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5.1 Introduction

'Iheneedtocarrymtaccunteatomhticsimuhﬁa\sofcmdemed-phase
systems is a major challenge to computational chemists. For large systems
(ofhenta\sorhmldmdsofthmnandsofam)quanmmdnmistryisusu-
ally too expensive to be practical, and more approximate methods such
as molecular mechanics force fields have been utilized instead. Molecular
functions and usually do not involve polarizability. Thus they have the
advantage of being easy to implement and efficient to compute, but there
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so these methods cannot be used to examine chemical reactions. Further-
more, while these methods may give good agreement with experiments
for physical properties against which they have been parameterized, they
often do not do well when tested on systems or properties outside of the
parameterization set.

With increases in computer power, classical potentials have been
replaced in many cases by the use of density functional theory (DFT) [1,2),
which in some cases [3,4] is able to achieve accuracy comparable to or bet-
ter than highly correlated levels of wave function theory (WFT), [5-7], such
as coupled cluster theory with single and double excitations [8] (CCSD), or
coupled cluster theory with single and double excitations and quasipertur-
bative connected triple excitations [9] (CCSD[T]), while maintaining much
more favorable scaling with respect to system size. However, despite these
advances the desire to be able to apply correlated levels of wave function
theory (such as second-, third-, or fourth-order Meller-Plesset perturba-
tion theory [10-13] or coupled cluster theory) to extended systems remains
a goal for many computation researchers.

One of the largest problems standing in the way of this goal is the scal-
ing of such methods with respect to increasing system size. The most basic
WFT method, Hartree-Fock theory, has a computational effort that scales
as N* where, throughout the whole chapter, N is the number of atoms
in the system [5]. (Hybrid DFT also scales as N*.) Hartree-Fock methods
have been applied to very large systems; however, even though Hartree—
Fock theory fully accounts for the exchange energy of the electrons of the
same spin, the lack of dynamical correlation energy means that it does not
provide sufficient accuracy for most applications of chemical interest. In
order to obtain the accuracy needed, one should use correlated levels of
electronic structure theory, but conventional correlated WFT calculations
suffer from high-order scaling of the computational cost with respect to
increasing system size and are generally impractical for very large sys-
tems. For example [5], MP2 scales as N°, MP3, CISD, MP4SQD, CCSD, and
QCISD scale as N%, and MP4, CCSD(T), and QCISIXT) scale as N”. The
high-order sealing of these methods, as originally developed, has made
them too expensive to be practical for use on extended systems without
introducing strategies for coping with large size.

One way to overcome the expensive scaling is to introduce localized
orbitals and computationally screen out excitations that involve widely
spatially separated orbitals [14] (see also Chapters 1, 2, and 3). Another
way to circumvent these problems is the introduction of fragment-based
methods. Fragment-based methods are built on the assumption that one
can divide the system into a set of monomers (which may be molecular
fragments, single molecules, or collections of molecules) and express the
total energy as a combination of the energies of the monomers, dimers,
trimers, etc. These methods have the benefit of reducing a single very
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expensive calculation to a large number of small calculations. However,
the simplest of these methods, the many-body method, does not give good
quantitative results until one includes third-order terms (for moderate ac-
curacy) or higher-order terms (for high accuracy), and the cost to obtain
the desired accuracy may be prohibitive. In order to increase the accuracy
of these calculations at a low order (i.e., including only dimers or trimers)
several groups have tried modifying these methods to include the effects
of the electrostatic potential of the other fragments in the system, and a
variety of fragment-based approaches have been proposed in the litera-
ture [15-27]. (See also Chapters 3, 6, and 7). The emphasis here is on our
own methods for carrying out these types of calculations: first, the electro-
statically embedded many-body (EE-MB) method [26], which is based on
the many-body method but is simpler to implement than other fragment-
based methods such as the fragment molecular orbital (FMO) method or
the electrostatic-field-adapted molecular-fragment-with-conjugated-caps
(EFA-MFCC) method, and second, the electrostatically embedded many-
body expansion of the correlation energy (EE-MB-CE) [27].

To apply fragment methods to general systems, one must cut covalent
bonds to make fragments, and then the dangling bonds must be capped
by link atoms or more complicated strategies [15,16,18-23]. This is an im-
portant research goal, but the present article is focused mainly on systems
includes molecular clusters, molecular liquids, and molecular solids.

5.2 Many-body methods

Consider a system of M interacting units, to be called monomers. These
monomers may be covalently connected or noncovalently connected; how-
ever, as stated at the end of the introduction, in the present chapter we will
focus mainly on monomers that are not covalently connected, and the

equations apply only to this case. The total energy of this system, E, can
be written, without approximation, as a series of m-body potentials

E=W+Vm+Vi+---+Vy (5.1)
where
M
V=) E 5.2)
H
M
Vo= (Ei;j - Ei—Ej) 63)

i<j
M
Vas= Y [(Eije — Ei — Ej — Ex) — (Eij — Ei — Ej) — (Ex — Ei — En)
i<j<k .
—(Ejx — Ej — ED 54
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andhigher-ordertermSaredeﬁnedanalogwslyIntheseequaﬁons Ei rep-
r&sentsﬂ\eenergyofeachoftheMmononmmﬂlesystem,Ei,-theenergy
ofeachoftheM(M—l)/Z!dimexsinmesystem, Ejjx the energy of each of
the M(M — 1)(M — 2)/3! trimers in the system, and so forth.

In the limit to which this expansion is carried, the M order, the
retumedisﬁ\etotalenexgyofﬂ\esysﬁem.Inordertoinvokethemny—body
approximation, one makes the choice to truncate this series instead at the

order (where m < M). If one chooses to truncate Equation (5.1) after
ﬂuesecmdtetm(m=2),thetotalenergyofthesystemisappm)dmatedas

M M
Epa=Y Eij— (M- ) E (5.5)

i<j i

where Ep, denotes the pairwise additive energy, and E;j and E; retain the
same meanings as above. If one chooses to truncate after the third term_
(m = 3) the total energy of the system is approximated as

M M M
Ess= Y Ep—(M-3) E;+ (—t-z)?—w——s—) B (56)
i<j<k i<j i

where E3p denotes the three-body approximation to the total energy, and
Eijx, Ejj, and E; retain the same meanings as above.

Thebamﬁtofmakingsuchanappm:dmaﬁonisthatforalargesys-
tem it reduces a single large and expensive calculation to a large number
of small and affordable calculations. Moreover, since each of these small
calculaﬁonsisindepaﬂmtofﬁueothers,eachonemybemnonadiffer—
ent processor, leading to a calculation that can easily be parallelized on a
large number of processors. The accuracy of the energy depends on how
many m-body terms are retained. While the pairwise additive method may
provide qualitatively correct results, if one hopes to obtain quantitative ac-
curacy, one must include higher-order terms, particularly if the monomers
are known to have large intermolecular interactions, such those that occur
among water molecules [28].

One obvious way to avoid the problem mentioned above would be to
continue to include higher-order terms until a satisfactory level of accuracy
is obtained. However, for large systems the number of such higher-order
terms rises quickly. Table 5.1 shows the number of clusters (dimers through
hexamers) that one would need to calculate for a system with 64 monomers.
As seen in this table, the number of clusters one must calculate rises rapidly
with increasing cluster size (roughly as M™/m!). Moreover, the cost of each
oftlmecalculationsrises,sothatnotonlymustyou calculate amuch larger
number of these higher-order terms, but as the size of the cluster increases,
s0 does the cost to calculate its energy.
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Table 5.1 Number of Clusters to Calculate
for Cluster Sizes m =1 — 6 for M = 64

Cluster size (m) Number of clusters
Monomer (1) 64
Dimer (2) 2016
Trimer (3) 41664
Tetramer (4) 635376
Pentamer (5) 7624512
Hexamer {(6) 74974 368

In order to consider the cost associated with carrying out a many-body
expansion it is useful to compare the amount of time it would take to cal-
culate the energy of the system with and without invoking the many-body
approximation. The calculation of the energy without using the many-body
expansion (i.e., a calculation of the energy of a supersystem containing all
M monomers in the system at a given level of theory and with the given
basis set) will be referred to as a conventional calculation. The calculation
of energy of the same system using the pairwise additive approximation
will be denoted PA, while the calculation using the three-body approxi-
mation will be denoted 3B. Table 5.2 shows a comparison of the theoretical
timings for the calculation of the energies computed in the conventional
manner and with the pairwise additive and three-body approximations,
for methods that scale as e N%, bN®, and cN’, a, b, and ¢ are unknown
prefactors specific to each level of electronic structure theory and basis set.
One can see that even on a single processor the many-body methods are far
more cost effective than conventional calculations. The pairwise additive
calculations are between 5 and 7 orders of magnitude faster than a con-
ventional calculation, while the three-body calculations are between 2 and
5 orders of magnitude faster. In fact, for the methods shown in Table 5.2,
one may go up to the 5% order in the many-body expansion before the
cost of the many-body expansion surpasses the cost of the conventional
calculation,

Table 5.2 Comparison of Hypothetical Timings for Full
Calculations and Many-Body Calculations for a System

Containing 64 Monomers
Scdh_& Conventional PA 3B
aN? 1.1 x 10Pa 6.5 x 108 1.0 x 107a
bN® 6.9 x 10'% 13x10°0  31x10°b

cN? 44 x102¢ 25x10°¢’ 9.1 x10¢
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5.3 Electrostatically embedded many-body methods
531 EE-MB

The electrostatically embedded many-body (EE-MB) methods have been
presented previously [26], and a summary of the methods is given here.
The EE-MB methods are an extension of the basic many-body idea. The
key difference is that in the basic many-body methods, the energy of each
monomer, dimer, or trimer is calculated in vacuum; in the EE-MB methods
each monomer, dimer, or trimer is calculated in a field of point charges
centered on the nuclear positions of the missing monomers. For example,
in the electrostatically embedded pairwise additive (EE-PA) method, the
energy of the system is written as

M

M
Epp-pa=3 E;j-(M-2)3) E 67

i<j

where E; are the energies of each monomer embedded in a field of nuclear-
centered point charges representing the other M — 1 monomers and E/;
are the energies of each dimer embedded in a field of nuclear-centered
point charges representing the other M — 2 monomers. Similarly, in the
electrostatically embedded three-body method, the energy of the system
is written as

M M M

, , (M—2)M-3 ,

Eeesp= ) Eiik—(M‘?’)ini_L—)z—(———)in 68)
i<j<k i<j i

where E; and Ej; have the same meaning as above and E};, are the ener-
gies of each trimer embedded in a field of nuclear-centered point charges
ting the other M — 3 monomers.

Just as with the unembedded many-body expansions, if one does not
truncate the EE-MB series the energy obtained is the total energy of the
system. The presence of the point charges in the EE-MB method is meant
to increase the rate of convergence of Equation (5.1) by incorporating the
higher-order many-body effects in an average way. Work on clusters con-
taining pure water [26-28] as well as mixed clusters containing ammonia
and water [29], and water, ammonia, sulfuric acid, and ammonium and
bisulfate ions [30] have shown the accuracy of the method to be relatively
independent of the choice, within reason, of partial atomic charges (and
if the expansion is not truncated the result is completely independent of
the type of charges used), although in general it has been found that larger
charges produce slightly better results. For simplicity, calculations have
been carried out on gas-phase monomers (i.e., for water, a water molecule
with an O-H bond length 0f 0.9572 A and an H-O-H bond angle of 104.52°)
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todetermh\ed\eparﬁalamnﬁcclumsforﬂ\atmdes.&\emymeava-
riety of charge models includi Mulliken, ChelpG, or CM4 charges, and .
ﬂ\oseduxgesinmmareusedmmpmaentthemissingmm\omersinthe
EE-MB calculations. A

Recmtly,ﬂ\esensitivityofﬂleaccuracyofﬂ\eEEMBmeﬂ\odshas
beenexaminedwiﬁneapecttoawidevarietyofdnrgemodels,includ-
ingmodelsinwhichthechngesdepexdonﬂ\egeomehyofﬂnsysm
beingstudhd[Sﬂ].Whileitwasﬁnmdﬂntthemeof&megeometry-
dependa\tdmgesdidimpmvetheaccmmyoﬂhemethodsverysﬁghﬂ);
the small gain in accuracy is not worth the additional cost of cal i
ﬁ\egeomeuy-depudmtd\uges,udsoitismmmmdedtousedmrges
obtainedfmmgas—phasemormwiﬂ\ﬂ\enwﬂnodanddmgerepm-
sentation of your choice.

Thpmmforcaklﬂaﬁngt!\eEE-MBenergycanﬂmbemmmaﬁzed
as follows:

2.Foread\m-bodyd\mermﬂ\emtpanaion(forEE-PAm =land 2;
for EE-3B m = 1, 2, and 3) embed the cluster in a field of nuclear-
mﬁedpoﬁudmgu(ammsmpm)wmthe
oﬂmM~mmmmuezsmdcdmhﬁeﬁ\eenergyof_ead\embedded
dusterwiﬂ\ﬂ:eelectrmicstrmtmeme&mdandbasissetofyour
choice.

B.deah&mbhla\agyofﬂ\esyuemmingeiﬂmEqmﬁm(SJ)
(EE-PA) or Equation (5.8) (EE-3B).

5.3.2 EE-MB-CE
Inptactioe,ﬂieEE-MBme&ndsdesuiedinthepmvioussecﬁoncanbe
usedhmﬁmmﬁmwi&lmylevdofdechmicstmcm&eoryimluding
boﬂxWFrandsDﬂiHawever,maddﬂiaulappmdmﬁoncmbemde
wimusingmnﬂawdkvdsofdecmstrudmeﬂwysmhasm,
CCSD, or CCSIX(T). When a post-Hartree-Fock correlated level of theory
is used the total energy can be written as

Ex = Exp + AEcorx (5.9)

whereExistheelechmicenugyolconehiedmethodX(whezex=
MPZ,-CCSD,CCSD(T),etc.),Emisﬂ\eHamee—Focke!mgyofﬂ\esys- '
tenLandAmeisﬁteommhﬁma\ergyfmmeﬂmdx.Beameﬂ\etotal
augyisal‘nuroum\oﬂhecmmhﬁmmymdhfhmee-
Fock energy, and since each term, Va, in the many-body expansion is a
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linearcoubimﬁonolaugiesiorﬂ\el-mm-bodydmtem,wemme
Equation (5.9) to write V,, as

Acmuequeofﬁqulﬁon(almisﬂutﬂneugyofﬂuesmen
bewrit@asﬁwmoftwodiﬁumtmy«hodyapamiom:mﬁor
ﬂneexpamionofﬂ\eﬂarhee—Focka\ugyandmforﬂ\eapmsionolﬂ\e
correlation energy, that is,

V=(Vinr+Vour+ Vamr + ) + (AW + AVacorr + AVscom - ).
G.11)

Itisnotmmmahlebmtheapuuionofanfhmee-&ckep-
m“hwdhm&mwmwm
systems without a significant amount of static correlation the Hartree—Fock
energyoﬁendumimtesevmthed\msmﬂnmmgyoﬂhe
sysmn.a\dﬂmefommeamﬂutdungu'mwmugy
willoﬂenbelugerﬂund\u‘uhm&menugyfot&emof
interest, for example, for a binding event. In such cases, much of the error
associated with the truncation of the EE-MB expansion is due to the trun-
mﬁmofﬂnwumgymmﬂnmrdnﬁmumgynﬁsis
notmin\plyﬁmﬂ\em&om&ehmofﬁnmndﬁmmgyis
not important, only that this error is likely to be considerably smaller, at a
given order of expansion, than the error from truncating the Hartree—Fock
energy. In such cases, one migit truncate the expansion of the correlation -
energy at a lower level than the expansion of the Hartree—Fock energy.

The motivation for EE-MB-CE is strictly practical, based on the effect
that such a procedure has on the cost of the calculation. Since Hartree—

sized systems (up to a few hundred atoms) one can, if desired, calculate
theHarhee—FockenetgyoEd\eentitesym(Le.,carrythemwy-body
expamimtoM“mda)andcauymxtamy—bodye:qmmimofmdyﬂre
correlation energy [27].

5.4 Performance

The accuracies of the EE-MB and EE-MB-CE methods were examined
in [27] for a series of pure water clusters, ranging in size from 5 to 20
water molecules and taken from the Cambridge Cluster Database [31], at
the MP2/jul-cc-pVTZ level of theory (where jul- denotes semidiffuse, so
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Table 5.3 Comparison of Mean Errors
(kcal/mol) at the MP2/jul-cc-pVTZ Level
of Theory for Pure Water Clusters (H,0),

withn=5-20

MSE MUE RMSE
PA 15.95 1595 17.55
3B 0.55 0.56 071
EE-PA 0.80 0.80 0.84
EE-3B -0.34 0.35 0.51
PA-CE 0.22 0.2 024
3B-CE —-0.05 017 + 0.24

EEPACE -010 010 011
EE3BCE 023 023 034

the jul-cc-pVTZ basis set uses the aug-cc-pVTZ basis set [32,33] on oxygen
and the cc-pVTZ basis set [34] on hydrogen). Eight different many-body
methods were used: PA, 3B, EE-PA, EE-3B, PA-CE, 3B-CE, EE-PA-CE, and
Eﬂ-aB-Cﬂ;mdmnwﬂmthmdaaibedh\SecﬁmszorS.&n\emergy
mlcuhtedwiﬂwad\ofﬂ\esemeﬂ\odswascompamdmﬂ\eamgyofa
cmvmﬁau]cﬂmhﬁonm&umdtmatﬂ\emkvelofﬁ\eory The
mean errors for each of the many-body methods, calculated over the com-
plete data set, are shown in Table 5.3. The key results can be summarized
as follows:

1. The inchusion of point charges dramatically improves the accuracy
of the pairwise additive approximation. A comparison of the results
of the PA method to the EE-PA method shows that the mean unsi
error is reduced from 15.95 kcal/mol to 0.80 kcal/mol. The average
binding energy for these clusters was 106.48 kcal/mol, 50 an error of
wwlmmbos%dduavmgemk\gmgy

2. Even without inclusion of the embedding charges, the inclusion of
the full Hartree-Fock energy with a pairwise additive treatment of
the correlation energy (i.e., comparing PA to PA-CE) reduces the error
byahctorof?&'!hi\dusionofanbeddkgdum(i.e.,mmpaﬁng
EE-PA to EE-PA-CE) shows an improvement of a factor of 8 in these
am!hisgivesmsﬂutareaslowaso.l%of&\eavuagebinding

energy of these clusters by only including two body terms.

Inaneffattomheﬂ\esecaknhﬁmsevmmaﬁmdable(amom
chlaikddhunﬁonofﬂtecodsofﬂmeme&ndsishﬁecﬁmié) [27] we
also considered the effect of several different cutoffs on the calculation of
ﬂ\emrdlﬁmamgy.CmmhﬁmistyphﬁyM-nngedincompaﬁson
toHarht&Fockﬂmy,aoﬁmmmssepamﬁedbyhrgedistamesitis
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Table 5.4 Comparison of Mean Ervors (kcal/mot) for PA-CE and EE-PA-CE
Methods with a Cutoff of 6 A and with No Cutoff

6A No Cutoff
MSE MUE RMSE MSE MUE RMSE
PA-CE 038 0.38 046 o2 0.2 023
EE-PACE 0.02 0.07 0.09 0.09 0.09 010

likely that the correlation would go to zero. A comparison of the mean er-
rors for the PA-CE and EE-PA-CE methods with no cusoff and a cutoff of 6 A
isshown in Table 5.4. These results show that witha cutoff of 6 A, one retains
the accuracy of no cutoff for the EE-PA-CE method. The implications of this
result on the cost of these calculations will be considered in the next section.

To assess the accuracy of the EE-MB and EE-MB-CE methods for other
levels of correlated electronic structure theory, the relative energies of a
series of low-lying water hexamers were used. The water hexamers were
chosen for two reasons:

1. Due to the cost of the post-MP2 methods, which scale as N® and N7,
we were limited to dusters on the order of 5 heavy atoms.

2. There are 5 different water hexamers that lie within 3 kcal/mol of
each other, making this system a good test of the capabilities and
accuracies of these methods.

The following many-body methods were used: PA, PA-CE, EE-PA, EE-PA-
CE, 38, 3B-CE, EE-3B, and EE-3B-CE with the following levels of wave-
function theory: HF, MP2, MP3, MP4D, MP4DQ, MP4SDQ), MP4, CCSD,
and CCSIXT) with the jul-oc-pVTZ basis set, that is, the aug-cc-pVTZ basis
set on oxygen and the cc-pVTZ basis set on hydrogen. In the following
discussion of errors, we are always referring to the error relative to a full
calculation at the same level of theory. We found that the ervor of the many-
body method was largely independent of the level of wave function theory
used. Table 5.5 presents the average mean unsigned error (relative to the
conventional calculation at each level of theory) and standard deviation
over all nine levels of electronic structure theory for each of the many body
methods. Examining this table shows that all of these methods have a
very low standard deviation, indicating that the errors associated with the

Table 5.5 Average Mean Unsigned Errors (kcal/mol) and Standard Deviations
for Many-Body Methods and Conventional Calculations at the Same Level of

Theory for Water Hexamers
PA PA-CE EE-PA EE-PA-CE 3B 3B-CE EE-3B EE-3B-CE
Ave. MUE 1177 010 1.00 014 124 016 012 0.03

Std.Dev. 006 001 005 005 003 003 0O 0.01




Chapter five: Elxtrostatimuyembadddmmy-wdyexmrsion 115

mny-bodymeﬂwdsareconshﬁmtoveralllevelsofelechu\icsmm
ofﬁtemmy—hodyme&mdatmveaffmﬂablelevelsofﬂ\eory(e.g., MP2)
may be extrapolated to more expensive levels of theory (e.g., CCSD(T)).
Kmismwk\kyhlgwexmmhsﬁma\elevelof
mmwmmnmmm%hﬂe

wmmuN’)mmvsmbuﬂeEE-mmWhrger
andmeeunpkxchnmﬂmwouldbeposdﬂeusﬁ\goondm&vels
of wave function theory. For example, using DFT, the EE-PA and EE-3B
methods have been applied to systems containing 64 water molecules [35];
ﬂ\iswmldbemxtofmchevmforMPz,wl\id\hsﬂ\elowestscaling
ofanyofthepost—l*lume—Fod;meﬂ\ods.Adﬁﬁu\aﬂy,we!nveappﬁed
DFrtothesmdyofmimddmwm%mmhmdwm[B]
andabodwusmmhingwmmwﬁxﬁcadd,andamm
nimandb'mﬂatehmﬂﬂ.hd\emeofﬁlemm—wmdm
westudiedﬂ\erdaﬁvemgimofawiesofﬁvemma(ﬂzow,
ﬁvepammsw{zﬂ)g),mdmohmmsm}uﬂzomuﬂfmmd
ﬂutmavaage,ﬂuhmmuhﬁadmbwamnmdgmdm
over the data set than the DFT methods tested. We also found that the
average difference between the mean unsigned error for the DFT results

dustuahﬁisulﬂywemmpmdthemyofﬁuEE—PAand EE-3B
mmdglwﬁﬁumtchshm(m&ﬁmmormm
addnuﬂecub,uaemmm«uk,andmwsixwmmhcules)
ﬂntﬂuemhﬁvemsol&eEB-PAmemodswae, in most cases, approx-
imately 5% of the average binding energy of the clusters, and the relative
mdh&%m&m&mh%l%dhawbﬁﬂingm-
exgyofﬂaedwhs.\ﬂmh:daﬁveabaduﬂemwaswengedwer
alieightmﬁgmaﬁoas,ﬂmbaﬁssds,andﬁvedmgemoddswefmmd
M&wEE—PAm&o&shadmavmgemhﬁveMu&emof&%




Focketmgyis‘carriedmﬂoM&mder(ie.,acmvuﬁmulHam—Fod:
calcuhﬁmiscuriedmtmﬂtesyﬂm).lfmemaﬁdus&emﬂbmy
outanBE-PA—CEmkuhﬁamtlheMPZleveldthewyﬁorasyﬂeme\u
monomem,onewmvseeﬂutﬂ\easttomkuhmﬂwoonehﬁunenugyis
twoadasofmmndehmmmecostbm&nﬂamu—m
energy of the system. Therefore, it is safe to assume that the cost of these
cakmlaﬁa\smt\beeaﬁmtadtoagoodmby&eoostoﬂheEE—PAand
EE-SBmkuhﬁauatthesmlevdnfMy.

ﬂ\ehimermkuhﬁa\shmbemmnpleﬁedyet,itislikdyﬂmtmcould
i lanmtasimilarawoffmfmﬂ\erreduceﬂ\emstofﬁtecakulaﬁom
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The last consideration in the cost of the EE-MB methods is the use
of parallelization. Since the calculation of each monomer, dimer, and in _
the case of the EE-3B method, trimer, is completely independent of all
other calculations, each could, in theory, be run on a different processor.
The ability to spread these calculations out evenly over a large number of
processors makes these calculations attractive.

5.6 Use in simulations

5.6.1 Routes for extending EE-MB to the bulk

h\otdammtliqnﬁdsorsoﬁds,itismcmrymeﬁmmtemrfaceeﬁects
by a choice of boundary conditions, such as stochastic boundary condi-
~ tions, extended-wall boundary conditions, or periodic boundary condi-
tions [36-38]. With periodic boundary conditions, each monomer interacts
with all the monomers and emibedding charges in all the replicated unit
cells, including its own image, until convergence or until a cutoff distance
is reached. For long-range forces, the sum over these interactions is only

convergent, and so care must be used to obtain a physical
result; a cutoff can cause artifacts. The long-range forces are more important
for some properties than for others [39]; for example, short-range structure
and dynamics may depend primarily on short-range forces. Various meth-
ods such as reaction fields, multipole summation, or Ewald summation
can be used to sum the infinite series of interactions or approximate their
effect [36-40]. For liquids the periodicity of the images is artificial, and
so some workers consider it more appropriate to employ the nearest im-
age convention in which a given monomer interacts only with the nearest
from among another given monomer or its various images [36]; however,
it has been recommended that while this might be acceptable in Monte
Carlo simulations, it should never be used in molecular dynamics simu-
lations [38]. A comanon choice for a cutoff distance, for a cubic unit cell,
is less than or equal to half the width of the cell. When this is applied
to a many-body treatment, one should therefore also screen the oligomer
contributions and include only those where no two monomers are sepa-
three-body contributions as well as the two-body ones [41].

The application of periodic boundary conditions to EE-MB energies
can be carried out in much the same way as it is carried out in simulations
involving quantum mechanical/molecular mechanical (QM/MM) calcu-
lations. In this respect, the largest difference between EE-MB and QM/MM |
calculations is that care must be taken in an EE-MB calculation in choosing
the correct dimer and trimer combinations to include in the energy calcu-
lation. When long-range interactions (such as Coulomb or di i
interactions) are not cut off, one might require an adaptive scheme [42)
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toswitd\betwemﬂ\eori@nddkaerorhimetandminvdvmg‘
Mhdm&mmmmm&gmbm
,la!gerﬂnnﬁlediahncebetwemaueofthemmersandthehmgeof
the other.

Bwaummeomaﬂymedwiﬂtmolecmatmedmnimpomﬁals,
but applying them to EE-MB is more similar to using them with combined
QM/MM potentials. The total energy for a QM/MM calculation can be
written as

E(QM/MM) = E(MM) + E(QM) + V(QM/MM) (5.12)

wl\eleE(MM)istheeuugyof&nemdemhrmeduﬁmmgim\, E(QM) is
the energy of the quantum mechanical region, and V(QM/MM) is the en-
ergy due to the interaction between the QM and MM regions. Calculations
m&e@dmmmﬂymmedmtwﬂumdmged&n—
bution of molecular mechanics charges. This is called electronic i
and is similar to the type of embedding done in the EE-MB methods; and
therefore each embedded monomer, dimer, or trimer calculation can be
msawmmmmmmm
are the molecular mechanics region. A difference between a QM /MM cal-
culation and an EE-MB calculation is that an EE-MB calculation does not
include the interactions of the point charges with ane another. Thus one
needs V(QM/)MMME(MM).Mmanumbudmmplesin
ﬂwﬁmmreinwhid:peﬁodkmmmndiﬁanhvebmappﬁedm
QM /MM calculations, but almost all of these [43-46] are for semiempi
been presented [47].

Anmhermybmﬂ\ein&ﬁteaaiesofﬁmﬁmninpcﬂodkab
initio QM calculations is the fast multipole method (FMM), which can
handle non-cubic unit cells {48,49]. ‘

Another way to account for the effect of a bulk solvent on a simulated
active site is provided by a class of solvent boundary potentials, which
have also been applied to QM /MM calculations and which could be refor-
mulated for EE-MB calculations [50-52].

Motivated in part by the hybrid QM:QM scheme of Sauer and cowork-
m[&ﬂmemmmm&\gﬂemyMyex-
pansion to solids. Their scheme involves a periodic DFT calculation with
alomlﬁxmﬁmulmﬂtee:dﬂdedsysﬁemmdam&mbhighﬂevd
WFT based on a series of larger and larger mechanically embedded clusters;
mkavoﬁsw&nmwadwmﬂwpeﬂodkm
system, which is very expensive. To gain this advantage in the context of

' ﬂlepmsuumeﬂwds,wepmpoceamdhodwiﬂ\mindhﬁtywﬂleﬂﬂ-
MB-CE method. We call this new suggestion DFT.EE-MB-HL where HL
detmﬁeshigherlevel.lnDFEEEMB-HLmWoukicanyoutapeﬁodic
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DFT calculation with a local functional for the extended system and aug-
ment this with an EE-PA or EE-3B calculation of the difference (for dimers
or for dimers and trimers) between a higher-level calculation (e.g., a hy-
brid DFT calculation or a coupled cluster calculation) and a DFT calculation
with the local functional. This approach allows one to take advantage of
the many efficient periodic codes for Jocal functionals and the expected fast
convergence of an EE-MB expansion of the higher-level correction. Note
that for general solids this may require the extension mentioned at the end
of Section 5.1.

5.6.2 Monte Carlo simulations

The use of many-body-based methods in Monte Carlo simulations has
been discussed previously by Christie and Jordan [55] and in this section
we will summarize their findings for unembedded many-body methods
and extend the discussion to EE-MB methods. (See also the description of
such methods in Chapter 7.) A key issue in Monte Carlo calculations on
clusters, liquids, and amorphous solids, is that many Monte Carlo moves
inveolve a change in only one monomer. The present discussion is limited
to that kind of move.

For a many-body method that does not involve electrostatic embed-
ding (e.g., PA, 3B, PA-CE, 3B-CE), when one makes a Monte Carlo move
in which only one molecule is displaced, the only interaction terms that
must be recalculated are those involving the displaced molecule. There-
fore, instead of recalculating the energies of all M(M — 1)/2 dimers, one
only needs to recalculate the energy of M — 1 dimers. Similarly, instead of
recalculating all M(M — 1M — 2)/6 trimers, one needs only to recalculate
the energy of (M — 1M — 2)/2 trimers.

Without using many-body expansions, the cost of each Monte Carlo
move is largely determined by the scaling with respect to increased system
size of the electronic structure method used. As mentioned previously, for
large systems MP2 scales as N3, while more expensive methods such as
MP4 and CCSD(T) scale as N. For small systems, the scaling is less severe,
but in this section all discussion is carried out for systems large enough
that asympiotic scaling applies. While the asymptotic limit is never actually
reached in real work, the use of this limit facilitates a general discussion

Table 5.6 shows a series of hypothetical timings, for the calculation of
a many-body (MB) Monte Carlo move for a systemn with 64 monomers,
for methods with costs (computational efforts) that scale as N>, bNS, and
c¢N?, where ¢, b, and ¢ are unknown prefactors for each level of electronic
structure theory (the prefactor also depends on the basis set). The cost todo
a pairwise additive (PA) Monte Carlo move is 6 to 9 orders of magnitude
smaller than calculating the energy in the conventional manner, while the
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Table 5.6 Cmsmofﬂypohhal’!m
for a Monte Carlo Move on a
HMMNPAQSBW

Scaling Conventiomnal PAmove 3B move

aN5 1.1 x 1Pa 20x10% 48x10%
bN® 69x10% 40x10° 14x10°%
cN? 44x10% 81x10° 4.4x10%

cost to doa three-body (3B) calculation is 4 to 6 orders of magnitude smaller
ﬂmnmknhmhwmﬂnmuvmmhm&ra
scaling to N*, the ratio of the cost of a 3B move to a full
calculation is 0.5(3*)N2—". Furthermore, since each of the calculations in
the MB move is independent of the rest, the MB calculations may be highly
nd 30 if ome has access to a large number of processors the wall
clock time for ¢ mkuhﬁmxmaybedwwadsig\iﬁmﬁy.h\ad&ﬁa\,as
mentioned in Sections 5.4 and 5.5, for large systems, a cutoff can be used to
decrease the number of dimers and trimers calculated, eventually making
the method sc hmlywiﬂ\ﬂ\emm\berofpmm
Foranm y-bodynellwddutdusmvdvemmubeddmg
(e.g., EE-PA, EE-3B, etc.), individual s-mer energies depend not only on
the coordinates of the nuclei belonging to the m-mer itself but also on the
coordinates of the embedding charges. Thus, when any atom in the system
is moved, the energy of every possible embedded m-mer is at least slightly
affected and must in principle be recalculated in order to obtain the true
EE-MB energy of the
However, one of the advantages of the EE-MB method is that it affords

ample opportunities toexplotemdimphmentaddiﬁomlcoat-savmgap—
pmxinnams, y when the EE-MB energies are used during Monte
Carlo simulations wlﬁd\dorummdyﬁcm:ndm

do not _.‘.-. energy surface as long as
the “jumps” i d\emhoemmn.\*ahmdyducmed&euseofspaml

cutoffs to reduce the number of dimer calculations by screening out dimers
or trimers whet mmisupumﬁedbyadmmﬂumﬂ\e
cuto&.'n\e s and trimers that must be recaiculated because the em-
bedding d hmmmedoﬁummhmor
approximatios Forezmgple,pnottoperﬁxmixgmabimhomkuhhmof

theauergyof embed:dedmatmsivms@mam%m
ulation, one could estimate by first-order perturbation theory how much
the moveme ofﬂ\eembeddmgd\ngedmlges&\emmemrgylf&\e
change is smaller than some threshold, one can accept the perturbation the-
ory estimate rather than recalculating the energy of the m-mer in the new
configuration of embedding charges. In this way, one could use an energy
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mtofftosuemmtmkﬁvelyexpamivemmm,dinm,a:dtrm\ercal—
cuhﬁmusﬁ\atmbeadeq\ntdymdedbypedmﬁmmuulﬁlevel
Wmﬁakobch:phnuﬂdbmveﬁnmdmm&rlo
simdaﬁons.Forexample,a\ecouldpufamdmmmddhnetml-
cuhﬁusatal@kveiof&nayami&mpaﬁmmaﬂuimermhﬂaﬁms
at some Jower level of theory to obtain an estimate of the EE-3B energy.
Aha!uﬁvd»mmﬁpabmaﬂmammaﬁwmlevelof »
ﬂmyh&ta\lyakdﬂeﬁntﬁmnmg&eutmmmpsdm-
mmmwwmmmwm,mm—%mrgy
oouldbeapprqodnmdbyadding&ediﬁemmebelwem&eEB-PAen-
agyatﬂeamﬁmpamdhtata'mmwesnpmﬂ\em-w
enugyatthenécaﬁreﬁeremesmp.&ﬂ\echmgemmmﬂsdeme-
mdfanwtyeuhaddi\gdmpmﬂdbemkuhhdw%amﬂer
hﬂswﬂmismdfmﬂem@ymphdm(mmw
meﬂndcmﬁd!ahohecotﬁdaedmbeammﬂevdmtegy.)Amyﬂad
dmm;wm.m,umdmmiqw,

i ﬁmuﬂ/amﬂﬂﬂdw«mnyiddmﬂous
savhgsatmt&ysﬁepsdmhg’ﬂecmofahﬂmﬂe&ﬂosintuhﬁunwiﬂx—
out losing a si mmtofﬂ\eaccmacygai:udbyﬂ\einclusionof
embedding

5.6.3 Molecular dynamics
ha%ﬁmﬁﬁm&ﬁmxﬂwnﬂa@ma&wedwwolve

following Ney 's laws of motion. This requires calculating the forces
acthgmﬂnftndmﬂe&Todoﬂ\isMy,maeeksmalgoﬁMfor
analytical gradi ofﬂnepotaﬂiﬂaugyanﬁce.ﬁmeﬂnegndimtis
a linear ayplyingitto&eﬁﬂ-PAu\dEE-SBenevgies(Equaﬁons

{5.8] and [5.7)) gives [35]

M M
VEes_pa= 3 VEj;— (M- 2)) VE; (5.13)
i

i<j

and

M M M

. (M—2M-3 )

VEpsas= Y VEj—(M-3)) VE;+ (—-——lz(————) Y VE;
i<j<k i<j i

(5.14)

These wuefustpmmdm[%},butwehherdiscovered
abuginﬂtepmgram.n\isbughnsbeencmec&dinMBPAC—m [56].
As a result, i gadiu\tsmlvu?hblefmmywvodthathasana-
gram fotﬂ\emeof&acﬁmaﬂydmgedpoiﬁchargesmbeused
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aspsuedonuclei(someﬁmeacﬂiedxhntaﬂmsam)'m&egndm
calculation. It is impartant to note that all of the terms on the right-hand
sideoqutuﬁau(S.lZ)amd@.lB)cu&hﬂebaﬂof&eWof
the gradients. For example, VE;, VE;;, and VE;’F all contribute to all the
gadiaucmmdaﬂﬂnoﬂmmmﬂwsymuﬂnoﬁmt
to monomers i, j, and k. A key simplification in the EE-MB methods is that
the magnitudes of the point charges are fixed and therefore do not need to
be updated during the course of the simulation.

As a numerical example, we consider hydrogen fluoride tetramer. The
geometry used for these calculations is given in Table 5.7 and the calcu-
lations were carried out using the MBPAC-2009 program {56}. Table 5.7
shows the energy of the tetramer relative to four monomers from full cal-
culations and from calculations by EE-PA and EE-3B at three levels of WFT.
The errors in binding energies are 0.60-1.6% at the EE-PA level and reduce
10 0.15-0.27% at the EE-3B level. Table 5.8 shows the unsigned errors in the

gradient magnitudes as well as mean and maximum unsigned errors in the
gradient for EE-PA and EE-3B at this geometry. The gradient
magnitude is 0.44-0.52 hartrees per bohr, and the mean absolute value of
the 24 ian components of the gradient is 0.071-0.082 hartrees per
bohr, ing on the level of the quantum mechanical theory. It can be
seen that, in comparison with the gradient magnitudes or gradient com-
ponents, the errors are generally 3 orders of magnitude smaller in EE-PA
and 4 orders of magnitude smaller in EE-3B calculations.

Table 5.7 Energies (kcal/mol) of Hydrogen
Fluoride Tetramer Relative to Four Monomers
from Conrventional Calculations and from
TMany-BodyMelhodsattheSaﬂ\elzvdof'lheory‘

Conventional EE-PA EE-3B

HF/MIDR 2936 29.19 2932
MP2/cc-pVTZ 17.22 1749 1718
CCSD/ocpVTZ 16.87 1709 1634
* The Cartesian coordinates (in A) of the tetramer are
F 1386092 1346092 0.000000
F 1346092 1346092 0.000000
F —1346092 -1.346092 0.000000
F 1346092 —1346092 0.000000
H 06319% 1763006 0.000000
H -1763006 063197 0000000
H —0631976 —1.763006 0.000000
H 1763006 —0.631976 0000000
The Cartesian coordinates (in A) of the monomer are
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Table 5.8 Unsigned Errors in Gradient Magnitudes (hartree/bohr),
Mean Unsigned Exvors, and Maximum Unsigned Errors in Gradient
Cmmhm/boh)by&ay-ﬂodyh&ﬂndawi&kapectm
mvm\mhnmmm (The Geometries
Are Specified in Table 5.7

Gradient magnitudes
EE-PA EE-3B

HEF/MIDI! 27 %1073 20x10+*
MP2/ccpVIZ 58x107¢ 40x10°5
CCSD/ccpVIZ 7.1x10* 3.0x 105

Gradient components
Mean Maximum
EE-PA EE-3B EE-PA EE-3B
HF/MIDI! 20x 10 25x105 54x10~t 5.5 x 105
MP2/cc-pVTZ 53 x 1075 86x10% 15x10 23 %105

CCSD/cc-pVTZ 53 x 1075 68x10% 14x10* 1.9 x 105

Onecana*owri&easetofeqmﬁmssimihrbﬁqmﬁa\s(s.m)and
(5.14)'mwhidxﬂ\eﬂesimhnbemappliedwtheEB-MBenergies.Asa
result, the EE-MH methods will also have analytic Hessians for any cor-

studying vi

In contrast to Monte Carlo simulations, the energy of the entire system
must be re after each time step of a molecular dynamics calcula-
tion, so even the use of the MB methods the cost of these calculations
will be quite high for a However, the scaling with system
size is reduced to N” for EE-PA and N° for EE-3B even without screening,

5.7 Conclysions
The ability toaccurately calculate correlation energies for condensed-phase
systems remains an important goal of computational scientists. The elec-

trostatically embedded many-body (EE-MB) method and the electrostat-
ically embedde many-body expansion of the correlation energy (EE-
MB-CE) provide promising new routes to achieve this goal. The
high accuracy these methods coupled with their simple implementa-
tion, Jow cost, easy parallelization make them attractive options for
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