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1. Introduction

Processes involving nonradiative transitions between electronic states are
ubiquitous in chemistry — from spin-forbidden reactions in combustion to
light harvesting in solar cells — and they occur via a variety of elementary
chemical mechanisms, such as intersystem crossing, internal conversion,
and nonadiabatic electron transfer. The term “non-Born–Oppenheimer”
(NBO) may be generally applied to these processes to emphasize the idea
that the Born–Oppenheimer separation of the nuclear and electronic time
scales breaks down and that potential energy surfaces other than the
ground-electronic-state adiabatic potential energy surface play a role in
the dynamics. A detailed understanding of NBO coupling of adiabatic elec-
tronic states and of the potential energy surfaces associated with them and
the ability to predict the effect of this kind of coupling for real chemical
systems remain significant challenges to current theories.

One may begin to understand NBO dynamics1−6 in terms of features
of the coupled potential energy surfaces, and in the past we have made the
distinction between conical intersections (CIs) of adiabatic surfaces, avoided
crossings (ACs) of adiabatic surfaces, and weak interactions (WIs)7,8 of
adiabatic electronic states.

The CIs are (F − 2)-dimensional hyperseams of degenerate pairs of
potential energy surfaces9 where F is the number of internal nuclear degrees
of freedom, which is 3N − 6 for general polyatomics, where N is the
number of atoms. (Sometimes more than two surfaces intersect,3,10 but
this paragraph applies to the simplest case of two.) The surfaces form
a double cone4,11 in the two nondegenerate degrees of freedom, and the
CI provides an ultrafast decay route from the higher-energy state in the
coupled pair to the lower-energy one. The prominent role of conical inter-
sections in promoting such radiationless decay route was first emphasized
by Teller9; and it was later used for mechanistic explanations of photo-
chemical reactions.12−16 Until recently, though, the organic photochem-
ical literature usually associated these decay routes with avoided crossings
and regions where potential surfaces approach closely but do not actually
cross — such regions were called funnels or bifunnels, which are terms now
usually applied to CIs.17,18 However, the older arguments9,19 that lead to a
correct understanding of the dimensionality of avoided crossings also make
it clear that the conical intersections are much more common than fully
avoided crossings. Furthermore, since the crossings have a high dimension-
ality, the seam of crossings can extend over a wide range of geometries, and
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this can make the dynamics more complicated than that of a reaction domi-
nated by a localized saddle point region or other localized topographical
feature of a potential energy surfaces or set of potential energy surfaces.21

The picturesque funnel language emphasizes the shape of the crossing in
the two dimensions called the branching plane where the surfaces cross only
at a point, but in many cases greater significance should be attached to the
much larger number of dimensions in which the degeneracy is not broken.
A picture describing how some coordinates break the degeneracy but others
do not is an inverted cuspidal ridge rather than a funnel, or touching cusp-
idal ridges (an excited surface with ridge down and lower surface with ridge
up, with the surfaces touching all along the ridges) rather than a bifunnel
(a double cone, that is, a cone touching an inverted cone at a point).

The ACs are locations of nonzero minima in the energy gap as a function
of local motion and are almost always associated with nearby CIs,20,22,23

although those CIs may be energetically inaccessible. The most noteworthy
WIs are characterized by wide regions of weak coupling between nearly
parallel potential surfaces. Unlike CIs, there is no rule to prevent regions
of coupling due to ACs and WIs from occurring in dimensionalities higher
than F − 2. Although the edited volume in which this chapter appears
focuses on CIs and their NBO dynamics, it is important to recognize that
realistic potential energy surfaces featuring CIs contain chemically rele-
vant nearby regions of ACs and may also contain regions of significant
WIs. The methods presented in this chapter are general enough to treat all
these cases.

The presence of a CI is often inferred when ultrafast decay is observed
experimentally, and the CI is treated as a critical configuration connecting
photoexcited reactants to quenched products when constructing mecha-
nistic reaction coordinate diagrams of photochemistry. One can make a
rough analogy to a transition state, but the analogy is at best imperfect and
sometimes even deceptive because there are important differences between
a CI and an adiabatic transition state as well as differences in the ener-
getic accessibility of other critical regions of the potential energy surface in
typical non-BO processes as compared to the kind of reaction where transi-
tion state theory is most useful.21 Transition state dividing surfaces are of
dimension F−1, and valid transition state dividing surfaces are such that all
of the reactive flux must cross through them. Due to the reduced dimension-
ality of CIs, on the other hand, only a vanishingly small fraction of electron-
ically nonadiabatic flux passes through a CI at the zero-gap intersection.
Furthermore, quantitative studies of electronically nonadiabatic systems
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often require dynamical treatments that are more global than conventional
transition state theories, and modeling multistate dynamics occurring via
CIs is likely to require global dynamical methods as well. These consid-
erations have motivated the development of trajectory-based methods for
simulating NBO chemistry.

In NBO molecular dynamics, an ensemble of classical trajectories is used
to model nuclear motions, electronic motion is treated quantum mechan-
ically, and the nuclear and electronic subsystems are coupled according
to semiclassical rules. Each trajectory in the ensemble may be thought
of as representing a portion of a quantum mechanical wave packet, and
taken together the evolution of the ensemble describes the flow of nuclear
probability density over the coupled electronic surfaces. Alternatively, each
trajectory in the ensemble may be thought of as a distinct chemical event,
with its coordinates and momenta subject to the inherent indeterminacy of
quantum mechanics.

NBO molecular dynamics is vulnerable to the same sources of error as
conventional molecular dynamics, such as the errors associated with the
neglect of tunneling through barriers, neglect of quantized vibrations and
zero point energies, and neglect of coherences and resonances. NBO molec-
ular dynamics is designed to incorporate one quantum mechanical effect
into classical dynamics, namely that of the nonradiative electronic transi-
tions. Accurate treatments of this quantum effect require consideration of
tunneling and electronic coherence as well.

A variety of NBO molecular dynamics methods have been proposed.
Here we discuss NBO molecular dynamics generally and focus our atten-
tion on two implementations: the fewest-switches with time uncertainty24

(FSTU) surface hopping25−27 method and the coherent switches with
decay of mixing28 (CSDM) method, a modification of the mean-field29−31

formalism. The computational cost of these methods is close to that of
conventional (i.e. electronically adiabatic) molecular dynamics, and the
methods may be readily applied to study a wide variety of chemical
processes in both small molecules and large ones.

The dynamics of each trajectory in an FSTU or CSDM ensemble is inde-
pendent of the others, and transitions between electronic states are allowed
anywhere that the electronic surfaces are coupled. Other classes of semiclas-
sical NBO dynamics methods, such as those involving propagating coupled
swarms of trajectories,32−34 restricting hops to predetermined seams,25,26,35

dressing classical trajectories with frozen Gaussians,36−40 etc., are not
considered in detail, nor are fully quantal calculations.41−45
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The goal of this chapter is to describe in detail the latest implementa-
tions of the FSTU and CSDM methods, summarize the results of the tests
used to validate and develop the methods, and describe several recent appli-
cations. Trajectory-based methods such as FSTU and CSDM are well suited
for mechanistic interpretation, and a brief discussion of this application is
also given.

2. Non-Born–Oppenheimer Molecular Dynamics

2.1. Coupled potential energy surfaces

In the NBO molecular dynamics simulations described here, an ensemble
of independent classical trajectories for nuclear motion is propagated under
the influence of a small number of coupled electronic states. The electronic
energies (including nuclear repulsion) of each electronic state i provide a
potential energy surface Vi for nuclear motion. When representing coupled
electronic surfaces, one has a choice of electronic wave functions. The adia-
batic electronic wave functions ϕi and energies Vi (where i labels the elec-
tronic states) are solutions of the electronic Schrödinger equation

H0ϕi = Viϕi, (1)

where H0 contains the electronic kinetic energy and the Coulomb potential
operators. When solving Eq. (1), the nuclear coordinates Q are treated
parametrically, and Vi(Q) are the adiabatic potential energy surfaces.

The nuclear kinetic energy operator is written as

Tn = − �
2

2M
∇2

n, (2)

where ∇n is a 3N -dimensional gradient in the nuclear coordinates Q, which
are scaled to common reduced mass M (for example, M could be 1 amu).
The total wave function of the system is written

Ψ =
∑

i

ϕi(q;Q) χi(Q), (3)

where q is the collection of electronic coordinates, and χi is a wave function
for nuclear motion.

If Eq. (3) is used to solve the full molecular Schrödinger equation with
the Hamiltonian H = Tn+H0, and if one neglects vibronic Coriolis coupling,
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one obtains a set of coupled equations for the nuclear motion1,4,46

(
Tn + Vi − �

2

2M
Gii − E

)
χi = −

∑
j �=i

(
�

2

2M
Fij · ∇n +

�
2

2M
Gij

)
χj , (4)

where Gii = 〈ϕi | ∇2
n |ϕi〉 are Born–Oppenheimer diagonal corrections

(BODCs),47−50 Fij = 〈ϕi | ∇n |ϕj〉 are nonadiabatic coupling vectors,
Gij = 〈ϕi | ∇2

n |ϕj〉 are 2nd-order nonadiabatic couplings, and Dirac
brackets denote integration over the electronic variables. Although they
are not necessarily negligible, Gii and Gij are often neglected, which is
considered a semiclassical approximation, and this yields

(Tn + Vi − E)χi = −
∑
j �=i

�
2

2M
Fij · ∇n χj . (5)

Equation (5) is interpreted as coupling nuclear motion on the adiabatic
surfaces Vi via the action of the nonadiabatic coupling vectors Fij .

Diabatic electronic wave functions may be generally defined as any linear
combination of the adiabatic ones,51,52

ϕd
j =

∑
i

dijϕi, (6)

that, unlike the adiabatic states, do not diagonalize H0. Note that the dij

are typically functions of Q. The particular linear combination is often
chosen such that the resulting diabatic potential energy surfaces

Wii = 〈ϕd
i |E0 |ϕd

i 〉 (7)

or diabatic states have some desirable property, such as smoothness. One
may attempt to obtain to define a diabatic basis by minimizing the nona-
diabatic coupling vectors; and the electronic basis where

Fd
ij ≡ 〈ϕd

i | ∇n |ϕd
j 〉 = 0 (8)

for all i and j is called the strictly diabatic basis. For real systems, no such
strictly diabatic basis generally exists unless an infinite number of electronic
states are considered.53 The most useful diabatic states are those for which
Fd

ij is small enough to neglect and where the infinities in Fij associated
with conical intersections have been transformed away. Such useful diabatic
representations can be defined with manageable numbers of electronic states
(even with only two). In the discussion that follows, we use “diabatic” both
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to refer to the artificial situation where Eq. (8) is satisfied and also to refer
to the more general situation where Fd

ij is small and is neglected.
Some workers (including us at times) define the nonexistent set of

diabatic states for which Fd
ij vanishes identically as “strictly diabatic” and

define the states where Fd
ij is small or negligible as “quasidiabatic”. Here,

as just mentioned, we use a simpler notation, which is also in common use,
of just calling all such states “diabatic”. One should not think of “diabatic”
as a synonym for “not adiabatic”; one could have states that are neither
adiabatic nor diabatic. Such representations will be called “mixed”.

Diabatic electronic wave functions are not eigenfunctions of H0, and in
general

Wij = 〈ϕd
i |H0 |ϕd

j 〉 �= 0 (9)

for i �= j. If we write

Ψ =
∑

i

ϕd
i (q; Q)χi(Q), (10)

then the equation governing nuclear motion in the diabatic representation is

(Tn + Wii − E)χi =
∑
j �=i

Wij χj , (11)

where the off-diagonal matrix elements of the electronic Hamiltonian Wij

couple the nuclear motion on the diabatic surfaces Wij , and we have taken
advantage of the assumed negligibility of Fd

ij .
It is straightforward to employ a general electronic basis, where Fd

ij is
not neglected and where Wij �= 0. This so-called mixed representation will
not be explicitly considered, though the equations governing NBO dynamics
in a mixed representation are straightforward extensions of the adiabatic
and diabatic ones.

Adiabatic energies and couplings are readily calculated from the diabatic
potential energy matrix elements Wij and their gradients. The adiabatic
energies Vi are the eigenvalues of the diabatic energy matrix W, and the
variables dij introduced already in Eq. (6) are the elements of a matrix
whose columns are the eigenvectors of W. The gradients of the adiabatic
surfaces and the nonadiabatic couplings are

∇nVi =
∑
j,k

d∗ijdik∇nWjk, (12)
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Fij =




1
Vj − Vi

∑
k,l

d∗ikdjl∇nWkl (i �= j)

0 (i = j).
(13)

On the other hand, if one knows the adiabatic energies and couplings,
one may obtain diabatic energies and couplings, but due to the non-
uniqueness of the diabatic representation, additional choices and approx-
imations will be needed.54,55 Procedures have also been developed for
obtaining diabatic states without calculating the nonadiabatic coupling
vectors.56−60

Spin-orbit coupling and other perturbative terms in the molecular
Hamiltonian have not yet been considered. These terms may be readily
treated using the dynamical methods to be described here, with one
principal complexity being the need for a more complicated notation.
When spin-orbit coupling is the dominant dynamical coupling and spin-
free coupling is to be neglected, the adiabatic surfaces discussed above
(which diagonalize the spin-free Hamiltonian H0 and may be called valence-
adiabatic states61) are often a convenient diabatic basis for the full Hamilto-
nian, e.g. a useful diabatic matrix for a spin-orbit-coupled two-state system
might be (

V1 USO

USO V2

)
, (14)

where USO is the spin orbit coupling. The eigenvalues of Eq. (14) are
the adiabatic potential energy surfaces for the full Hamiltonian including
spin. It is equally straightforward to include both spin-free and spin-orbit
coupling, as in a recent application to the photodissociation of HBr.62

Throughout the rest of this chapter, it is assumed that global poten-
tial energy surfaces and their gradients and couplings are available or may
be readily calculated for all the electronic states of interest in either the
diabatic or the adiabatic representations.

2.2. Efficient integration of NBO trajectories

An NBO trajectory evolves independently from the other trajectories in
the ensemble and according to classical equations of motion

Ṗ = −∇nV̄ (Q), (15)

Q̇ = P/M, (16)
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where P is the vector of associated mass-scaled nuclear momenta, and the
over-dot indicates time-differentiation. The time-dependence of Q defines a
path through configuration space, and when V̄ is the ground state adiabatic
potential energy surface, Q(t) is a conventional classical trajectory. More
general formulations of V̄ are required to accurately model NBO nuclear-
electronic coupling, as will be described in detail in Secs. 3 and 4 for the
FSTU and CSDM methods.

The electronic state of the system at any time along an NBO trajec-
tory may be represented as an electronic state density matrix with elements
ρij where the diagonal elements ρii are the electronic populations of states
i and the off-diagonal elements ρij are coherences. The time evolution of
the electronic density matrix ρij is obtained by solving semiclassical equa-
tions along each NBO trajectory; this is sometimes called the classical path
approximation. This approach is equivalent to solving for the quantum
dynamics of the electronic subsystem in a time-dependent field, which in
the present context is created by the nuclear motion. The electronic wave
function may be expanded in the adiabatic basis

Φ =
∑

i

ciϕi, (17)

where ci = ai + ibi are complex time-dependent expansion coefficients, and
the electronic density matrix is defined by

ρij = c∗i cj . (18)

The evolution in time of Φ is obtained in this section by solving the time-
dependent electronic Schrödinger equation

i�
∂

∂t
Φ = H0Φ, (19)

giving the classical path equation:

ċi = −i�−1ciVi −
∑

j

cjQ̇ · Fij , (20)

or, for the real and imaginary parts of ci,

ȧi = �
−1biVi −

∑
j

ajQ̇ ·Fij , (21)

ḃi = −�
−1aiVi −

∑
j

bjQ̇ · Fij , (22)
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where ϕ̇i was evaluated using the “chain rule”63

ϕ̇i = Q̇ · ∇nϕi, (23)

which is a semiclassical approximation. If a diabatic basis is used,

Φ =
∑

i

cd
i ϕ

d
i , (24)

and

ċd
i = −i�−1

∑
j

cd
jWij . (25)

or

ȧd
i = �

−1
∑

j

bd
jWij , (26)

ḃd
i = −�

−1
∑

j

ad
jWij . (27)

The time-dependence in Eqs. (20) and (25) contains an arbitrary phase
factor that spins rapidly due to the action of Vi or Wii on ċi or ċd

i . This
phase is readily analytically removed to simplify integration of the electronic
variables by writing

ci = c̃i exp(−iθi), (28)

where

θi =
∫

Vidt, (29)

or

cd
i = c̃d

i exp(−iθd
i ) (30)

and

θd
i =

∫
W d

iidt. (31)

These substitutions give

˙̃ai = −
∑
j �=i

[cos(θj − θi)ãj + sin(θj − θi)b̃j ]Q̇ · Fij , (32)

˙̃bi = −
∑
j �=i

[cos(θj − θi)b̃j − sin(θj − θi)ãj ]Q̇ · Fij , (33)
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and

˙̃ad
i = −

∑
j �=i

[sin(θd
j − θd

i )ãd
j − cos(θd

j − θd
i )b̃d

j ]Wij , (34)

˙̃
bd
i = −

∑
j �=i

[sin(θd
j − θd

i )b̃d
j + cos(θd

j − θd
i )ãd

j ]Wij . (35)

Equation (20) neglects vibronic Coriolis coupling, which is discussed
elsewhere.3 In addition, it neglects electronic angular momentum.

It is straightforward to write equations for the time-dependence of the
elements of the electronic density matrix by differentiating Eq. (18) and
using Eqs. (20) or (25):

ρ̇ij = i�−1(ρiiVii − ρjjVjj) +
∑

k

ρikQ̇ ·Fik − ρkjQ̇ ·Fkj , (36)

ρ̇d
ij = −i�−1

∑
k

ρd
ikWik − ρd

kjWkj . (37)

The off-diagonal elements of ρii are complex, and the real and imaginary
parts must be integrated separately. The equations for the (real) electronic
state populations may be further simplified

ρ̇ii = −2
∑
j �=i

Re(ρijQ̇ · Fik), (38)

ρ̇d
ii = 2�

−1
∑
j �=i

Im(ρd
ijWik). (39)

Quantum mechanical calculations without dynamical approximations
and some NBO molecular dynamics methods are independent of the choice
of electronic representation if no coupling terms are neglected. In general
though, NBO simulations will be dependent on the choice of electronic
representation, and both representations will be considered when the FSTU
and CSDM methods are described in Secs. 3 and 4. Propagating an NBO
trajectory for a system with N electronic states requires integrating the
nuclear equations of motion [Eqs. (15) and (16)], as well as either the 2N

real and imaginary parts of the adiabatic or diabatic electronic coefficients
ci [Eqs. (32) and (33) or (34) and (35)] and the N phases [Eqs. (29) or (31)]
or the N2 unique real and imaginary elements of the adiabatic or diabatic
electronic density matrix ρij [Eqs. (36) and (38) or (37) and (39)].

Although Eqs. (5) and (11) coupled to Eq. (20), (25), (36), or (37) are
derived from the accurate Eqs. (4) and (19), the process of treating the
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nuclear equations of motion classically means that the quantum electronic
subsystem is no longer explicitly coupled to a quantum mechanical environ-
ment. It is not correct to treat the electronic subsystem by eq 19 because
it is not an isolated system; Eq. (19) is valid only for isolated systems. For
subsystems coupled to a medium or environment, one must replace the time-
dependent Schrödinger equation [Eq. (19)] by a nonunitary Liouville–von
Neumann equation.64−66 Here the system consists of the electronic degrees
of freedom, and the medium consists of the nuclear degrees of freedom;
the “nuclear degrees of freedom play the role of observers of the electronic
degrees of freedom.”66 The effects of the medium may be broadly described
as decoherence.65−70 The effect of decoherence will be treated by a simple
model71 in Sec. 3 and by a more complete model8,28,65 in Sec. 4.

2.3. Initial conditions for photochemistry

The ensemble of NBO trajectories is initiated with some distribution in
coordinate and momentum space that is intended to simulate the width (or
uncertainty) of a quantum mechanical wave packet or of a single-energy slice
through a wave packet. The type of reaction and/or experimental situation
being modeled determines the specific prescription for the selection of the
initial conditions for each trajectory in the ensemble, and the techniques
developed for single surface reaction dynamics72−75 can be applied with
minor modifications.

In one typical experimental situation, a chemical system is photoex-
cited from a well-characterized vibrational state of the ground electronic
state to some excited target electronic state. A rigorous sampling scheme
might involve calculating absorption cross sections76,77 for the transitions
of interest and sampling from the resulting distribution of quantized vibra-
tional states of the excited electronic state or states. For systems with more
than a few atoms the approximate methods used to calculate the ground
state and excited state energy levels and the photoabsoprtion cross sections
are likely to have significant uncertainty and/or computational cost.

A more efficient strategy for modeling this experimental situation and
one that is likely suitable for NBO molecular dynamics of complex systems
is as follows. One selects the initial nuclear coordinates and momenta from
the ground-state wave function of interest using quasiclassical73,74 initial
conditions and then instantaneously promotes the trajectory to the target
excited state. This scheme is equivalent to the Franck principle78 (the semi-
classical analog of the Franck–Condon principle); and it corresponds to
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exciting the sampled ground state wave function with “white light” that
will generally result in an ensemble of trajectories with a relatively wide
range of total energies.

An alternative to using quasiclassical initial conditions is to run a clas-
sical trajectory (often called molecular dynamics) on the ground-electronic
state adiabatic surface and sample from that trajectory. This is done by
several groups. One should note, however, that a purely classical trajectory
does not retain the quantum distribution of zero point energy or thermal or
state-specific vibrational excitation energy in the various vibrational modes,
except in the limit of vanishingly small vibrational motion. Therefore the
quasiclassical initial conditions are preferred.

If the NBO dynamics are expected to be sensitive to energetic thresh-
olds, it may be more appropriate to restrict the range of total energies. An
alternative approach is to excite only that slice of the ground-state ensemble
with energy gaps between the ground and target electronic states equal to
the simulated photon energy within some tolerance. This scheme produces
an arbitrarily narrow range of total energies, but it also limits the sampled
configuration space.

When the initial conditions are selected from distributions associated
with uncoupled regions of the potential energy surfaces, the electronic ener-
gies are independent of the choice of electronic representation and the initial
electronic state may be assigned unambiguously. However, if an NBO simu-
lation starts in a region where the initial electronic state is coupled to other
electronic states, one has to choose both the initial electronic representa-
tion and the initial electronic state distribution. For example, it may be
appropriate to compute initial distributions in the adiabatic representa-
tion. If the simulation is to be carried out in the diabatic representation,
the initial adiabatic state i can be projected onto the diabatic states, with
the initial diabatic state j selected with the weights d2

ij obtained from the
adiabatic-to-diabatic transformation.

Although quasiclassical initial conditions are quite reasonable for
modeling excited vibrational states, they are qualitatively incorrect for
ground vibrational states.79 Thus one reasonable strategy80 for photodis-
sociation is to use Wigner distributions77 for vibrational modes with vibra-
tional quantum number 0 and quasiclassical distributions for vibrational
modes with quantum number greater than 0. Wigner distributions may
also be more accurate than quasiclassical initial conditions for bimolecular
collisions,81,82 but they are only accurate for a short time,83 and their higher
quantum fidelity may be lost by the time the collision partners meet.
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3. Fewest Switches with Time Uncertainty

The dynamics methods presented here may be applied in either an
adiabatic or a diabatic representation. The results of accurate quantum
mechanical calculations and some NBO molecular dynamics calcula-
tions are independent of the choice of electronic representation. In
general, however, as already mentioned in Sec. 2.2, surface hopping and
decay of mixing NBO molecular dynamics simulations carried out using
the adiabatic representation will produce different results from those
employing diabatic representations. When the equations governing the
NBO molecular dynamics methods depend on the choice of electronic
representation, two equations will be given with the equation numbers
appended with “a” and “d” for the adiabatic and diabatic representations,
respectively.

Trajectory surface hopping was first employed by Bjerre and Nikitin.25

Shortly thereafter it was presented in more generality by Preston and
Tully.26 The generalization to allow hopping at any location was first turned
into a general algorithm by Blais and Truhlar,27 as discussed in the excellent
review of Chapman.84 Then Tully improved this procedure by introducing
the fewest switches algorithm.63 The method we will present below differs
from the original fewest switches algorithm in three ways: (i) the introduc-
tion of time uncertainty,24 leading to the FSTU method, (ii) the use of a
grad V algorithm,85 and (iii) the introduction of stochastic decay71,86 (SD).
The SD modification in the FSTU/SD method is similar to the method
recently employed by Granucci and Persico.70 These three enhancements
to the method are explained in detail below.

In a surface hopping simulation, such as an FSTU simulation, trajec-
tories are propagated under the influence of a single adiabatic or diabatic
electronic surface which, for electronic state K, is given by

V̄ = VK , (40a)

V̄ = WKK , (40d)

but this propagation is interrupted by instantaneous surface switches,
i.e. the state label K in Eq. (40), which denotes the currently occupied
electronic state, changes at certain points along the trajectory. A change in
K is called a surface hop, and at a hopping event the trajectory is instan-
taneously placed on a different potential energy surface. In general, the
potential energy V̄ will change discontinuously at a surface hop, and the
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kinetic energy is adjusted such that total energy and total nuclear angular
momentum are conserved. (Electronic angular momentum is neglected.)
The nuclear momenta after the hop P′ from surface K to surface K ′ are
given by

P′ = P − P · ĥKK′(1 −
√

1 − ∆KK′/TKK′)ĥKK′ , (41)

where ĥKK′ is a unit vector called the hopping vector,

∆KK′ = VK′ − VK , (42a)

∆KK′ = WK′K′ − WKK , (42d)

and

TKK′ =
1

2M
(P · ĥKK′)2 (43)

is the nuclear kinetic energy associated with ĥKK′ . The hopping vector
determines the component of the nuclear momentum that is adjusted during
a hop, and theoretical arguments26,87 confirmed by numerical tests42 show
that a good choice is

ĥKK′ = FKK′/|FKK′ |. (44a)

Because FKK′ is a vector of internal coordinates, the adjustment in Eq. (41)
with the choice of Eq. (44a) conserves total angular momentum.

Using the nonadiabatic coupling vector as the hopping vector has been
shown to provide accurate results for surface hopping calculations carried
out in both the adiabatic and diabatic representations.42 If the diabatic
representation is used, FKK′ can be calculated directly from Eq. (13) for
a two-state system. When more than two states are involved, FKK′ should
not be used because the adiabatic and diabatic state labels do not generally
correlate to a globally consistent pair of states. Instead, the hopping vector
in the diabatic representation can be approximated as

ĥKK′ = Fr
KK′/|Fr

KK′ |, (44d)

where Fr
KK′ is the reduced nonadiabatic coupling for the submatrix

Wr =

(
WKK WKK′

WK′K WK′K′

)
, (45)
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i.e.,

Fr
KK′

=
dr,∗

KKdr
K′K∇nWKK + (dr,∗

KKdr
K′K′ + dr,∗

KK′d
r
K′K)∇nWKK′ + dr,∗

KK′d
r
K′K′∇nWK′K′

W+ − W−
,

(46)

and W+ and W− are the eigenvalues, and dr
KK′ are the elements of matrices

whose columns are the eigenvectors of Wr defined by Eq. (45).
Equation (41) cannot be solved if the radicand is negative, i.e. if the

kinetic energy associated with the hopping vector is less than the required
energy adjustment and the hop is an upward hop. (For downward hops,
∆KK′ < 0 and Eq. (41) can always be solved.) When ∆KK′ > TKK′ , the
hop is declared “frustrated”, and additional considerations are required, as
discussed in detail below.

In early examples of trajectory surface hopping, hops were allowed only
when a trajectory crossed a seam where WKK crosses another diabatic
surface,25,26 but in later work27,63 this was generalized so that stochastic
hopping events may occur after each integration step ∆t and anywhere
along the trajectory where the currently occupied surface is coupled to one
or more other surfaces. Tully provided an elegant and useful formulation63

for the probability for hopping from the currently occupied electronic state
K to some other state K ′

PKK′(t + ∆t) = max


−

∫ t+∆t

t′=t

dt′bKK′(t′)/ρKK(t)

0
, (47)

where

bKK′ = −2Re(ρKK′Q̇ ·FKK′), (48a)

bKK′ = 2�
−1Im(ρd

KK′WKK′). (48d)

Equation (47) is the relative rate of change of the electronic population
of state K due to coupling to the state K ′. Hops away from state K are
allowed only if ρKK is decreasing, and Eq. (47) is designed to maintain the
populations of trajectories in each electronic state ni according to ρii with
the fewest number of hops. (The self consistency of ni and ρii is generally not
maintained, as discussed below.) Equation (47) is called the fewest switches
(FS) hopping probability, and this scheme is also called molecular dynamics
with quantum transitions (MDQT), which can be confusing because it is
not the only scheme for molecular dynamics with quantum transitions.
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The quantity BKK′(t) =
∫ t

t′=0
bKK′(t′)dt′ can be integrated along with

the nuclear and electronic variables, such that the hopping probability at
time t + ∆t may be evaluated as

PKK′(t + ∆t) = max

{
[BKK′(t + ∆t) − BKK′(t)] /ρKK(t)

0
. (49)

Because surface hops are only allowed between time steps, and because
hopping and nonhopping trajectories diverge from one another, the results
of a surface hopping simulation must be converged with respect to the
available hopping locations. Often, quite small step sizes are required when
the electronic populations are changing rapidly, whereas larger step sizes
(ultimately limited by the accuracy of the integration of the nuclear coordi-
nates) may be used when propagating through uncoupled regions of poten-
tial surface. This situation benefits from variable-step-size integrators.

It may be difficult to converge the available hopping locations when
using efficient adaptive-step-size integrators, as the integrator may step
through regions where ρKK′ changes sign. Consider an example where a
large step ∆t is taken through a region where ρKK is locally quadratic
and where ρKK(t) = ρKK(t + ∆t). The FS hopping probability for this
step is 0, whereas if two steps of size ∆t/2 are taken, the hopping proba-
bility will be finite for one of the steps. Many variable step size integrators
can integrate quadratic functions exactly, and this example is of practical
concern. A simple modification42 provides a solution. Specifically, if the
increasing

b+
KK′ = max(bKK′ , 0) (50)

and decreasing

b−KK′ = min(bKK′ , 0) (51)

parts of bKK′ are integrated separately, the integrator is made to take small
steps where bKK′ changes sign and where b+

KK′ and b−KK′ have discontinuous
derivatives.

As mentioned above, the FS hopping probability attempts to populate
the various electronic states with trajectories such that the fractions of
trajectories in each electronic state ni ≈ ρii (with the accuracy limited by
the finite number of trajectories that are sampled). This self consistency is
maintained only when trajectories in the various electronic states do not
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diverge from one another, i.e. when the potential surfaces are degenerate.
For real potential energy surfaces, trajectories in different electronic states
diverge, and self consistency is not preserved, although it may be main-
tained in an ensemble averaged sense, i.e. ni ≈ 〈ρii〉, where the brackets
denote an average over the members of the ensemble of trajectories. When
classically forbidden hops occur, only upward hops can be frustrated, and
self consistency cannot be maintained.88,89

One may distinguish two sources of frustrated hops in trajectory simu-
lations. First, the FS algorithm may be incomplete in some way that is
causing it to predict finite hopping probabilities where hops should not
be allowed. This argument is strengthened by studies showing that accu-
rate results may sometimes be obtained when frustrated hops are simply
ignored.90 As pointed out in the original formulation63 and further devel-
oped in later work,28,65−71,91,92 one deficiency of the original FS method
and other methods based on classical path electronic dynamics is that deco-
herence is not treated. (We will see below that including decoherence may
reduce the number of frustrated hops by reducing unphysical amplitudes
for unoccupied states in regions when such states are no longer strongly
coupled.) Another possibility is that the FS method is correctly predicting
energetically forbidden surface hops, but the hops are frustrated due to
the limitations of classical mechanics. In this picture, a frustrated hop is a
quantum mechanical attempt to tunnel into a classically forbidden region
of an excited electronic state. Several improvements to the FS method
based on both of the latter two considerations have been developed and
are discussed in the remainder of this section.

One suggestion that was made for eliminating frustrated hops is to use
modified velocities for the integration of the quantum amplitudes.88,92 We
do not employ this because comparison to accurate quantum dynamics
shows89 that it decreases the accuracy as compared to using the original
unmodified velocities.

The first improvement to the FS method that we discuss is a simple
modification designed to incorporate decoherence.71 Prior to the first
surface hop, the electronic variables are assumed to correctly evolve coher-
ently along the trajectory according to the classical path equations. At a
surface hop or an attempted surface hop, the system is imagined to split
into two wave packets, one traveling on each of the surfaces involved in the
surface hop. The system immediately begins to decohere with a first-order
rate coefficient τ−1

SD obtained by considering the short time evolution of
the overlap of two one-dimensional wave packets traveling in the different
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electronic states93

τ−1
SD =

π

2
∆fKK′

p̄KK′
+

√(
∆pKK′

h

)2 ∆KK′

M
+
(

π∆fKK′

2p̄KK′

)2

, (52)

where

fKK′ = −∇n(VK − VK′) · ĥKK′ (53)

is the difference in the forces of the two electronic states in the direction of
the hopping vector,

∆pKK′ = (P − P′) · ĥKK′ (54)

is the difference in the nuclear momenta before and after the surface hop
in the direction of the hopping vector, and

p̄KK′ =
1
2
(P + P′) · ĥKK′ . (55)

If the decoherence event is initiated at a frustrated hop, P′ cannot be
calculated and is set to zero in Eqs. (54) and (55).

At each time step (of step size ∆t) after the frustrated or successful hop,
a stochastic decoherence (SD) probability is computed

PSD(∆t) = exp(−∆t/τSD), (56)

and PSD is compared to a random number between 0 and 1. If the SD check
is successful, the electronic state density matrix is reset to

ρij =

{
1 for i, j = K,

0 otherwise,
(57)

where K is the currently occupied electronic state. After reinitializa-
tion, the electronic state populations evolve according to the coherent
classical path equations. If a frustrated or successful hop occurs before
decoherence is called for, τSD is updated and decoherence checks are
continued.

The SD algorithm damps out coherence after some physically motivated
time, which reduces the likelihood of the FS algorithm calling for surface
hops in regions of weak coupling that are encountered between regions
of strong coupling. This has the practical and intended physical effect of
reducing frustrated hops in regions where the potential energy surfaces have
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different energies and/or shapes; decoherence is expected to be fast in such
regions.

The next improvement to the FS method incorporates time-uncertainty
(TU) hopping,24 which simulates tunneling into classically forbidden
regions of excited electronic states. Inspired by the time-energy version
of the uncertainty principle, a frustrated hop occurring at some time tf
is allowed to hop at the nearest time th along the trajectory where a hop
would be energetically allowed (if such a time exists) but only if

|tf − th| ≤ �/2Edef , (58)

where

Edef = ∆KK′(tf ) − TKK′(tf ) (59)

is the energy deficiency by which the attempted hop is frustrated. In this
way, a TU hop may be thought of as allowing the trajectory to borrow an
energy of Edef for some short time according to the uncertainty principle as
it hops into the excited state. The FS method with TU hops was shown to
significantly improve the accuracy of the surface hopping method for some
systems, especially those with weakly coupled electronic surfaces.24

The FSTU method and the SD algorithm do not eliminate all frustrated
hops. The remaining frustrated hops [i.e. those where a th satisfying Eq. (58)
cannot be found] are attributed to the breakdown of the independent-
trajectory approximation and are treated using the “grad V ” prescription.85

In the method, a frustrated trajectory instantaneously receives an impulse
from the classically forbidden electronic state based on its gradient in the
direction of the hopping vector. Specifically, at a frustrated hop that cannot
be remedied by the TU method, the components of the nuclear momentum
and force in the target electronic state in the direction of ĥKK′ are calcu-
lated by

pK′ = P · ĥKK′ , (60)

fK′ = −∇nVK′ · ĥKK′ , (61a)

fK′ = −∇nWK′K′ · ĥKK′ . (61d)

If pK′ and fK′ have the same sign, the influence of the target electronic state
is to accelerate the trajectory, and we choose to continue the trajectory in
the currently occupied electronic state without making any adjustments
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to the nuclear momenta. If pK′ and fK′ have different signs, the target
electronic state is thought to “reflect” the trajectory, and we choose to
continue the trajectory in the currently occupied electronic state with the
nuclear momentum reversed in the direction of ĥKK′ , i.e.

P′′ = P − 2P · ĥKK′ ĥKK′ . (62)

If the probability of an electronically inelastic event is very small because
the probability of a hop is very small, e.g. 10−6, it would typically require
very extensive sampling to observe even one inelastic event and even more
sampling to accumulate good statistics. For such cases special methods of
rare-event sampling have been developed.94

It is interesting to examine the question of whether surface hopping
methods can be improved by replacing the trajectories with wave packets.
In principle the answer is yes, but so far no generally affordable method
for doing so has been devised. The most widely employed method involving
wave packets for photochemical calculations is the full multiple spawning
(FMS) method.36−39 The assumptions underlying this method have been
examined in detail.37 It was stated37 that the basis set expansion method
underlying FMS “is aimed only at describing quantum mechanical effects
associated with electronic nonadiabaticity and not at correcting the under-
lying classical dynamics.” One of many serious approximations in replacing
an ensemble of trajectories with an ensemble of wave packets is that the
wave packets must be coupled. In FMS, in order to keep the method
practical, interference between the various initial wave packets that are
required95 to simulate the initial quantum state is neglected; this serious
approximation is called the independent-first-generation approximation.37

One of the features that makes trajectory calculations affordable for
complex systems is that an enamble of trajectories can be run indepen-
dently of each other, without introducing approximations to accurate clas-
sical mechanics. In contrast, running wave packets independently is a serious
approximation that is not overcome by spawning more packets or spawning
them in a more physical way. Furthermore, FMS does not include deco-
herence in the treatment of electronic nonadiabaticity (it uses a unitary
treatment of the electronic degrees of freedom, not a nonunitary one65 as
in the CSDM method discussed in the next section). Thus FMS is expected
to have about the same accuracy as surface hopping without decoherence,
which is consistent with our numerical tests.

Efforts to derive improved wave packet methods are underway in more
than one group.40,96 The reader is also referred to the multiconfiguration
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time-dependent Hartree method,43−45 which is a variational time-
dependent wave function expansion method designed to achieve converged
quantum dynamics in an efficient way; it has had outstanding success
for small enough systems and systems with particularly amenable
Hamiltonians.

4. Coherent Switches with Decay of Mixing

One major deficiency of the FSTU method and of surface hopping methods
in general is that the results of the NBO simulation may depend strongly on
the choice of electronic representation, that is, adiabatic, diabatic, or mixed.
Here we consider an alternative approach to NBO molecular dynamics
based on a mean-field approximation. In its simplest form, the mean-
field approximation under consideration here29−31 is called the semiclas-
sical Ehrenfest or SE approximation. It defines the semiclassical potential
energy as a weighted average of the potential energy surfaces

V̄ ≡ 〈Φ |H0 |Φ〉
=
∑

i

ρiiVii (63a)

=
∑
i,j

Re(ρd
ij)Wij . (63d)

Note that the gradient of the diabatic mean field energy is straightforward

∇V̄ =
∑
i,j

ρd
ij∇Wij , (64d)

whereas the gradient of the adiabatic mean field energy is

∇V̄ =
∑

i

ρii∇Vi + 2
∑
i�=j

Re(ρij)ViFij , (64a)

with the second term on the right hand side arising semiclassically from
the action of the nuclear gradient on ρij .97 More rigorous derivations of
the equations governing mean-field motion in the adiabatic representation
equivalent to Eq. (64a) have been given.29 SE trajectories are independent
of the choice of electronic representation.

In the SE model, trajectories propagating through regions of coupling
are governed by an effective potential energy surface that is evolving as an
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appropriately weighted average of the coupled potential energy surfaces.
Although this situation may be an accurate description of coupled-states
semiclassical motion, a severe deficiency of the approach is that the trajec-
tory remains in a coherent mixed state after the system leaves the region
of coupling. This causes the SE method to predict molecular products to
be in coherent superpositions of electronic states, which do not correspond
to quantum mechanical or experimentally measured final states. Another
less obvious but equally troubling consequence of fully coherent SE prop-
agation is that the system does not “reset” electronically between regions
of coupling, which may introduce errors into the dynamics.91,92 Finally,
SE trajectories are not able to explore some processes occurring with
small probabilities, as the potential felt by an SE trajectory will be deter-
mined mainly by the potential energy surface associated with the higher-
probability event.

The CSDM method28 is a modification of the SE method designed to
introduce decoherence outside regions of strong coupling, such that the
predicted molecular products are formed in quantized final electronic states.
As mentioned in Sec. 2.2, decoherence in the electronic equations of motion
may be thought of as arising from the nuclear degrees of freedom acting as
a bath, and the bath relaxes the electronic density matrix. An important
feature of CSDM trajectories is that they behave similarly to SE trajecto-
ries in strong coupling regions, thus preserving much of the representation
independence of the SE method.

The decay-of-mixing (DM) formalism collapses a coherent mixed state
density matrix to a quantized pure state smoothly over time, and it includes
both dephasing

ρij → 0 (i �= j) (65)

and demixing

ρii → δiK , (66)

where δiK is the Kronecker delta, and K labels the target decoherent state
toward which the system is collapsing. The target decoherent state label
K may change over time, as discussed below. When the electronic density
matrix collapses to a quantized electronic state, the semiclassical potential
energy surface [Eq. (63)] collapses to a pure one, thus providing realistic
product internal energy distributions that may be compared with experi-
mental and quantum mechanical ones.
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Note that dephasing (as it is defined here as the damping of the off-
diagonal elements of ρij) is a physical effect, whereas demixing is a semi-
classical choice. Dephasing and demixing are assumed to occur at the same
rate τ−1

iK , where

τiK =
�

|∆iK |
(

1 +
E0

(P · ŝi)2/2M

)
, (67)

where each state i other than K has its own decoherence time τiK , E0 is a
parameter typically chosen to be 0.1 Eh = 2.72 eV, and ŝi is a unit vector
called the decoherence vector. The decay time in Eq. (67) has a different
functional form than the one used previously for the SD method [Eq. (52)]
due to algorithmic requirements of the DM method. Equations (52) and
(67) are expected to have similar magnitudes.93 Alternatives to Eq. (67)
have also been explored for CSDM calculations, and the results are not
overly sensitive to the functional form.98

Decoherence and demixing are introduced into the NBO molec-
ular dynamics by modifying the classical path electronic equations of
motion,28,67

ċDM
i = ċi + ċD

i , (68)

where

ċD
i =

1
2

ci

τiK
i �= K

=
1
2

cK

ρKK

∑
j �=K

ρjj

τjK
i = K (69)

Equivalently, one may write the decoherence terms for the density matrix,

ρ̇DM
ij = ρ̇ij + ρ̇D

ij , (70)

where

ρ̇D
ii = − ρii

τiK
i �= K

=
∑
j �=K

ρjj

τjK
i = K (71)
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for the diagonal elements, and

ρ̇D
ij = −1

2

(
1

τiK
+

1
τjK

)
ρij i, j �= K

=
1
2


 1

ρKK

∑
k �=K

ρkk

τkK
− 1

τjK


 ρij i = K, j �= K

=
1
2


 1

ρKK

∑
k �=K

ρkk

τkK
− 1

τiK


 ρij i �= K, j = K (72)

for the off-diagonal elements. Equations (69), (71), and (72) can be derived
by assuming first-order decay of the diagonal elements, and enforcing
conservation of the electronic density and phase angle.67

As the system decoheres and demixes, the nuclear momenta are adjusted
to conserve total energy

ṖDM = Ṗ + ṖD, (73)

where it is convenient to write the additional term as

ṖD = −
∑
i�=K

V̇ D
i

(P · ŝi)/M
ŝi. (74)

Equation (74) guarantees that decoherence is turned off as the momentum
available in the decoherent direction ŝi goes to zero, with

V̇ D
i =

ρii

τiK
(VK − Vi), (75a)

V̇ D
i =

ρii

τiK
WKK −


ρiK

τiK
+

ρiK

ρKK

∑
j �=K

ρjj

τjK


WiK − 1

2

(
1

τiK
+

1
τjK

)
ρijWij .

(75d)

The decoherence vector determines the components of P into and out of
which energy is exchanged as the system decoheres and demixes, and we
choose

si = (P · F̂iKFiK + Pvib), (76a)

si = (P · F̂r
iKFr

iK + Pvib), (76d)
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whereˆdenotes a unit vector (as it always does in this whole chapter), and
Pvib is the vibrational momentum. In regions of strong coupling si ≈ FiK

or Fr
iK , which is a physically reasonable choice, and when the coupling

vanishes (where nonzero FiK and Fr
iK are not defined) si ≈ Pvib, which is a

choice that conserves total angular momentum. The vibrational momentum
can be calculated for polyatomics as99

Pα
vib = Pα − Mω × Qα, (77)

where

ω = I−1J, (78)

I is the intertial tensor matrix, J is the total angular momentum vector, α

labels atoms, and Pα
vib, Pα, ω, and Qα are three-dimensional vectors.

A quantum subsystem coupled to an environment does not actually
decay to a pure state but rather to a classical, incoherent mixture of
states,100 each associated with a probability of occurring in an ensemble. To
incorporate this into the present model, the decoherent state K is allowed to
switch stochastically along a DM trajectory according to a fewest-switches
criterion. In the coherent switches (CS) implementation of DM, equations
similar to Eqs. (47) and (48) are used to switch K, with ρij replaced by a
locally coherent electronic density matrix ρCS

ij . The time evolution of ρCS
ij

is fully coherent,

ρ̇CS
ij = ρ̇ij , (79)

i.e. it does not include ρ̇D
ij , and ρCS

ij is made locally coherent by setting

ρCS
ij = ρDM

ij (80)

when the trajectory experiences a local minimum in

D(t) =
∑

i

|FiK |2. (81)

An ensemble of CSDM trajectories decays to a distribution of final elec-
tronic states, and this distribution is determined from the ensemble average,
〈ρCS

ii 〉, obtained from the locally coherent solutions of the classical path
equation.

In summary, the CSDM includes the quantum evolution of the elec-
tronic degrees of freedom as governed by a reduced density operator (density
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matrix), and it incorporates decoherence of the electronic degrees of freedom
by the nuclear degrees of freedom. In strong interaction regions it is a mean-
field method with the formal and practical advantage (such as representa-
tion independence) of the Ehrenfest method, but the decoherence mitigates
the disadvantage of the mean-field approach. We note that the CSDM does
not scale in a difficult way with system size, and it can easily be applied to
large and complex systems.

5. Summary of Recent Tests and Applications

The FSTU method (with the SD algorithm and the grad V prescription
for treating the remaining frustrated hops) and the CSDM method are
the results of a long series of systematic studies of the NBO dynamics of
triatomic and, more recently, polyatomic systems. The FSTU and CSDM
methods are straightforward to implement, readily applicable to a wide
variety of NBO molecular dynamics simulations with any number of atoms
and any number of electronic states, and are available in the distributed
computer code ANT.101 Here we summarize the results of the validation
studies that led to the improved methods, and we discuss recent applica-
tions. Before doing this we note that large systems may involve new features
so there is no guarantee that methods found to be accurate for triatomic
and tetraatomic cases are accurate in all cases, including large molecules;
however, it is clear that methods that fail even for small molecules are not to
be trusted for large molecules and it would be hard to argue that they should
ever be preferred. Anyway, as far as test against accurate quantum dynamics
for the same sets of potential energy surfaces and couplings, small-molecule
tests are all we have at this point in time. Tests comparing NBO molec-
ular dynamics with experimental results are tests against accurate quantum
dynamics, but since the exact surfaces and couplings are not known and
the extent of possible experimental error is often hard to estimate, such
tests are not as straightforward to interpret as small-molecule tests where
accurate quantum dynamics are available for given sets of surfaces and
couplings.

The FSTU and CSDM NBO molecular dynamics methods, along with
several variants and predecessors, were tested against accurate outgoing
wave variational principle41,102−104 quantum mechanical reactive scat-
tering calculations on a series of two-state atom-diatom test cases. Full-
dimensional test cases with prototypical AC,105 WI,89 and CI7 interactions
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Fig. 1. Examples of the adiabatic (solid) and diabatic (dashed) potential energy surfaces
along (left-to-right) the ground state reaction coordinate for the AC, WI, and CI families
of test cases.

(as illustrated in reduced dimensionality in Fig. 1) were developed for this
purpose, each of which describes a model reaction of the form

A∗ + BC(v, j) → AB(E′
int) + C, reaction

→ A + BC(E′′
int), quenching

(R1)

where the asterisk denotes electronic excitation, and the diatom is initially
prepared in a quantized rovibrational state (v,j).

Six observables of the model reactions displayed in R1 were considered:
the probability of reactive de-excitation (PR), the probability of nonreactive
de-excitation or quenching (PQ), the total probability of a nonadiabatic
event (PN = PR + PQ), the reactive branching fraction FR = PR/PN, and
the average internal energies of the two diatomic fragments (E′

int and E′′
int).

Several test cases for each class of prototypical interactions were considered;
they vary in the coupling strength of the model potential energy surfaces,
the initial conditions, and/or the scattering conditions. By averaging over
several test cases in each class, we obtain more robust and predictive error
estimates. The results of these studies, which include errors for a total of
six observables for each of 17 test cases, are summarized in Table 1.8

The 17 test cases in Table 1 include three cases of weak interaction
(systems like Br∗ + HR → Br + HR or → HBr + R, where R is a radical;
these cases are called WI cases or YHR cases), eight cases with accessible
regions of avoided crossing but no accessible conical intersections (these
are called AC cases or MXH cases), and five cases of accessible conical
intersections (these are called CI cases or MCH cases). In each of these
17 cases we obtained accurate quantum dynamics results for a given real-
istic set of potential energy surfaces and couplings and compared these to
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Table 1. Highly-averaged percentage errors for several NBO methods.

Method Representation AC WI CI Overall

FSa A 53 29 53 45
D 42 289 43 125

CC 53 29 40 41
SE A/D/CC 74 c 66 c

FSTUb A 43 25 56 41
D 27 128 42 66

CC 38 25 39 34
CSDM A 20 18 42 27

D 19 22 33 25
CC 21 18 33 24

aFrustrated hops were ignored.
bFrustrated hops were treated using the TU and grad V prescriptions. The SD
algorithm was not used because it had not been developed yet at the time that
these calculations were carried out.
cThe SE method fails for weakly coupled systems in that it does not produce
all possible products; therefore average internal energies cannot be computed
for the missing products, and an overall error cannot be computed.

the results of various semiclassical dynamics methods for the same poten-
tial energy surfaces and couplings and the same initial quantum states.
The 17 cases differ from one another in the potential energy surfaces, the
couplings, and/or the initial quantum state (for WI cases, there is one set
of surfaces, and we ran the ground vibrational-rotational state of the reac-
tants at two energies and one excited rotational state at one energy; for
AC cases there are three different couplings surfaces — strong and broadly
distributed, strong and localized, and weak and localized, and each was
run for three initial rotational states; for CI cases there are five different
sets of couplings). The accurate dynamics are independent of represen-
tation (adiabatic or diabatic), but the semiclassical results depend on the
representation in which the dynamics are calculated; for each case and each
representation we calculated the unsigned percentage error in each of the six
physical observables mentioned in the previous paragraph by comparing the
semiclassical results to the accurate quantum dynamics ones. Each column
in the table shows mean unsigned percentage error averaged over the six
observables in each of two representations for the cases in that column.
The last column contains all 17 cases and so the mean unsigned percentage
errors in the last column are averaged over 6 × 2 × 17 = 204 absolute
percentage errors.
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The table shows that the results of the NBO molecular dynamics simu-
lations are in general strongly dependent on the choice of electronic repre-
sentation, and it shows that the adiabatic representation is usually more
accurate than the diabatic one. The SE method is formally independent of
the choice of representation, but it is less accurate than the other methods.
Furthermore, it is unable to treat the small probability events occurring in
the WI systems.8

The adiabatic representation is not always to be preferred, and the
diabatic representation was found to be more accurate for some of the
systems in the test set with ACs and CIs. A useful criterion for choosing
between the adiabatic and diabatic representations is to prefer the repre-
sentation where the diagonal surfaces are the least coupled to one another.
One way to do this is to prefer the representation with the fewest number
of attempted surface hops, and this representation is called the Calaveras
County (CC) representation.106 Results obtained using the CC representa-
tion are shown in Table 1. The CC is generally more accurate than using
either the adiabatic or diabatic representations exclusively.

For larger systems than the ones considered here, it is likely that
trajectories may sample some regions where the adiabatic representation
is preferred and others where the diabatic representation is preferred in a
single simulation. Invariance to the choice of electronic representation is
therefore desirable, and it is encouraging that the CSDM method, which
was designed with representation independence as a goal, is systematically
less representation-dependent than the FSTU and other NBO molecular
dynamics methods.

The overall accuracy of the best representations for each type of
improved NBO method is generally good, and the CSDM method is the
best method overall with an error of only ∼25%. Clearly the improvements
made to the surface hopping approach and to the mean field approach
have produced systematically improved methods of each type. Finally, we
note that the improved methods work nearly equally well for the three
types of interactions considered. Again, this robustness is important, as real
systems are likely to feature more than one kind of interaction. Not only
does the CSDM provide reasonably accurate final states, but — because
of the explicit inclusion of decoherence with a physical time scale — it is
expected to provide a realistic picture of the real-time process; the ability
of semiclassical methods including decoherence to do this is expected to
become more and more useful as shorter time scales107,108 for studying the
electron dynamics in molecules become accessible.
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In another test, the accuracy of NBO MD methods for simulating deep
quantum systems (i.e. systems with large electronic state energy gaps) was
considered.71 Typical energy gaps in the model AC and WI test cases
are only a few tenths of an eV, whereas many real systems have much
larger gaps. Quantum mechanical calculations of the photodissociation of
the Na · · ·FH van der Waals complex with a gap of ∼1.5 eV were carried
out.109 In the ground state, thermal excitation tends to break the weak van
der Waals bond, producing the Na and HF products exclusively. Upon elec-
tronic excitation with visible light, however, the complex is promoted to a
metastable complex called an exciplex. The exciplex is proposed to exhibit
enhanced reactivity via the harpooning mechanism, where the change in
the electronic structure results in a donation of partial charge from the Na
atom to the F atom and promotes formation of the NaF + H products.

The FSTU and CSDM methods were shown to fairly accurately predict
product branching and exciplex lifetimes for the photodissociation of the
Na · · ·FH system, as shown in Table 2, thus validating their use for deep
quantum systems. The NBO classical and quantum dynamics simula-
tions confirmed the enhanced reactivity of the harpooning mechanism, and
NaF + H was predicted to be the dominant photodissociated bimolecular
product.

In the course of this study, product branching in the NBO molecular
dynamics simulations was found to be affected by a region of coupling
where the excited state is classically energetically forbidden. An analysis
of the NBO MD trajectories revealed that the results are sensitive to the
treatment of decoherence. Figure 2 shows contour plots of the excited and
ground electronic states, as well as hopping information for a subset of
trajectories. The initial downward hops occur for a wide range of acces-
sible geometries of the exciplex. More than three-fourths of the trajectories
attempted to hop back into the exciplex after their first hop down, but many

Table 2. Product branching probabilities and half lives
of the Na · · ·FH exciplex.

Method PNa+HF PNaF+H t1/2, ps

Quantum 0.04 0.96 0.42
FSTU without SD 0.16 0.83 0.85
FSTU with SD 0.05 0.95 0.52
CSDM (E0 = 0.1 Eh) 0.29 0.71 0.76
CSDM (E0 = 0.001 Eh) 0.06 0.94 0.40
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Fig. 2. Contour plots of the ground (dashed) and first excited (solid) potential energy
surfaces for Na · · ·FH. The initial hops down are shown as open triangles. Subsequent
successful hops up are shown as solid triangles, and frustrated hops up are shown as
black dots. The thick black line is the line of avoided crossings.

did so at geometries where the excited state is energetically forbidden. The
majority of these frustrated hops occur near the line of avoided crossings,
a region where the two electronic surfaces have very different shapes and
where decoherence due to wave packet divergence may be expected to be
significant. The use of the SD model for decoherence was found to reduce
errors associated with frustrated hopping and to predict product branching
and lifetimes in near quantitative agreement with the quantum mechanical
results, as shown in Table 2. An analogous modification of the DM method
resulting in faster decoherence in this critical region (obtained by decreasing
the parameter E0) was shown to give similarly improved results. This study
highlighted the importance of accurate treatments of electronic decoherence
in trajectory-based simulations of systems with coupled electronic states.

In another study,62 the nonadiabatic photodissociation of HBr was
modeled using several NBO trajectory methods. The calculated branching
fractions for the H + Br(2P3/2) and H + Br(2P1/2) products were found to
be in good agreement with experimental measurements110 over a range of
photon energies, as shown in Fig. 3.
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Fig. 3. HBr photodissociation branching fraction to form H+Br∗ as a function of photon
energy (hυ) obtained by the CSDM method (solid line) and experiment (diamonds).

Li et al. applied the CSDM method to several systems: the D + H2

and H + D2 reactions at collision energies up to 2 eV,111 nonreactive and
reactive charge transfer and reactive non-charge-transfer in D+ + H2 and
H++D2 collisions,111 and intersystem crossing in O(3P2,1,0, 1D2)+H2 reac-
tive collisions yielding OH(2Π3/2,1/2)+H(2S).112 For the first two reactions
they employed a two-state electronic basis, for the next two a three-state
electronic basis, and for the final two a four-state electronic basis (three
triplet states and one singlet). For D + H2 and H + D2 they obtained very
good agreement of reactive cross sections with accurate quantal dynamics
over the whole energy range. For nonreactive and reactive charge transfer in
D+ + H2 and H+ + D2, the CSDM cross sections provide overall trends in
good agreement with accurate quantum dynamics, and for reactive non-
charge-transfer the CSDM cross sections agree with accurate quantum
dynamical ones over the whole energy range up to 2.5 eV, although in
one case they are slightly lower. For O(3P2) + H2, the cross sections to
produce the 2Π3/2 and 2Π1/2 states are both in good agreement with accu-
rate quantum dynamics over the whole range of collision energies, up to
28 kcal/mol, except that the cross section to produce the 2Π3/2 state has a
somewhat higher threshold.

The photodissociation of NH3, which has been studied in detail
experimentally,113,114 was also recently modeled using NBO MD
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Fig. 4. A conical intersection between the ground and first excited states of NH3 occurs
at planar geometries and at an N–H distance of 2 Å.

simulations.80,85 Analytic representations115 of the coupled X and A states
of NH3 are shown in Fig. 4 as functions of one N–H distance and the
umbrella angle θ. This system features a CI at extended N–H distances and
planar geometries. Trends in the production of excited state amino radi-
cals as a function of initial state preparation were computed and compared
with experiment. The experimental results suggest an enhancement in the
production of excited-state products when the antisymmetric stretch of
NH3 is excited, with the interpretation that excitation of the antisymmetric
stretch causes the system to go around the CI and thus inhibits electronic
state quenching. The NBO MD calculations predict that the production
of excited state amino radicals depends on the total energy, and no state
specificity is observed. The source of this discrepancy is unclear, although
recent quantum mechanical wave packet results116 are in fair agreement
with the NBO trajectory results.

In addition to making semiquantitative predictions of product
branching, lifetimes, and internal energy distributions, as discussed above,
NBO molecular dynamics simulations are useful for studying chemical
events in mechanistic detail, such as the role of conical intersections and
avoided crossings in NBO dynamics. This analysis has been carried out
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for the FSTU and CSDM methods for the model CI and AC test cases,7

Na · · ·FH photodissociation,71 and for the photodissociation of NH3.80,85

From these studies, one can make some general comments about NBO
trajectories and CIs. The capture efficiencies of a CI and an AC have been
compared for similar potential energy surfaces, differing only in the inter-
action type. Trajectories with reasonable kinetic energies were found to
be captured equally well by the CI and AC, i.e. the conical shape near
the CI did not capture trajectories any more or less easily than an AC.
The CI was shown to more efficiently move trajectories out of the interac-
tion region than the AC, although the effect was small. Finally, it was noted
that trajectories did not in general switch surfaces at zero-gap geometries.
Instead, surface hops occurred over a range of energy gaps, geometries, and
coupling strengths near and at the CI.

A similar analysis of the NH3 trajectories was carried out to study
the experimentally proposed mechanism of state specificity. The NBO MD
trajectory results showed that the system is efficiently quenched via the
seam of CIs when either the antisymmetric or symmetric stretches are
excited. The distribution of energy gaps at surface hops was peaked at
zero, but the average gap was 0.3 eV. The CI rapidly quenched photoex-
cited NH3 nonreactively to form ground-electronic-state NH3, which subse-
quently and much more slowly decayed to NH2 + H. Only a small fraction
of trajectories dissociated directly to the NH2 + H products. Furthermore,
the number of direct trajectories avoiding the CI was not promoted by
excitation into the antisymmetric stretch, in contrast to the experimentally
proposed mechanism.

6. Concluding Remarks

Non-Born–Oppenheimer dynamics may be dominated by regions of conical
intersections, by regions of avoided crossings, or by regions of weak interac-
tions of electronic states. When a conical intersection seam or its neighbor-
hood is dynamically accessible, the geometries in the neighborhood of the
conical intersections seam will often provide an efficient route for excited
state decay, as originally pointed out by Teller.9 As mentioned in the intro-
duction and as indicated by analyses of non-Born–Oppenheimer trajectories
in Sec. 5, the seam of conical intersections — due to its dimensionality being
two lower than the dimensionality of the full internal coordinate space —
does not necessarily directly mediate electronic transitions; however, the
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conical intersection seam does anchor the loci of strong interaction of
the potential energy surfaces. Because the conical intersection seam can
be a very extended hypersurface, one must consider more than just the
lowest-energy conical intersection, and because the conical intersection itself
may be dynamically inaccessible, one must consider avoided crossings as
well as conical intersections. Because conical intersections are surrounded
by avoided crossing regions, it is important to consider the multidimen-
sional character of the dynamics whenever a region of strong interaction
of the electronic states is encountered; treatments based on treating the
potentials along a trajectory path as one-dimensional avoided crossings
ignore the fact that strong interaction regions in polyatomic systems have
more complicated dynamics than the Landau–Zener behavior encountered
in atom–atom collisions. The best zero-order model of the dynamics in
a strong interaction region may be either diabatic or adiabatic. Further-
more, one must take into account the fact that decoherence may occur
between successive visits to strong interaction regions. The semiclassical
dynamics methods reviewed in this chapter take account of this decoher-
ence; they have been validated in multidimensional studies for the treat-
ment of photochemical dynamics in the vicinity of conical intersections and
avoided crossing regions and also in weak interaction regions, they may
be used for systems containing both predominantly diabatic and predomi-
nantly adiabatic regions of phase space, and rare-event sampling algorithms
are available for treating processes with small transition probabilities. The
CSDM method, in particular, is the culmination of a series of attempts to
improve mean-field and surface hopping methods by combining the best
features of both.
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