical models have the potential to be used to make quantitative predictions of electrochemical 
quantities like reduction potentials.

Although this chapter is concerned with thermodynamics, the reader should keep in mind that 
reactivity and biological activity also depend on kinetics. While kinetics is often correlated with 
thermodynamic descriptors such as reduction potentials, it also includes other factors whose com-
plete discussion is beyond the scope of this chapter. Nevertheless, we will mention kinetic effects in 
some places because they are relevant to interpreting measurements.

There are several approaches to calculating a condensed-phase reduction potential, ranging 
from phenomenological or theoretically guided linear free energy relationships (LFERs) correlat-
ing reduction potentials with other computed (or experimental) observables to direct calculations 
of reduction potentials. When using LFERs, computed properties are again often obtained by QM 
electronic structure calculations. Calculated or measured properties that may be correlated with 
reduction potentials include ionization energies and electron affinities in the gas phase, as well 
as energies of the frontier molecular orbitals (e.g., the highest occupied molecular orbital), and 
these quantities may be regressed on solution-phase reduction potentials in order to develop a pre-
dictive equation [15–28]. LFERs are appealing because they allow for very rapid evaluation of 
reduction potentials, which is especially important, for example, in high-throughput screening of 
large databases of drug candidates. The implicit assumption of such an approach is that the errors 
associated with neglecting contributions to the reduction potential that do not correlate with the 
chosen independent variables are negligible, as are errors associated with the level of theory used to 
compute these variables. In practice, LFERs may work well if the compounds under consideration 

© 2016 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

in
ne

so
ta

, T
w

in
 C

iti
es

 L
ib

ra
ri

es
],

 [
D

on
al

d 
T

ru
hl

ar
] 

at
 1

7:
13

 2
3 

N
ov

em
be

r 
20

15
 



231Theoretical Calculation of Reduction Potentials

are sufficiently similar to those used in the regression. The semiempirical nature of this approach 
means that it may be difficult to estimate the errors associated with these models, particularly when 
they are applied on compounds outside of the training set.

When one attempts to calculate the reduction potentials directly, without linear regression against 
simpler quantities, typically only the most active portion of the system, for example, the solute and 
perhaps the first-solvent shell, is treated explicitly by quantum mechanics. The rest of the system 
is treated by molecular mechanics (MM), classical electrostatics, or both (although occasionally 
the whole system is treated by explicit quantum mechanics). Combining quantum mechanics for a 
primary subsystem with MM for the rest of the system is labeled QM/MM, and if the MM subsys-
tem is the solvent, it is an example of an explicit solvent method that requires molecular dynamics 
(MD) or Monte Carlo (MC) methods to ensemble average the solvent. MD and MC free energy 
simulations permit examination of solvent structure and reorganization [29–32]. Methods based on 
classical electrostatics usually replace the discrete solvent molecules by a dielectric continuum, so 
that the solvent and the ensemble average over solvent configurations both become implicit. QM/
MM and implicit-solvent treatments are the methods of choice for the study of redox potentials 
in condensed-phase and biological systems because treating the entire system quantum mechani-
cally raises the cost so much that one is usually forced to use less reliable methods or to skimp on 
ensemble averaging.

In this chapter, we will focus exclusively on methods based on thermodynamic cycles where 
solution-phase reduction Gibbs free energies are computed by combining gas-phase energetics with 
solvation free energies of the products and reactants. Such methods are also used extensively in 
solution-phase pKa predictions [33–35] as well as in studies of other condensed-phase reactions such 
as free-radical polymerization [36,37].

In the following, Section II presents some formal concepts in equilibrium electrochemical ther-
modynamics. The Section III is concerned with the implementation of the computational protocols. 
The Section IV presents some worked examples.

II.  �Formal Definitions, Electrochemical Concepts, 
and Basic Considerations

This section introduces some formal concepts in equilibrium electrochemical thermodynamics that 
are important for calculating solution-phase reduction potentials.

A.  Ionization Potentials and Electron Affinities

The adiabatic ionization energy, usually called the ionization potential, is the energy required to 
form a molecular or atomic cation in its ground state via the loss of an electron from the ground 
state of the neutral system in the gas phase. The vertical ionization energy applies to the change in 
electronic energy upon removal of an electron from the equilibrium structure of the neutral without 
change in geometry, again in the gas phase. For this reason, the two quantities are identical for an 
atom, and for a molecule the vertical ionization energy is almost always higher than its adiabatic 
counterpart. The electron affinity (EA) is defined similarly to the adiabatic ionization energy, and 
the vertical electron attachment energy is similar to the vertical ionization energy, but these quan-
tities refer to minus the change in energy when a neutral system gains an electron. The adiabatic 
quantities correspond to enthalpy changes at 0 K:

	

M(g) M (g) e IP

M(g) e M (g), EA

→ + =
+ → = −

+ −

− −

, ∆
∆

H

H
0

0

	 (6.1)

where the subscript denotes the temperature in units of kelvin.
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232 Organic Electrochemistry

B.  Standard versus Formal Potentials

At the heart of electrochemical thermodynamics is the chemical potential (μ), which equals the 
molar Gibbs energy (G) for a pure substance and the partial molar Gibbs free energy for a compo-
nent of a solution. For a species A in a solution,

	
µ µ γ µA = ° + 






 = ° +A ART

C

C
RT aln ln( )� 	 (6.2)

where
C is the concentration
a small circle in a superscript denotes the value of a quantity in the standard state
a and γ are the activity and activity coefficient, respectively

The usual standard states in the gas phase are an ideal gas at a pressure of 1 atm or 1 bar (0.987 atm), 
and the usual standard states for solutes in liquid-phase solutions are ideal solutions at a concentra-
tion of 1 M (1 mol/L of solution) or 1 molal (1 mol of solute/kg of solvent). Notice that we have 
introduced the dimensionless activity coefficients γi defined by [38]

	
a

c

c
i i

i

i

=
°

γ 	 (6.2a)

If we apply Equation 6.2 to the reaction

	 Ox e Red+ →− 	 (6.3)

where
Ox is the oxidant
Red is the reductant

the free molar energy of reaction is given by

	
∆ ∆ ∆G G RT Q G RT

a

a
= °+ = ° +









ln ln Red

Ox

	 (6.4)

where Q is the dimensionless reaction quotient. The relation between free energy and the maximum elec-
trical work that can be performed, as expressed in terms of the electrode potential E of a half-cell [39], is

	 ∆G nFE= − 	 (6.5)

where
F is the Faraday constant (96,485 C mol−1)
n is the number of electrons in the half reaction

Combining this with Equation 6.4 yields the following Nernst equation [40]:

	
E E

RT

F

a

a
= °+









ln Ox

Red

	 (6.6)

where E° is the standard electrode potential, also called the standard-state potential or the half-cell 
potential.
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233Theoretical Calculation of Reduction Potentials

Notice that E equals E° when the activities of all species are 1. However, such standard-state 
conditions are often difficult to achieve in practice, and standard-state potentials are often replaced 
by formal potentials, E°′. Formal potentials are sometimes called conditional potentials to denote 
that they apply under specified conditions rather than under standard conditions [38]. Specifically, 
this quantity is the measured potential of the half-cell when the ratio of the total concentrations of 
oxidized and reduced species is unity and other specified substances (e.g., proton) are present at 
designated concentrations. For example, they can be defined to correspond to the half-cell potentials 
when the concentration quotients (Qc) in the Nernst equation equal 1:

	
E E

RT

F
Q E

RT

F

C

C
= ′° + = ′° +









ln lnc

Ox

Red

	 (6.7)

Then the formal potential (E°′) is related to the standard reduction potential (E°) as follows:

	
E E

RT
F

′° = ° +








ln

γ
γ

Ox

Red

	 (6.8)

For example, the absolute potential of the normal hydrogen electrode is based on a concentration 
of the proton equal to 1 mol L−1 and is therefore a formal potential. This may be corrected to give 
the absolute potential of the standard hydrogen electrode (SHE) by taking into account the activity 
coefficient for a 1 mol L−1 solution of [H + ] in water, which has been estimated to be 0.8 [41]:

	
E E

RT

F
E° = − ( ) = +SHE NHE H NHE+ Vln .γ 0 006 	 (6.9)

In this particular instance, activity effects account for only a small change (6 mV) in the potential [42]. 
As an example of a more extreme case, the formal potential of the Fe3+ /Fe2+ couple varies from 0.53 to 
0.7 V in 10 and 1 mol L−1 HCl solutions, respectively [43].

Typically, experimental standard reduction potentials are obtained by assuming a functional 
form that models the dependence of the potential on ionic strength. A series of formal potential 
measurements is then carried out at different values of ionic strength, and they are extrapolated to 
zero ionic strength where the activity coefficients approach unity [43].

C.  Cyclic Voltammetry

Cyclic voltammetry is commonly used in the determination of formal potentials, which may be 
extracted directly from a fully reversible cyclic voltammogram as the average (midpoint) of the 
anodic and cathodic peak potentials, Epa and Epc, or from the half-wave potential of a sigmoid curve 
in steady-state voltammetry [43], to give a half-wave or midpoint potential, E1/2. Because the mea-
sured half-wave potential is affected by diffusion (a nonthermodynamic effect), it is related to the 
formal potential by

	
E

E E
E

RT

nF

D

D
1 2

2 2
/ ln=

+
= ′° +











pc pa Red

Ox

 	 (6.10)

where DOx is the diffusion coefficient of Ox. When the diffusion coefficients of the oxidized and 
reduced species are very similar, the half-wave potential provides a good approximation to the 
formal potential.
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234 Organic Electrochemistry

D.  Effects of Protonation

In aqueous solution, thermodynamically favored proton transfer is usually rapid, and electrochemi-
cal measurements usually give reduction potentials for half reactions that include any thermody-
namically favorable proton addition or loss. As such, an n-electron, m-proton half reaction can be 
represented in two possible ways:

	 Ox e Ox+ →− −n n 	 (6.11a)

	 Ox e H H Ox++ + →− − −n m m
n m( ) 	 (6.11b)

with corresponding standard reduction potentials denoted E°(Ox/Oxn−) and E°(Ox, mH+/
HmOx(n−m)−), respectively. The potential for the latter equation is directly dependent on pH and is 
equal to the formal potential E°′(Ox, mH+/HmOx(n−m)−) when the concentrations of all species are 
1 mol L−1:

	
E E

RT

nF
E

RT

nF

RT

F

mm

m m

= ′° + = ′° + −ln
[

[ ]
ln

[ ]
[ ]

.
Ox][H ]

H Ox
Ox

H Ox

+

2 303
nn







pH 	 (6.11c)

By monitoring how this cell potential varies with pH, it is possible to determine the electron–
proton stoichiometry (m/n) of the electrochemical measurement. For example, consider quinones 
and their derivatives, which are electroactive organic compounds that play a vital role in a number 
of biochemical processes. These compounds can undergo either a two-electron reduction (Ox/Ox2−), 
a  two-electron–one-proton reduction (Ox, H+/HOx−), or a two-electron–two-proton reduction 
(Ox, 2H+/H2Ox), depending on the pH of the solution [44]. In Section IV.C, we illustrate how one 
constructs an E versus pH diagram, which is called a Pourbaix diagram [45–47] and is analogous to 
a chemical speciation plot or predominance zone diagram determined by pH.

A measured formal potential is a good approximation to the standard reduction potential only 
when activity and kinetic effects associated with chemical reaction(s) are relatively minor. Where 
this is not the case, explicit treatment of these effects should be included in the calculations, or com-
parisons should be made with other experimental potentials that correspond more closely to infinite 
dilution and to thermodynamic control.

Consider the reduction of nitroxide radicals in aqueous solution in Figure 6.1.

N

N

N

N + +2H+ e–Net reaction

OH

O +

+ e–

H+

+ H+

1/K2

1/K1

N

OH

OH

OH

N

N

N
+

H

H

+

O
–

–

E(Ox/Ox–)

E(Ox, 2H+/H2Ox)

O

O

Figure 6.1  The microspecies present in the one-electron reduction of a nitroxide radical in aqueous 
solution.
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235Theoretical Calculation of Reduction Potentials

The measured half-wave potential E1/2 is related to the formal potential for the one-electron–two-
proton (1e, 2H+) transfer reaction as follows [48,49]:

	
E E

RT

F
K K K1 2 2 1 2 1

2
/ , ln [ ] [ ]= ′° ( ) + + +( )+ +Ox 2H H Ox H H+ + 	 (6.12)

where K1 and K2 are the equilibrium constants associated with the protonation steps. In previous 
work, it was found that explicit consideration of the prototropic equilibria was necessary to obtain 
good agreement with the experimental half-wave potentials [14]. In some cases, the experimental 
potential corresponds to that for a one-electron (1e) transfer E°′(Ox/Ox−), and this is related to the 
formal potential of the (1e, 2H+) reduction potential E°′(Ox, 2H+/H2Ox+) by

	
E E

RT

F
K K′° ( ) = ′° ( ) +− +Ox Ox Ox 2H H Ox+

2, ln( )1 2
	 (6.13)

E.  Reversible and Irreversible Redox Processes

Occasionally, half-wave potentials are also reported for quasi-reversible cyclic voltammetry experi-
ments with a back wave partially present; however, the reader should note that these are usually 
estimated values and therefore may not be well suited for quantitative comparisons. It is impossible 
to extract E1/2 from completely irreversible processes (no back wave) because of kinetic control of 
the current such that the Nernst equilibrium is established less quickly than the change in potential 
or because there are fast follow-up (side) reactions consuming the pertinent species.

There are instances where the transfer of an electron to or from a neutral precursor leaves the 
resulting radical ion in an electronic ground state that is dissociative [1,50]. (The former process is 
called dissociative attachment [51], and the latter is called dissociative ionization [52].) Following 
the electron-transfer event, which is rapid on the time scale of nuclear motion, the ion relaxes along 
the dissociative coordinate, leading to the scission of one or more bonds. Typically, the energetics 
associated with this fragmentation are such that the electron-transfer event is effectively irrevers-
ible. Depending on whether the ion lives long enough to be reoxidized/rereduced on the return 
sweep, the back wave may be only partially present or completely absent in a cyclic voltammogram, 
in which case it is not possible to extract a half-wave potential. An example of such a chemically 
irreversible process is the reductive dehalogenation of haloalkanes. For such processes, the equi-
librium potential may alternatively be defined as the Gibbs free energy associated with the overall 
process, which in this case is

	

Cl
Cl

Cl
Cl
Cl

Cl

Cl Cl–
Cl

H
+

Cl
Cl

Cl
+ + H+2e–

	
(6.14)

F.  Liquid Junction Potentials

The liquid junction potential arises whenever solutions with two different compositions come into 
contact. Its magnitude depends on the relative concentrations of the various ions at the boundary 
and on their relative mobilities. These potentials may be significant in cases where the solvent sys-
tem changes across a junction (e.g., from acetonitrile or dimethyl formamide [DMF] on one side 
to aqueous on the other). The liquid junction potentials of a number of dissimilar solvent junctions 
have been determined to range from 10 to 200 mV, depending on the junction [53].
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236 Organic Electrochemistry

G.  Reference Electrodes

The conventional reference electrode for aqueous systems is the SHE, which has been assigned a 
potential of zero in experimental measurements. In theoretical calculations, the absolute (rather 
than relative) reduction potentials are often computed, and knowledge of the absolute potential of 
the SHE is essential for comparing computations with experiment. A schematic of a cell with the 
aqueous SHE as reference and an Ox/Red couple in solvent S is as follows:

	
Pt | H (aq) ( 1); H (g) ( 1atm) | Ox(S)( ); Red(

H 2 H Ox R+ 2

+ = =a p a a eed ) | Pt 	 (6.15)

In this equation, the SHE is the anode (where oxidation takes place, on the left), and the Ox/Red 
couple is the cathode (where reduction takes place, on the right). The vertical lines indicate phase 
boundaries. The cell voltage (ECathode − EAnode) is given by Equation 6.16 where EOx/Red

�
 is the standard 

potential of the Ox/Red couple (see Equation 6.6) and Ej is the liquid junction potential between the 
aqueous SHE and the solvent/electrolyte containing Ox and Red:

	
E E E E E E

RT

F

a

a
Ejcell Ox/Red SHE Ox/Red SHE

Ox

Red

= − + = − +








 +

� � � ln jj 	 (6.16)

If all species are in their respective standard states, with the activity (or concentration, as an estimate 
for activity) equal to 1 mol L−1 for solutions and fugacity (or pressure, as an estimate for fugacity) 
equal to 1 bar for gases, then Equation 6.16 simplifies into

	
E E E Ejcell Ox/Red SHE= − +� � 	 (6.17)

Since the physical setup of an SHE is somewhat cumbersome, reduction potentials are often 
referenced to other electrodes. In laboratory measurements, a secondary reference electrode 
whose potential versus the SHE(aq) is well known is usually used. Examples include the (KCl) 
saturated calomel electrode (SCE) and the saturated silver/silver chloride electrode; the pres-
ence of saturated KCl in these electrodes leads to sharply reduced values of Ej. As such, in 
comparing with experiment, it is also important to examine the details of the experimental 
measurement to ascertain whether a correction for Ej is necessary in theoretical calculations. 
The conversion constants between different electrodes in aqueous solvents have been measured 
[54], and these may be used to convert reduction potentials that are referenced to SHE to other 
reference electrodes. For example, the potential of the SCE is 0.244 V relative to the SHE at 
298 K in aqueous solution. Therefore, to convert values based on SHE to SCE, one needs to 
subtract 0.244 V.

III.  Computation of Reduction Potentials

As indicated in Equations 6.4 and 6.5, the standard-state Gibbs free energy change for a half reac-
tion is the quantity required for computing a standard reduction potential. Since experimental 
reduction potentials are not measured in isolation but are instead measured relative to the potential 
of a reference electrode, theoretical calculations of reduction potentials are typically carried out 
either for a half-cell reaction (Figure 6.2, cycle A) with the subtraction of the reduction potential of 
the reference electrode (e.g., SHE) or on a full-cell reaction (Figure 6.2, cycle B). In Figure 6.2 we 
have introduced the general notation ∆GS

� for a standard-state free energy of solvation, which is the 
free energy change upon transfer from the gas phase (sometimes called air in the transfer literature) 
to the liquid solution.
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237Theoretical Calculation of Reduction Potentials

The corresponding reduction potentials are

	
E

G

nF
Ecell

rxn
SHE

A
cycle A= − −∆ ( )

( ) 	 (6.18)

and

	
E

G

nF
cell

rxn B
cycle B= −∆ ( )

( ) 	 (6.19)

In principle, both cycles yield the same result. However, cycle B effectively uses calculated values 
of ESHE and ∆GS

+(H )� , whereas cycle A effectively uses empirical (accurate) values. Thus, cycle A 
is simpler, and in this cycle, the key ingredients for the calculation of a reduction potential are the 
gas-phase Gibbs free energy of reaction and the free energies of solvation of the reagents, that is, of 
the reactants and products.

A.  Gas-Phase Free Energies of Reaction

1.  Gibbs Free Energy and the Treatment of Nuclear Motion
The Gibbs energy change of the gas-phase reaction shown in cycle A is simply the EA of M, EA(M), 
plus the thermal contribution to the Gibbs free energy (ΔGtherm) of M− less that of M:

	

∆

∆

G G G

U G U

gas

e therm e

(M ) (M)

(M ) ZPE(M ) (M ) M) Z

� � �= −

= + +  − +

−

− − − ( PPE(M (M)

EA(M) (M ) (M) E

therm

therm therm

)+ 

= − + −  = −
−

∆

∆ ∆

G

G G AA(M) therm+ ∆∆G

	

(6.20)

where
Ue denotes the Born–Oppenheimer equilibrium potential energy
ZPE denotes the vibrational zero point energy
ΔGtherm denotes the thermal contribution to the free energy, that is, the part that vanishes at 0 K

Cycle A

Cycle B

M(aq)

M(aq)

M(g) 1/2H2(g) M–(g) H+(g)++

+ 1/2H2(g)

+ e–(g)
ΔGrxn

M–(aq)

M–(g)

–ΔGso(M)

–ΔGso(M)

ΔGso(M–)

ΔGso(M–) ΔGso(H+)

ΔGogas

ΔGogas

ΔGrxn
M–(aq) H+(aq)+

ΔG = 0

ΔG = 0

M(g) e–(g)+

Figure 6.2  Thermodynamic cycles for calculating an absolute and relative reduction potential.
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238 Organic Electrochemistry

The thermal contribution includes the free energy due to multiple conformations (if present), rota-
tions, and vibrational and electronic excitation. Note that the change in ZPE is included in the EA. 
We have neglected nuclear spin considerations, since the effect of nuclear spin cancels out in almost 
all cases, the main exception being the H2 molecule.

It is useful to introduce the enthalpy at 0 K, which is labeled H0. Then

	 H U0 = +e ZPE 	 (6.21a)

and Equation 6.20 becomes

	
∆ ∆ ∆G H G H Ggas 0 therm 0 therm(M M (M) (M)� = + − −− −) ( ) 	 (6.21b)

If the conformations, geometries, and vibrational frequencies of the charged molecule are very similar to 
those of the neutral and neither has low-lying electronically excited states, then the thermal correction to 
the Gibbs energy of M− and M is likely to be similar and one could roughly estimate ∆Ggas

�  as approxi-
mately equal to EA(M). In some cases however, the gain (or loss) of an electron can result in significant 
changes to the electronic structure of a molecule (e.g., quinones acquire an aromatic ring structure upon 
the gain of two electrons), and this approximation becomes unreliable. In such situations, the thermal 
corrections are sometimes calculated by assuming ideal gas behavior and the rigid-rotor harmonic oscil-
lator approximation, to arrive at analytic expressions for the molecular partition function ( �Q), from 
which one can calculate the entropy (S), and the thermal contributions to the enthalpy (ΔHtherm) and the 
Gibbs free energy (ΔGtherm), which are evaluated from the following expressions:

	

S R Q T
Q

T

H RT
Q

T
R

V

V

= + ∂
∂





















= ∂
∂









 +

ln
ln

ln

�
�

�
∆ therm

2 TT

G H TS∆ ∆therm therm= −

	 (6.22)

where �Q is the molecular partition function with zero of energy at the ground state and the equiva-
lent expression for the Gibbs free energy in terms of �Q is

	 G U PV RT Q= + + −e ZPE ln � 	 (6.23)

Furthermore, if one assumes that there is only one conformation and negligible coupling between 
electronic excitation, vibrations, and rotations, the molecular partition function can be separated 
into a product of partition functions associated with the translational, rotational, vibrational, and 
electronic motions:

	
�Q q q q q= trans rot vib elec 	 (6.24)

If we assume separability, the electronic partition function is

	

q
k T

i
i

Bi

elec = + −









=

∞

∑ω ω1

2

exp
ε

	 (6.25)

where
εi is the electronic energy (including nuclear repulsion but not vibrational energy) of level i
ωi is the degeneracy of that level
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239Theoretical Calculation of Reduction Potentials

When the first electronic excitation is thermally inaccessible at room temperature, the electronic 
partition is well approximated by the degeneracy associated with the electronic ground state:

	 qelec = ω1 	 (6.26)

For monatomic species, if the total electronic angular momentum associated with electronic state 
i is Ji, we have ωi = 2Ji + 1. For example, the ground state of a halogen atom is 2

3 2P /  with J1 = 3/2, so 
ω1 = 4, and the first excited state is 2

1 2P /  with J2 = 1/2 and ω2 = 2. Based on Equation 6.25 and the 
excitation energy of 0.109 eV of the first electronically excited state, the electronic partition function 
for chlorine atom at 298 K is therefore

	 qelec e= + =−4 2 4 034 2. . 	 (6.27a)

Higher excited states make a negligible contribution in this case.
The vibrational partition function is usually treated by the harmonic oscillator approximation or 

by a quasiharmonic approximation in which one uses the harmonic oscillator formulas but scales 
the frequencies [55–57] to account for anharmonicity (and for systematic deficiencies of the elec-
tronic structure method used to calculate the frequencies).

The rotational partition function is usually treated classically.
For molecules where there are multiple conformers that are close in energy to the lowest-energy 

structure, the conformational flexibility contributes to the Gtherm. If we again make a separable 
approximation, we can include this by putting another factor in Equation 6.24, yielding

	
�Q q q q q q= trans rot vib elec conf 	 (6.27b)

	

q
U

k T
j

N

j
conf =

−









=
∑exp

conf

1

∆

B

	 (6.27c)

where ΔUj is the potential energy difference of conformation j from the lowest one and the confor-
mational partition function is summed over all the conformational space of the molecule, which is 
equivalent to performing a Boltzmann average over the Gibbs free energies of all the conformers. 
A much better approximation is to use Equation 6.24—or a more accurate analog with less sepa-
rability approximations—to calculate a free energy Gj for each conformer. Then the free energy 
including all conformers is

	

G RT
G

k T
j

j

= −
−







∑ln exp

B

	 (6.27d)

One should only include distinguishable conformers. However, even the number of distinguish-
able conformers grows rapidly with molecule size for chain molecules. For example, n-heptane 
has 59 distinguishable conformations [58]. Glucose has 2916 potential conformations [59]. Even 
the approximation of Equation 6.27d is far from realistic, though, if the barriers separating the 
conformers are not all high compared to kBT, both because the contributions of any one conformer 
are no longer independent and because the individual contributions differ from their harmonic 
values. If the barriers are low, the system must be treated as having one or more internal rota-
tions. A theoretical formalism, based on internal coordinates and including intermode coupling, 
is available [60].
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240 Organic Electrochemistry

In practice, a full conformational search typically involves at least 3N geometry optimizations 
where N is the number of rotatable bonds in the molecule that yield distinguishable structures (e.g., the 
C-3 to C-4 torsion in 1-butanol does not yield distinguishable structures). Additional considerations 
apply if one must consider ring isomerism as well as torsional isomerism. Therefore, a full conforma-
tional search is usually restricted to molecules with N ≤ 5. It is worth noting that a rough approximate 
upper bound on the effect of considering higher conformers is given by the case where there are Nconf 
conformers with energies, structures, and frequencies identical to those of the lowest-energy struc-
ture; then the error associated with not including the conformational partition function is RT ln(Nconf).

A variety of methods such as simulated annealing [61], MC methods [62], and an energy-directed 
tree search algorithm [63] have been developed for locating the lowest-energy conformer without 
having to sample the entire conformational space of the molecule. In principle, one should rank the 
conformers in terms of their Gibbs free energies as in Equation 6.23; however, this entails relatively 
expensive Hessian calculations, and in practice, the conformers are usually ranked in terms of their 
electronic energies (Ue). As a precaution, one could, at the end of the search, perform Hessian calcu-
lations only on conformers that are within some energy difference from the lowest-energy structure 
and rerank the conformers in terms of their Gibbs energies.

The expressions for the partition functions as derived from the ideal gas, rigid-rotor harmonic 
oscillator approximation can be found in standard textbooks [64] and will not be presented here. 
A discussion of the potential sources of error in the application of these partition functions (e.g., 
breakdown of the harmonic oscillator approximation) and the errors that could arise from the 
assumptions used to derive them has been discussed elsewhere [65,66]. These treatments assume 
that the torsions are separable and may be identified with specific normal modes. When this is not 
the case, one must use the internal-coordinate nonseparable treatment mentioned earlier [60].

Having laid out the key ingredients for calculating a gas-phase Gibbs free energy, we now discuss 
possible levels of theory for calculating geometries, Born–Oppenheimer (electronic) energies, and 
free energies.

Geometries are often calculated at lower levels of theory such as density functional theory (DFT) 
with a small basis set that can predict equilibrium geometries and vibrational frequencies (when 
scaled by appropriate scale factors [56,57,60]) reasonably well but is not usually sufficiently accu-
rate for reaction energies. However, it is also usually possible to calculate geometries at the same 
level as reasonably reliable energies if one uses DFT with a modern density functional and a good 
basis set.

2.  Electronic Energies of Atoms and Molecules
Chemically accurate (errors of 5 kJ mol−1 or less) electronic energies of reaction can usually be 
achieved for small- and moderate-sized systems provided that electronic energies are calculated at 
high levels of theory, for example, CCSD(T) or QCISD(T), with very large one-electron basis sets 
incorporating high angular momentum basis functions. Here CC denotes coupled cluster theory, 
QCI denotes quadratic configuration interaction, SD denotes the inclusion of single and double exci-
tations, and (T) denotes a quasiperturbative treatment of connected triple excitations [67]. One diffi-
culty with electronic wave function theory (WFT) methods of this sort is the very slow convergence 
of the energies with respect to the size of the one-electron basis set. Furthermore, a CCSD(T) calcu-
lation formally scales as the seventh power of the number of atoms in the system [67] and is therefore 
restricted to relatively small molecular systems. Popular alternatives to large-basis-set CCSD(T) 
calculations are composite methods that have been designed to approximate high-level-correlated 
calculations using a series of lower cost calculations in conjunction with additivity and/or extrapola-
tion routines. The Gaussian-n (e.g., G4 [68], G3 [69], G3(MP2) [70], and G3(MP2)-RAD [71,72]) 
methods with high-level corrections, multicoefficient correlation methods [73–82], the correlation-
consistent composite approach [83,84], and CBS-X (e.g., where X is QB3 [85]) are examples of such 
methods. These methods involve some degree of empirical parameterization and are practical for 
medium-sized systems. By comparison, the Wn (n = 1–4) methods [86–89] have been designed to 
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241Theoretical Calculation of Reduction Potentials

compute thermochemical properties with even higher accuracy (ca. 1 kJ mol−1), without empirical 
parameterization, but are also considerably more expensive and therefore limited to relatively small 
systems. For larger systems where even composite methods become computationally expensive, 
one could employ an ONIOM approximation [90,91] where the chemical system is partitioned into 
layers. The innermost layer is usually defined by the reaction center and its nearby substituents so 
that the chemistry of the reaction is modeled accurately. This layer is treated at the highest level 
of theory. The subsequent layer(s) are then treated at lower levels of theories. As an example, this 
approach has been successfully used to approximate the G3(MP2)-RAD calculations for a test set of 
112 different radical reactions with a mean absolute deviation of 1.2 kJ mol−1 [92]. There are a large 
number of other shortcuts and “tricks of the trade,” for example, basis-set extrapolation [93–96] to 
ameliorate the aforementioned slow convergence, but these are too numerous to mention.

An important alternative to WFT is DFT. Here the computational work scales as Natom
3  or Natom

4  
rather than Natom

7 , where Natom is the number of atoms in the system, but the accuracy depends on the 
quality of the exchange–correlation functional [97]. This quality is improving rapidly [98].

We next address relativistic effects, which begin to be energetically important at the level 
of chemical accuracy near the end of the first transition-metal series. There are two kinds of 
relativistic effects: (1) scalar relativistic effects and (2) spin–orbit coupling [99]. Scalar relativis-
tic effects are most simply handled by replacing the core electrons with appropriate effective 
core potentials [100–105]; however, the accuracy can be low [106]. If all electrons are to be 
treated, the most rigorous approach makes use of the four-component Dirac spinor operator. 
More efficient approaches are based on two-component spinors; such methods can be derived 
from the four-component formulation through various transformations that lead either to the 
Douglas–Kroll–Hess Hamiltonian [107–109] or the zero-order-regular approximation [110]. 
Additional reduction to a one-component formulation yields the spin–orbit operator in its usual 
form and also a spin–spin interaction term [111].

Spin–orbit effects, associated with the coupling of spin and orbital angular momenta in a relativ-
istic framework, are sometimes neglected in electronic structure calculations that make use of basis 
sets including relativistic pseudopotentials [99]. Rather, only scalar relativistic effects are included 
and computed energies represent averages over spin–orbit states, if they exist. Spin–orbit effects 
can be included through either perturbation theory or variational methods without sacrificing the 
simplicity of one-component computational models. When the relevant transition-metal compounds 
may be viewed as substantially ionic in character, a particularly simple approach is to estimate 
spin–orbit effects on standard reduction potentials by assuming the same spin–orbit coupling in the 
complexes as that for the bare ions, where the latter are usually available from experiment.

3.  Standard State of the Electron
In calculating ionization energies and electron attachment energies at nonzero temperatures or 
when calculating the free energy of reaction of processes like Equation 6.3, one needs to take into 
account the Gibbs free energy of the electron. There are two thermochemical conventions concern-
ing the thermodynamics of the electron: (1) the electron convention (EC) and (2) the ion convention 
(IC). There are various literature reports giving slightly different calculated reduction potentials 
depending on which thermochemical convention of the electron is used. However, this should not be 
the case, and it originates from confusion regarding the definition of the zero of energy in the two 
conventions. An important point is that the Gibbs free energy obtained from a particular convention 
must be compatible with the quantum chemical calculation, that is, they need to have the same zero 
of energy. In quantum chemistry, it is convenient to define a zero of energy, at least temporarily, as 
corresponding to all nuclei and electrons being infinitely separated and at rest. With regard to the 
zero of energy for the free electron, the two conventions primarily differ in their definition of the 
formation enthalpy of the electron. The EC treats the reference state for electrons in the same way as 
for elements, that is, the enthalpy of formation is defined to be zero at all temperatures, ∆f T eH � ( )− = 0. 
On the other hand, the IC defines the standard enthalpy of formation of the electron to be equal to 
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242 Organic Electrochemistry

its integrated heat capacity at all temperatures [112,113]. Accordingly, under the two conventions, 
the enthalpy of formation of ions differs by the integrated heat capacity of the electron; the actual 
value depends on the statistical formalism used to treat the electron. Using Boltzmann statistics and 
the ideal gas model, the Gibbs energy of the electron is 0 kJ mol−1 at 298 K. However, since elec-
trons are fermions, Fermi–Dirac statistics are more appropriate, and this yields a Gibbs energy of 
−3.6 kJ mol−1 at 298 K. Contrary to the earlier report by Bartmess [114], these values are the same 
under both conventions and the thermochemistry of the electron is summarized in Table 6.1. In the 
calculation of reduction potentials, it makes no difference which formalism or convention is used as 
long as these are used consistently for both the half-cell and the reference electrode.

B.  Free Energies of Solvation

Continuum solvation models [115–118] have been designed to make accurate predictions of free 
energies of solvation. Free energies of solvation can then be combined with the gas-phase Gibbs 
energies in Equations 6.20 and 6.21 to obtain the Gibbs free energy of reaction in solution.

In continuum solvation models, the solute is encapsulated in a molecular-shaped cavity embed-
ded in a dielectric continuum. The solute is acted on by a reaction field, which is the field exerted 
on the solute by the polarized dielectric continuum, and the polarization of the solute by this field is 
calculated via the Poisson equation for a nonhomogeneous dielectric medium (the nonhomogeneous 
formulation [119] is required because ε is unity inside the cavity—because polarization is treated 
explicitly—but not unity outside the cavity where it is given the value of the solvent’s bulk dielec-
tric constant). The reaction field is used to calculate the bulk-electrostatic contribution, which is then 
combined with the non-bulk-electrostatic terms to yield the solvation free energy. There are two con-
tributions to the non–bulk electrostatics. One is the deviation of the true electrostatics from the elec-
trostatics calculated using the bulk dielectric constant. The other is the nonelectrostatic portion of 
the solvation free energy. Some continuum solvent models such as the polarized continuum models 
(PCM, e.g., [IEF]-PCM [120] (IEF = integral equation formalism) and CPCM [121,122]) model the 
non-bulk-electrostatic and bulk-electrostatic terms independently; such models are called [123] type 3 
models. Such models are less accurate than type 4 models [49,118,123–131], which are models in which 
the non-bulk-electrostatic terms are adjusted to be consistent with a particular choice of the cavity 
boundary. This adjustment is necessary because that boundary is intrinsically arbitrary, but the bulk-
electrostatic contribution is very sensitive to it. The most accurate of the type 4 continuum solvation 
models are SM8 [129], SM8AD [128], and solvation model based on density (SMD) [127]. (These are 
sometimes called SMx models where x specifies which one.) The conductor-like screening model for 
real solvents (COSMO-RS) [132,133] adopts a different strategy in which a conductor-like screening 
calculation is performed on a molecule to generate a set of screening charges on the molecular cavity. 

Table 6.1
Thermodynamics of the Electron under the Various Thermochemical Conventionsa

EC–B IC (Bartmess) IC–B  EC/IC–FD 

∆f 298H° 0 0 6.197 0

∆fG°298 0 (0)b 0 0

S°298 20.979 (0)b 20.979 22.734

[ ]H H° − °298 0 6.197 0 6.197 3.146

G°298 −0.058 (0)b −0.058 −3.632

EC, electron convention; IC, ion convention; B, Boltzmann statistics; FD, Fermi–Dirac statistics.
a	 Enthalpies and free energies in kJ mol−1, entropies in J mol−1 K−1.
b	 Defined values [114].
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243Theoretical Calculation of Reduction Potentials

The distribution of these charges forms a unique electrostatic fingerprint (called the σ-profile) that is 
characteristic of that molecule. The solvation free energy is then evaluated from a statistical mechani-
cal procedure involving the interaction of the screening charges of the solute and those of the solvent. 
The COSMO-RS model has good accuracy (similar to the SMx models), at least for neutral solutes.

The coupling of the solute to the solvent is directly related to Gibbs free energy change associ-
ated with the transfer of a particle in the gas phase to the solvent in a process in which the concentra-
tion in moles per liter does not change [134]. Therefore, it is sometimes convenient to use a standard 
state where the solute concentration in both phases is 1 mol L−1, and this standard state is denoted 
by “*” in ∆GS

*, to distinguish it from ∆GS
�, which corresponds to a gas-phase partial pressure of the 

solute of 1 atm or 1 bar.
We note that when metal complexes have open coordination sites, it is generally inaccurate to 

assume that a continuum solvation approach will accurately reflect the interactions of the metal with the 
“missing” first solvation shell. In principle, first-shell solvent molecules could be regarded as ligands 
that are explicitly included in the atomistic model. Indeed, for small, highly charged ions, it may be 
necessary for highest accuracy to include explicitly not only the first solvation shell but also the second 
[135,136]. However, inclusion of even the first shell raises questions about conformational averaging, 
and the best practical way to address these questions has not yet been convincingly demonstrated.

The option of adding explicit solvent is more general than just filling open coordination sites. It 
has been concluded that continuum solvent models become quantitatively inaccurate near highly 
concentrated regions of charge [33,130]. Therefore, it was recommended that one should add a 
single explicit water molecule to any anion containing three or fewer atoms, to any anion with one 
or more oxygen atoms bearing a more negative partial atomic charge than the partial atomic charge 
on oxygen in water, and to any (substituted or unsubstituted) ammonium or oxonium ion [130].

Next, we comment on the issue of molecular geometry. Many solvation calculations use the 
gas-phase geometry in both phases. This is often reasonable because the difference in solvation 
energies calculated with gas-phase geometries and liquid-phase geometries is often less than other 
uncertainties in the calculations. However, it is safer to optimize the geometry separately in each 
phase. In cases where the conformational or other structural change associated with solvation is 
large, one can include this contribution to the solvation free energy computed on the solution-phase 
optimized geometry as follows:

	
∆ ∆G G E ES S gas gas(soln geom) (soln geom) (gas geom)≅ + − 	 (6.28)

Discussions of the use of gas-phase and solution-phase frequencies are given elsewhere [137,138].

1.  Absolute Potential of the Aqueous SHE
In calculating free energies of solvation of ionic species (with charge ±z), a distinction is made 
between the absolute or intrinsic free energy of solvation and the real free energy of solvation, where 
the latter includes the contribution associated with the surface potential (χ) of the solvent [139]. The 
surface potential of water is controversial, and a rather large scatter of values, differing by more than 
1 eV, has been reported [139–143]. The choice of χ directly affects the real solvation free energy of 
the proton and therefore also the value of ESHE, which is determined by the cycle in Figure 6.3:

	
E

G

F
SHE

rxn= −∆ 	 (6.29a)

	 − = + + = ++ +∆ ∆ ∆ ∆ ∆ ∆G G G G G Grxn ion atom S f
+

SH (H ) H� � � � �( ) ( ) 	 (6.29b)

At present, the ESHE values of 4.28 and 4.42 V are most commonly used; these are derived from 
values of ∆GS

* +(H ) of −1112.5 [144,145] and −1098.9 kJ mol−1 [140], respectively, in conjunction 
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244 Organic Electrochemistry

with a value of ΔfG°(H+) of 1517.0 kJ mol−1. The reader should note that the values of the two terms 
in Equation 6.29b depend on the choice of statistical formalism used to treat the electron, and the 
preceding values are based on Boltzmann statistics. The corresponding ∆GS

* +(H ) and ΔfG°(H+) 
values based on Fermi–Dirac statistics are −1108.9 [42], −1095.3, and 1513.3 kJ mol−1 [114]. The 
quantity ∆GS

* +(H ) is positively shifted by 3.6 kJ mol−1, and ΔfG°(H+) is negatively shifted by the 
same amount; therefore, the value of ESHE is independent of convention.

The ESHE value of 4.42 V includes an estimate of the contribution due to the surface potential of 
water. More recent experimental estimates of ESHE (4.05, 4.11, and 4.21 V) [146–148] derived from 
nanocalorimetric measurements have been reported; however, the uncertainty associated with this 
technique is still relatively large. Because the total charge is conserved in a reaction, the contribu-
tion due to the surface potential cancels out in a chemically balanced chemical reaction that occurs 
in a single phase. As such, where calculation of equilibrium reduction potentials involving a single 
phase is concerned, it should not matter whether the contribution from surface potential is included 
in the solvation free energy, as long as this is done consistently for all reacting species and prod-
ucts. This raises the question as to whether continuum solvent models are designed to predict real 
or absolute solvation free energies. Continuum solvent models generally contain parameters (e.g., 
atomic radii used to construct the molecular cavity) that have been optimized to reproduce experi-
mental solvation free energies. However, the experimental solvation free energies of ionic solutes 
are indirectly obtained via thermochemical cycles involving, for example, the solvation free energy 
of the proton, aqueous pKa values, and gas-phase reaction energies. Accordingly, the ESHE values 
that should be used with a continuum model are those that are based on a consistent ΔGS(H+).

Table 6.2 provides an overview of several continuum solvent models typically used in aqueous cal-
culations, the ΔGS(H + ) upon which they are based, and examples of the levels of theory for which they 
have been most extensively benchmarked. As shown, some continuum solvent models such as the (C)
PCM-UAHF and (C)PCM-UAKS models, where UAHF denotes the use of united-atom parameters 
optimized for Hartree-Fock calculations, and UAKS denotes the use of united-atom parameters opti-
mized for Kohn-Sham calculations, are based on ∆GS

* +H( ) values that are slightly different from those 
used to derive the ESHE values of 4.28 and 4.42 V. In such cases, where the difference is significant, one 
could adjust the value of the ESHE to make it compatible with the continuum solvent model as shown in 
Table 6.2. The COSMO-RS model was parameterized using solvation free energies (and related data) 
of neutral solutes [133], and therefore its compatibility with a particular ESHE is unclear.

2.  Nonaqueous Systems
In nonaqueous solution, there is no primary reference electrode equivalent to the aqueous SHE or 
SCE. Nonaqueous silver electrodes using silver nitrate or perchlorate are reliable reference elec-
trodes for nonaqueous solutions; however, details on the actual Ag+ concentration or salt anion 
in the Ag+/Ag are often not reported, making it difficult to directly compare potentials obtained 
from different studies [54]. Although aqueous reference electrodes are often used for nonaqueous 
systems, the liquid junction potential between the aqueous and nonaqueous solutions can affect the 
measurements. For these reasons, the IUPAC Commission on Electrochemistry has recommended 

–ΔGso(H+)

-ΔGo
ion

–ΔGo
atom

H (g)

H+(aq) e–(g)
ΔGrxn

1/2H2(g)

ΔG = 0

+

H+(g) e–(g)+

Figure 6.3  Thermodynamic cycle for the SHE.
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245Theoretical Calculation of Reduction Potentials

that the ferrocenium/ferrocene (Fc+/Fc) couple be used as an internal reference for reporting elec-
trode potentials in nonaqueous solutions [150], and knowledge of its absolute potential is therefore 
essential for calculations to be referenced to this electrode.

The absolute potential of the Fc+/Fc couple in a nonaqueous solvent can be quite simply obtained 
from ESHE and the conversion constant between aqueous SHE and (Fc+/Fc) in a nonaqueous solvent. 
Pavlishchuk and Addison determined the conversion constants between various reference electrodes, 
including the Fc+/Fc couple in acetonitrile and aqueous SCE (and SHE) [54]. Thus, using ESHE values 
of 4.28 and 4.42 V in conjunction with the conversion constant of 0.624 V leads to Fc+/Fc potentials of 
4.90 and 5.04 V, respectively. More recent calculations using the SMD and COSMO-RS solvent models 
(in conjunction with gas-phase free energies calculated at G3(MP2)-RAD-Full-TZ and Fermi–Dirac 
statistics for the electron) provided estimates of 4.96 and 4.99 V for the Fc+/Fc potential in acetonitrile, 
respectively [151]. These values are generally in good agreement with the two “experimental” values 
of the Fc+/Fc potential (within a 100 mV). The choice of Fc+/Fc potential for continuum-solvent-based 
predictions is less obvious, and one could instead adopt an approach analogous to cycle B in Figure 6.2 
where both half-cells are treated using the same continuum solvent model.

Related to this point, the reader should note that not all solvent models have been designed to 
predict solvation free energies in nonaqueous solvents. Examples of models that have been designed 
to treat nonaqueous solutions are the SMD [127] and the COSMO-RS models [132,133]. The PCM-
UAKS and PCM-UAHF models were designed specifically for predicting aqueous free energies 
of solvation [149], although there have been attempts [152] to extend these models to nonaqueous 
solvents through the manipulation of other parameters within the solvent model such as the scaling 
factor (α) that relates to the solvent-inaccessible cavity.

C.  Standard States

When calculating solution-phase reaction energies using a thermodynamic cycle that combines 
quantities obtained from different sources and/or calculations, it is important to pay attention to the 
standard state of these quantities. The literature on calculating solvation free energies by quantum 

Table 6.2
Examples of Commonly Used Solvent Models and the Levels of Theory at Which 
They Are Applied

Solvent Model ∆∆GS
* +H( ) (kJ mol−1) Level of Theory ESHE (V) 

(C)-PCM-UAHF [149] −1093.7 HF/6-31G(d) for neutrals and HF/6-31+G(d) for ions 4.47

(C)-PCM-UAKS −1093.7a B3LYP or PBE0/6-31+G(d) 4.47

SM6 [130] −1105.8 MPW25/MIDI!6D or 6-31G(d) or 6-31+G(d) 4.34

B3LYP/6-31+G(d,p)

B3PW91/6-31+G(d,p) and any DFT method that can 
deliver a reasonably accurate electronic density for 
the solute of interest

SMD [127] −1112.5 Any electronic structure model delivering a 
reasonable continuous density distribution

4.28

SM8 [129] and SM8AD [128] −1112.5 HF theory and many local and hybrid density 
functionals with basis sets of up to minimally 
augmented polarized valence double-zeta quality

4.28

COSMO-RS [133] — BP/TZP —

The value of the solvation free energy of the proton upon which the model is based and corresponding aqueous ESHE values 
are also shown.

a	 Assumed value.
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246 Organic Electrochemistry

mechanics usually uses a solute standard-state concentration of 1 mol L−1, whereas 1 molal is more 
common in some other subfields of chemical thermodynamics. The approximation of molality by 
molarity is reasonable for aqueous solutions since the density of water is approximately 1 kg L−1 for 
quite a large range of temperatures. This is not necessarily true for solutions involving organic sol-
vents since the density of these solvents is typically much lower.

As noted earlier, the quantity yielded directly by continuum solvation models without a con-
centration term is the Gibbs free energy change associated with the transfer of a particle in the gas 
phase to the solvent, where the molarity of the solute is the same in both phases. On the other hand, 
gas-phase thermodynamic quantities are conventionally calculated using a standard state of 1 atm. 
The conversion between free energies of solvation in the two conventions is straightforward when 
we recall the standard states are actually ideal gases and ideal solutions. Thus, the standard-state 
quantities correspond to measurements at infinite dilution followed by extrapolation to unit activity 
as if the activity coefficient were unity (ideal behavior). Therefore,

	 ∆ ∆ ∆G G GS S conc
� �= +* 	 (6.30)

where

	
∆G RT

RT

P
conc
�

�= 





ln 	 (6.30a)

where
R is the gas constant
P° is the standard-state pressure

At 298 K, we get ∆Gconc kJ/mol� = 7 96.  for P° = 1 bar and ∆Gconc kJ/mol� = 7 93.  for P° = 1 atm.
A separate issue relating to standard states is that experimental measurements are not usually 

made at either an activity of one or a molarity of one. For example, they may be made in systems 
buffered to keep particular reactant and/or product concentrations at some convenient concentra-
tion. For example, reductive chlorination potentials are nearly always measured with the chloride 
ion concentration at about 10−3 M—these are conditional potentials, but they are not standard or 
formal potentials; however, they can be converted to standard concentrations. Similarly, to use 
thermodynamic data in applications, one must convert from tabulated standard-state quantities to 
quantities pertaining to real experimental conditions. To facilitate the comparison between standard 
free energies and those pertaining to nonstandard conditions, we note that the Gibbs free energies of 
reaction at nonstandard concentrations and those at standard concentrations are related by

	
∆ ∆G G RT

Q

Q
= +











�
�ln 	 (6.31)

where
Q is the reaction quotient
ΔG and Q are for nonstandard concentrations
ΔG° and Q° are for standard states

At equilibrium, ΔG = 0 and Q becomes the equilibrium constant K, so this yields

	
∆G RT

K

Q
�

�= −








ln 	 (6.31a)
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247Theoretical Calculation of Reduction Potentials

D.  Rates of Electron Transfer

The focus of this chapter is on the prediction of standard reduction potentials, and not on kinetics, 
but we note here that the sum of two standard half reactions defines the standard driving force ΔG° 
for an electron-transfer reaction between a donor D and an acceptor A. For convenience of notation, 
we will here write D and A as neutral species and the post-electron-transfer products D +  and A− as 
singly positively and negatively charged species, respectively, but there is no restriction on the initial 
and final charge states beyond the obvious one that after a single electron-transfer D will be one unit 
more positively charged and A one unit more negatively charged.

In the Marcus theory, the driving force is a key variable for the prediction of free energies of activation 
associated with electron-transfer reactions. This free energy of activation can be used in a transition-state 
theory equation or a diabatic collision theory approach to compute rate constants for electron-transfer 
reactions. In particular, the Marcus theory [153] takes the free energy of activation to be

	
∆

∆
G

G
‡ =

+( )λ

λ

� 2

4
	 (6.32)

where we have omitted some work terms necessary to bring the reagents together and where λ is 
the reorganization energy associated with the electron-transfer reaction. The reorganization energy 
may be taken as the sum of two components: an outer-sphere and an inner-sphere reorganiza-
tion energy. The former is associated with the change in solvation free energy that occurs when a 
generalized bulk solvent coordinate equilibrated with the pre-electron-transfer state is confronted 
instantaneously with the post-electron-transfer state. Such changes in solvation free energy may be 
computed using two-time-scale continuum solvation models [154–156] that permit the fast (optical) 
component of the solvent reaction field to be equilibrated to the post-electron-transfer state while 
the slow (bulk) component remains frozen as it was equilibrated to the pre-electron-transfer state. 
The free energy of solvation of the charge-transfer (CT) state interacting with the nonequilibrium 
two-time-scale reaction field minus the free energy of solvation of the pre-CT state interacting with 
its fully equilibrated reaction field defines the outer-sphere reorganization energy. The inner-sphere 
reorganization energy, on the other hand, is associated with changes in the donor and acceptor struc-
tures (including possibly their first solvation shells) as they relax following the electron transfer.

From a computational standpoint, these various quantities are readily computed. Thus, for 
instance, by computing the energy change as D+ relaxes from the geometry of D to that of D+  
(which in some instances may involve including the first solvation shell of D/D+), one may compute 
the contribution of the donor molecule to the inner-sphere reorganization energy. Since kinetics is 
a digression from our main subject, we will not develop this topic further, but we emphasize that 
the computational techniques outlined here to compute electron-transfer driving forces, combined 
with approaches to compute reorganization energies, offer a practical avenue to addressing electron-
transfer rate questions.

IV.  Examples

This section contains examples of calculations of reduction potential. All calculations were per-
formed using Gaussian 09 [157] or MOLPRO 2009 [158].

A.  �Aqueous Standard One-Electron Reduction Potentials 
of Nitroxides and Quinones

In this example, we calculate the standard potentials of the aqueous one-electron reduction half 
reactions shown in Figure 6.4.
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248 Organic Electrochemistry

The relevant computational data are shown in Table 6.3. The gas-phase Gibbs free energies were 
computed at the G3(MP2)-RAD(+) level of theory, which is a modification of the G3(MP2)-RAD [71] 
method. The (+) signifies that calculations originally defined to involve the 6-31G(d) basis set have 
been carried with the 6-31+G(d) basis set so as to allow for an improved description of anionic species. 
The aqueous-phase Gibbs free energy of reaction, ∆Gsoln

� , is calculated using cycle A in Figure 6.2:

	
∆ ∆ ∆G G G G G Gsoln gas gas gas S SRed Ox e Red Ox� � � � � �= − − + −( ) ( ) ( ) ( ) ( ) 	 (6.33)

By substituting the appropriate values into this expression, one obtains the ∆Gsoln
�  in Table 6.3 and 

the corresponding standard reduction potentials. The values of 4.47 and 4.28 V for ESHE were used 
in conjunction with calculations employing the CPCM-UAHF and SMD solvent models as outlined 
in Table 6.2.

The table shows that while the approach performs reasonably well for nitroxides, its performance 
is much less satisfactory for the quinones where the magnitude of the errors is 380 mV or larger for 
both solvent models. This example illustrates the difficulty associated with the direct calculation 
of absolute reduction potentials where performance depends heavily on the accuracies of absolute 
solvation free energies of the reactants and products. In particular, all half reactions generate or 
consume a charged species, and because the uncertainty in the solvation free energies associated 
of these species are significantly higher, this directly impacts the accuracy of absolute potentials. 
The present example also illustrates that the good performance of directly calculated reduction 
potentials by a given method for a particular class of compounds does not necessarily extend to 
other types of compounds. An interesting observation for the four cases in Table 6.3 is that in every 
instance, the reduced product would be expected to be a much stronger hydrogen bond acceptor than 
the oxidized precursor. Thus, first-solvent shell water molecules are very important.

An alternative approach is to calculate relative reduction potentials, which can be more accurate 
by systematic error cancellation. For example, the data in Table 6.3 reveal that calculations based on 
the CPCM-UAHF model underestimate the standard potentials for quinones by about 600 mV. Such 
a systematic error will largely cancel out for the reaction shown in Figure 6.5.

The potential associated with this reaction is readily obtained from the data in Table 6.2 as 
the reduction potential of 2,3-dimethylnaphthoquinone less that of benzoquinone. Using the 

4-COOH-TEMPO

3-CONH2-TCPO

benzoquinone

O

O

O

O

2,3-dimethylnaphthoquinone

N
O

N
+

CONH2

COOH

N–
–

––
––

O

N

O

O

COOH

CONH2

expt Eo (V) vs SHE

0.81

0.96

0.10

–0.24

+ e–

e–

+ e–

+ e–

+

+

O  –

OO

O  –

Figure 6.4  Species studied with their experimental reduction potentials (see Table 6.3 for details).
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Table 6.3
Computational Data for the Calculation of Standard Reduction Potentials at 298 K and Relative to SHEa

4-COOH-TEMPOg 3-CONH2-TCPOg Benzoquinone 2,3-Dimethylnapthoquinone 

Ox Red Ox Red Ox Red Ox Red

H0 (kJ mol−1) −1,761,669.5 −1,762,348.8 −1,603,319.8 −1,604,000.7 −1,000,069.2 −1,000,250.1 −1,608,881.0 −1,609,042.0

ΔGtherm (kJ mol−1) −108.5 −110.2 −105.6 −107.6 −78.5 −79.1 −102.5 −101.0

G°gas (kJ mol−1)b −1,761,778.0 −1,762,459.0 −1,603,425.4 −1,604,108.3 −1,000,147.8 −1,000,329.2 −1,608,983.5 −1,609,143.0

∆G°S (UAHF; kJ mol−1)c −233.2 −42.2 −212.3 −39.9 −28.1 −243.3 −13.5 −209.9

∆G°S (SMD; kJ mol−1)c −242.6 −44.7 −241.9 −52.5 −24.9 −233.0 −19.7 −215.6

∆G°soln (UAHF; kJ mol−1)d −486.3 −506.9 −393.1 −352.2

∆G°soln (SMD; kJ mol−1)d −479.5 −489.9 −386.0 −351.8

E° (UAHF) rel. SHEe  (V) 0.57 (−0.24) 0.78 (−0.18) −0.40 (−0.50) −0.82 (−0.58)

E° (SMD) rel. SHEf  (V) 0.69 (−0.12) 0.80 (−0.16) −0.28 (−0.38) −0.63 (−0.39)

E° (expt) 0.81 [159] 0.96 [159] 0.10 [160] −0.24 [160]

Signed errors are shown in parentheses.
a	 The gas-phase energies were computed at the G3(MP2)-RAD(+) level. Solvation calculations using the CPCM-UAHF and SMD models were performed by the HF/6-31+G(d) and 

B3LYP/6-31+G(d) methods on the respective solution-phase optimized geometries. CPCM-UAHF solvation free energies were performed at the ROHF/6-31+G(d) level on UHF/6-31+G(d) 
solution optimized geometries for open-shell species.

b	 G H Ggas
o

0 therm= + ∆ .
c	 Solvation free energies printed in Gaussian 09 correspond to ∆GS

* and Equation 6.30 is used to obtain ∆G°S.
d	 ∆G°soln calculated from Equation 6.32.
e	 ESHE = 4.47 V.
f	 ESHE = 4.28 V.
g	 4-COOH-TEMPO = 2,2,6,6-tetramethylpiperidinoxyl; 3-CONH2-TCPO = 2,2,5,5-tetramethyl-3-carbamido-3-pyrroline-1-oxyl.
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250 Organic Electrochemistry

CPCM-UAHF model, this CT potential is −0.42 V. Thus, by using benzoquinone as a reference 
molecule for which the experimental standard potential is known (0.10 V), one can estimate the 
standard potential of 2,3-dimethylnaphthoquinone by adding the CT potential to E°(benzoquinone) 
to give E°(2,3-dimethylnaphthoquinone) = −0.32 V. This approach brings the error down from 
580 to 80 mV. More generally, for the CT reaction between A and a reference molecule (Ref) with 
known E°, the standard potential E°(A/A−) may be obtained from the thermodynamic cycle in 
Figure 6.6 and Equation 6.34a:

	
∆ ∆ ∆ ∆ ∆ ∆G G G G G GCT gas S S S S(A ) (Ref (A) (Ref )= + + − −− −� � � � �• •) 	 (6.34)

	
E

G
E� �A A

96.5 C mol
Ref RefCT

1 expt
• •−

−
−( ) = + ( )∆

	 (6.34a)

An added advantage of this approach is that ESHE
�  is no longer needed, thereby eliminating a source of 

uncertainty. However, since the method relies on systematic error cancellation, it is expected to work 
best when the reference molecule is structurally similar to A. The major limitation of this approach is 
that a structurally similar reference with accurately known E° may not always be available.

B.  Chemically Irreversible Processes—Reductive Dechlorination

Next, we show how the reduction potentials corresponding to the dissociative electron-transfer reac-
tions of some alkyl halides in aqueous and nonaqueous solutions (Figure 6.7) are calculated. The 
relevant computational data and results are presented in Tables 6.4 and 6.5, respectively.

Since the potentials of reactions 1, 3, and 4 are measured in DMF and are referenced to the aque-
ous SCE, a 0.172 V [53] correction for a liquid junction potential was applied to the calculations. 
Accordingly, using the reductive cleavage of carbon tetrachloride (reaction 3) as example, its reduc-
tion potential was calculated as follows:

	

∆

∆

G

E
G

E E Ej

soln
1

soln
SHE

= 361.4 kJ mol

SCE SHE

−

= − − − ( ) −

=

−

� � �

96 5

3 7

.

. 55 4 28 0 241 0 172 0 60− − + = −. . . . V

	

(6.35)

where the calculations are referenced to the aqueous SCE and E°(SCE/SHE) is its potential relative 
to aqueous SHE (0.241 V) [42].

O

O O O

O

O

+ +

O   – O   –

Figure 6.5  An isodesmic CT reaction.

ΔGCT

ΔGogas

Ref (soln)

Ref (g)

+

–ΔGso(A)

A(g) ++

ΔGso (A
 –) ΔGso(Ref )–ΔGso (Ref  –)

Ref  –(g) A –(g)

A (soln) +  Ref  –(soln) A –(soln)

Figure 6.6  Thermodynamic cycle for a CT reaction.
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251Theoretical Calculation of Reduction Potentials

As mentioned in Section III.B, first-solvent shell interactions are likely to be very important for species 
with regions of concentrated charge such that a continuum model is likely to be inadequate. The reader 
should therefore note that the SMD, SM6, and SM8 solvent models are to be used as mixed discrete-
continuum models in such cases; in particular, they have been parameterized to reproduce the experimen-
tal aqueous solvation free energy of the Cl−⋅H2O cluster and (H O)2 2 dimer, not the solvation free energy 
of bare Cl− or H2O [33,127,129,130]. As such, for the aqueous reactions that involve a bare chloride ion, 
that is, reactions 2 and 5 to 7, the calculations were carried out with the addition of a water of hydration, 
as shown in Table 6.5. Using the last reaction as example, the calculated ∆Gsoln

�  was obtained as follows:

	
∆ ∆ ∆∆G G Gsoln gas S

1= 961.5 kJ mol� � �= + − − 	 (6.36)

where

	

∆∆ ∆ ∆ ∆ ∆ ∆G G G G G GS S 2 S 2 5 S
+

S 2 6 S(Cl H O ) (C HCl ) (H ) (C Cl ) (� � � � �= ⋅ + − − −− HH O)

842.6 kJ mol

2

= −1
	

(6.37)

Cl(soln) + e–

CCl3(soln) + Cl–(soln)CCl4(soln) + e–

CHCl3(soln) + e–

(soln) + e–

(soln)  +  2e–

(soln) +  H+(soln) + 2e–

Cl
Cl Cl

Cl
Cl

Cl

Cl
Cl Cl

Cl
Cl

Cl

Cl
Cl Cl

Cl
Cl

Cl

CHCl2(soln) + Cl–(soln)

Cl
Cl

Cl

Cl

Cl

Cl

Cl
Cl

Cl
(soln) + Cl–(soln)

(soln) + 2Cl–(soln)

ClCl
Cl

Cl Cl

H
(soln) + Cl–(soln)

E (expt)

E°
aq = 2.59 vs  SHE; E° DMF = 2.12 vs SCEaqCl–(soln)

E°
DMF = –0.58 vs SCEaq

E°
DMF = –0.84 vs SCEaq

Eaq = 0.11 vs SHE; [Cl–] = 10–3 M

Eaq = 1.15 vs SHE; [Cl–] = 10–3 M

Eaq = 0.67 vs SHE; [Cl–] = 10–3 M, [H+] = 10–7 M

Figure 6.7  Species studied with their experimental reduction potentials in V (see Table 6.5 for details).

Table 6.4
Calculated Gas-Phase Gibbs Free Energies and Solvation Free Energies at 298 Ka

Cl• Cl−/Cl−⋅H2O CCl4 CCl3•  CHCl3 CHCl2• 

G°gas (kJ mol−1)a −1,206,953.9c −1,207,306.1/−1,407,825.0 −4,928,225.9 −3,721,026.3 −3,722,725.7 −2,515,500.8

∆G°S (SMD) H2Ob 8.4 —/−260.3 — — — —

∆G°S  (SMD) 
DMFb

1.8 −264.8/— −4.2 2.1 −12.9 −0.8

C2Cl6 C Cl2 5
•  C2HCl5 C2Cl4 H+ H2O

G°gas
 (kJ mol−1)a −7,442,299.2 −6,235,086.3 −6,236,794.9 −5,028,088.6 −26.3 −200,483.0

∆G°S (SMD) H2Ob 13.2 13.9 3.0 15.7 −1,104.6 —

a	 Computed at the G3(MP2)-RAD(+) level of theory.
b	 Calculations (in kJ mol−1) performed by the B3LYP/6-31+G(d) method on solution-phase optimized geometries.
c	 Includes spin–orbit correction (−1.34 millihartrees).
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252 Organic Electrochemistry

Note that in these calculations, we have used the experimental value for the solvation free energy 
for water (−8.6 kJ mol−1) [163] under the conventional standard state for pure liquids, that is, mole 
fraction of 1 in the liquid phase and 1 atm in the gas phase. In these reactions, the experimental 
potentials for the reductive cleavage of hexachloroethane were referenced to SHE, and therefore 
no correction for Ej was applied. However, the potentials corresponded to nonstandard conditions 
of [Cl−] = 10−3 mol L−1 and pH 7, and a correction using Equation 6.31 was applied to arrive at the 
values in Table 6.5:

	

∆ ∆G G RTsoln soln

2 5
3

2 6
7 +[1 M C HCl ][10 M Cl ] [1 M C Cl ][10 M H ]

= +
− − −

� ln
/(( )

( )














= +

−[1 M C HCl ][1 M Cl ] [1 M C Cl ][1 M H ]2 5 2 6
+

soln

/

l∆G RT� nn( )104 = − −938.7 kJ mol 1

	

(6.38)

Accordingly, the potential for this two-electron reduction is

	
E = − −

×
− =938 7

2 96 5
4 28 0 58

.
.

. . V 	 (6.39)

C.  �Constructing a Pourbaix Diagram for the Two-Electron 
Reduction of o-Chloranil

Consider the two-electron reduction of o-chloranil (OCA) in aqueous solution [164]. Depending 
on the pH of the solution, the reduction process can be represented in one of the following ways as 
shown in Figure 6.8.

The corresponding standard reduction potentials are denoted E°(OCA/OCA2−), E°(OCA,H+/
OCAH−), and E°(OCA,2H+/OCAH2), and these are related to each other as follows:

	
E E

RT

F
K� �OCA OCA OCA H OCAH+2

2
2

− −( ) = ( ) +, ln 	 (6.40)

Table 6.5
Calculated Reduction Potentials and Experimental Valuesa

E/ V (calc) E/ V (expt) 

1 Cl•(dmf) + e− → Cl−(dmf) 2.03 2.12 [161]

2 Cl•(aq) + H2O(l) + e− → [Cl(H2O)]−(aq) 2.40c 2.59 [161]

3 CCl dmf e CCl dmf Cl dmf4 ( ) ( ) ( )+ → +− −
3
• −0.60 −0.58 [162]

4 CHCl dmf e CHCl dmf Cl dmf3( ) ( ) ( )+ → +− −
2
• −0.93 −0.84 [162]

5 C Cl (aq) H O(l) e g C Cl (aq) [Cl(H O)] (aq)2 6 2 2 5 2+ + → +− −( ) • −0.20b,c 0.11b [1]

6 C2Cl6(aq) + 2H2O(l) + 2e−(g)→C2Cl4(aq) + 2[Cl(H2O)]−(aq)  0.91b,c 1.15b [1]

7 C2Cl6(aq) + H2O(l) +  H + (aq) + 2e−(g)→C2HCl5(aq) + [Cl(H2O)]−(aq) 0.58b,c 0.67b [1]

a	 Reactions in DMF and aqueous solution are referenced to SCE(aq) and SHE(aq), respectively.
b	 These potentials correspond to the experimental conditions [Cl−] = 10−3 mol L−1 and pH = 7.
c	 Calculations that include an explicit water of hydration. The experimental solvation free energy of the water (−8.6 kJ mol−1) 

that corresponds to a standard state of [H2O] = 55 mol L−1 (i.e., pure water) and 1 atm in the liquid and gas phase was used 
in these calculations.
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E E

RT

F
K K� �OCA OCA OCA 2H OCAH+2

2 1 2
2

−( ) = ( ) +, ln 	 (6.41)

where K1 and K2 are the first and second acid dissociation constants of OCAH2. From Equation 6.11, 
the potential for the E(OCA,2H+/OCAH2) is

	
E E

RT

F
= ′° ( ) +

−

OCA 2H OCAH
[OCA ][H ]

[OCAH ]
+

2 + 2

2

, ln2
2

	 (6.42)

Equation 6.42 can alternatively be expressed in terms of the acid dissociation constants (K1 and K2) 
of the conjugate acid of the reduced product (H2A):

	
E E

RT

F
K K K

RT

F

S

S
= ′° ( ) + + +( ) +−OCA 2H OCA H ] H ]+ 2 + + Ox

Re

, ln [ [ ln
2 2

1 2 1
2

dd

	 (6.43)

	 SOx OCA]= [ 	 (6.43a)

	 SRed
2

2OCA ] [OCAH ] [OCAH ]= + +− −[ 	 (6.43b)

Using techniques such as cyclic voltammetry, one can measure a half-wave potential (E1/2) where 
the concentrations of the reductant are approximately equal to the oxidant, that is, SOx = SRed, and 
Equation 6.43 becomes

	
E E

RT

F
K K K1 2 1 2 1

2

2
/ , ln [ [= ′° ( ) + + +( )−OCA 2H OCA H ] H ]+ 2 + + 	 (6.44)
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Figure 6.8  The microspecies present in the two-electron reduction of OCA in aqueous solution.
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254 Organic Electrochemistry

From the calculated reduction potentials in Equations 6.40 and 6.41 as well as the acid dissociation 
constants (K1 and K2) of the diprotic acid, OCAH2, a chemical speciation plot denoting the dominant 
microspecies in a particular pH range can be obtained. The data needed for such a plot are shown 
in Table 6.6.

From Equation 6.43, three distinct linear pH ranges can readily be identified. In the range where 
pH < pK1, [H+] ≫ K1 ≫ K2, the molecule OCAH2 is the predominant form of the reduced product, 
and the midpoint potential has a pH dependence based on Equation 6.44:

	
E E

RT

F
1 2

2
/ , ln[= ′° ( ) +OCA 2H OCAH H ]+

2
+ 2 	 (6.45)

In the other two linear segments at pK1 < pH < pK2 and pH > pK2, the reduced product exists pre-
dominantly as OCAH− and OCA2−, respectively, and the corresponding half-wave potentials have 
pH dependence following equations:

	
E E

RT

F
K1 2 1

2
/ , ln( )= ′° ( ) +OCA 2H OCAH [H ]+

2
+ 	 (6.46)

	
E E

RT

F
K K1 2 1 2

2
/ , ln( )= ′° ( ) +OCA 2H OCAH+

2 	 (6.47)

Extrapolation of the three linear segments (with theoretical slopes −2.303mRT/2F, where m is the 
number of protons involved in the reaction) to pH 0 yields the formal potential E°′(OCA,2H + /OCAH2), 
E°′(OCA,H+/OCAH−), and E°′(OCA/OCA2−), respectively. Collectively, this information can be 
used to construct a E versus pH (Pourbaix diagram) as shown in Figure 6.9. The vertical lines cor-
respond to the pKas of the diprotic OCAH2 acid.

The reader should note that the formal potential E°′ is pH invariant since the condition 
[H+] = 1 mol L−1 applies. However, half-wave potentials are strongly pH dependent, and these 
are quite often reported instead of standard or formal reduction potentials. Thus, in comparing 
with experiment, it is also important to examine the details of the experimental measurement to 
ascertain whether the calculation corresponds to the same quantity as the one reported.

Table 6.6
Calculateda Reduction Potentials in V and pKa Values

E°(OCA,2H + /OCAH2) 0.83 (0.79) [164]

E°(OCA,H + /OCAH−) 0.63 (0.67) [164]

E°(OCA/OCA2−) 0.41b

pK1 (5) [164]

pK2 9.2c

Experimental values, where available, are shown in parentheses.
a	 Calculations are based on the G3(MP2)-RAD(+) gas-phase energies with SMD solvation 

energies obtained at the B3LYP/6-31+G(d) level and ESHE of 4.28 V.
b	 Calculated from Equation 6.40 using the data in this table.
c	 Calculated using a proton-exchange method [34,35] using orthoquinone (expt pKa = 13.4) 

[165] as the reference.
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255Theoretical Calculation of Reduction Potentials

V.  Concluding Remarks

We have presented an introductory guide to carrying out QM continuum solvent prediction of solu-
tion-phase reduction potentials. We stress that reduction potentials are equilibrium thermochemical 
parameters. We discussed issues pertaining to thermochemical conventions for the electron, the 
choice of standard electrode, and the advantages and limitations of methods based on thermody-
namic cycles for calculating reduction potentials. Just as in experimental work, a key consider-
ation for predicting chemically accurate reduction potentials is the difficulty of obtaining accurate 
estimates of the solvation free energies of ionic species. Careful work often involves including (or 
expanding) a first solvation shell, particularly in solvents donating or accepting strong hydrogen 
bonds. Relative reduction potential calculations can partly remedy this problem by exploiting sys-
tematic error cancellation in the solvation calculations.
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