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Abstract. We survey the phenomenology of broad and overlapping resonances in 
the scattering theory of molecular collisions. We first discuss examples of resonances 
encountered in molecular collisions that are not described by the well known isolated 
narrow resonance formulae; nevertheless certain regularities are observed. We emphasize 
(i) the relationship between the total resonance width and the sum of the partial widths 
and (ii) the comparison of trapped-state resonances to barrier resonances, especially 
from the point of view of the change in background (direct) scattering over the width 
of the resonance. We then focus on quantal scattering by one-dimensional potential 
energy functions to provide further insight into the nature of barrier resonances, which 
are also called transition states. In studies of symmetric and unsymmetric potential 
functions, we show that reaction thresholds associated with barriers are associated with 
poles of the scattering matrix; i.e., chemical reaction thresholds are resonances. As the 
parameters of the potential function are varied, we follow the "trajectory" of the poles 
in the complex energy plane and examine the connection between barrier resonances 
and conventional resonances associated with wells between barriers. Resonances are 
further characterized by considering the relationship between the resonance width and 
the reactive delay time. 
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1. Introduction. "Probably the most striking phenomenon in the 
whole range of scattering experiments is the resonance. Resonances are 
observed in atomic, nuclear and particle physics. In their simplest form 
they lead to sharp peaks in the total cross section as a function of energy 
... There are many different theoretical approaches to the resonance phe­
nomenon, all of them having in common that the sharp variation of the 
cross section ... is in some way related to the existence of a nearly bound 
state of the projectile-target system ... " [1]. 

Thus resonance states are metastable states, and such states have a 
much richer phenomenology than true bound states. The present contribu­
tion to the interdisciplinary workshop will focus on metastable states and 
resonance phenomena in chemically reactive molecular scattering processes 
that raise interesting and incompletely understood questions about corre­
lating observed phenomena with the analytic structure of the scattering 
matrix. The chapter includes examples of specific case studies and rele­
vant background. References are illustrative without attempting to give a 
complete survey of the literature. 
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1.1. Trapped-state and barrier resonances. Metastable states in 
quantum mechanics are usually associated with quasi bound states located 
in a potential well which may be between barriers or behind a barrier. The 
barrier separating the resonance state from the dissociative continuum may 
be in the potential energy or in an effective potential curve (potential energy 
plus centrifugal potential); in such cases the resonance is called a "shape 
resonance" or "single-particle resonance." Alternatively, the barrier may 
be associated with slow energy transfer from internal modes of one of the 
collision partners to the dissociative mode, i.e., to the collision coordinate; 
such resonances are variously known as core excited [1], internal-excitation 
[2], target excited [3], or Feshbach [4,5] resonances. The finite lifetime 
associated with the metastable state can manifest itself in a time delay 
for the scattering phenomenon (relative to the free particle motion in the 
absence of a potential) and in rapid variations in cross sections and tran­
sition probabilities. We refer to such metastable states as "trapped-state 
resonances." 

However, metastability is not limited to states located "behind bar­
riers". It is well known in classical mechanics that a potential maximum 
is associated with metastability at the energy of the maximum; passage 
over the barrier incurs a time delay due to the system slowing down as 
it crosses the barrier top. There should be, and in fact is, an analogue 
in quantum mechanics [6]. Quantum mechanically, barrier passage is also 
associated with a time delay, manifested as an increasing phase in elements 
of the scattering (5) matrix (relative to the background phase, i.e., the 
phase itself or show an increase or a less rapid decrease in the vicinity of 
the barrier) [3,7-9]. The time delays associated with barrier passage have 
been shown, as will be discussed below, to be associated with metastable 
states [10-12]' which we will refer to as "barrier resonances." 

Trapped-state and barrier resonances share one very important feature: 
they are both "resonances," which we define, using the most fundamental 
definition we know [la,13-1S]' as observable, energy-localized manifesta­
tions of poles of the scattering matrix (5 matrix) at complex (resonance) 
energies Za given by 

(1.1) Za = Ca - ir a/2 

The index a (a collection of quantum numbers) labels the resonance, Ca 

is the real part of the resonance energy and r is the (total) resonance 
width. That there is no distinction in kind between barrier and trapped­
state resonances has been demonstrated in one-dimensional scattering stud­
ies [11,12] in which it has been shown that by continuously varying the 
form of the potential barrier function, a barrier resonance may be trans­
formed into a trapped-state resonance and vice versa. In fact, in both the 
one-dimensional studies as well as three-dimensional, multiparticle reactive 
scattering work [19-21] we have found that a resonance need not be uniquely 
described as either a trapped-state or a barrier resonance but instead may 
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partake of the characters of both. Nonetheless, although the classifica­
tion of a pole of S as a barrier or trapped-state resonance is not always 
unambiguous, the distinction between the two types of resonances is use­
ful, just as the subdivision [2,4J of trapped-state resonances into internal­
excitation and shape resonances has proved useful in a wide variety of 
contexts. Trapped-state resonances in general tend to be associated with 
longer time delays and narrower widths than barrier resonances. 

1.2. Isolated narrow resonances. The molecular collisions under 
consideration in this chapter are invariant under time reversal and, as a 
consequence, phases can be chosen so that the scattering matrix is sym­
metric [22J, and we will do so. In the vicinity of an isolated resonance, the 
scattering matrix element Sn'n, where n( n') denotes the set of quantum 
numbers for the initial (final) channel, can be written [1a,15,23-26J 

(1.2) S (E) - Sb (E) _ .lem'lan 
n'n - n'n IE - za 

where Za is given by eqn (1.1), S~'n(E) is the nonresonant background 
contribution to the scattering matrix element, E is the total energy, and 
lan' is the partial width amplitude for channel n'. We immediately see 
that at the complex resonance energy Za, there is a pole in the S matrix. 

The total width r a of eqn (1.1) is directly related to the rate constant 
ka for the unimolecular decay of the resonance state [27,28J 

(1.3) 

where Ii is Planck's constant (h) divided by 271". The rate constant itself is 
defined by 

(1.4) 

where Ca is the number density of state 0'. Defining the "lifetime" Ta as 
the reciprocal of the rate constant yields 

(1.5) Ta = lifr a 

The "partial width" ran' for leaving the metastable resonance to go 
into final channel n' (or for entering it from channel n') is given by I/an,1 2 . 

(It can also be defined using a golden-rule type of formula in terms of 
properly normalized resonance wave functions [29J.) 

For an isolated, narrow resonance (INR) one can show that [1a,15,23-
29J 

(1.6) L ran = r a 

n 

where the sum extends over all open (i.e., energetically accessible) channels. 
The partial width raj controls the rate constant kaj of unimolecular decay 
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of the resonance a into a specific (initial or final) state j just as the total 
width r a controls the total decay rate ka . In particular [29], 

(1.7) kaj = raj/Ii 

Using eqn (1.2) and neglecting the background contribution S~'n and the 
interference between the background and resonant contributions, we see 
that the channel-to-channel transition probability Pn .... n', to the extent 
that it is controlled by resonance a, is given by 

(1.8) Is 12 r~ 
n'n = (E _ CaP + r~/4 PanPan' 

where 

(1.9) 

We see that pure resonant scattering is statistical with branching ratios 
entirely governed by the partial widths. In other words, the decay of the 
resonance is independent of its mode of formation. This property obviously 
follows from the factorization of the residue in eqn (1.2). 

Since the scattering matrix is unitary and symmetric, it can be diago­
nalized by a real, orthogonal matrix B: 

(1.10) S - "B 2i~"'B n'n - L n'me mn 
m 

where .6.m are called eigenphase shifts or the eigenphases. The eigenphase 
sum .6. is given by 

(1.11 ) 
m 

For an isolated narrow resonance, the eigenphase sum follows the multi­
channel Breit-Wigner formula [30] 

(1.12) 

where.6.b is the background contribution. If the background contribution is 
negligible, the eigenphase sum increases by exactly 7r as one transverses the 
real energy Ca [31]. The eigenphase sum can be calculated by diagonalizing 
S and using eqn (1.11) or more simply by using 

(1.13) exp(2i.6.) = det S 

A resonance may also be characterized in terms of a channel-to-channel 
delay time .6.tnnl, which is the time difference between the injection of a 
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pulse in initial channel n and the appearance of a pulse in final channel n', 
relative to the same delay time in the absence of a potential. In general, 
the delay time is defined by [3,11,12,32,33] 

(1.14) ( -1 dSn 1n ) f1tnnl = 1m h(Sn'n) de 

or equivalently 

(1.15) 

The scattered particle will experience a delay time at real energies in the 
proximity of Co which is expected to be large if the resonance width is 
small. In particular, if the resonance is an INR, then from eqns (1.2) and 
(1.14) and the assumption that S~/n is negligible, one can easily show that 
f1tnn' will have a maximum at E = co, at which 

(1.16) f1tnnl = 2hjr 0 

Note that this result is independent of nand n' in this limit. The factor 
of two difference between eqns (1.5) and (1.16) is due to the fact that 
unimolecular decay may be considered a half collision, whereas eqn (1.16) 
has contributions from both the incoming and outgoing segments of the 
collision. 

1.3. Overlapping and broad resonances. All of the above INR 
formulas are expected to hold very well for INRs except [34] where they 
are close to an energetic threshold. For example these formulas apply 
extremely well to the resonances observed in a quantum mechanical study 
of nonreactive atom-molecule scattering by Ashton et al. [35]. However, 
more generally, resonances encountered in molecular collisions are not well 
described by all of the INR formulas. In this section, we briefly review 
some literature on overlapping and broad resonances, and we present a few 
relevant examples from the literature in which partial widths of scattering 
resonances were determined. 

Formal analysis of overlapping resonances is much more scarce than 
for isolated resonances. In paper III of his well known series on a unified 
theory of nuclear reactions, Feschbach [36] provided a general treatment 
of overlapping resonances in terms of complex effective potentials, but this 
analysis has been much less widely used than his analysis in paper II [5] 
of isolated resonances. The photoabsorption line shape in the case of in­
dependent overlapping resonances was considered by Shore [37]. The ques­
tion of degenerate resonances and avoided resonance intersections has been 
treated recently by Mondragon and Hernandez [38]. Desouter-Lecomte and 
coworkers [39] also discussed the intersection of two or more nearby reso­
nance poles. In general, overlapping of resonances refers to their having 
real parts that are the same within approximately the sum of their widths, 
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whereas an intersection would be where both their real and imaginary parts 
are equal. 

Schwenke and Truhlar [27] characterized a total of 14 trapped-state 
resonances for several different collinear reactions 

A + BC-AB + C 

treated as three bodies constrained to the z axis and interacting by an an­
alytic potential energy surfaces. (After the center of mass motion has been 
removed from the collinear problem, two mathematical dimensions remain, 
which may, for example, be taken as the A-to-B and B-to-C distances.) 
For each resonance, Za was evaluated and a full set of partial widths deter­
mined. In each case, the eigenphase sum a followed the INR formula (1.12) 
very well, and no special difficulties were encountered in performing fits to 
obtain Ca and r a. The background ab was represented as a polynomial in 
energy. With the location of the scattering resonance determined, a fit of 
each scattering matrix element at real energies near Ca to eqn (1.2) resulted 
in the evaluation of the residue. When we take account of the symmetry 
of S, there are (N 2 + N)/2 residues; but there are only N partial width 
amplitudes. Thus least square fitting of resonance parameters (as well as 
background) was used to extract best-fit values of the partial widths. 

The ratio 

(1.17) 

was then computed to see how well INR formula (1.6) was followed. For all 
14 resonances, the ratio was less than unity, and for 12 of them it was sig­
nificantly less, falling in the range from 0.23 to 0.76; for the remaining two 
resonances, qa was 0.99 and 0.98. The wider resonances showed the great­
est deviation from unity. The conclusion reached in this study was that 
most of the reactive resonances are not narrow enough to be characterized 
as INRs. 

The significance of qa differing from unity has been discussed from sev­
eral different points of view in the literat'1re. Lane and Thomas [23] noted 
that partial widths smaller than the INR limits will result when the reso­
nance scattering wavefunction has large amplitude in the region external 
to the Wigner R matrix [40] boundary. Weidenmiiller, using analytic S 
matrix theory, showed that even when a resonance is isolated enough that 
eqn (1.12) is followed, qa need not equal unity if the resonance is not nar­
row enough [25]. Weidenmiiller [25] presented numerical results showing 
qa ~ 1; he showed that even when qa 1= 1, the sum of the eigenphases 
increases by 11' at a resonance and the resonant part of the S matrix still 
factorizes. Further analyses [24,29] have given explicit formal expressions 
for this ratio using correctly normalized resonance wavefunctions. Consis­
tent with all these works is that qa may deviate more significantly from 1 
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for the wider resonances. Of course when qa of 1, it would appear that the 
sum of the specific unimolecular rate constants does not equal the total 
unimolecular rate constant. The only satisfactory conclusion is that when 
qa of 1, the decay process is intrinsically nonexponential and the rate con­
stants are not all well defined. Since the decay cannot be exponential at 
t = 0 [17], a short-lived resonance may have effectively decayed away before 
the exponential law has time to manifest itself. Examples of short-lived de­
caying states for which there is no time for the exponential law to manifest 
itself have been discussed by Beck and Nussenzweig [41]. The exponential 
decay law has been discussed by Desouter-Lecomte and eulot in the con­
text of overlapping resonances; they concluded that in the statistical regime 
of highly overlapped resonances, the decay of a metastable system will be 
nonexponential, and they discusused the relation of recrossing effects (see 
below) to off-diagonal elements of the quantal width matrix [42]. 

Examination of nine published works from which qo: can be calculated 
showed that qo: was less than or equal to unity in eight [23,25,27,35,43-46] 
of them. The ninth reference [47] was concerned with shape resonances 
in the H2 Xl ~t system. In that paper, resonances were located (that is, 
Co: and r a were determined) by directly searching for the complex energy 
that gave rise to a pole in the scattering matrix. Then by solving the 
Schrodinger equation directly at complex energies z near Zo: to determine 
Sn'n(Z), the partial widths were determined by numerically evaluating the 
contour integral around Zo: 

(1.18) f Sn1n(z)dz = 27r'Yo:nl'Yo:n 

This method of computing partial widths makes no assumptions about the 
background S!/n (E). For five of the twenty-two resonances characterized 
in Table 2 of Ref. 47, qo: differed from unity by more than 5%; the values 
of qo: in these cases were 0.85,0.89, 1.06, 1.08 and 1.17. Thus this study 
gives examples where qa exceeded unity. A mathematical analysis of the 
systematics of qo: and its dependence on the parameters of the scattering 
problem would be very useful. 

2. Transition state resonances in reactive scattering. An im­
portant question posed by chemical dynamicists is whether the rates of 
chemical reactions are controlled by quantized dynamical bottlenecks. In 
other words, are there quantized structures in phase space that gate the 
flux of probability density from reactants to products, and, if so, is the 
gated flux quantized? The idea of a dynamical bottleneck is the central 
tenet in transition state theory [48-51]' which postulates the existence of a 
structure in phase space - the "transition state" or "activated complex" -
which controls chemical reactivity. In this section, we give an introduction 
to transition state theory and then summarize direct evidence which has 
been accumulated in accurate quantum dynamics calculations for a quan-



250 RONALD S. FRIEDMAN AND DONALD G. TRUHLAR 

tized spectrum of the transition state. We then discuss the implications of 
the identification of transition states as resonances. 

2.1. Transition state theory. We focus on the bimolecular reaction 
between A and BC, representing the transition state as ABC:!: 

A + BC -+ ABC:!: -+ AB + C 

The transition state is constrained to a hypersurface in phase space di­
viding the reactants from products [49-51]. This dividing surface has one 
less degree of freedom than the phase space itself; the missing degree of 
freedom, which is orthogonal to the dividing surface, is called the reaction 
coordinate and denoted s. The temperature dependent rate constant k(T) 
that appears in the rate expression 

(2.1) 

(where t denotes time) can be written, with the assumption that once the 
system gets to the transition state it inevitably proceeds to products, as 

(2.2) 

where /I is the unimolecular rate constant for decay in the product direction 
of the transition state which has an equilibrium concentration c~q. If we 
assume that k(T) can be equated to the local-equilibrium phase-space flux 
in the product direction through the transition state hypersurface, then, in 
a classical world, one obtains [51] 

(2.3) 

where kB is Boltzmann's constant and K!lassical is a kind of equilibrium 
constant which relates the product CACBC reactant concentrations to c~q 
with the reaction coordinate removed in defining the hypersurface to which 

c~q refers. K!lassical is computed via an integral over the phase space of 
the hypersurface [51]. In the quantal world, in which there would not be 
a continuum of transition state structures along the dividing surface but 
rather a discrete set of states on the hypersurface, eqn (2.3) becomes 

(2.4) 

where K;uantal is computed from the quantized partition functions (sums 
over discrete sets of levels) of A, BC, and the transition state hypersurface 
(again with motion along the reaction coordinate removed). Eqn (2.4), 
in effect, postulates the existence of a set of discrete levels associated with 
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the transition state hypersurface orthogonal to the reaction coordinate. We 
will seek evidence in the accurate quantal calculations for these levels of 
the transition state; in other words, we seek to perform transition state 
spectroscopy, a term used in a series of papers by Polanyi and coworkers 
[52]. 

If the analysis that led to eqn (2.4) is repeated for a micro canonical 
ensemble (a system at fixed total energy rather than fixed temperature), 
the transition state theory rate constant kTS(E) at a given energy E can 
be written as [53-58] 

(2.5) 

where NTS (E) is the number of energy levels of the activated complex 
with energies less than or equal to E, and pR(E) is the reactants' density 
of states per unit energy per unit volume. The quantity NT S (E) increases, 
obviously, by one at each of the energy levels of the transition state. 

An exact quantum mechanical expression for the microcanonical rate 
constant k(E) can be written as [19,54] 

(2.6) 
N(E) 

k( E) = hpR( E) 

where N(E), which is called the cumulative reaction probability (CRP) 
[59], is a double sum over all the state-to-state reaction probabilities at an 
energy E: 

(2.7) N(E) = LLPn-+n,(E) 
n n' 

For an atom-diatom reaction, n(n') is an index representing the toal angular 
momentum J, its component MJ on an arbitrary space-fixed axis, and a 
set of initial (final) vibrational quantum number v(v/), rotational quantum 
number j(j/) and orbital angular momentum quantum number 1(/'). The 
CRP can be written in terms of the scattering matrix elements Sn'n as [60] 

(2.8) 
n n' 

Comparison of eqns (2.5) and (2.6) suggests, if the quantization of the 
transition state is taken literally, that the quantal CRP should increase in 
steps of one at each of the energy levels of the transition state. However, 
this analysis has neglected quantum mechanical tunneling at energies below 
the transition state energy level as well as nonclassical reflection above the 
energy level. In addition, it has been assumed up to this point that the 
transition state is a perfect dynamical bottleneck, i.e. systems crossing the 
activated complex hypersurface go right from reactants to products without 
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recrossing the dividing surface [51,57,61-64]. Generalizations of transition 
state theory have been proposed to account for these effects [54,58,59,65]. 
For example, one way to account for the effects of recrossing, tunneling and 
reflection, which we will use extensively in the next section, is to make the 
replacement 

(2.9) 
r 

in eqn (2.5), where T is the index of a level of the transition state, "'r 
is a transmission coefficient accounting for recrossing (more precisely, for 
the quantal analog of classical trajectories that reach the transition state 
hypersurface and then recross it - either before proceeding to products or 
without ever proceeding to products [51,57,58]), and Pr is a transmission 
probability accounting for tunneling and reflection. Invoking substitution 
(2.9), we see that the numerator of eqn (2.5) still contains a sum over energy 
levels of the transition state but instead of increasing abruptly by a step of 
unity at each new level of the activated complex, it will now increase more 
gradually, by an amount given by "'rPr(E). If we denote the transition 
state energy level as Er , then for an ideal dynamical bottleneck, "'r is 
unity, and Pr(E) is expected to rise smoothly from zero at energies Ewell 
below Er to unity at energies well above Er. Thus transition state theory 
incorporating (2.9) predicts that the quantal CRP will increase in smooth 
steps of height "'r at each new energy level of the transition state. We 
have found clear evidence of such behavior in accurate quantal scattering 
calculations, as described below. 

2.2. Characterization of quantized transition states in chem­
ical reactions. Most approximate theoretical treatments of chemical re­
action rates involve the concept of a transition state, i.e. a dynamical 
bottleneck. But, up until the time we began our studies, the spectrum of 
this mathematical construct had never been directly observed, and one may 
have questioned its physical significance. Thus we have sought to address 
the question of whether one can observe the quantized nature of dynam­
ical bottlenecks in chemical reaction dynamics. To seek an answer, we 
have performed accurate three-dimensional quantal scattering calculations 
for three-body systems interacting according to realistic potential energy 
surfaces, and, via analysis of the cumulative reaction probability, we have 
looked for evidence of quantized dynamical bottlenecks. 

We can study the reaction dynamics for each value of the total angular 
momentum J independently since it is conserved during the collision. Its 
component MJ is also conserved and since results are independent of MJ, 
we always set it to zero and forget about it. The J-specific contribution 
to the CRP is denoted N J (E) and it is computed from the sum over J­
specific channel-to-channel transition probabilities P~-+nl(E) in a manner 
analogous to eqn (2.7). The dynamical structure in the reaction rate con­
stant is most clearly brought out by computing the energy derivative of 
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the cumulative reaction probability, which is called the density of reactive 
states. The J -specific density of reactive states is defined as 

(2.10) J(E) = dNJ(E) 
p dE 

We have looked for, and found, evidence of quantized transition states 
in a number of three-dimensional chemical reactions, including H+H2 [19-
21], O+H2 [21,66-68]' D+H2 [69,70], F+H2 [70,71], Cl+H2 [70,72]' CI+HCI 
[73], HHI [73], and HDI [73]. In addition, the conclusions reached in 
these studies have been supported by a number of accurate calculations by 
other research groups on other atom-diatom systems including He+ Ht [74], 
Ne+Ht [75], H+02 [76], and O+HCI [77]. Here we will focus on just two 
of the systems we have studied: 

H + H2 ---+ H2 + H 

0+ H2 ---+ OH + H 

The first is the simplest and theoretically most-studied atom-diatom neu­
tral reaction [78] and the first system for which we found evidence of global 
control of reactivity by a spectrum of quantized transition state levels. The 
second is also of interest because it is asymmetric (reactants and products 
are different chemical species), and this introduces the possibility of multi­
ple bottleneck regions with transition states having different sets of energy 
levels on the reactant (O+H2) side and on the product (OH+H) side. 

For the above two reactions, we made the Born-Oppenheimer separa­
tion of electronic and nuclear motions [79], and we assume that the scat­
tering event can be treated as the motion of three bodies (in full three­
dimensional space) interacting through a single effective potential energy 
surface. The quantal results to be presented result from treating the two 
hydrogen atoms in the reactant H2 molecule as distinguishable and giving 
results for one of the two possible sets of products, for example, A + Ha Hb 
---+ AHa + Hb. Therefore, the factor of 2 for the products AHa + Hb and 
AHb + Ha is not included in the CRP nor the density of reactive states. 
The computational methods used to calculate accurate quantal CRPs and 
densities are briefly summarized in Appendix I. 

2.2.1. H + H2. The J = 0 cumulative reaction probability NO(E) 
was computed [19,20] from converged scattering matrix elements via eqn 
(2.8). The calculation employed the accurate double many-body expansion 
(DMBE) potential energy surface [80] for H3 . It was found that NO(E) is 
characterized by a series of smooth steps as predicted by transition state 
theory and discussed at the end of Section 2.1. Differentiation of a cubic 
spline fit to N° (E) yielded pO (E), the J = 0 density of reactive states; steps 
in NO were converted to peaks in pO. The CRP reaches a value of 8.9 at 
1.6 eV (we use energy units of eV; 1 eV /molecule = 96.48 kJjmo\). Thus if 
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all transition states are perfect dynamical bottlenecks (II:T = 1), transition 
state theory predicts nine energy levels of the quantized transition state 
at energies below 1.6 eV. From the analysis described in the following 
paragraphs, it was concluded that in fact ten energy levels contribute to 
the CRP and density of reactive states. 

If an explicit functional form were available for the transmission prob­
ability PT(E), it would be desirable, based on eqn (2.9), to fit the accurate 
quantal CRP to 

(2.11) 
T 

The fit would reflect the degree to which the quantal dynamics follow the 
predictions of transition state theory and also would allow us to extract 
parameters (such as II: T ) characteristic of each transition state level T. 

To obtain a simple form for PT(E), we assume that there exists an 
effective potential energy barrier VT(s) for passage through the transition 
state region in level T. We furthermore assume that the potential barrier 
is parabolic, having the form 

(2.12) 

where ET is the energy of the barrier maximum and kT is a negative force 
constant. Recall that the parameter ET also represents the energy of tran­
sition state level T. Therefore, within this simple model, each level of 
the transition state is associated with a maximum in an effective poten­
tial barrier. In the case of a parabolic barrier, the quantum mechanical 
transmission probability PT is [81] 

(2.13) 

where WT is a width parameter given by 

(2.14) 

with WT the imaginary frequency of the barrier 

(2.15) WT = VkT/J.I 

and I' the reduced mass. As anticipated, PT(E) rises smoothly from zero 
to one, accounting for tunneling and nonclassical reflection. 

Since dynamical structure is brought out more clearly in the density of 
reactive states, it is advantageous to fit the accurate density as 

(2.16) 
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Taking the energy derivative of Pr(E) in eqn (2.13), we arrive at an ex­
pression useful for fitting the density of reactive states: 

(2.17) 

where 

(2.18) 

p(E) = L Ii:rPr(E) 
r 

exp[(Er - E)/Wr] 
Pr(E) = Wr(1 + exp[(Er - E)/Wr])2 

The function Pr (E) is a symmetric bell-shaped curve centered at Er; the 
wider the effective potential barrier Vr (s) (the smaller the kr ), the smaller 
the width parameter Wr and the narrower the function PT (E). The accu­
rate quantum scattering calculations [19] showed that the transition state 
theory prediction that the density of reactive states will be a sum of bell­
shaped curves, each centered at some energy ET , appears to hold true for 
the density pO(E) for H+H2. The strategy should now be clear; by fitting 
the accurate quantal density to a sum of terms Ii:TPT(E), as given in eqn 
(2.17), we can determine the fitting parameters K T, ET and Wr for each 
transi tion state level T. 

A fit to pO(E) for H+H2 using 10 terms in eqn (2.17) yields a curve 
which is nearly indistinguishable from the quantal result [19,21]. Integra­
tion of the fit to pO yields the fitted CRP curve which is indistinguishable 
from NO (E) to plotting accuracy. 

The excellent agreement between the quantal and fitted densities of 
reactive states shows convincingly that the chemical reactivity is globally 
controlled by quantized transition states. All of the reactive flux up to an 
energy of 1.6 e V can be associated with energy levels of the transition state; 
there is no discernible background contribution. In addition, we can assign 
the quantized transition state structure to specific vibrational-rotational 
levels of the transition state, as discussed in the following paragraphs. 

A quantized transition state of H3 is a short-lived state (a resonance; 
see Section 2.3) with a set oflinear-triatomic quantum numbers [82] [Vl vf"], 
where Vl and V2 are the stretch and bend quantum numbers, respectively, 
for modes orthogonal to the reaction coordinate and f{ is the vibrational 
angular momentum, the projection of J on the molecular axis. Whereas 
a stable triatomic molecule like CO2 has a complete set of quantum num­
bers (Vl vf" V3) with V3 being the asymmetric stretch quantum number [82], 
the H3 transition state appears to have one quantum number missing, cor­
responding to unbound motion along the reaction coordinate. The [VI vf"] 
labelling therefore corresponds to the classical picture of the transition state 
being a hypersurface in phase space. We will see in Section 2.3 that in the 
quantum mechanical treatment of the transition state as a resonance, the 
'missing' quantum number will reappear. 

The lowest energy feature for H + H2 is readily assigned as [000] since 
it is the overall reaction threshold and therefore corresponds to the lowest 
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energy level of the transition state. The remainder of the assignments 
were made primarily by comparing the fitted ET values with features in 
semiclassical vibration ally adiabatic potential energy curves. The latter 
are defined by [65,83-87] 

(2.19) 

where s is the distance along the reaction path, VMEP is the Born-Oppen­
heimer potential energy along the reaction path, and Cint is the vibrational­
rotational energy of the stretch, bend and rotational motions excluding 
motion along the reaction coordinate. The stretching motion (with quan­
tum number VI) of the H3 transition state correlates adiabatically with 
vibrational motion (with quantum number v) in the reactant H2 [88]. The. 
energies of the maxima in the vibrationally adiabatic curves are in good 
agreement with the fitted values of ET and allowed us to make the as­
signments. Furthermore, this good agreement strongly suggests that the 
reactive flux is "focused" [89] through dynamical bottlenecks that are lo­
cally vibrationally adiabatic. However, the quantal calculations [19,20] 
demonstrate that the overall chemical reaction is not globally adiabatic; 
e.g. many of the Pn-+ni with v =f. v' are significant in magnitude (> 10-3). 
Thus reactive flux which is channelled through a particular [VI v~]level of 
the transition state need not originate from only those reactant states with 
v = VI but may originate from a wide set of reactant states; this point will 
be addressed in more detail in Section 2.3 below. One way to understand 
why the dynamics, although not globally adiabatic, is locally adiabatic at 
the transition state is to note that motion along the reaction coordinate is 
classically stopped at a barrier maximum. Thus the simplest criterion for 
vibrational adiabaticity, that vibrational motions normal to the reaction 
coordinate be fast compared to motion along the reaction coordinate, is 
satisfied locally. 

With the assignments [VI v~] made, we can note several important 
trends in the fitted values of the transmission coefficient. We found that six 
of the first nine levels of the transition state are ideal dynamical bottlenecks 
with "'T :::: 1.0. Deviations from unity are found for only a few of the 
levels, with the most significant breakdown of transition state theory being 
associated with a highly bend-excited level. We can also understand trends 
in the widths (WT values) of the quantized transition state features in terms 
of the widths of the vibrationally adiabatic potential curves; these kinds of 
trends have been discussed in detail in Refs. [11,12,20,21]. 

2.2.2. 0 + H2 • The accurate density of reactive states for O(3p) + 
H2, J = 0 was studied [66-68] using the Johnson-Winter-Schatz potential 
energy surface [90,91]. At energies below 1.3 eV, the density pO for this 
reaction looks strikingly similar to that of H + H2 [19,21]. In fact, it turns 
out that the first six assignments [VI V~] are identical for the two systems 
[68]. Above 1.3 eV, however, the 0 + H2 density exhibits more peaks due 
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to a greater number of levels of the quantized transition state. 
The density pO(E) for O+H2 was fit using 17 terms in eqn (2.17) and 

the quantal and fitted densities are indistinguishable to plotting accuracy 
[68]. Many of the quantized transition states are nearly ideal dynamical 
bottlenecks; i.e. many "'7 for values are close to unity. The excellent fit 
to pO(E) for O+H2 demonstrates that quantized transition states globally 
control the reaction dynamics, as they did for H + H2. 

To assist in making assignments of the transition states, vibrationally 
adiabatic potential energy curves were computed using the same methods 
as for H + H2 [68]. Unlike the curves for H + H2, many of those for the 
o + H2 reaction show two distinct transition states, one on the reactant 
side and one on the product side, each with its own set of energy levels. In 
such cases, it is interesting to see if bottlenecks in both regions influence 
the chemical reactivity. Each of the computed vibration ally adiabatic po­
tential curves with Vi ~ 1 exhibited several local maxima. Only the first 
and last local maxima of each curve can be associated with dynamical bot­
tlenecks because only in the vicinity of these two maxima is the dynamics 
predicted, semiclassically, to be vibration ally adiabatic. If the chemical re­
action were vibrationally adiabatic (i.e. Pn ...... n ' = 0 for all v f. 1,1). only the 
higher of the two maxima, which appears at a reaction coordinate nearer 
to the reactants, would have an impact on the reactivity. We call these 
reactant-like bottlenecks variational transition states and designate them 
in the usual way, [vivf]. However, since the 0 + H2 reaction has many 
nonnegligible v f. Vi reaction probabilities, we know that the reaction is not 
globally vibrationally adiabatic and, therefore, it is possible that product­
like dynamical bottlenecks influence the reactivity. We call these latter 
bottlenecks supernumerary transition states and denote them as 8[Vi vf]. 

The correspondence between the fitted values of ET and the global 
maxima in the 000 and 100 vibrationally adiabatic potential curves allowed 
[68] us to unambiguously assign the first and third features in the density 
curve to the [000] and [100] variational transition states. In addition, pO 
exhibits peaks at the energies of both the reactant-like and product-like 
maxima in the Vi = 2, V2 = 0 and Vi = 3, V2 = 0 vibrationally adiabatic 
curves. This allowed [68] us to identify two more variational transition 
states, [200] and [300], as well as two supernumerary transition states 8[20°] 
and 8[30°]. 

The remaining assignments were made largely [68,70] on the basis of 
analysis of channel-selected transition probabilities P; (E) defined as 

(2.20) 
n' 

The quantity defined above gives the total reactive transition probability 
coming out from a specified initial (reactant) channel n by summing over all 
possible final channels n'. (By then summing P; (E) over all initial channels 
n, we retrieve the J -specific cumulative reaction probability.) We can then 
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define the corresponding density of channel-selected reaction probability 
p;(E) 

(2.21) J(E) = dP; (E) 
Pn dE 

Similarly, we can make the analysis in terms of product channels n': 

(2.22) 
n 

(2.23) PJ (E) = dP':n , (E) 
-m' dE 

The quantities defined in eqns (2.22) and (2.23) provide useful informa­
tion on the total reactive transition probability going into a specified final 
(product) channel n'. 

The channel-selected densities (2.21) and (2.23) provide valuable in­
formation on how flux through a given level of the transition state couples 
with particular reactant and product states. In particular, when both su­
pernumerary and variational transition states influence chemical reactivity, 
the former are primarily observed in P:"'n' and the latter primarily in p;. 
We can most easily understand this by recognizing that, from the principle 
of time reversal invariance, pL+n' describes both forward (n ----; n') and 
reverse (n' ----; n) reactions. Therefore, whereas p; describes reaction out of 
channel n for the forward reaction, P:"'n' describes reaction out of channel n' 
for the reverse reaction. Thus, the quantity p; will tend to be influenced by 
reactant-like (variational) transition states and P:"'n' by product-like (su­
pernumerary) transition states. By calculating channel-selected densities 
for O+H2 and identifying maxima in the density curves as features due to 
variational and/or supernumerary transition states, we were able to assign 
most of the spectrum [68,70]. 

2.3. Interpretation of transition states as resonances. We have 
found strong evidence in quantal calculations, as discussed above, for the 
control of chemical reactivity by quantized transition states which can be 
thought of as being associated with the potential maxima of vibration ally 
adiabatic potential curves. In fits to the quantal density of reactive states, 
we have taken the energy levels of the transition states to be the potential 
energy maxima of effective parabolic barriers. 

The parabolic barrier of eqn (2.12) has poles of the scattering matrix 
which are found at [10,21,92,93] 

(2.24) Ev = Er - ililwrl(v + ~) 
where v = 0,1,2, ... labels the pole. T~us, there is a sequence, an infinite 
one in fact, of overlapping poles of the S matrix whose complex resonance 
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energies all have a real part ET • The widths increase along the sequence as 
2v + 1. This analysis and other studies of one-dimensional potential barriers 
in Section 3 show unambiguously that passage over a potential barrier is 
associated with poles in S, from which we can conclude that quantized tran­
sition states are reactive scattering resonances, which we refer to as barrier 
resonances. Note that we can associate the quantum number v which labels 
the poles for a given parabolic barrier with the 'missing' quantum number 
V3 of the transition state corresponding to the 'missing' degree of freedom. 
(We point out here that a series of poles labelled by v is not unique to 
a parabolic barrier; for approximately parabolic barriers, as well, the la­
belling of members of a sequence of poles by a quantum number v emerges, 
as discussed in Section 3.) 

However, there is an apparent paradox presented by the above dis­
cussion. Analyses of the poles of the scattering matrix ehow that even 
for a simple barrier (parabolic or approximately parabolic), there is more 
than one pole [10-12,92-94]. On the other hand, work on three-dimensional 
quantal dynamics such as that described in Section 2.2 shows that the cu­
mulative reaction probability and density of reactive states are influenced 
by a small number of quantized transition states. In particular, the den­
sity can be fit extremely well using a model of scattering in which each 
effective parabolic potential barrier VT is associated with one level of the 
transition state at a real energy ET • This apparent paradox has more than 
one possible resolution. The simplest is to assume that only the poles close 
to the real axis have an appreciable effect on the dynamics. Then, since 
poles with v ~ 1 are three more times farther from the real axis than the 
corresponding poles with v = 0, one could consider only the v = 0 poles. 
Unfortunately, we know that the situation is not really quite so simple. 
Although the v = 0 poles provide a good quantitative account of the tran­
sition state energies and lifetimes [21], they do not account quantitatively 
for PT(E) [92]. Nevertheless when combined with a short-time correction, 
the sum over the v = 0,1,2, ... states is rapidly convergent, giving reason­
able results with 2 states and quite good results with 4 - 8 states [92]. It 
is encouraging though that the initial state count in NT S (E) requires only 
the v = 0 states. One could imagine cases where the progressions in v are 
not readily assignable due to mixed character in the Siegert eigenfunctions 
[16] associated with the poles. Then a state might show mixed character 
such as 50% of v = 0 in the reaction coordinate with some set of quantum 
numbers T for other degrees of freedom and 50% of some other combination, 
(V'T'), with v' i= O. Then it would be unclear whether to count this state in 
NT S (E). Such a situation would seem to indicate that one cannot identify 
a separable reaction coordinate, which is a necessity for applying transition 
state theory. Mathematical analysis clarifying the effect of various barrier 
poles on the rate constant would be very useful. 

The v = 0 pole of the parabolic barrier has a width given by /ilwT I, 
where we have used the general definition of the complex resonance energy 



260 RONALD S. FRIEDMAN AND DONALD G. TRUHLAR 

given in eqn (1.1). We equate this resonance width with that of level T 

of the quantized transition state characterized in the fits to p( E). The 
resonance width is related to the collision lifetime !l.T by [95] 

(2.25) !l.T = 2fijr 

and upon substitution of r by filwT I and using eqn (2.14), one obtains 

2 fi 
!l.T= -=--IwTI 1rWT 

(2.26) 

From the WT values obtained in the fit to the density of reactive states 
for H + H2 and given in Ref. 20, we calculated collision lifetimes via 
eqn (2.26). These lifetimes, labelled transition state resonance theory, are 
shown in Table 1 for the case of J = 0 discussed above and in addition 
for the case of J = 1 described elsewhere [20]. The transition state life­
times range from 5 to 30 femtoseconds. They are compared in Table 1 
to collision lifetimes computed [8] from accurate quantal scattering matrix 
elements without transition state theory or resonance theory. Since the WT 

values are obtained from fits to the energy dependence of reaction prob­
abilities which do not depend on the phases of S matrix elements while 
the direct calculation [8,32,33] of collision lifetimes depends explicitly on 
phase information, there is no reason a priori why the two columns in Ta­
ble 1 need agree. The fact that they do provides further evidence for the 
usefulness of treating transition states by resonance theory. 

Furthermore, we can proceed to obtain spectroscopic constants for the 
quantized transition states, which are associated with poles of the scat­
tering matrix at complex resonance energies ET - i1rWT (see above). By 
analogy to the procedure for getting spectroscopic constants for bound 
states [82], constants for the transition states can be obtained by fitting 
the resonance energies to the form 

ET (Vl, V2) - i1rWT (Vl, V2) Eo + hCW1(Vl + 0.5) + hCW2(V2 + 1) 

+ Xll(Vl + 0.5)2 + X22(V2 + 1)2 

(2.27) + X12(Vl + 0.5)(V2 + 1) + BJ(J + 1) 

where Eo is a constant and Wi, W2, Xll, X12, X22, and B are the spectroscopic 
fitting parameters, and C is the speed of light in a vacuum. Since we fit 
in eqn (2.27) both the energies ET and the widths WT of the quantized 
transition states, all of the fitting parameters, including Eo, are complex. 

As a specific example of a spectroscopic fit we consider the 0 + H2 
quantized transition states discussed above. A least squares fit of the first 
six levels resulted in the following values (in wavenumber units of cm -1) of 
the complex spectroscopic constants for the variational transition states: 

Eo = 3786 - 597i Wi = 2241 + 507i W2 = 737 - 307i 
X12 = -45 - 89i X22 = -2 + 43i 
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TABLE 1 
Lifetimes (fs) for H + H2 quantized transition states. 

transition state 
J Er (eV) resonance theorya accurateb 

0 0.65 10 11 
0.87 7 10 
0.98 28 28 
1.09 6 5 
1.19 10 8 

1 0.65 10 11 
0.76 8 9 
0.88 7 10 
0.98 27 28 
0.99 6 8 
1.09 16 29 
1.10 10 5 
1.19 10 8 
1.21 7 6 

aFrom eqn (2.26) and Wr values given in Ref. 20 
bFrom Ref. 8 

We constrained the values of Xl! and B to zero because none of the first 
six levels involve Vl > 1 or J > O. 

The interpretation of transition states as reactive scattering resonances 
also enables us, through an analysis of channel-selected densities, to ob­
tain information concerning the partial widths of these barrier resonances 
[20,21]. We considered channel-selected densities, and found that the ma­
jor peaks in p~ and P?..nl occur at or very near the values of Er determined 
earlier from the fit to the overall density of reactive states. We thus see 
that quantized levels of the transition state control state-selected as well as 
total chemical reactivity. For example, for H + H2 with J = 0, reactive flux 
emanating from the v = 0, j = 4 channel passes predominantly through 
only the [020] and [200] levels of the transition state at their threshold 
energies. We find in general [20,21] that the asymptotic channels couple 
primarily to only a few transition state levels and, in particular, mainly to 
one or two consecutive bending (V2) levels with stretch quantum number 
Vl equal to channel vibrational quantum number v. Therefore, there is a 
large propensity for stretch adiabaticity (v = Vl) in the half collisions that 
take the system from reactants to the transition state. 

To characterize quantitatively which asymptotic channels couple to 
which quantized levels of the transition state, we [20,21] fit P~ (E) with a 
sum of lineshapes for scattering by parabolic potential energy barriers, just 
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as we did for the total density in eqn (2.17): 

(2.28) 
T 

where PT(E) is given in eqn (2.18) with the values of ET and WT fixed 
at those values determined in the fit to the total density. The parameter 
"Tn, which was determined using linear least squares, is a measure of the 
amount of reactive flux passing through transition state level T at energy 
ET that originated from a specific state n. When all the values of "Tn for 
a particular level T are summed, we retrieve the value of the transmission 
coefficient "T of eqn (2.17). Since the ratio "Tn/"T represents how much 
of the total reactive flux passing through level T of the transition state at 
energy ET originated from channel n, we can identify the partial width for 
entering the level T at energy ET from incident channel n as (within our 
model of scattering off parabolic barriers) 

(2.29) 

with 

(2.30) 

"Tn 
fTn = -fT 

"T 

Although eqn (2.29) would require, by definition, that the INR formula, 
(1.6), be strictly followed, which of course we don't expect to be the case 
for broad barrier resonances, eqn (2.29) is nonetheless useful because it 
provides a type of detailed picture of the reactive event that is available in 
no other way that does not involve analyzing wave functions. 

By calculating the ratio of "Tn to "T for each channel n and each 
level T, we have determined which channels make significant partial width 
contributions to each level of the transition state [20,21]. Some results are 
presented in Table 2 for the low bend (V2) states with VI = 0,1,2. Mad 
and Mnonad are the number of initial channels which make stretch adiabatic 
(v = vI) and stretch nonadiabatic (v =f:. VI) contributions, respectively, of 
at least 5% to the total reactive flux (i.e. "Tn/ "T ~ 0.05). The table's 
entries are percent contributions for those channels having a specified value 
of Ij - v21, v = VI j for example, 27% of the reactive flux passing through 
[00°] at its ET value originates from the channel with Ij - v21 = 2, that is, 
channel (v = O,j = 2). When several initial channels with the same value 
of Ij - v21 contribute, the number of channels is indicated in brackets, and 
the sum of their percent contributions is shown. We see from the table 
that the largest partial widths tend to be for those channels with v = VI 

and Ii - v21 ~ 3. Partial widths for channels with v =f:. VI tend to become 
more important for high VI. 

If one pursues the identification of dynamical bottlenecks with reso­
nances, the description of chemical reactivity ultimately becomes a quest 



BARRIER RESONANCES AND CHEMICAL REACTIVITY 263 

TABLE 2 

State-selected contributions to the total reactive /lux passing through thresholds for H + 
H2 with J = 0 and 1. 

Ii - v21 for v = VI 

threshold a Mad Mnonad 0 1 2 3 4 >4 

[000] 4 0 22 41 27 9 0 0 
[011] 4 0 15 35 32 15 0 0 
[02°] 5 0 0 21 42 [2]b 23 6 0 
[10°] 3 0 33 51 20 0 0 0 
[111] 3 0 24 45 26 0 0 0 
[12°] 5 1 7 34 37 [2] 10 0 0 
[20°] 2 6 13 17 0 0 0 0 
[211] 3 2 28 41 13 0 0 0 
[22°] 4 3 9 31 24 [2] 0 0 0 

a Results for even V2 transition states from J = 0 quantal calculations. 
Results for V2 = 1 transition states from J P = 1 + quantal calculations (P 
being the parity). 
b For example, two initial channels with v = VI = 0, Ii - v21 = li-
21 = 2 have contributions to the total reactive flux passing through [02°] 
at its threshold energy of greater than 5% and the sum of their percent 
contributions is 42. 

to find, label, and characterize the set of resonances resulting from a many­
body potential energy function. Resonances often provide simple explana­
tions of complex observable phenomena, so we are motivated to develop a 
better understanding of resonances in many-body reactive systems. 

The success in using a simplistic model of transmission through effec­
tive potential energy barriers to fit the total and channel-selected densities 
of reactive states and obtain resonance parameters for quantized transition 
states (as well as the good agreement between transition state energy levels 
and the maxima of semiclassical vibrationally adiabatic curves) in three­
body, multichannel problems strongly suggests that detailed studies of scat­
tering by one-dimensional potential barriers can provide further insight on 
barrier resonances. We have already seen how the analysis of the scatter­
ing matrix for the one-dimensional parabolic barrier proved useful in the 
interpretation of transition states as resonances. In the following section, 
we present results from other one-dimensional studies on both symmetric 
and unsymmetric potential energy barriers. 

3. Barrier resonances in one-dimensional studies. 

3.1. Barrier passage and poles ofthe S matrix. The most widely 
used model for a chemical reaction is passage over a potential energy bar­
rier. The potential maximum is associated with the reaction threshold for 
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which we can provide insight via quantum mechanical studies of scattering 
by one-dimensional potential energy functions. 

In two published studies [11,12] we have considered scattering in one 
dimension x off a potential barrier V(x) with boundary conditions in the 
two limits x - ±oo. In this two-channel (left-right) scattering problem, 
we let channel 1 denote the asymptotic region on the left (x - -00) and 
channel 2 denote that on the right(x - +00). We solve the Schrodinger 
equation 

(3.1) 
d2"p 2J.t 
dx2 + /i2 [E - V(x)]"p(x) = 0 

where "p( x) is the wavefunction and determine the unitary scattering matrix 
S. From scattering matrix elements computed at real energies E, we can 
calculate transmission and reflection coefficients [96] 

(3.2) 

as well as channel-to-channel delay times Lltij given by eqn (1.14). Fur­
thermore, by directly solving the Schrodinger equation at complex energies 
[11,12,44,47]' we search for poles of the S matrix; this allows us to find 
and characterize both narrow and broad resonances. The computational 
methods we used to solve eqn (3.1) are briefly described in Appendix II. 

3.1.1. Symmetric potential functions. In the first study [11], we 
considered symmetric potential barrier functions of the form 

(3.3) ( 
ef3x a e5f3x ) 

V(x) = Vo (1 + ef3x)2 - "2 (1 + e5f3x)2 

and the potential parameters were chosen to roughly resemble a one­
dimensional model [97] of the H + H2 reaction, in particular J.t = ~mH = 
1224.5me , Vo = 2.177 eV, and f3 = 1ao1. When a = 0, the potential is a 
simple Eckart barrier [98] and when this dimensionless parameter is greater 
than zero, the potential has twin maxima on either side of the x = 0 local 
minimum. 

Reaction probabilities P12, reactive delay times Llt12 and the locations 
of poles of the scattering matrix S were calculated for many values of a. 
A curve connecting the pole locations maps out their 'trajectory' in the 
complex energy plane as a function of a. 

The various cases have been discussed at length in Ref. 11; here, we 
simply highlight the main features. For the pure Eckart potential, which 
corresponds to a = 0, there is no structure in V(x) other than the barrier 
maximum. In the vicinity of the potential maximum there is a smooth rise 
in the reaction probability from zero to unity and a maximum in the delay 
time of 33 fs. The real part COt of the resonance energy is close to the energy 
of the barrier maximum Vmax and clearly demonstrates that passage over 
a potential barrier is associated with a pole of the S matrix. 
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For a = 0.17 and 0.32, the real parts of the resonance energies are 
slightly above Vrnax . We also begin to see more structure for these cases in 
the reaction probability; P12 decreases slightly after its initial rise to unity 
and then returns to unity. 

When a = 0.49 there are two poles, one with COt below Vrnax and one 
above Vrnax . The dip in P12 after the threshold is more prominent and is 
beginning to be associated with a second feature in ~t12. This shoulder in 
the delay time is clearly associated with the second very broad resonance 
coming from far off the real energy axis and 35 meV above Vrnax . For the 
four cases a = 0-0.49, see that as the width rOt ofthe resonance decreases, 
the peak in the delay time increases. 

The barrier resonance for a = 0 - 0.32 is in the process of becoming 
a subthreshold trapped-state resonance for a = 0.49 as the parameter a is 
varied. When a = 0.68, the process is complete; there is a narrow trapped­
state resonance 37 meV below Vrnax and a broad (rOt = 111 meV) resonance 
39 meV above Vrnax associated with the rise in the reaction probability from 
0.2 to 1.0. 

As the well in the potential function V(x) gets deeper for a = 0.68-
1.60, the resonance with the smaller value of COt moves lower and lower 
in energy relative to Vrnax and is associated with an increasingly larger 
delay time ~t12, consisent with its decreasing width [11]. It is obvious that 
what was once a barrier resonance is now clearly a trapped-state resonance, 
responsible for the sharp variation in the reaction probability from zero to 
unity and then almost back to zero. At the same time, the second very 
broad resonance first identified for a = 0.49 is moving closer to the real 
energy axis and to the energy of the barrier maximum. For example, the 
broad resonance for a = 1.00 has about the same width (and associated 
delay time) as the pole associated with the pure Eckart barrier. In addition 
there is an indication of a third resonance when 0: = 1.60, as evidenced 
by a deep dip in P12 above Vrnax and by the hint of another feature in 
~t12 at about 75 meV above the potential maximum. The story told with 
a = 0 - 0.49 clearly repeats itself for a = 0.68 - 1.60 [11]. 

In summary, this study showed that by varying the parameters of the 
potential function to change it from having a single maximum to having 
two maxima with a dip between them, one pole of the scattering matrix is 
transformed continuously from a barrier resonance (describing the thresh­
old of a simple potential barrier) to a trapped-state resonance (describing 
a state trapped in the well between barriers). In the meantime, a second 
resonance comes into the picture above Vmax and moves from a metastable 
state above threshold to a metastable state associated with the threshold, 
and it is in the process of turning into a second-trapped state when our 
picture stops. As a is further increased, the poles will move eventually 
onto the negative real energy axis and become bound states. 

We discuss below the quantitative relation between the resonance width 
r and delay time dt12. 
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3.1.2. Unsymmetric potential functions. The potentials utilized 
in the study [11] just discussed were all symmetric functions. However, 
most chemical reactions do not possess this high degree of symmetry and, 
in addition, multiparticle three-dimensional quantal scattering calculations 
indicate that unsymmetric barriers can lead to new resonance phenomenon 
such as supernumerary transition states (see the 0 + H2 discussion in Sec­
tion 2.2.2). For these reasons, we were motivated to study one-dimensional 
quantal scattering by unsymmetric potential functions, with particular em­
phasis on potentials with two unequal local barrier maxima and their defor­
mation to potentials having only one maximum. Such a study is described 
in detail in Ref. 12; we summarize its findings here. 

In this second study [12], we considered potentials of the form 

Vle.Bl(X-Xl) V2e.B2(X-X2) 
(3 4) V ( x) - + .."......;..,--:-..,..----:-.-:-. - (1 + e.Bl(x-xd)2 (1 + e.B2(X-X2))2 

with reduced mass I' = 6526.3me . Parameters were chosen to roughly 
represent a one-dimensional model of the 0 + D2 reaction. Two series of 
potential functions, all the form of eqn (3.4), were considered. In series 1, 
we focused on potential functions with two barrier maxima, taking V2 = 
598.64 meV, f3l = f32 = 3aol , X2 = -Xl = 0.6ao, and Vl variable. Nine 
different values of Vl were considered and cases were labelled A-I. The 
potentials for representative cases A, C and I, with Vl = 598.64,707.49 
and 870.75 meV, respectively, are shown in Figure 1. As we proceed from 
case A to case I, the lower local barrier maximum becomes less prominent. 

In series 2, we continuously deformed the potentials so that even­
tually only one maximum appeared, rather than two. We took Vl = 
870.75 meV, V2 = 598.64 meV, X2 = -Xl = 0.6ao, and f3l = f32 = f3 

variable. Thirteen different values of f3 were considered and cases labelled 
I-U. (Case I is common to both series.) The potentials for representative 
cases K, Nand T with f3 = 2.80,2.40 and 1.80aol , respectively, are shown 
in Figure 2. 

Reaction probabilities P2l and reactive delay times dt2l were com­
puted. In addition, to further bring out structure in the reaction probabil­
ity as a function of energy, we calculated the energy derivative of P2l by 
spline fitting the latter and analytically differentiating. Selected results are 
shown in Figures 1 and 2. 

For all the potential cases, poles of the S matrix were located. The 
two resonances found in each case are characterized in the plots of the 
potential in Figures 1 and 2; the horizontal lines indicate values of Ca and 
the number next to the horizontal line is the width r a. The vertical lines 
in the other plots of Figures 1 and 2 indicate Ca - Vrnax • 

In many of the delay time curves, there are two peaks and in such 
cases, there is very good agreement between the two values of Ca and the 
energies of the local maxima of dt2l for that particular case. (For example, 
notice how the vertical arrows in Figures 1 and 2 coincide with peaks in 
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FIG. 1. Potential energy fun ctions (top row), reaction probabilities (middle row), and 
derivatives of reaction probabilities and reactive delay times (bottom row) for cases A , C, 
and I of Section 3.1. 2. In the top row, horizontal lines indicate the real parts ea of the 
resonance energies, and the numbers next to the lines are the widths ra in me V. In the 
middle and bottom rows the location of Vmax is shown as a dashed vertical line, and 
the values of ea are given (with arrows) relative to Vmax in each case . Derivatives of 
the reaction probabilities are solid curves with the scale at the left, and delay times are 
dashed curves with the scale at the right. (Modified from Ref. 12.) 

the reactive delay time.) Therefore, in such cases, we can associate each 
delay time peak with a resonance. In Figure 3 is plotted the value of 
the maximum in ~t21 versus the inverse of the width , l/r, of the closest 
resonance. We have also included results for a = 0 - 0.32 and 0.68 - 1.60 
from Ref. 11 in addition to cases A, C, I, and K from Ref. 12. (Recall that 
for a = 0.49 and cases Nand T, two poles but only one maximum in the 
delay time were found.) 

We now describe the main conclusions drawn from analyses of series 1 
and 2, in turn . 

For each of the potentials in series 1, two poles of the scattering matrix 
were located, and in general each resonance lies in the vicinity of a local 
potential barrier maximum (i.e. the value of €a is close to a local maxi­
mum in V.) The higher energy resonance (i.e. the one with larger €a) is 
always broader and is associated with a rise toward unity in the reaction 
probability and with a smaller peak in the reactive delay time. As the 
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FIG. 2. Same as Fig. 1 except cases K,N, and T. (Modified from Ref. 12.) 

resonance moves lower in energy relative to Vmax , its width increases. The 
lower energy resonance, which lies in the vicinity of the lower local barrier 
maximum, has a smaller width and is associated with a larger peak in 6.t21' 
However, as we begin to deform the potential toward one having a single 
maximum, this resonance gets broader and its peak in the delay time gets 
smaller. In addition, its effect on the reaction probability is increasingly 
diminished; in case C, it is associated with a rise in P21 to only 0.27 and 
in case I, its effect on the reaction probability is really only discernible in 
the derivative curve dP21/dE. Small rises in the reaction probability (to 
values significantly less than one) have also been observed in other model 
studies involving unsymmetric potentials [99 ,100]. 

For series 2, as we proceed from case I to T, the second potential 
maximum in V{x) becomes a shoulder and then disappears, leaving only 
one maximum. Nonetheless, two poles of the scattering matrix are still 
located. Their values of fer approach one another and as a result the two 
peaks previously observed in 6.t21 curves overlap more and more until they 
merge into one peak. While r of the higher energy resonance decreases, 
that of the lower energy resonance increases substantially; in case T, there 
is nearly a factor of 3 difference in widths. 

Figure 3 clearly shows, for those potential cases in series 1 and 2 where 
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FIG. 3. Local maximum in the reactive delay time ~t21 versus the inverse of the width 
of the resonance associated with the delay time feature. The cases shown are Ct = O(a), 
0.17(b),0.32(c),0.68(e), 1.00(1), 1.45(9), and 1.60(h) of Section 3.1.1 and A,C,I,K of 
Section 3.1.2. 

two peaks in .6.t21 were observed, that the maximum delay time is inversely 
related to the width of the associated resonance. Cases N-T are not in­
cluded in this figure because only one peak in .6.t21 was observed in each 
case. However, even in these latter cases, there is an inverse relationship 
between the width of the higher energy resonance and the maximum de­
lay time. (See Table 3 of Ref. 12.) While the width of the lower energy 
resonance increases, the higher energy resonance decreases in width, par­
allelling the increase in the maximum delay time. In addition there is an 
excellent correspondence between the value of COl of the higher energy res­
onance and the energy of maximum .6.t21. Thus, we conclude that when 
two resonances overlap significantly, it is the narrower (and higher energy) 
resonance which makes the dominant contribution to the delay time. We 
will revisit this point in Section 3.2 below. 

The inverse relationship between the resonance width and the reactive 
delay time, clearly illustrated in Figure 3 for both symmetric and unsym­
metric potential cases, can be elucidated in another manner. We have 
shown in Section 1.2 that for an isolated narrow resonance the reactive de­
lay time will have a maximum at E :;; COl, at which .6.t21f a = 21i, eqn (1.16). 
This relationship is reminiscent of the time-energy uncertainty relation and 
we might expect that for broader resonances (such as barrier resonances) 
the product of the maximum reactive delay time and the resonance width 
will exceed 21i. In fact, we found that the very narrow resonances of po­
tential (3.3) with 0: = 1.00 - 1.60 are trapped-state resonances lying well 
below Vrnax , and for these, the product equals 2.0, as it should for an INR. 
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For cases in series 1, the product falls between 2.1 and 2.3 for the narrower 
resonances and between 2.8 and 3.6 for the broader ones; for cases in series 
2, it falls between 2.3 and 3.1 for the narrower resonances and between 
3.7 and 4.2 for the broader ones [12]. The results agree very well with our 
expectations for broad and narrow resonances. 

3.2. Strings of poles and the cumulative reaction probability. 
The reaction probability P21 in the model one-dimensional studies is the 
analogue of the cumulative reaction probability in the three-dimensional 
quantal studies and, likewise, the energy derivative dP21/dE is analogous 
to the density of reactive states. From accurate three-dimensional quantal 
calculations, we have concluded that quantized levels of the transition state 
control the chemical reactivity of a number of chemical reactions. We 
have interpreted these quantized transition states as barrier resonances, 
responsible for steplike rises in the CRP. In the chemical reactions discussed 
in Section 2, we find no evidence for trapped-state resonances affecting the 
overall CRP or density of reactive states. In a similar manner, we have 
seen in our model one-dimensional studies that broad barrier resonances 
are also responsible for the rise from zero towards unity in the reaction 
probability. For a relatively structureless potential barrier, like the simple 
Eckart potential of Section 3.1.1, we see that the reaction probability rises 
smoothly from zero to one and remains at unity. We have identified this 
as a resonance phenomenon. However, we have discussed above (Section 
2.3) that a parabolic or approximately parabolic (e.g. an Eckart) barrier 
has a series of poles of the scattering matrix. We now address the relation 
between a string of poles and the reaction probability. 

For the parabolic barrier of eqn (2.12), Atabek et al. [10] analytically 
solved the Schrodinger equation and found a series of poles accumulat­
ing at an energy corresponding to the top of the barrier with complex 
resonance energies given by eqn (2.24). They proceeded to try to charac­
terize these resonances numerically by invoking some procedures used for 
traditional (i.e. trapped-state) resonances, such as the analysis of stabi­
lization graphs [101] and the search for a wave packet of maximum lifetime 
[102]. An identical result for the poles of the S matrix (Siegert eigenvalues 
[16]) has been obtained by Seideman and Miller [92] in a treatment of the 
parabolic barrier. Eqn (2.24) for the string of poles also results from a 
naive continuation of the analytic results for a harmonic oscillator. For the 
potential of eqn (2.12) with, in this case, kT a positive force constant, the 
bound state eigenvalues, which are poles of S along the real energy axis, 
are ET + IiwT(v + 1/2), with WT given by eqn (2.15). If we let kT now be 
negative, which transforms the potential from a harmonic oscillator to a 
parabolic barrier, we get poles given by eqn (2.24). 

Analytical results for the poles associated with scattering by an Eckart 
potential barrier were presented by Ryaboy and Moiseyev [94]. For a sim-
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pIe, symmetric Eckart barrier of the form 

(3.5) 

where a and 'Yare real constants with dimensions of energy and inverse 
length, respectively, there are a series of Siegert resonance states at complex 
energies 

(3.6) 

As for the parabolic barrier, the poles are labelled by a nonnegative integer 
v and the widths of the resonances vary as (2v + 1). A more complicated 
analytical formula for the complex resonance energies arises for the non­
symmetric Eckart potential [94]. It should be noted that the nonsymmetric 
potentials of Ref. 94 differ from those studied in Ref. 12; in the case of 
Ref. 94, the potentials possess one maximum but are asymmetric in their 
asymptotic energies [V(x = +00) ::f V(x = -00)]. The series of poles 
for the symmetric and nonsymmetric Eckart potentials were also located 
numerically using the complex coordinate method [103-108]. The authors 
found that the complex scaled Siegert eigenfunctions are square integrable 
and localized within the region of the potential barrier and, in addition, 
that they may be characterized by their number of nodes v as for bound 
state wavefunctions. 

In one relevant study [109], a string of poles ofS was also located for the 
radial potential Vor2exp( -ar) using the complex coordinate method. (This 
potential was also studied by Bain et al. [108].) The locations of the poles 
in the complex energy plane relative to the potential barrier height were 
analysed. Pole strings have also been observed in a number of other studies 
[110,111]. The manner in which the series of Siegert resonance states line up 
in the complex energy plane for some general types of potentials has been 
discussed by Meyer [111] and Seideman and Miller [92]. Recent work in the 
mathematical literature is also concerned with the number and distribution 
of scattering poles [112]. 

The variation we have observed [11,12] in the widths of the reso­
nances agrees nicely with the analytical and numerical studies of model one­
dimensional barriers discussed above. In particular, we find that as the 
unsymmetric potential of eqn (3.4) is deformed from one having two local 
potential maxima to having only a single maximum, the ratio of the widths 
of the two resonances located is nearly 3. (For example, for case T in Figure 
2, the ratio is 2.87.) For a parabolic barrier or a symmetric Eckart barrier, 
the ratio of the two narrowest resonances (v = 0, 1) is exactly 3. 

Since passage over potential barriers can give rise to a series of poles of 
the scattering matrix, the next question to address is the effect this string 
of poles has on the reaction probability. Ryaboy and Moiseyev [94] proved 
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that the (cumulative) reaction probability for an Eckart potential barrier 
can be expressed entirely in terms of tbe Siegert poles in the S matrix, 
even though the energy dependence of P21 is structureless (it smoothly 
rises from zero to one). Likewise, Seideman and Miller [92] showed, us­
ing flux correlation functions [113,114]' how the reaction probability for 
parabolic and Eckart barriers can be expressed in terms of Siegert eigen­
values. (In a related and earlier study, Atabek et al. [115] have shown 
that the scattering amplitude for single-channel scattering by a repulsive 
exponential potential can be accurately represented using a finite number 
of poles.) It is clear then that the rise in the reaction probability from 0 
to 1 is due to a cumulative effect of the entire string of poles. Whereas 
an isolated narrow trapped-state resonance causes the reaction probability 
to rapidly vary from 0 to 1 and then back to 0, the reaction probability 
upon passage over a simple potential barrier (such as a simple Eckart po­
tential) rises smoothly from 0 to 1 but does not return to 0 because of the 
cumulative effect of the string of broad and hence overlapping resonances. 

However, it is important to reemphasize a point made earlier. The 
quantal three-dimensional studies described in Section 2 suggest that, when 
resonances are broad and overlapping, many features of the behavior of 
the cumulative reaction probability and density of reactive states can be 
understood in terms of the pole closest to the real energy axis (the v = 0 
member of the pole sequence). We have discussed several examples of the 
utility of this suggestion in Section 2.3. In addition, both in our work 
on three-body reactions in the real three-dimensional world described in 
Section 2 and in our work on model one-dimensional unsymmetric potential 
functions described in Section 3.1.2, we concluded that when resonances 
overlap significantly, it is the narrowest one which makes the dominant 
contribution to the delay time. The nearest pole to the real energy axis 
is thus useful for understanding the dynamics in real time, an issue that 
is becoming increasingly important due to recent advances in femtosecond 
spectroscopy [116]. 

4. Concluding remarks. Analytical formulas characterizing isolated 
narrow resonances are well known. However, resonances that are encoun­
tered in molecular collisions usually are not well described by the INR 
formulas; in particular, we have given a number of examples from the liter­
ature where the sum of the partial widths does not equal the total resonance 
width. 

A chemically important example of a type of resonance that is not 
expected to follow the isolated narrow resonance formulas is a quantized 
transition state resonance. These broad resonances have been shown, by 
analysis of the accurate quantum mechanical cumulative reaction probabil­
ity and its energy derivative, to control chemical reactivity in a number of 
three-dimensional chemical reactions by acting as dynamical bottlenecks in 
phase space that gate the reactive flux from reactants to products. These 
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transition state resonances, also called barrier resonances, do not differ in 
kind from conventional isolated narrow trapped-state resonances (i.e. both 
are poles of the scattering matrix); this has been demonstrated by one­
dimensional quantal studies in which barrier resonances have been shown 
to transform continuously into trapped-state resonances by varying the po­
tential energy function. In general, barrier resonances have larger widths 
(and are consequently associated with shorter delay times) than trapped­
state resonances. 

When the quantum mechanical description of a chemical reaction be­
comes more complete, it often becomes desirable or even necessary to use 
the language of resonance theory. The interpretation of transition states 
as resonances has been put to several practical uses. First, it allows us 
to compute the collision lifetime AT from the resonance width; AT values 
computed in this manner have been seen to compare favorably to those 
computed from the phase of accurate S matrix elements without resonance 
theory or transition state theory. Secondly, we can obtain complex spectro­
scopic constants for the quantized transition states by analogy to the well 
known procedure for obtaining (real) spectroscopic constants for bound 
states. Thirdly, by analysing channel-selected densities of reactive states, 
we can acquire information regarding the partial widths of these barrier res­
onances. This allows us to determine quantitatively which reactant states 
contribute to the reactive flux passing through a particular level of the 
transition state. In addition, the characterization of transition states as 
resonances has been used in a reformulation of variational transition state 
theory to compute anharmonic transition state energy levels [93]. 

The identification of transition states as reactive scattering resonances 
has been shown [117] to also result from application of a complex scaling 
transformation to the reaction coordinate of a chemical reaction. This 
analysis leads to a precise definition of the resonance width operator, whose 
expectation values are resonance lifetimes. 

The levels of the transition state have been assigned stretch (Vi) and 
bend (V2) quantum numbers for modes orthogonal to the reaction coor­
dinate. The quantum number V3, corresponding to the unbound motion 
along the reaction coordinate, appears to be missing in the [Vi v~] assign­
ments; however, when the transition state is treated properly as a quantum 
mechanical resonance, this quantum number reappears and is related to the 
quantum number /I used to label each resonance in the string of poles asso­
ciated with passage over a one-dimensional potential barrier. We suggest 
that the "missing" quantum number in the transition state assignment 
be taken as /I = 0, corresponding to the pole in the one-dimensional study 
string of poles that is nearest to the real energy axis. Our three-dimensional 
and one-dimensional studies suggest that it is the /I = 0 pole that is most 
useful for understanding the chemical dynamics in real time. 

Quantum mechanical scattering by one-dimensional potential energy 
functions has provided further insight into the nature of transition state, 
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or barrier, resonances. In conclusion, we briefly point out how our one­
dimensional model studies on unsymmetric potential energy functions can 
help us better understand the conclusions drawn from our multidimen­
sional quantal studies of the asymmetric 0 + H2 reaction. As described 
above, the three-dimensional quantal calculations suggest that reactant-like 
dynamical bottlenecks exert significant control on 0 + H2 chemical reac­
tivity; these bottlenecks are variational transition states associated with 
the global maxima of vibration ally adiabatic curves. In addition, there are 
product-like dynamical bottlenecks (supernumerary transition states) that 
also affect the cumulative reaction probability and density of reactive states. 
However, other product-like transition states do not appear to influence the 
overall CRP (such as product-like [100].) We find in our model studies of 
one-dimensional unsymmetric potentials having two potential maxima that 
the resonance in the vicinity of the global potential maximum is associated 
with the rise in the reaction probability toward one; this resonance behaves 
like the variational transition state. The resonance in the vicinity of the 
lower local potential maximum sometimes appears to significantly influ­
ence P2l (as in case C of Section 3.1.2) like a supernumerary transition 
state and at other times appears to have very little influence (see case K 
in the same section). Although it is clear that comparison between model 
one-dimensional studies and quantal three-dimensional studies has its limi­
tations, it is encouraging to see that some aspects of the three-dimensional 
results can be better understood in light of the one-dimensional studies. In 
the spirit of the present workshop we would like to suggest that the subject 
of broad overlapping resonances and especially barrier resonances provides 
a fertile area for further mathematical analysis that could be of great use 
in multiparticle scattering theory. 
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Appendix I 

Accurate quantum mechanical cumulative reaction probabilities and 
densities of reactive states for three-dimensional chemical reactions such as 
those discussed in Section 2.2 were obtained by performing converged quan­
tum dynamics calculations. After removing the center-of-mass motion, this 
leaves 6 degrees offreedom. The scattering calculations were carried out by 
expanding the wavefunction in a multiple-arrangement basis set [118-122] 
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and finding the basis set coefficients by linear algebraic methods utilizing 
a variational principle. Either the generalized Newton variational principle 
[15,123-126] or the outgoing wave variational principle [127-130] was used 
to obtain elements of the scattering matrix that are stationary with respect 
to small variations in the wavefunction. Details of the calculations are pre­
sented in previously published work [125,126,130-133]. We emphasize that 
the state-to-state reaction probabilities are very well converged with re­
spect to numerical and basis set parameters; this is of crucial importance 
since densities of reactive states are obtained by numerical differentiation 
of CRPs with respect to energy, and the errors in the CRP must be small 
for the numerical derivatives to be smooth. 

Appendix II 

In this appendix we briefly describe the computational methods used 
in Refs. 11 and 12 for solution of the Schrodinger equation (3.1) describing 
two-channel, one-dimensional scattering. The scattering boundary condi­
tions are 

(1I.1a) 

(1I.1b) 

where N± is an arbitrary normalization factor, and asymptotic wave num­
bers k± are given by 

(1I.2) 

where V±oo are the limits at x = ±oo of V{x). The 5 matrix relates the 
incoming wave coefficients A and D and the outgoing wave coefficients B 
and C: 

(1I.3) (C) = (511 512 ) (D) 
B 521 522 A 

We used two different numerical methods to directly search for poles 
of S at complex energies. The first method [11,12] located most of the 
resonances studied but had difficulty characterizing very broad resonances. 
A second method [12] was used to locate the broadest resonances. 

Before describing each method, we note that we considered potentials 
for which V+oo = V- oo = 0 and thus k+ = k_ = k. We also set N± = -Ik 
for convenience. 

In the first method, we transformed the second-order, complex differ­
ential equation (3.1) into four coupled first-order real differential equations 
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which we then integrated directly. In particular, if we consider a wave inci­
dent only from x> 0, we can set D = 0 and thus, with C = 1 to normalize 
the solution, we know the solution of eqn (3.1) as x -+ -00. This solution 
is then numerically propagated from a large negative value of x, -a1, to a 
large positive value of x, a2, using a variable stepsize Gear backward differ­
ence integrator [134] subroutine from the International Mathematical and 
Statistical Library (IMSL) [135]. From the solution at a2, the coefficients 
A and B are computed and then 822 and 812 determined using eqn II.3. 
In a similar manner, we can compute the remaining two 8 matrix elements 
by again setting D = 0 and C = 1 but solving the Schrodinger equation 
with the potential V(-x) rather than V(x). The numerical parameters re­
quired for the numerical integration were varied until the scattering matrix 
elements were converged to better than 0.1%. 

The second method we used to both locate the very broad resonances 
as well as check the results obtained from the first method is based on the 
technique of invariant embedding [136]. Equivalent to solving the second­
order, linear eqn (3.1) subject to the above boundary conditions is to solve 
the following first-order, nonlinear initial value problem for the function 
8(x) [137]: 

(IIAa) 

(IIAb) 

:: = 2ik8(x) + 2~k U(x)[l + 8(X)]2 

8(-aI) = 0 

with U(x) = 2J.tV(x)jtt2. Scattering matrix elements are then given by 

(II.5a) 

(II.5b) 

822 = 8(a2) exp(-2ika2) 

( - 1 r 2 
) 

812 = exp 2ik La1 dx U(x)[l + 8(x)] . 

The first-order equation (IIAa) is transformed into two real, first-order cou­
pled differential equations and the solution IIAb is propagated numerically 
from -a1 to a2 using the IMSL Gear integrator. 822 is computed via eqn 
II.5a and 812 is computed from a Simpson's rule [138] evaluation of the 
integral in II.5b. 

Poles in the scattering matrix corresponding to resonances were located 
by numerically searching for zeroes in 1j8ji in the complex energy plane. 
To accomplish this task, we used a modified IMSL subroutine which invoked 
Muller's method [138] for quadratic interpolation among three points to 
find the next estimate of the root. The search was typically stopped when 
the relative difference in two successive approximations to the root was 
smaller than 10-1°. 

Transmission and reflection coefficients were computed at real energies 
from converged scattering matrix elements via eqn (3.2). Delay times .6.tij 
defined by eqn (1.14) were also obtained by the method [33] of fitting 
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scattering matrix elements at three consecutive real energies to 

(11.6) 

where en are real fitting parameters. The delay time at the central energy 
of the triad was then obtained by 

(11.7) 
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