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Summary. This chapter discusses the role of decoherence in mixed quantum–
classical approaches to electronically nonadiabatic chemical dynamics. The corre-
lation of electronic and nuclear motion, which is not included in the semiclassical
Ehrenfest or time-dependent Hartree method, induces decoherence in the reduced
electronic density matrix, and the chapter shows how this can be modeled by adding
algorithmic demixing to the Liouville-von Neumann equation. The resulting mixed
quantum–classical equations of motion involve stochastically controlled, smooth, and
continuous surface switching coupled to coherent propagation through each region
of strong interaction of the electronic states. The chapter also reviews test results
that show good agreement with fully quantum mechanical results for a diverse set
of atom–diatom test cases.

1 Introduction

The coupling of quantum mechanics to classical mechanics is a recurring theme
in the treatment of complex systems because a full quantum mechanical treat-
ment is usually possible only for simple systems. The coupling may occur in the
generation of potential energy surfaces, as in combined quantum mechanical
and molecular mechanical methods [1–3] or it may occur in the dynamics step,
as when quantum mechanical nuclear-motion effects are combined with tran-
sition state theory or molecular dynamics simulations [2, 4–7]. Conventional
molecular dynamics simulations themselves, even when the nuclear motion is
only treated classically, involve using quantum mechanics, explicitly or implic-
itly, to derive the Born–Oppenheimer [8] potential energy surface and then
treating nuclear motion classically [7, 9–12]. This kind of joining of the two
mechanics raises fewer theoretical questions than the first two. However, if we
allow for Born–Oppenheimer breakdown, that is, electronic nonadiabaticity,
then a number of conceptual issues arise [7,13–31]. Very similar issues arise in
Born–Oppenheimer processes if some nuclear degrees of freedom are treated
quantum mechanically and others classically [32–41]. The present article is
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concerned with this problem and especially with elucidating the important
role of decoherence in shaping a physically correct form for the equations of
motion of the quantal and classical subsystems. Furthermore we seek a prac-
tical algorithm that allows us to simulate systems in which decoherence plays
an important role. Although one could illustrate the theory by any problem in
which some degrees of freedom are treated as quantal but are not simply adi-
abatic and other degrees of freedom are treated as classical, we use the prob-
lem of electronic nonadiabaticity as our illustrative example, with all nuclear
degrees of freedom classical. Furthermore, we start with a Hartree approxi-
mation (also called the Ehrenfest approximation [14, 21], the time-dependent
self-consistent-field approximation [20, 37, 40], or the self-consistent eikonal
approximation [15]), which assumes only a mean-field (uncorrelated) coupling
of the electronic and nuclear degrees of freedom, and we show how adding
correlation effects leads to decoherence. Since the nuclear degrees of freedom
are coupled to the electronic ones, we will see that they require some quantum
mechanical elements for their description.

2 Theory

The quantum mechanical time-dependent Hartree approximation for coupled
electronic and nuclear motion is

Ψ = φelec (r, t)ψnuc (R, t) . (1)

The factors in (2) satisfy an electronic mean-field Schrödinger equation

i�
∂

∂t
φelec = 〈ψnuc |H|ψnuc〉R φelec(R, t) (2)

and a nuclear mean-field Schrödinger equation

i�
∂

∂t
ψnuc =

〈
ψelec |H|ψelec

〉

r
ψnuc(R, t), (3)

where i =
√
−1, � is Planck’s constant divided by 2π, r and R denote the

electronic and nuclear coordinates, respectively, and t is time.
Now we approximate ψnuc by an ensemble of trajectories, which yields a

semiclassical time-dependent Hartree approximation [37]. The nuclear mean-
field wave packet is replaced by an ensemble of classical trajectories propa-
gating under the influence of the self-consistent potential

USCP =
〈
ψelec |H|ψelec

〉
r
. (4)

The electronic mean-field Schrödinger equation becomes

i�
∂

∂t
φelec = 〈H〉nuclear ensemble φ

elec(r, t). (5)
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This treatment neglects important correlations between electronic and nuclear
motion. A better starting point than (1) is a multiconfigurational wave packet
[20,42–45]. A wave packet in a multielectronic-state molecular system may be
written

Ψ =
∑

states α

cα(t)φelec
α (r,R(t))ψnuc

α (R, t) , (6)

where φelec
α is a normalized component of the electronic wave function, ψnuc

α

is a normalized component of the nuclear-motion wave packet, and cα is a
time-dependent coefficient.

To improve upon the mean-field approximation in the semiclassical treat-
ment, we add correlation by making the independent-trajectory approxi-
mation [15, 40]. (A quantum wave packet analog is the “independent first
generation” approximation [45].) This replaces (5) by

i�
∂

∂t
φelec = H (R(t)) φelec (r,R, (t)) (7)

for each trajectory. The combination of the independent-trajectory approxi-
mation and the semiclassical time-dependent Hartree approximation is called
the semiclassical Ehrenfest approximation [23,26–30].

Next we choose an electronic basis

φelec =
∑

α

cα(t)φel
α (r,R(t)) , (8)

where cα is a coefficient, and φel
α is an antisymmetrized many-electron config-

uration state function in either the adiabatic [8] or a diabatic [26] representa-
tion. Furthermore we make the semiclassical replacement

∂φel
α

∂t
=

dR
dt
∂φel

α

∂R
. (9)

Substituting (8) and (9) into (7) yields the following time-dependent Schrödi-
nger equation for the coefficients along the trajectory [20]

i�
∂cα
∂t

=
∑

β

cβ(t)
[
−i�Ṙ · dαβ + Uαβ (R(t))

]
, (10)

where
Uαβ ≡

〈
φel

α |Helec|φel
β

〉
r

(11)

and
dαβ ≡

〈
φel

α |∇R|φel
β

〉
r
. (12)

In (12), Helec is the so called electronic Hamiltonian, which also includes
nuclear repulsion. It is defined by

Helec = H − TR, (13)
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where TR is the nuclear kinetic energy. Since dαβ is anti-Hermitian, its diag-
onal elements vanish identically. Note that if an adiabatic representation is
used in (8), U is diagonal [13b], whereas if a diabatic representation is used in
(8), dαβ is assumed to be negligible and is neglected. The diagonal elements of
U are called potential energy surfaces, and Uii is often denoted as Vi. In well
established but somewhat inconsistent conventions, the off-diagonal elements
of U are called the diabatic couplings, and dαβ is called the nonadiabatic cou-
pling. It is convenient to reformulate (10) in terms of the reduced electronic
density matrix, which is defined by its matrix elements as follows:

ραβ ≡ cαc
∗
β . (14)

Substituting (14) into (10) yields a unitary Liouville-von Neumann equation
[46], which in our case can be written as:

i�
∂ραβ

∂t
= −

∑

γ

([
−i�Ṙ · dγβ + Uγβ

]
ραγ − {permute indices}

)
. (15)

Equation (15) is also called a unitary quantum Liouville equation. It is the
quantum mechanical analog of Liouville’s theorem in classical mechanics, and
it is equivalent to the time-dependent Schrödinger equation [47,48].

In the semiclassical Ehrenfest method one solves the coupled quantum me-
chanical equation (15) [or the equivalent equation (10)] for the electrons and
simultaneously the classical equations of motion with the effective potential of
equation (4) for the nuclear motion. Because we made the independent trajec-
tory approximation, we repeat this calculation for an ensemble of initial con-
ditions in the classical phase space (which may be sampled classically [11,12]
or quasiclassically [9, 10, 12a]), we average over initial conditions, and we sum
over final states. The semiclassical Ehrenfest method shares with the exact
solution of the Schrödinger equation that the results are independent of the
representation (adiabatic, diabatic, or intermediate) used for the quantum
subsystem. In fact this is true for each individual trajectory, not just for the
ensemble average. But there is a serious defect in this method, namely that
the system ends in an unphysical final state. Consider, for example, a collision
or a photodissociation event where the final state is a diatomic molecule AB
and an atom C. Suppose that the total energy is 2.5 eV above the classical
potential energy of ground-state products, and that the products have one
excited electronic state with an electronic excitation energy of 2.0 eV. The
accurate quantum mechanical distribution of nuclear-motion energies will be
bimodal: systems in the ground-electronic state will have 2.5 eV of nuclear
energy, and systems in the excited electronic state will have 0.5 eV of nuclear
energy. One might, under certain circumstances, even find a 50:50 distribution
of these states. However, because a semiclassical Ehrenfest trajectory propa-
gates on an average potential energy surface (4), it might end with an average
nuclear energy of 1.25 eV or 1.5 eV (or in fact any energy in the range 0–2.5
eV), rather than being restricted to one of the two quantally allowed values.
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Why is the semiclassical Ehrenfest method wrong? Because ραβ fails to
tend to δαβ (a kronecker delta) as t → ∞. And why does that failure occur?
Because (10) and (15), being equivalent to the time-dependent Schrödinger
equation, are wrong for a subsystem.

There is only one system governed by the Schrödinger equation, namely
the entire universe. All other systems are subsystems and satisfy a quantum
master equation, in particular, a nonunitary Liouville-von Neumann equation
with dissipation and dephasing. In our example of non-Born–Oppenheimer
trajectories, the nuclei serve as a “bath” or “environment” for the electronic
subsystem [30,49–53]. To understand the effect of this bath, consider the wave
packet of (6). In our example, there are two electronic states, corresponding to
α = 1 and α = 2. The component of the nuclear wave packet corresponding
to the lower-energy electronic state (α= 1) moves faster, as does the trajectory
subensemble corresponding to this subpacket. Therefore the two terms in (6)
get out of phase, and they become subpackets in different regions of space;
for these reasons their overlap tends to zero. As a consequence, ραβ → 0.

When a semiclassical Ehrenfest trajectory finishes a non-Born–
Oppenheimer event, ραβ for α �= β is not zero and ραα is neither zero nor
unity. That is, the trajectory does not decohere to a pure state. Physically,
dephasing would cause the off-diagonal elements to decay

(
ραβ ραβ

ρβα ρββ

)
→
(
ρ′αα 0
0 ρ′ββ

)
. (16)

Algorithmically, we want our statistical ensemble of trajectories to “demix”
to an ensemble of trajectories with quantized electronic states, schematically

(
ρ′αα 0
0 ρ′ββ

)
→ ρ′αα

(
1 0
0 0

)
+ ρ′ββ

(
0 0
0 1

)
. (17)

To achieve this we add algorithmic decay to the unitary Liouville-von Neu-
mann equation such that each trajectory, at any given time, decoheres toward
a given state, called the “decoherent state,” in such a way that the distribution
of states (averaged over an ensemble of trajectories) is self-consistent with the
density matrix. The resulting nonunitary Liouville-von Neumann equation,
also called a quantum master equation, has the form

dραβ

dt
=
[
dραβ

dt

]

unitary

+
[
dραβ

dt

]

decoherent

, (18)

where the first term on the right-hand side is from (15) and generates dy-
namics equivalent to the Schrödinger Equation, and the second term is an
algorithmic control term added to simulate the effect of decoherence. Both
terms conserve total energy and total angular momentum of the combined
quantal and classical subsystems. However energy is transferred between the
two subsystems; when energy is transferred from the quantal subsystem to
the classical one, this may be considered to be a form of dissipation.
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The density matrix of (18) is a reduced density matrix, that is, a density
matrix of a subsystem traced over its environment. In the present case, it is
the electronic density matrix obtained by tracing over the nuclear degrees of
freedom. This matrix, being Hermitian, can be diagonalized in any basis. In
which basis does it become diagonal and stay diagonal? That basis is called
the pointer basis [54], and the selection of this basis by the decoherent process
is called environment-induced superselection or einselection [55]. The pointer
basis is determined by the interaction of the subsystem with its environment;
this interaction is sometimes called the measuring process. For example if the
system is a spin- 1

2 particle (S = 1
2 ), and its interaction is to encounter a detec-

tor properly designed to measure Sz, the pointer basis will be the eigenvectors
of the operator Ŝz. If, however, the interaction with the environment is to en-
counter a detector properly designed to measure Sx, the pointer basis will be
the eigenvector of Ŝx. More generally, if the subsystem behaves adiabatically
(such as when the frequencies of the environment are much lower than those
of the subsystem), the pointer basis will be the adiabatic energy states of the
subsystem [56], which is fully in accord with intuition. In the limit where the
self-Hamiltonian is negligible compared to the subsystem-environment inter-
action, the eigenvectors of the interaction becomes the pointer state [57]. In
the general case the pointer basis is unknown. The analog of the pointer basis
in our algorithm is the basis used to express the decoherent states; we may
call this the algorithmic pointer basis. Since the physical pointer basis is not
easy to predict and may change with time as the system explores different re-
gions of nuclear configuration space (i.e., as the electronic subsystem explores
different aspects of its nuclear environment), our goal is to find an algorithm
whose accuracy does not depend strongly on the choice of algorithmic pointer
basis. In practice this means we seek an algorithm that yields good results
in both the adiabatic and diabatic representations. Not only must we choose
an algorithmic pointer basis, we must also choose the decoherent state, which
will be labeled K. Thus α = K for the state toward which the system is
decohering at a particular time along a particular trajectory.

To derive a form for the second term of (18) we make the reasonable as-
sumption that Re cα and Im cα (in (10)) decay by a pure first-order process
at the same rate in the algorithmic pointer basis [23]; this conserves the elec-
tronic phase angle, that is, it conserves arctan (Im cα/Re cα). Then we obtain,
for example for the αβ = αK element [27]

(
dραK

dt

)

decoherent

=
1
2

⎡

⎣ 1
ρKK

⎛

⎝
∑

γ �=K

ργγ

τKγ

⎞

⎠− 1
ταK

⎤

⎦ ραK . (19)

The more common assumption is that the master equation is linear, which
yields:

(
dραβ

dt

)

decoherent

= − 1
ταβ

ραβ , α �= β. (20)
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To which state does the system decohere? We determine this stochasti-
cally by Tully’s [17] fewest switches algorithm, which was originally proposed
for use in surface hopping calculations. Trajectory surface hopping calcula-
tions [13, 16–18] stochastically switch the state in which the system propa-
gates (i.e., the potential energy surface governing nuclear motion) to keep
the ensemble of nuclear trajectories as consistent as possible with the quan-
tal evolution of the quantal subsystem governed by the unitary Liouville-von
Neumann equation. In contrast, our algorithm [29,30] stochastically switches
the decoherent state to keep the nuclear ensemble consistent with the uni-
tary Liouville-von Neumann equation over each passage through a strong in-
teraction of the electronic states, which is called coherent switching . At the
same time the nuclei propagate on a potential energy surface consistent with
the nonunitary Liouville-von Neumann equation incorporating decay of mix-
ing. The algorithm is therefore called coherent switches with decay of mixing
(CSDM). Because the boundaries of the coherent switching regions introduce
time nonlocality, the algorithm is non-Markovian.

In summary, the CSDM algorithm introduces decoherence into the elec-
tronic reduced density matrix such that in the strong interaction region
the potential energy surface governing nuclear motion has the desirable
(representation-independent) properties of the semiclassical Ehrenfest poten-
tial, whereas in the asymptotic or weakly coupled regions the effective po-
tential reduces to that of the decoherent state in the pointer basis. But the
decoherent state switches stochastically in a coherent way for each complete
passage through a strong interaction region. Thus we evolve two density matri-
ces, one (evolved with decay of mixing) controls the effective potential energy
surface for nuclear motion, and the other (evolved coherently through strong-
interaction regions) controls stochastic switching of the decoherent state.

The decoherence process is first-order with rate constant τ−1. For example,
for a diagonal element ραα of the density matrix, with α �= K, we have

dραα

dt
=
(

dραα

dt

)

unitary

− ραα

ταK
, (21)

where the first term on the right is associated with coherent Ehrenfest propa-
gation and the second term causes demixing. There are similar equations for
other density matrix elements, except that they are nonlinear for off-diagonal
elements ραβ . We call τ the decoherence time or the demixing time.

Since our algorithmic demixing is analogous to but not identical to physical
decoherence, it is reasonable that our demixing time should be similar to but
not identical to the physical decoherence time. We therefore base our choice
of the demixing time on three principles:

1. The semiclassical limit of a wave function is the sum of WKB-like tra-
jectories associated with minimum wave packets, and decoherence of the
superposition is faster than decoherence of the individual packets [57]. Nu-
clear wave packets move at different speeds on different surfaces, causing
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dephasing and decay of overlap, and this leads to decay of off-diagonal
elements of the density matrix [53].

2. The pointer basis is the one in which decoherence is fastest [57].
3. Decoherence slows down when the momentum component in the nonadi-

abatic coupling direction is small [29].

Using the first two principles we derived [53] an approximate expres-
sion for the physical decoherence rate constant for electronically nonadiabatic
chemistry:

1
τ

=
1
τ∆F

+

√(
1
τ∆p

)2

+
(

1
τ∆F

)2

, (22)

where τ∆p is a complicated expression associated with the wave packet hav-
ing different momenta pα and pβ on two surfaces Vα and Vβ , and τ∆F is a
complicated expression associated with the wave packet experiencing different
forces on the two surfaces. For parallel surfaces in one dimension,

τ = τ∆p =
�

|Vα − Vβ |

√
4π2 |pα − pβ |

p̄
, (23)

where p̄ is the average momentum. The first factor (“prefactor”) on the right-
hand side of (23) is the fastest time scale in the system.

For our purposes, the “correct” rate of algorithmic demixing is whatever
makes the ensemble average with the independent-trajectory approximation
best simulate the rate of change of populations and final-state distributions.
We found that the following works well

τ =
�

|Vα − Vβ |

⎛

⎝1 +
E0

(p · ŝ)2
/

2µ

⎞

⎠ , (24)

where p is nuclear momentum, ŝ is the direction of the nonadiabatic coupling,
µ is the nuclear reduced mass (p and µ both correspond to isoinertial coor-
dinates scaled to a single reduced mass), and E0 is a parameter that we set
equal to 0.1 hartree. The final factor in (24) is motivated by principle no. 3
above and by the fact [55] that the fastest time scale in the system provides a
lower bound on the physical decoherence time. Although our experience indi-
cates that the performance of (24) can be improved by making the prefactor
larger, we find that with the current form the results are reasonably insensitive
to E0 and that (24) works well for a diverse set of non-Born–Oppenheimer
processes [29,30].

Two further issues need to be considered. First is the direction of deco-
herent energy release and decoherent energy uptake (these energy exchanges
are required because the potential energy surface is self-consistent with the
decohering density matrix). We formulated the decoherence term such that
the direction of the nuclear momentum in which energy is exchanged as the



Decoherence in Combined Quantum and Classical Mechanical Methods 235

system decoheres (as the pointer state is einselected) is the direction of the
nonadiabatic coupling vector when nonadiabatic coupling is large and is in
the direction of the vibrational momentum when the nonadiabatic coupling is
small. The latter is motivated by the existence of a “small” but nonremovable
component of the nonadiabatic coupling associated with any motion of the
nuclei [26].

The final issue to be considered is the criterion for a strong coupling region
over which the density matrix that controls stochastic switching evolves coher-
ently. For calculations in the adiabatic representation we take the boundaries
of strong-coupling regions as the minima of the magnitude of the nonadia-
batic coupling. For calculations in the diabatic representation, we take these
boundaries as the minima of the diabatic level spacing (gap); using the max-
imum gap turned out to be slightly less accurate on average. At boundaries
between strong-coupling regions, the switch-controlling coherent density ma-
trix is synched to the relaxing one that controls the effective potential. This
key element of the method differs from all previous trajectory surface hopping
and decoherence algorithms; as a result the amount of decoherence introduced
at strong-interaction-region boundaries depends on the length of the strong
coupling region and the relaxation rates controlled by the decoherence times.

We emphasize that the DM potential energy surface switches gradually
and smoothly between the various electronic surfaces; no hops are invoked,
and therefore no frustrated hops arise. In the DM formalism, we preserve
Ehrenfest-like motion in strong interaction regions or when the decay times
are long. In the limit of short decay times, the DM formalism is similar to
surface hopping in having instantaneous decay of the reduced density matrix,
but surface hopping has no synching.

3 Tests

We validated the CSDM method for a variety of test cases for which we
computed [58–60] accurate quantum mechanical transition probabilities by
methods developed earlier [61] for converged quantum mechanical scattering
theory. All of the test systems have the form

A∗ + BC →
{

AB + C
A + BC

, (25)

where * denotes electronic excitation; A, B, and C are atoms; and the collision
occurs in full three-dimensional space with total angular momentum zero. The
masses of the atoms in atomic mass units are denoted mA, mB, and mC.
The full set of tests are presented in [29,30], and here I give only a survey of
the results of those studies.

First we consider a case with mA = 10, mB = 1.00783, mC = 6, and a
potential energy surface resembling that for Br* + H2. This is a case of weakly
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coupled surfaces that do not cross in either representation; the gap between
the adiabatic surfaces is about 0.36 eV throughout the whole important region,
and the diabatic coupling is a constant, 0.20 eV [59]. Table 1 shows results for a
case with a total energy of 1.10 eV where the initial vibrational and rotational
quantum numbers of BC are respectively v = 0, j = 6. In the table, PR denotes
the probability of reaction (top product in (25)), and PQ is the probability
of nonreactive quenching (electronic-to-vibrational energy transfer; bottom
product in (25)). Table 1 shows the actual calculated probabilities, and Table 2
shows the dependence on representation.

Tables 1 and 2 show that trajectory surface hopping has a very strong
dependence on representation. In simple cases like this weakly coupled atom–
diatom collision, it is not too difficult to recognize which representation pro-
vides a better description (in this case it is the adiabatic one). However, for
systems with complex potential energy surfaces, it is not always possible to
know which representation is more appropriate [22]. There may be systems
with some initial conditions for which the adiabatic representation is more
accurate and other initial conditions for which the diabatic representation is

Table 1. Test results for a weakly coupled case

method representation PQ PR

Trajectory surface hopping methods

Parlant-Gislason (PG)a adiabatic 0.01 0.002
diabatic 0.55 0.359

Tully’s fewest switchesb adiabatic 0.18 0.025
diabatic 0.40 0.161

Fewest switches with time uncertaintyc adiabatic 0.18 0.015
diabatic 0.33 0.044

Self-Consistent-potential methods

Semiclassical Ehrenfest (SE) either 0.003 0.000

CSDM adiabatic 0.15 0.021
diabatic 0.18 0.012

Accurate

Quantum scattering either 0.14 0.26
aMethod of [16]
bOriginal TFS+ method of [17] with frustrated hops ignored
cFSTU gradV method of [24] and [25]
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Table 2. Representation dependence for the weakly coupled case of Table 1

type
of

P (diabatic)/P (adiabatic) or
P (adiabatic/P (diabatic)

methods method Quenching Reaction

TSH PG 55 180
TFS+ 2.1 6
FSTU gradV 1.8 3

SCP SE 1.0 –a

CSDM 1.2 1.7
aCannot compute because no reaction was observed due to qualitatively incorrect
Ehrenfest potentials in the reactive exit valley

more appropriate. Furthermore, and even more serious, is that for systems
with complex coupled potential energy surfaces, there may be regions of con-
figuration space where the diabatic representation is more suitable and other
regions or product valleys where the adiabatic representation is more suit-
able. Thus it may not be possible to find a good zero-order description that
remains valid for a whole trajectory; this was one of the original motivations
for trying to incorporate the representation independence of the semiclassical
Ehrenfest method into our scheme. Tables 1 and 2 do show that the results
obtained by the semiclassical Ehrenfest method are independent of represen-
tation; unfortunately though the results are too inaccurate to be useful. The
CSDM method reduces the representation dependence to factors of 1.2 and
1.7 for the two probabilities, and the results are reasonably accurate in both
representations, especially when we consider that the weak coupling case is
especially difficult for semiclassical methods.

We carried out similar comparisons for additional test cases. In particular,
we considered three kinds of systems, all of the form of (25) [28–30, 58–60].
We considered three cases of the weak coupling type already discussed, nine
test cases with energetically accessible avoided crossings (where the diabatic
potentials cross, but the adiabatic ones do not), and five test cases with ener-
getically accessible conical intersections. The weak coupling cases include two
strengths of diabatic coupling, one of which is studied with two different ini-
tial conditions. The avoided crossing cases consist of three different couplings
(varying in strength and extent of delocalization), each studied with three dif-
ferent initial rotational states. The conical intersection cases correspond to five
different coupling functions. The results [28–30] are shown in Table 3, which
presents mean unsigned percentage errors in the probabilities of quenching
and reaction, in the total nonadiabatic transition probability (PN ≡ PQ + PR),
and in the final internal energy distributions of the diatomic fragments. The
means are computed by logarithmic averaging [62] so as to give equal weight
to overestimates and underestimates, and the results are averaged over the di-
abatic and adiabatic calculations. The CSDM method leads to uniformly good
results for all three kinds of systems. In fact the errors are comparable to the
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Table 3. Mean unsigned percentage errors of semiclassical methods for non-Born–
Oppenheimer trajectories tested against accurate quantal results for 17 test cases
averaged over diabatic and adiabatic representations

kind kind of system averaged

of method weak avoided conical over kinds
method coupling crossing intersection of systems

TSH PG 298 107 52 152
TFS+ 195 58 44 99
FSTU gradV 74 40 44 53

SCP SE –a 65 55 –
CSDM 24 21 31 25

aCannot compute mean error because there is no reaction, and hence there are no
reactive products for which to compute mean internal energies

accuracy attainable [21] by trajectory methods for single-surface problems of
this nature.

4 Concluding Remarks

We have shown that decoherence is essential for modeling the quantum me-
chanical electronic subsystem in the simulation of electronically nonadiabatic
chemical dynamics. We have developed an improved self-consistent-potential
method called Coherent Switches with Decay of Mixing (CSDM) by writing
the time derivative of each density matrix element as the sum of a coherent
Ehrenfest-like term and a demixing term. The demixing terms control the
decay of the system from a mixed state to a stochastically selected pure state
called the decoherent state. The form of the equations was determined by
requiring:

– Conservation of total energy and angular momentum;
– Conservation of electronic phase angle;
– The decoherent state switches to maintain self-consistency, but it is other-

wise chosen as coherently as possible for each complete passage through a
strong interaction region (corresponding to non-Markovian decoherence);

– The direction in which energy is exchanged between the classical vibra-
tional degrees of freedom and the quantal electronic degrees of freedom
as the system decoheres is chosen physically based on the nature of the
nonadiabatic coupling.

The CSDM algorithm provides a semiclassical version of the multiconfigu-
rational self-consistent-field method that puts mixed quantum/classical dy-
namics for non-Born–Oppenheimer systems on a comparable footing with BO
dynamics. In particular the accuracy is comparable to that attainable when
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trajectory methods are applied to single-surface problems. Furthermore the
classical subsystem experiences no discontinuities in momenta, coordinates,
or potentials, there is relatively little dependence on representation, and the
cost of the calculation is similar to that for single-surface trajectories.

A key advantage of the semiclassical SCDM algorithm is that it is more
practical than a fully quantal multiconfigurational quantum master equation
[63–67] for applications to complex systems.
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