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I. INTRODUCTION

In general all the information necessary to completely describe a binary
collision of two (composite or elementary) particles is contained in the
scattering matrix. When it is desired to express the scattering matrix for
general multichannel collision processes in the absence of external fields, a
useful representation is one in which the total angular momentum and one
of its components are quantum numbers.! Our term for this is “total-
angular-momentum representation.” In Section II we review some ex-
amples of descriptions of scattering processes that involve total-angular-
momentum representations.

Time-reversal invariance is a fundamental symmetry property that can
often be used to simplify the determination of the scattering matrix. For
example, Coester? and others have used time-reversal invariance to prove
that the scattering matrix in a total-angular-momentum representation is
symmetric for certain phase conventions for the wavefunctions. In Section
III we prove that all symmetry operators must be unitary or antiunitary
and that time-reversal is antiunitary. We review antiunitary operators, the
time-reversal operator, and some associated properties. In Section IV we
prove a general theorem that provides sufficient conditions under which
the scattering matrix is symmetric in a total-angular-momentum represen-
tation.

In Section V we review the formula for calculating the differential
cross-section da /d2 (where & specifies the scattering solid angle) from the
scattering matrix, and we discuss the application of the resuits of Section
IV to some common examples. The phase conventions used in several
published expressions for calculating differential cross-sections from scat-
tering matrices are checked for the properties of the time-reversed state.



TIME-REVERSAL INVARIANCE 297

Examples are furnished of representations that give a symmetric scattering
matrix even though they do not satisfy the conditions usually stated as
sufficient for this symmetry. The practical problem of consistent use of a
phase convention is also discussed.

II. TOTAL-ANGULAR-MOMENTUM
REPRESENTATIONS

In the usual partial-wave expansion,'®'0 the scattering of an ele-
mentary particle without spin from a central potential is characterized by
the good quantum numbers /, m,, and II. Here / is the orbital angular
momentum* with quantum number /, /, is its z-component with quantum
number my,, z is a space-fixed axis, and IT is the total parity of the system.
In this case the total-angular-momentum quantum number J and the
quantum number M of its z-component are identical to / and m,. Thus the
usual partial-wave expansion provides the simplest example of a total-
angular-momentum representation in a scattering problem.

The hamiltonian H for an elementary particle interacting with a non-
central potential'! is not rotationally invariant. In this chapter we are
concerned only with systems whose total hamiltonian is rotationally in-
variant.

The scattering of an elementary particle with spin from a rotationally
invariant potential (which may depend on the spin) may be char-
acterized!?3¢ 748410 by the quantum numbers J, M, II, /, and the internal
angular momentum quantum number s, where

J=I+5 (1)

Since J and M are included among the quantum numbers specifying the
state, such a description is a total-angular-momentum representation. An
alternative description of this system which is nor a total-angular-
momentum representation is characterized by the quantum numbers /, m,
s, and m,, where s, is the component of 5 on the space-fixed axis and m is
the quantum number associated with that component. For certain treat-
ments of or approximations to the scattering problem, the latter represen-
tation may prove more useful. However, since rotational invariance implies

[H,J%=0 and [HJ,]=0

where a hat (caret) over a symbol denotes a quantum-mechanical operator
and z is the space-fixed axis, the scattering matrix is diagonal in J and M
and independent of M.!»7%1% Thus generally a representation in which J

*Throughout the chapter, angular momentum is measured in units of 7.
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and M are included among the quantum numbers will be most convenient.
This property of a block diagonal scattering matrix is the general reason
for preferring a total-angular-momentum representation.

The scattering of an elementary particle without spin by a rigid diatomic
rotator without spin was treated by Arthurs and Dalgarno,'? Micha,'? and
others!* in terms of the quantum numbers J, M, II, /, and s, where s for
this problem is the rotational angular momentum quantum number of the
diatom. The scattering of an elementary particle without spin from a
diatomic rotator-vibrator may be treated'’ in terms of the quantum num-
bers J, M, I1, /, s, and n, where s is again the internal angular momentum
of the target and »n is the vibrational quantum number. These problems
may also be treated in other total-angular-momentum representations'®
and in representations in which J is not a quantum number.'” In fact, the
last-named type of representation sometimes provides a simplification in
approximate calculations. In this chapter we consider only the total-
angular-momentum representations.

The scattering of an elementary particle whose spin is neglected from a

rigid diatomic rotator with spinfand angular momentum k of rotation of
the molecular framework may be treated'® in terms of the quantum
numbers J, M, I1, /, s, f, and k, where

s=k+f

In this case s is again the total-internal-angular-momentum quantum
number.

For electron-atom scattering by low-atomic-number atoms at nonrelativ-
istic energies, it is common to neglect spin-orbit coupling. Then the total
orbital angular momentum L and the total spin angular momentum* S are
separately conserved. In this case spin may be removed from the problem
except for its role in enforcing a specific permutational symmetry for the
spatial part of the electronic wavefunction. Then L effectively plays the
role of total angular momentum and it is most convenient® to include it
among the good quantum numbers labeling the representation.

Further examples of total-angular-momentum representations may be
found in the theory of atom-atom collisions with transitions among hyper-
fine levels,' in other atomic collisions,?® and in Section V.

HI. TIME REVERSAL

The operation commonly called “time reversal” might more logically be
named “motion reversal.” It consists not in a true reversal of the direction

*Total spin S and the quantum number S and operator § for total spin should not be
confused with the scattering operator S for which we use the same capital letter.
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of time (which would be unphysical), but in a reversal of all velocities and
spins, with spatial coordinates being left invariant (a more precise defini-
tion is given in Section III.A). In deference to tradition, however, we use
the term “time reversal” for this operation, denoting it by 7' Since we shall
have occasion to make use of some of the properties of T, and since these
are not widely understood among chemists, we present in this section a
self-contained treatment carrying the theory of time reversal far enough to
derive the results we shall require. For more details, the reader is referred
to the excellent treatment of Wigner.?!

A. Symmetry Operators

We define a symmetry operator N as any operator that satisfies, for all

lg>, |,

[ Ng|Nr| = [(q|r)] @)
and the distributive law

N(lg>+1r))=Nlg>+N|r> (3)

and has an inverse N ~' which is also a symmetry operator. Gottfried?? has
given a discussion of how (2) corresponds to our physical ideas of a
symmetry operator. Note that we cannot use any simple physical argument
involving symmetry to put restrictions on the phases of the two sides of (2).
This is because |r) and e™|r) represent the same physical state.?*

The time-reversal operator T is defined as the symmetry operator that
reverses the signs of all velocities and spins, while leaving spatial
coordinates unaltered. In the absence of external magnetic fields, this is
equivalent to the reversal of all linear and angular momenta (including
spin), while leaving coordinates unchanged. We always assume in this
chapter that no external magnetic field is present, which means that 7 may
be defined as reversing momenta and spin. This does not prevent us from
including the effect of magnetic fields generated by the orbital or spin
motion of the particles of the system under study. In the presence of an
external magnetic field, there does not appear to be a well-defined operator
that reverses velocities while leaving the external field unaltered.

The rest of this subsection is a proof of Wigner’s theorem:2?>% all
symmetry operators must be unitary or antiunitary (defined below).

To explore the consequences of properties (2) and (3), let |u), |v), etc.,
be a complete orthonormal set of state vectors with

uloy=34,, 4)

and let N be some symmetry operator. It follows immediately from (2),
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plus the positive definiteness of {q|¢), that IZ\A’u>,..., are also orthonormal:
(Nu|Nvy=38,, (5)

The |1\Afu> are also complete. For if |w) is orthogonal to them all, then
|N ~!w) is orthogonal to all the |u), contrary to the hypothesis that the |u)
are complete.

Now select one of the |u) arbitrarily, and consider the action of the
symmetry operator N on the vector (a|u)), where a is a complex number.
Because (v|au)=af,, and because of (2), we must have

[ Ne| Nawy) =|al3,, (6)
From the completeness and orthonormality of the 1]\70>, it follows that
Nalup=d'|Nuy  with |a'|=]q| (7)
We next consider an arbitrary vector |r) expanded in terms of the |u):
|r>=Zr,|u)
Because of (3) and (7), we have
|Nry=2r|Nuy,  |r|=Ir] ®)

Now for arbitrary |v), |w) from the complete set, we define the vector

| o> = 0>+ W)
It follows from (3) that
| = No>+|Nw) )

Now, making use of (9), (5), (8), (2), and (4), we find
KNI NP =11+ ] = [ ol D] = 7 7 (10)

It is evident that (8) and (10) can be satisfied only if the relative phase of
r, and r,, is the same in absolute value as that of r, and r,. Furthermore,
this must remain true when r, and r,, are varied independently, and for all
choices of |v) and |w). There are thus two possibilities: either the relative
phase remains the same, in which case

r,=er, (11)
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or the relative phase changes sign, leading to
r,=e"r¥ (12)

In both cases (11) and (12), the common phase factor ¢ must be the same
for all |u). Applying (11) or (12) to the case r,= 1, moreover, we find

N|ud>=|Nud>=e™|Nu)
from which it follows that ¢=0.
We are thus left with just two possibilities. If (11) holds, we have
Naluy=a|Nu)
|fr(;m which and from (3) it follows by expanding arbitrary |g), |r) in the
u) that

N (alg)+ b|r>)=a|Ng) + b|Nr) (13)
and

(Ngq|Nry={qlr) (14)

In this case, the symmetry operator N is called unitary, and, in accordance
with (13), linear.
On the other hand, if (12) is obeyed, we have

]\A7a|u>=a*|]\7u>
N (alg)+b|ry)=a*|Ng)+ b*|Nr) (15)

(Nq|Nry={q|r>* (16)

In this case, the operator is said to be antiunitary (and antilinear). This
completes the proof of Wigner’s theorem.*

The familiar symmetry operations such as rotations and parity are
unitary.”?” In the Section III.B we show that T is antiunitary.

B. Antiunitary Nature of the Time-Reversal Operator

In the absence of external fields producing velocity- or spin-dependent
forces (of which the only important example is the magnetic field), the

*If one does not initially assume the distributive law (3), the proof of Wigner’s theorem is
slightly more difficult and the result itself slightly weaker.??> Without assuming the distribu-
tive law, it can be shown that an appropriate and permissible phase convention leads to all
our results being true, but other phase conventions are possible in which the distributive law
is not obeyed and in which the phase angle ¢ in (11) or (12) is not necessarily zero.
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operation of time reversal does not change the energy of chemical systems.
Thus, for such a system, if

H|jy=hw)j>
then also

H|Tjp=hw)|Tj>

We will say that such a system has a time-reversal-invariant hamiltonian.
Since we are using T only in such cases, and since T is not necessarily well
defined otherwise, we assume this property from now on.

Now consider a simple example of a system with a time-reversal-
invariant hamiltonian: a classical free particle, moving in one dimension.
At time zero, let the particle be at the origin, moving with velocity v, and
consider the effect of two different sequences of operations. In the first
sequence, we apply T (changing v to — v), and then let the particle travel
for a (positive) time ¢. The result is that the particle is at the point (— vr)
and has velocity —v. In the second sequence, we go back in time to (— ),
and then apply T. Again, the result is that the particle is at (—of) and has
velocity — v. In other words, time reversal followed by propagation forward
by t has the same effect as propagation backward by ¢t followed by-time
reversal. A little reflection shows that this is a property of all time-reversal-
invariant systems, i.e., of all systems with time-reversal-invariant hamil-
tonians.

Quantum mechanically, this requirement is expressed as follows: for any
initial state |g), we have

G(0T|q)=e"TG(-1)|q) (17)
where ¢ is real and é(t)=exp[—(i / h)I-;'t] is the time-displacement opera-
tor. We now expand |g) in the eigenfunctions |/} of H, |¢>=2,g|;> and

see what requirements (17) puts on 7. First, under the assumption that T is
unitary, we find, using the rules of Section II1.A,

G(O)T|g)=3,qe™™'|Tj)
TG (- 1)l =Z,qe™'|T)>

which is evidently not compatible with (17).
On the other hand, assuming 7 to be antiunitary, we find

G (1) T)g>=3,qre ™| T

TG (- 1)lgy=3,qte™""|T})
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which satisfies (17) and even satisfies

G(0)T|q>=TG (- 1)|q

We conclude, then, that T must be defined as an antiunitary operator.

C. PROPERTIES OF ANTIUNITARY OPERATORS

1. General

We use ¢ to denote the set of (perhaps continuous) coefficients in the
expansion of an arbitrary state vector in some complete set. We also define
the operator K, which replaces ¢ by its complex conjugate: Ky =1y*.

We put a bar over K instead of a hat for the purpose of emphasizing that
K as defined here has no invariant physical significance and produces in
general different physical effects in different representations. For example,
in the ordinary Schrodinger configuration space representation for a single
particle, the complete set is just that of configuration space delta functions,
and ¢ is just the usual wavefunction (7). Application of K in this
representation yields y*(7). On the other hand, if we change representations
by expanding y/(7) = Za;¢;(7), where the ¢, are some complete orthonormal

set, then application of K in the new representation gives Zare,(r), NOT
Za*¢(r). This is, of course, physically a different state unless the ¢; are all
real We therefore denote K with a bar, reserving the hat for operators with
an invariant physical meaning.

In view of the foregoing discussion, we can give a meaning to an
expression such as |Kr) only if we also specify the representation in which
the ket |r)> is being expanded. With this understanding, however, it is
evident that the K associated with any particular representation is a
symmetry operator, that it is antiunitary, and that K*=1.

Now, with a representation specified, let W be an arbitrary antiunitary
operator, and consider the product WK. We find using (16) that

(WKq|WKry={W(Kq)|W(Kr)>={Kq|Kry*={q|r>

It follows that WK for the given representation is unitary. We denote the
matrix of WK in the specified representation by f8 where the bold face
letter denotes a matrix. Since K2=1, we have, in the given representation

W=BK (18)
where ,é is the operator in the given representation whose matrix is f.

The matrix B is unitary in the sense that g8 ¥=1. It does not, however,
possess the same transformation properties as matrices of unitary operators
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such as those for rotations of coordinate systems. To investigate the
transformation properties of B, we let the state vectors undergo a unitary
transformation to a new representation, denoted by a prime, with the
matrix of the transformation denoted by U:

v'=Uy
The transformation of W must be such that Vf/’z]/’=(Vf/¢)’, which, with the
aid of (18), becomes
B'KUy=UBKY
B'U*Y* =UBy*
Since this must hold for all ¢, it follows that
BU*=UB
B'=UBU" (19)
where U7 denotes the transpose of U. Note that (19) is different from the
transformation law for the matrices A representing physical quantities,
which obey A’=UAU', where U' denotes the hermitian conjugate. It is
because B has these unusual transformation properties that we denote the
operator for it in a given representation as f rather than 8 or B. Equations
involving 8 and K are often true only in given representations, although we
do not repeat this warning before each such equation.
2. Involutional Antiunitary Operators

Following Wigner,?! we call a symmetry operator an involution if, when
applied twice successively, it reproduces the original physical situation. It is
evident that T is an involutional antiunitary operator. We now proceed to
investigate some properties of such operators.

Let O be antiunitary and involutional. It follows from (18), and from the
definition of an involution, that

0?=fKAK=e™1 (20)
where 7 is a real number. Applying (20) to a state function, we find

0% = ey = BKBKY = BRPY* = BB*y
It follows that

B=eBT 21
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The transpose of (21) is

BT=e"B (22)
Inserting (22) into (21), we find

=i

from which follows e™= = 1. Accordingly, there are two possibilities for
the square of an involutional antiunitary operator:

=Bpr==1 (23)

Note that (23) is not the result of normalization, as would be the case
with a unitary operator; that is, a unitary operator U may be replaced by
U’ = e*U without changing any physical properties, and in such a case U 2
is replaced by (U')Y= ¢**2. If one does the same thing with an
antiunitary operator W, one finds

A 2 LA A - it ~
(W) = e *We'W = ™~ W= W?

When an involutional antiunitary operator is applied twice, any physical
quantity returns to its original value. Accordingly, the physical quantities
to be considered are divided into two classes according to whether they are
left unchanged [class I (@)] or change sign [class II (@)] on application of
an involutionary antiunitary operator 0. By symmetrizing and antisym-

metrizing, a variable that is neither class I (C:)l nor class 11 (@) may be
expressed as a sum of class I (®) and a class II (®) variable, and we lose no
generality by confining our attention to these two classes. We now in-
vestigate the commutation properties with O of variables of these two
classes. If 4 is a physical quantity that is class I (@) this means the
complete set of eigenvectors |j)> of A where

Alj>=alj>
are such that
PICHETACH
Expanding an arbitrary vector |r) as
lr>=2n17>
we find
ff|r>=®2 ralj>=Z2r*a |®j>

T JJJ

AB|ry=A3,r¥0)> =3 r*al0)>
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Since |r) was arbitrary, we conclude that the operator for the variable 4
which is class I (@) must satisfy

A0=04 (24)
Note that for systems with time-reversal-invariant hamiltonians (see Sec-
tion II1.B), H is class I (T); thus it commutes with 7.1 If we write © as
,BK [see (18)], (24) becomes
AB= A~ (25)
For a variable B that is class II ((:)) and has a complete set of
eigenvectors |j> where

Bli>=b1j>
and
B|6j>=—5|0)>
we find, proceeding as before,
BO=-08 (26)
Bp=—pB* (27)

All class 1 (@) variables, then, commute with @ and satisfy the equiva-

lent equations (24) and (25), whereas class 11 (@) variables anticommute
with © and satisfy (26) and (27).

It is quite easy to show that (24) is sufficient as well as necessary for a
hermitian operator 4 to be class I (©): for if (24) holds and

Alpy=alj>
we have
A0]j>=04|j>=04a|>=a|6)>

where the last step follows because g; is real. Thus the physical quantity A
is unchanged on application of ®, which is what was to be proved. An
entirely analogous argument shows that (26) is sufficient as well as nec-
essary for a hermitian operator B to be class I (@)

3. Eigenstates of Involutional Antiunitary Operators

We next consider whether a complete set of states |u> may be taken to
be eigenstates of © so that |u)=e"®|@u) i.e., |u) and |Ou) are physically
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the same state. There are two cases, corresponding to 0= =+1.
If ®2= +1, define the states

[u+>=|u>+|éu> (28)

) ju_>=|uy=|6u (29)
Applying 6, we find

Blu > =|Bu) +6%u)=|Ou) +|up=u.>
A similar calculation gives
C:)|u_ =—|u_>

In this case, therefore, the states can be chosen to be eigenvectors of 0.
The foregoing construction gives the eigenvalues + 1, but in actuality the
phase of the eigenvalue turns out to be arbitrary. To see this, we first verify
that the absolute value of the eigenvalue must be unity. If

@|u> =clu)
then ©2|ud>=|u>=Oc|ud=c*O|ud=c*c|u), from which follows c*c=1.
Now suppose that
@|r> =e™r)
with A real; then e”|r), with 7 real, is an eigenvector of © with eigenvalue
e!®=2 since
Oe|ry= e‘“’é)lr) =AWy = e A2
If %= — 1, however, the situation is different. Let us try to construct an

eigenvector of © in this case. If we postulate the existence of an eigenvec-
tor |g), with

Olg>=clg>
we find
O%g>=—|g>=0c|gy=c*O|g>=c*c|q)
Since we can never have c*c= — 1, this is a contradiction, and it follows

that the postulated state cannot exist. In this case, therefore, |(:)u> is always
physically different from |u). . )

It can also be shown for the case ©?= —1 that |Og) is always ortho-
gonal to |g). To show this, we presume the contrary—that is, for some |¢),
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assumed normalized to unity, we have

0g>=clg>+]|r> (30)

where |r) is a ket orthogonal to |g). Since I(:)q> must also be normalized,
we have

cc*+<rlry=1 (31)
Applying © to both sides of (30), we find
8%gy=—1g>=c*Og)+|Or)=c*clg)+c*|r>+]Or)
which can be solved for l(:)r> to give
16r)=—(1+c*c)|g>—c*r>

Taking the norms of both sides, we obtain

<(:)r|(:)r> ={rlry=(01+ c*c)2+ c*c

which contradicts (31) unless ¢ =0. We conclude, then, that when 0= — 1,
we always have (g|0¢)=0.

D. Properties of the Time-Reversal Operator
1. Explicit Form

To determine explicitly the form of the time-reversal operator T for a
system of particles of arbitrary spin, we proceed as follows: we classify all
variables as class I (T') or class II (T) according to whether they are left
unchanged or change sign, respectively, on application of T. According to
(18), the determination of the explicit form of T reduces to that of 8; also,
if B is determined in one representation, we can use (19) to determine it in
all others. We choose the Schrodinger coordinate space representation, in
which the operator for a coordinate x is simply multiplication by x, and
that for p, is (#/i)(9/9x).

All coordinates are class I( f”), so, according to (25), since X*=X, ,é must
commute with all of them. The momenta are class II(T), and p*= —p, so
it follows from (27) that f also commutes with all the momenta. We
conclude that 8 must operate solely on the spin variables and that it is
simply the unit operator if the particles are spinless. It is important to note,
however, that even the unit operator is not invariant under (19); thus it
does not follow that =1 in all representations for spinless particles.
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We illustrate the transformation properties of the unitary operator ,é by
calculating its form in the momentum representation for a spinless particle
(in one dimension) by two methods: by direct inspection, and by means of
the transformation law (19).

In this representation, we have p=p=p* and xX=ik(d/dp)= —X*
Since X is class I (7'), we must have

5= prr= -

and, since p is class IT ( T ),
pB=—Pp*=—Bp

Thus ,§ must anticommute with both X and p. It is easily verified that these

conditions are satisfied by the operator Q defined as the operator that
changes p to —p. For, with this assumption, we have

- d
2Bo(p)=ih 2 o(~p)= - ihd—j(—p)
- - d:
Bo(p) = fino(p) = fhd—j(—p)= ~ i o(~p)
ﬁf%(p) =po(—p)
Bpo(p)= —pé(—p)

Also, if a is some other unitary operator anticommuting with both X and p,
we have

apr=—axf=zap
that is, (&[?) commutes with X and, similarly, with p as well. It follows that
(ap) is just a constant times the unit operator and that & is a constant
times B . By (23) since the upper sign applies in the present case
,B 1= ,8* Since ,8 is real in the present case, this argument shows that & is

a constant times B. Thus our assumed form for ,8 1s, apart from a constant
phase factor, the only possible one.

If we denote the matrix for the /§ operator in the Schrodinger representa-
tion by B, =1, then according to (19), the matrix for 8 in the momentum
representation is given by

B,, =UU”
where in this case

(plUIx)=Lx|UT|py=h~"%e7Px/
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We thus find

PlBlp>= [ (plUIxydx(x|0Tp>=8(p+p)
and thus

Bo(p)= [<pl Bl o) dp'=(~p)

which verifies that the two approaches give the same result, as they should.
To determine the spin part of B, we first consider a single spin-3-
particle. All three components of spin are class II (7), and letting o, 0,, o

x> Yy Yz

represent the usual Pauli matrices,’®%%22¢23¢ we have
* . * — . *
o*=o0,; o'=—o0,; o*=o,

According to (27), therefore, B must anticommute with ¢, and o, and
commute with o,. This is satisfied by

B=€i¢0’y=ei¢(9 "f)
i 0

where ¢ is any real number. This equation does not single out the y
direction as having special properties. The spin component s, is a physical
quantity, its representation is 3o, only in the usual representation (see
Section III.F.2), and it transforms according to s, =UsyU* when we go to
another representation, whereas f transforms according to (19). Thus
B=ei¢(2sy) holds only in one particular representation. Using (19) it is
easy to show that

B’=Uei“’( 0 - )UT=(detU)e“"( 0 - )
i 0 i 0

Since |detU|=1 for any unitary matrix U, this yields for all representations
for a spin-4-particle?*

B'=e"s,
with 7 real.

If there are several spin-3-particles, the spin components of them all are
separately class II (T), and B becomes a direct product of the o, matrices
for all the particles. If there are particles with spin greater than 1, they may
be regarded as built up from spin-1-particles, and B constructed accord-
ingly. The treatment of Section IILF makes this more explicit. _

With our explicit form of 8, we can determine the sign of 72 by using
(23). The space part of B clearly contributes just +1. For each spin-3-
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particle, the spin part, according to (23), contributes a factor
BB* = 0,0)=— oy2= -1

It follows immediately that the sign of T2 is positive or negative according
to whether the total spin is integral or half-odd integral.

It is also of interest to consider the behavior of 8 under a rotation of
coordinates. The operator for an infinitesimal rotation is*

~ A~ —~ A
U=1+ieJ

where the direction of e gives that of the axis of rotation and its magnitude
(assumed infinitesimal), the angle of rotation; J is the vector total- angular-

momentum operator, in an arbitrary coordinate system. Since J is
hermitian and e real, we have

O7=1+ieJ*
Also, since J is class I ( f), (27) yields

Aw ~A
JB=—pI
The effect of the transformation on ,é, through the first order in e, is given
by
~ A~ A ~ A ~ A ~
B'=UBUT=p+ie-(Jp+pJ*)=p
In other words, ﬁ is not changed by a rotation of coordinates. If, therefore,
the matrix form of 8 has been worked out with respect to one Cartesian
coordinate system, one can use the same form for all such coordinate
systems.

Finally we note that 8 is changed by a unitary transformation which just
multiplies by a phase factor: If U=¢e1, then

UBUT =28

2. Kramers Degeneracy

If the hamiltonian is time-reversal-invariant (see Section III. B), it follows
that each energy eigenstate |j) has the same energy as |7}> If these
eigenstates can be chosen also to be eigenstates of T, so that lj>= e’¢|Tj>
(i.e., |j> and |Tj> are the same states), this does not introduce any new
degeneracy. However, if |Tj) is necessarily physically different from |,

*Compare the discussion at the beginning of Section IIL.F.1.
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the time-reversal invariance brings about twofold degeneracy.

If T2=+ 1, the result of Section III.C.3 is that the eigenstates of H can
be chosen to be eigenvectors of T. Thus consideration of T alone does not
require degeneracy.

If 72= —1, however, the result of Section III.C.3 is that |Tj> is always
physically distinct from | ;). Thus the time-reversal invariance introduces a
twofold degeneracy known as “Kramers degeneracy.”%224

E. Minimization of the Number of Class II (f”) Variables in
the Complete Set of Commuting Variables

Consider a system of particles with no external fields present, so that the
energy eigenstates may be chosen to be eigenstates of total angular
momentum J (quantum number J) and of its z-component J, (quantum
number M). Let d denote the set of scalar observables which, together with
J and M, are sufficient to determine the state.* Since J, is a class II (T )
variable and J 2 is class I (T) we certainly have

T\d,J,My=e"@)M\g J — M (32)

where y(d,J, M) is real and 4, differs from d in that the signs of all class II
(T) variables have been reversed. The question arises of whether it is
possible to choose d to consist only of class I (T') variables, so that d=d,
and J, is the only class II (7) variable used in the specification of a state.

To answer this question, we introduce the operator R,, a rotation
through 180° about the x-axis, and C, = R, T. Applying R, to both sides of
(32), we find, since the d are scalars,

C ld,J, My = el @/ m+a@l =m0l 4 j pr, (33)

where g(d,J, — M) is real. The operator é‘x is evidently antiunitary and
involutional. We see from (33) that 4, can be chosen identical with d if and
only if the eigenstates can be chosen to be eigenstates of C ; and this,
according to the treatment of Section III.C.3, depends on whether C2— +1
or —1. We now proceed to investigate this questlon

The class 1 (C ) variables are x, p,, p,, s, s,, but Vs Z, P> S, are class 11

(C ). The space part of the B operator [see (18)] for C in the Schrodinger
coordinate space representation is just the usual 180° rotation, and con-
tributes +1 to C2 To calculate the spin part Bs, we again consider a
spin-i-particle, the usual representation of spin components in terms of the
Pauli matrices, and use (27). We find this time that 8, must anticommute

*It is shown in Appendix A that the variables d can always be chosen to be scalars.
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with ¢, and ¢, and commute w1th o,. This is satisfied by B, = o,. Using (23)
again, we find Cl=0,6*=02=+1.

Since C 2= +1, we can choose the eigenstates of H to also be eigenstates
of C w1th any eigenvalues of magnitudes unity (see Section III.C.3). By
33 this means 4 includes no class II (7)) variables and a d that is specified
not to include any class IT (7') variables will be called D. If we choose the
eigenvalues to be + 1, we have

C|D,J,M>=R.T|D,J,M>=|D,J,M> (34)

The choice of phase which ensures that (34) is satisfied is derived in
Section II1.F.4. Applying R,~! to both sides of (34), we find

T|D,J,M>=R\D,J,M)=e"P/M|D J — M

where 7(D,J, M) is real and is determined by the phase convention used in
defining the states.

The conclusion of this subsection is that in the absence of external fields
in systems with rotational invariance, it is always possible to choose one’s
quantum numbers in such a way that J, is the only class II (T) variable
used. If this is done, the Kramers degeneracy in energy introduces no new
degeneracy, since degeneracy between states with different quantum
numbers M is already required by the rotational invariance. There may, of
course, be a near-degeneracy such as Kramers degeneracy of the electronic
state with fixed nuclei, which is only split by the interaction between
electronic and nuclear motion.

It is also easily seen that the set of scalar quantum numbers D may be
chosen to include the parity of the system. From the explicit form of T
derived in Section IILD.1, it is evident that T does not change the parity
[i.e., that parity is class I (T)]. Being a rotation, R, also leaves the parity
unchanged. Thus C, leaves the parity unchanged. Hence if the eigenstates
of C, are constructed according to the prescription of Section II1.C.3, we
only have to choose the state |u) in (28) and (29) to be an eigenstate of
parity to ensure that the eigenstates of C, are eigenstates of parity also.

It will be useful for later purposes to summarize the properties of C that
we have established: C 1s 1nvolut10na1 and antlunltary, and C 2_ +1

always; C commutes with J 2, Jz, and the parity operator P as well as with
the hamiltonian H in problems we will be considering. Hence we can
always choose our complete set of states to be simultaneous elgenstates of

J 2, JAZ, P, and C If this is done, the time-reversal operator T reverses the

eigenvalue of J,, leaving all other quantum numbers unchanged. Con-
versely, if the only class II (T) variable in our complete set of commuting
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variables is J;, our states are eigenstates of CX. It is also evident that all
these properties hold equally well for the analogously defined operator
Cy Iiy f‘, in which the role of the x-axis in C is assumed by the y-axis.
The utility of C and C in subsequent d1scus51ons is attributable to two
conditions. First, since C = +1 and C ?=+1, we can always choose our
complete set of states to be elgenstates of C or C but since 772 i is
sometime§ —1, we cannot always choose our states as eigenstates of 7.
Second, C and P commute with J, as compared, for example, with

R Ry and TP which each anticommute with J

x?

F. Phase Conventions in Total-Angular-Momentum
Representations

1. Preliminaries

The work of Section IIL.E, together with that of Appendix A, shows that
it is always possible to choose a representation in which the states are
characterized by the total-angular-momentum quantum numbers J and M,
with the other quantum numbers being class 1 (T') scalars. In such a
representation, the (2J+ 1)-dimensional manifold spanned by the states
|D,J,M> (D and J fixed, M= —J,—J+1,...,J) is invariant under time
reversal as well as under rotation, and in particular angular momentum,
operators. It follows that the properties of these operators may be studied
within such a subspace without reference to the rest of the Hilbert space.
We now take up the question of the properties of the operators 7, R,, C,,
the analogous operators R, and C,, and the angular momentum operators
themselves within such a manifold, as well as their relation to one another
and to the phase convention used in defining the states. The states
|D,J,M ) are assumed to be normalized and, by definition, to be eigen-
states of J2 and J This determines each state function only up to a
multiplicative phase factor e, where ¢ is real and may be chosen ar-
bitrarily for each state. We want to concentrate on determining the effect
of this choice of phase on the properties of T, C,, and so on.

We begin with a brief remark on the phasing of the rotation operators
themselves. The rotation of a physical system about a given axis through
an angle ® may be expressed quantum mechanically by means of the
unitary operator®-22¢23%

U@)=e 87
where © is a vector of magnitude © directed along the axis of rotation in
the right-handed sense, and J is the total-angular-momentum operator. As
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mentioned in the discussion following (23), however, the unitary operator
U (@) may be multiplied by an arbitrary phase factor e“"(e) causing the
U (@) to be replaced by

l}¢(@)) = i¢(@)e —i®.J

The physical effect of the U operators is the same as that of the U it is
desirable, however, to choose the phases in such a way that the U (@) form
a representation (perhaps double-valued) of the three dlmensmnal rotation
group. Since the U (@) form a representation, the U will do so only if the
phase factors ¢*® form a one-dimensional representatlon of the rotation
group. Since the only such one-dimensional representation is the unit
representation, we must set all phase factors equal to unity [i.e., represent
all rotations by U (@)] In conformity with universal usage, this is done
throughout the chapter. Another desirable property of this convention is
that the rotation of the physical system through an angle ® is mathemati-
cally identical (including its effect on phases) to a rotation of the coordinate
system about the same axis through (—®). The infinitesimal rotation of
coordinates discussed in Section III.D.1 is thus carried out in the right-
handed sense about the axis e.

In the work to follow, we need certain commutation relations between
T C etc. and the raising and lowering operators J —J + tJ Since all
components of angular momentum are class II (T), we have accordmg to
26),

TI=-JT (35)

~ A
Thus T anticommutes with all components of J, and, since it is antiunitary,
also with the factor i. We therefore find

.=, i =7 5 i) =S i F=—0F ()

y +

The operator éx is antiunitary (hence anticommutes with /) and reverses
only J,, leaving J, and J, invariant. According to (24) and (26), therefore,

it commutes with J, and anticommutes with J,. Hence we find

A A A

=CJ, =+

A A A ~

5iCJ=-JC.5iJ,C =

xy= X x y x

-J.C. (37

x¥ x Cxin=

The analogous operator (:‘y is defined as CA’YA= ﬁy f“, where Iiy is a rotation
through 180° about the y-axis. The operator C, reverses J,, leaves J, and J,
invariant, and is antiunitary. It therefore commutes with J  and anticom-
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mutes with i and JAy We find for éy, analogously to (37)

CJ.=J.C, (38)
. We also need the analogous relations for the unitary rotation operators
R, and R,. To obtain these, we first note that the derivation of (24) and
(26) does not depend on the antiunitary nature of the operator concerned;
thus the results hold for unitary involutional operators as well. It follows
that R, vAvhich reverses J, and J,, leaving J, invariant, must anticommute

with J, J, and commute with J, and (since it is unitary, not antiunitary),

with numerical factors such as i. Accordingly, we obtain

RJ.=RJ *RiJ,=J.R¥iJ,R.=J R

* M hx

(39)

The analogous calculation for R , yields

RJ.=~J.R, (40)
2. Normal Phase Conventions

It follows from the general theory of angular momentum that®2
|D,J,M+1)=N,,e*®"M] D J M) (41)

and
|D,J,M>=N,, e *@+-M] |D J M+1> (42)

where N,,, =[(J — M)(J+ M+ 1)]"'/2 is a real positive normalizing factor,
and ¢(D,J, M) is a (real) phase angle that may be chosen arbitrarily. [The
identity of the phase angles in (41) and (42) follows because |D,J, M is an

eigenstate of J_J, with a real, nonnegative eigenvalue.] We define a
normal (n) phase convention as one in which all the ¢(D,J, M) in (41) and
(42) are zero. This determines the relative phases of the |D,J,M) with
common D and J, leaving only a common phase factor free. In this
subsection, we study the properties of the various operators under normal
phase conventions, including several special cases.

Since the matrix representation of a /inear operator depends only on the
relative phases of the state vectors, the form of the angular momentum
operators, and of all operators constructed from them, will be completely
determined when one specifies a normal phase convention. For example, it
is easily verified in the case of spin-} that the components of spin angular
momentum have their usual Pauli form s=}¢ if the phase convention is
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normal. The form of the time-reversal and other antiunitary operators will
depend on the common phase factor still left unspecified.
If the phase convention is normal, we have

|D,J,M+15,=N,,,J ,|D,J,M>,

where the subscript n simply reminds us of the normality of the phase
convention. The rotation R, reverses J,, hence we have

R|D,J, M, =e*|D J —M>,

where p,, is a real number to be determined. From (39) and (42) with
o(D,J,M)=0, from the definition of N,,,, and from the last two equations,
it follows that '

R|D,J,M+15,=N,,R.J.|D,J,M>,
=N,pJ _R,|D,J,M>,=N,,J_e*|D,J, -~ M>,
=Ny N,y 1e®™|D,J, — M =1y, =e®|D,J, — M—15,

It follows that all the p,, are equal, which means that we can drop the
subscript M. .

To determine p, we first specify R_ as a rotation through 7 in the
right-handed sense, that is,

~

—_ —i'rr.}";
R . =e

A
Since the form of the operators J is determined by the quantum number J
plus the normal phase convention, this choice will completely determine
R.. It suffices, therefore, to determine p for any special case with total-
angular-momentum quantum number J and normal phase convention. We
choose the case in which a state of total angular momentum J is built up
by combining 2J spin-4-particles. For each particle, we have
§x=e—iwsx=e—i(ﬂ/2)ux=_io,xsin%=( 0 —1 )

—i 0

The state |D,J,J) is simply a direct product of states |}, 3>, and

|D,J, —J is the same direct product of |, — 1 states.
For each single spin, we evidently have

R |5, 3>=—il3,—3
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Therefore the effect of ﬁx applied to the direct product |D,J,J) is
R|D,J,Jy=(=)”|D,J, ~J>
We conclude that
. i)zj

Our result is therefore
R|D.JM,=(~i)"|D.J. — M), (43)
From (43) follows the well-known result?*
R2=(~1)" (44)

Note that for integer J, the result would have been the same if we had
defined R, as a rotation in the left-handed sense. For half-odd integer J,
the two choices yield e” phase factors that differ by a factor of (—1),
corresponding to a rotation through 2.

Proceeding analogously for R, we find with the aid of (40)

R|D,J,M),=e"|D,J,— M>,

with e’+1= — ¢'o»_ We thus have

J+M
)

R|D,J,M>,=e"(—1) "D, J, - M>,

(We have defined o=o0_, so that J+ M rather than simply M appears in
the exponent; this is convenient because the former is always an integer
whereas the latter is not.) The choice

A

Ry = i‘”'];'
corresponds to e =(—1)~. Our result is therefore

3J+M

R\D,J, MY, =(-1)""MDJ,~M),=(-1)""|D,J, - M), (45)

from which follows
Ri=(-1)" (46)

which is analogous to (44). .
The time-reversal operator T reverses J,, and D contains no class II (T)
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variables; thus we have
T|D,J,M),=e™|D,J, - M>,
where 7,, is real. Using (36), we find
T|D,J,M+15,=N,,, T/ . |D,J,M>,= - N,,,J_T|D,J,M>,
= — N,y J_e™|D,J,—M>,=—e™|D,J, —M~1>,

Successive values of e thus differ by a factor of (—1), and we can
summarize the result as

1)J+M

T|D,J, M), =e"(— |D,J, — M), (47)
where 7 is defined as 7_,. The phase angle 7 depends on the common
phase factor that is still left unspecified in the definition of a normal phase
convention. For if we change to a new, primed normal representation by
means of

|D,J,M>,=e"|D,J,M, (48)
we find

T|D,J,M>,=Te"|D,J,M>,=e "T|D,J,M>,

J+M

—e (- 1Y "M D,J, — M>,

=e e (—1)Y "M D,J, - M>,

Thus when the common phase is changed by the transformation (48), the
phase factor e of (47) is replaced by

ei‘r'= ei‘re—Zin (49)
In particular, notice that the e” phase factor is unchanged if e = —1.
Thus a choice of a phase convention for the e’ phase factor still leaves the
absolute sign of the wavefunction undefined. (All the phase conventions
named below are phase conventions for the e phase factor; thus they
leave the absolute sign of the wavefunction undefined.)

The matrix B associated with the time-reversal operator by (18) in a
normal representation of this type has the elements

(D,J, —M|B|D,J,M>,=e"(—1y ™ (50)
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with all other elements being zero. Thus specifying the e’ phase factor is
equivalent to specifying B, and vice versa.

It is now useful to work out the eigenvalues of the antiunitary operators
C and C For C we find, with the help of (43) and (47):

J+M
)

C|D,J,M>,=R.T|D,J,M» =R e"(—1) "™\ D,J, - M>,

=e" (=) (=1 ™D, J,M>, (51)
Proceeding in the same way for éy, and using (45) and (47), we find
G|D,J,M),=e"|D,J,M), | (52)

We next examine a few special cases of normal phase conventions,
which, as we see presently, correspond to phase conventions that have
been used in the literature. First, the spherical harmonics as defined by
Condon and Shortley?® and Messiah?** span a normal representation for
integer J, with the common phase being fixed by the requirement that
|D,J, 0> is the real Legendre polynomial* P, and is thus left 1nvar1ant
under 7. Referring to (47), we see that this is achieved by setting e’
(—1)’ for integer J. A normal phase convention satisfying this relation for
integer J will be called a normal Legendre (nL) phase convention. This still
leaves the choice of 7 for half-odd integer J free, but the most natural
generalization is to set e = (= i)¥ for all J. Of these, we see from (50) that
the lower sign gives B =0, for J=}. Accordingly, we define the generalized
normal Legendre (gnl) phase convention as one in which

e =(— l.)2.l

For such a convention, (47), (51), and (52) become

T|D,J, Mgy =(—i)" (= 1) \D,J, - M)y (53)
C‘:xID’J’j‘4>gnl= (_ i)4j(_ 1)J+M|D J M>gnL ( )J—M|D’J’M>gnL (54)
G|DJ, Mgy =(— i) |D,J, My (55)

Another choice that is sometimes convenient is e =1, which we call a
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normal positive (+) phase convention. For this choice we find

J+M

T\D,J, M), =(—1) "™|D,J,— M), (56)
C DI MY, =(=i) (-1 M|D,J, My, (57)
C,|D,J, M), =|D.J.M>, (38)

Another choice frequently used is e =(— 1)*, which we call a normal
negative (—) phase convention. In this case we obtain

T|\D,J,M>_=(—1Y M|D,J,—M)>_ (59)
C DI, My_=(—i (=1 "M |D,J,M)_ (60)
C|D,J,My_=(-1)"|D,J,M)_ (61)

Note that the positive and negative phase conventions are identical to each
other for integer angular momenta but differ for half-integer angular
momenta. For spin-}, the positive and negative phase conventions yield
B=io, and B= —ig,, respectively. See also Appendix C.

We see that the phase factors e for the + phase convections differ
from that for the gnL phase convention by (= i)”. Referring to (49), we
conclude from this that

ID,J,M>, =(Fi)|D.J, M)y (62)

For integer total angular momenta, this means that the state vectors
transform like Condon-Shortley spherical harmonics multiplied by (Fi)’.
Since, however, all phase conventions based on the e’ phase factor leave
an overall sign of the wavefunction undefined (as discussed earlier in this
subsection), we see that the positive and negative normal phase conven-
tions are the same for integer angular momenta.

3. Angular Momentum Addition Using Normal Phase
Conventions and Real Clebsch-Gordan Coefficients

The typical case considered in angular momentum addition theory is
that of a system consisting of two kinematically independent parts, with
total-angular-momentum quantum numbers j, and j,. The state of the
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combined system, with total-angular-momentum quantum numbers J, M
(with J =/, + ),/ +j,— 1,...,|/,—/,]) is expressed

| /15d2sds M > = 2 [ 1101 s 190 J 13 s P11 M| J1aJis S s M) (63)

my, my

where D is (j,/,) and the coefficients {j,,j, m;,m,|j,j,J, M) are
Clebsch-Gordan (CG) coefficients. In general, there is no necessary con-
nection between the phase conventions used for the partial systems and
that for the full system, since the CG coefficients themselves contain
arbitrary phase factors. It is customary, however, to adopt normal phase
conventions for both partial systems, as well as for the full system, and to
choose all the CG coefficients real 825252627 [f the addition is done in
this customary way, the phase conventions for the two parts and for the
combined system are not independent. We now investigate the connection
between them.

Since all phase conventions used in this case are normal, the only thing
to be determined in this relation between the overall phase angle  for the
combined system and the phase angles 7, and 7, of the partial systems
defined by*

i+ my

T|j,mpy=em(—1) |j1s —myp)

T|j2, m2> = em( - 1)h+mz|j2, - m2>

This is determined immediately from (52), which says that the phase factor
is also the eigenvalue of C,. Since each term in the sum (63) is a direct
product and since all coefficients are real, it follows from (52) that the
overall eigenvalue is just the product of the partial ones. In other words,

eifr=ei1-lei'rz (64)

Note that because of the antiunitary nature of éy, (64) would not hold if
the CG coefficients were allowed to be complex.

With the aid of (64), we see immediately that if both partial systems are
phased according to the generalized normal Legendre phase convention,
the overall phase factor e is (— i)*Y1%/2, Since this is not always equal to
(—9)¥, it follows that the combined system must be rephased if it is to
behave according to the (gnL) convention. On the other hand, if both
systems follow the normal positive phase convention, or both the normal
negative convention, the overall phase factor is (* D!V =(x ¥, It

*All the names for e’ phase conventions for total-angular-momentum representations may be
applied by analogy to phase conventions for these partial-angular-momenta state vectors.



‘e

TIME-REVERSAL INVARIANCE 323

follows that these two phase conventions have the useful property of
“invariance under customary angular momentum addition”: if both partial
systems are phased according to the designated convention, the combined
system will automatically also be so phased if the customary form of the
CG coefficients is used. This result was given previously for the normal
negative phase convention by Huby?® and for the normal positive phase
convention by Edmonds.?*®

Equation (64) also enables us to define other types of normal phase
conventions in which different types of partial angular momenta (e.g.,
orbital and spin) are phased differently. An example is the Alder-Winther®
convention, in which each spin is given an e’ phase factor of unity, and
each single-particle orbital angular momentum (/) one of (— 1)*. When all
these are combined according to (64), the overall e” phase factor is
(— 1) =TI, the parity of the state. It is evident that this convention also is
invariant under customary angular momentum addition.

It is sometimes convenient to write the parity as (—1)”. For the Alder-
Winther (AW) phase convention, we then have, using (47), (51), and (52)

T|D,J,Maw=(=1Y """ |D,J, - M), (65)
CoD I M= (= iy (=1 "M |D,J, My (66)
élea‘]’M>AW=(_l)plD’J7M>AW (67)

Since the phase factor e for the Alder-Winther phase convention differs
from that for the normal positive phase convention by II, (49) and (62)
show that for integer total angular momenta, the state vectors of Alder and
Winther transform like Condon-Shortley spherical harmonics multiplied
by II'/%(— i)Y = + i?~J. We note that for a single spinless particle, the AW
phase convention is identical with the gnL convention. For more general
situations, of course, the two are not necessarily equivalent. If each of two
state vectors |j,,m,»> and |j,m,> for integer spatial orbital angular
momenta are phased to satisfy the gnL phase convention, they will also
each satisfy the AW phase convention. The state vector |j,j,J,M)
obtained by customary angular momentum addition will not necessarily
satisfy (53) but will satisfy (65). This is the advantage of using parity to
define the e’ phase convention.
Notice that (58) is equivalent to

C,P|D,J,M)\w=|D,J, M) \w (68)
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The freedom to chogse our set of states to be simultaneous eigenfunctions
of J2 J C and P when D contains no class II (T) variables was
estabhshed in Section IILE. The freedom to choose the eigenvalues of
involutional antiunitary operators G) for which 0= +1 to be +1 was
established in Section IT1.C.3. But (C P)?= +1, since C2 +1, P2=+1,
and Cy and P commute (see Section III E). This ver1f1es that we always
have the freedom to choose the set of states and phases to satisfy (68) as
recommended for certain purposes by Alder and Winther.

Still another example is the class of phase conventions which may be
called Kramers® phase conventions, in which each spin of } is given an e”
phase factor of (— i). This means that the matrix 8 in the spin space is just
the direct product of o, for each spin. The spins thus contribute a factor
(—i)" to the overall e phase factor, where n is the number of spin-}
particles in the system. The Kramers phase convention leaves open the
phasing of the orbital contribution. For example, Wigner*' defines a
Kramers phase convention in which the orbital angular momentum follows
the negative phase convention [cf. his egs. (26.15) and (26.43)]. The overall
e’ phase factor in Wigner’s phase convention is thus (—i)*"(—1)*t=
(_ i)2n.

4. Nonnormal Phase Conventions

It is convenient to define an arbitrary phase convention by referring it to
|D,J,M >, of (56) to (58). Accordingly, let

|D,J,M>=e*™\D,J, M),

We find, using (43), (45), (56) to (58), plus_the unitary nature of the R
operators, and the antiunitary character of C,, C,, and T

R|D,J,M>=(—i) el 0-¢=Mlip j _pr (69)
R|D,J,My=(—1)"Mele@n=tM]p j — a1 (70)

T|D,J,My=(—1) M= {00+t =M]p 5 a5 (71)

C D, J,MY=(— i) (=1 M2\ p g M) (72)
C,|D,J,M)y=e %M|D, J M) (73)
i$(M)

In particular, we see from (72) that (34) is satisfied if we choose e
— Li(n /M
=e .
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IV. SCATTERING THEORY

A. Symmetry of the S Matrix
Time-reversal invariance means (see Section I111.C.2)

TH=HT (74)
where H is the hamiltonian for the system. As stated in Section III.B, we
only consider processes for which (74) holds. This is generally assumed to
include all processes in chemical physics.?!

Let S be the unitary scattering operator'#675:84.1% which takes the

system from the state u to the state u’. We show in Appendix B that, as a
consequence of (74), regardless of representation and phase convention*

CulS\u'y={Tu|S|Tu) (B-25)

If our representation is characterized by theA quantum numbers J, M, and
D, where the D are scalars and class I (7)) (which, we have shown in
Section IILLE and Appendix A, is always possible), then (B-25) becomes

(D,J,M|S|D".J,My={T (D", J.M)S|T(D,J, M)y (75
Now, using (46) and (73), plus the definition éy = Iiy TA‘, we see that
T|D,J,M>=(=1)"R,C,|D,J,M)=(~1)"R,e > |D J, M) (76)

Application of (76) to both the primed and unprimed states and insertion
into (75) gives the result

(D,J,M|S|D"J,M)y=e2§M~¢0Dl pr j M|RISR |D,J, M) (77)

However, R; commutes with the hamiltonian, hence also with .§, and is
unitary; thus (77) becomes

(D,J,M|S|D",J,M)>= 2§ =00l s g M|S|D.J, MY (78)

In particular, if the same phase convention is used in both the primed and
unprimed manifolds, the S matrix is symmetric. If |[D,J,M ) and |D’",J, M)
are formed by customary addition of partial angular momenta, the sym-
metry of S will be assured if for each angular momentum we use a normal

*The proof of (B-25) does, however, de;pend on T being antiunitary, which, as explained in
Sections I11.A and III.B, requires that T obey (2) and (3).
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phase convection that is invariant under customary angular momentum
addition.

B. Reciprocity Theorem and Discussion

The question of symmetry of the scattering matrix is usually asked and
answered in specific representations with specific phase conventions.'
Although the proof of the previous section is more general, in this section
we rederive the symmetry of the scattering matrix in a more specific
representation for various phase conventions. We also prove some related
results.

The quantities used to describe the scattering of A by B are defined as
follows (we use the notation of Blatt and Biedenharn® as much as
possible):

1,1 the angular momentum and the angular momentum quan-
tum number, respectively, of the target B in the channel
specified by a. All angular momenta are given in the usual
way “in units of A.” Unprimed and primed quantum num-
bers refer to the initial state and the final state, respectively.

0i the angular momentum and the angular momentum quan-
tum number, respectively, of A in the channel specified by a.

5, the angular momentum and the angular momentum quan-
tum number, respectively, of AB, excluding the angular
momentum associated with the relative motion of A and B,
in the channel specified by a.

s=I1+i (79)
We call s the internal angular momentum in a given channel.

1 the orbital angular momentum and the orbital angular
momentum quantum number, respectively, for the relative
motion of A and B in the channel specified by (J,s).

J,J the total angular momentum and the total-angular-momen-
tum quantum number, respectively; J is given by (1) or by
J=L+S (80)
where L and S are defined in Section II.

I1 the parity [i.e., eigenvalue (+1) of the total system parity
operator P].

o the channel index denoting all quantum numbers, except
(s,1,J,M,II), necessary to specify the quantum state. Ap-

]
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pendix A shows that there is no loss of generaltiy in assum-
ing a to contain only scalars and we shall do so.

the group of quantum numbers (a,s,/), except the energy E.
the group of quantum numbers (a, s, /,II).

the Z coefficient oi Blatt and Biedenharn®? defined as
Z (abed; ef)=i/~9*“Z (abcd; ef).

Z (abcd; ef) the Z coefficient of A. M. Lane and Thomas** defined as

Z (abed; ef)=[(2a+1)(2b+1)2c+ 1)(2d +1)]"/*W (abed; ef )< ac00|acf0)

(81)

where W (abcd; ef) is the Racah coefficient defined® by (12)
of Ref. 34 and {ac00|acf0) is the Clebsch-Gordan coefficient
defined in (63) and given by (5) of Ref. 34.

the projection quantum number of total angular momentum
J on an arbitrary space-fixed axis z.

the projection quantum number of a general angular
momentum j on an arbitrary space-fixed axis z.

the spherical harmonic of Condon and Shortley*® and
Messiah®* defined by (3.4.5), (3.4.12), and (3.4.15) of Con-
don and Shortley, that is,

1/2

20+1 (I~ |m])! - im
Pjl l(cos @)e ™

4 (I+|m|)!

Y=(-1)"

Jm

Im|

m ol [m]
Pj' l(cos ®) = (sin ©) P;(cos @)

_d
d(cos )

where P;(cos®) is a Legendre polynomial* and ® and ¢ are
the colatitude and the longitude, respectively.

A solution in the total-angular-momentum representation in the asymp-
totic (separated-subsystem) region of the time-independent Schrodinger
equation in the barycentric coordinate system corresponding to given
values of the conserved quantum numbers J, M, and II is called

u(aslJMTI).

This choice of quantum numbers simplifies the scattering

calculations; examples have been given in Section II. The asymptotic form
of u(asl/MTI) determines the subblock S’ of the scattering matrix S.
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It is proved in Appendix B that'%
SIMI = ( Tu(aslIMTT)|S| Tu(o/s'l' IMII) (82)

a’s'l'; asl
Using (32) in (82) yields

SJMH

—iy(asUMH)e iy(a's’ U’ IMTI)
a's'l’; asl

=€
><<u(a,le—MH)|§|u(a,’s'l’J—MH)> (83)

where a, represents the same set of quantum numbers as a but with the
signs of all class 11 (T) variables changed, and the phase angle y(asi/M1I)
depends on the phase conventions used in defining u(asi/MII). For
simplicity we assume that M is not negative. Using (41), (42), and the
invariance of S under rotations in the form [S,/_]=0, we can show from
(83) that

S&li-wln = e~ i'y(asl.lMH)e iy(a's' I’ IMII)
M-—1
% H/ o~ 9las/M'ID 4 ip(a’s'l'JM 'TD
M=—M
X Cu( o sSTMID)|S [u(o)s' I’ JMTI)) (84)

where the prime in ’%;1_ » Mmeans the product is deleted if M=0.

Equation (84) yields immediately
|SJs1 asil_l a,sl; a,sll (85)

which is the reciprocity theorem (also called the reciprocity rela-
tion)'lc,6c,7b,8b

Notice that our proof of (85) is entirely independent of phase conven-
tions. Stronger results may be derived by making various assumptions
about the phase conventions. For example, if we assume

1. Y(AIMIIE)=y(A,JMIIE), where A, and E are the subset of (a,s,/)
which is conserved

2. M=0, or g(AJM'IIE)=p(A JM’'TIE) for —M<M'< M—1

3. a contains no nonneglectable* class 11 (7') variables

*Variables that are conserved and of which the scattering matrix is independent are called
neglectable.
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then (84) becomes

S«;I’IS"II!—;IMI= :sllv;lgs’l' (86)
and S is symmetric. Although we have given a much more general
derivation of (86) in Section IV.A, the present derivation is interesting for
comparison with discussions in the literature.!?27¢.85,106,28

Particular phase conventions designed to ensure condition (1) have
played an important role in previous discussions of symmetry of the
scattering matrix. It is easily seen from Section III that condition (1) is
satisfied by the generalized normal Legendre, normal positive, normal
negative, and Alder-Winther phase conventions [see (32), (53), (56), (59),
(65)]. Furthermore, the normal positive, normal negative, and Alder-
Winther phase conventions have the property of invariance under cus-
tomary angular momentum addition. Thus a particularly convenient way
to ensure condition (1) is to phase each of the angular momentum states
| jm) according to one of these conventions and to form u(aslJ/MII) using
customary angular momentum addition. Thus the symmetry of the scatter-
ing matrix has often been discussed only for the case of a normal
positive!27¢8 or a normal negative'®»?® phase convention. Three of the
articles'>?%33 discussed in Section V use a normal negative phase conven-
tion (note: for integer angular momenta, the normal negative and positive
phases conventions are the same, see Section IIL.F.2) and also satisfy
conditions (2) and (3). Thus both our proofs of (86) are applicable to these
articles. Some previous workers,'?3%353% however, used Condon-Shortley
spherical harmonics Y,, as their states |jm) for integer angular momenta /,
and the usual proof in terms of customary angular momentum addition of
states all phased with either the normal positive or negative phase conven-
tion does not ensure that the scattering matrix so obtained is symmetric.
However, we show in Section V that condition (1) is satisfied and our two
proofs are still applicable. In Section V we discuss the changes that must
be made in the formulas of these workers if /Y, is substituted for Y, in
their formulas, a procedure originally suggested by Huby.?®

Condition (2) may easily be satisfied by taking ¢(asl/MII)=0. This is
called a normal phase convention in Section IILF. If we take ¢(jm)=0 for
all | jm) and obtain u(asl/M1T) by customary angular momentum addition
(defined in Section IIL.F.3), it can be shown that ¢(asi/MII) will equal
zero.”* However, condition (2) is less restrictive than this particularly
convenient choice of phase conventions.

Condition (3) has apparently not received general discussion in the past.
We proved in Section ITLE that it is always possible to satisfy condition

(©)2
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The proof of (86) is much easier for systems involving no spatial or spin
angular momenta, and simple proofs have been given elsewhere®”3 for
those cases. The complications come from the angular momenta as dis-
cussed previously.

Note that condition (2) alone suffices for the scattering matrix to be
independent of M [this is easily seen by comparing (83) to (84) under the
assumption of condition (2)].% Condition (2) holds in all cases treated in
Section V, which means that M is neglectable there, and the superscript M
will be suppressed.

C. Detailed Balance

We have discussed the reciprocity theorem (85) and the symmetry of the
S matrix [(78) or (86)] for total-angular-momentum representations. A

similar result, detailed balancing®¢ 840

|S¢.x,'1s"{1¥,lasl| = |S¢;¢lsjl‘;l£I’s'l'|

may be derived from (85) by invoking condition (3) of Section IV.B, or in
particular, that a contain no nonneglectable class II (7") variables.
Although we have shown in Section IILE that it is always possible to
satisfy condition (3) it may sometimes be convenient to characterize a
system using a class II (7’) variable in a (but it is hard to give an example).
The reciprocity theorem, symmetry of S, and detailed balance can some-
times be proved in nontotal-angular-momentum representations. In some
such cases it may be convenient to characterize the states using a noncon-
served component of angular momentum, usually spin, as one of the
quantum numbers. Then detailed balancing does not hold in general, but a
weaker result, semidetailed balancing, in which probabilities are averaged
over spin directions in the initial and final states, does hold.®4

The reader should be cautioned that the labels ‘“‘time-reversal in-
variance,” “the reciprocity theorem,” “the principle of detailed balancing,”
and “the principle of microscopic reversibility”*! are often used in-
terchangeably in the literature. For example, Landau and Lifshitz>* use
“the principle of detailed balancing” to designate what is here called the
“reciprocity theorem.” Some chemists use “detailed balance” to refer to a
relationship between rates at equilibrium and use “the principle of
microscopic reversibility” to label what is here called semidetailed balanc-

ing. 4!

V. APPLICATIONS

In this section we discuss the symmetry of the S matrix and proper
equations for calculating the differential cross-section for several standard
scattering problems of chemical physics and also in general.
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Blatt and Biedenharn®? presented a general expression, free of all sums
over angular-momentum-projection quantum numbers, for calculating
from the scattering matrix S the differential cross-section for the scattering
of unpolarized beams.*?> Their expression is particularly useful because it
gives the differential cross-section as an expansion in Legendre poly-
nomials** with real coefficients. Their derivation was based in part on a
paper by Wigner and Eisenbud.** Huby?® remarked that the representa-
tions and phase conventions used by Wigner and Eisenbud and Blatt and
Biedenharn do not always lead to a symmetric scattering matrix. The
scattering matrix in the representation of Blatt and Biedenharn and cor-
responding to their phase conventions is designated BBS. The assumption
that S is symmetric is not required in the derivation of Blatt and Bieden-
harn’s differential cross-section formula, and Huby correctly pointed out
that their formula is correct if BBS is used. Huby gave another representa-
tion in which the normal negative phase convention of Section IIL.F.2 is
used for all partial and total angular momentum state vectors. The scatter-
ing matrix in this representation is denoted by S. Huby explained how to
calculate the differential cross-section in terms of S instead of BBS. The
discussion of the symmetry of the scattering matrix given in Section IV
shows that the phase conventions used by Huby do lead to a symmetric
scattering matrix if a contains no nonneglectable class I1 (T) variables.
However, the application of these general considerations to particular
cases is still often complicated. We now discuss in detail a few such
applications, with emphasis on problems in chemical physics.

A. Blatt and Biedenharn; Huby

In deriving their general expression [their (3.16), (4.5), and (4.6)] for the
differential cross-section, Blatt and Biedenharn®® obtained the following
intermediate expression [see their eq. (4.1)]:

doa;sl.m=[ka2(2s+ 1)] E S I3 hthrhoh
’ N J L

( S 811, BBStxsll asl)*

a'avs's

X (8yra s 81y, — BBS I M,)K(Jll{ll;lez’lz;s’s; 0)ds (87)

a’avs's

where %k, is the momentum in the channel specified by a and © is the
center-of-mass scattering angle. The factor K contains all the sums over
projection quantum numbers, and Blatt and Biedernharn showed that K
could be replaced by a sum over A containing the product of two Z
coefficients, a Legendre polynomial, and a weighted phase factor. That
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result can be combined with the definition of the Z coefficients [see(81)]
and with (87) to yield
do

o's’; as (

Y Tk (2s+ )] ST IS S S 3 chvlirhk
NN LLLL b

X (80 Byrs By, — B2SIT wsty)*

o’a”s's a's'l;

X (8ua8ysOrys, — BBST2E i) Z (1 o 55 SN)

o o's'ly; asly

X Z(1;J,1305; SA)Py(cos ©)dQ (88)

Note that the derivation requires using the fact that (/{/;00|/{/;A0) is zero
unless (\— I, +1,) is even.>*

The phase factor i ~1*/i+27% in (88) results from Blatt and Biedenharn’s
use of Y, instead of ilYlm, in their wavefunction. Since Y, was used, and
the phase convention to be used for other partial-angular-momentum state
vectors was not specified, the representation of Blatt and Biedenharn does
not necessarily satisfy condition (1); S cannot be proved to be symmetric
by the proofs of Section IV or by the special cases of the proof of Section
IV.B which have been published elsewhere. Blatt and Biedenharn do use
the reciprocity theorem after their eq. (4.6) but their formula for the
differential cross-section does not depend on the scattering matrix being
symmetric. If ilYIm, is used instead of Y, as Huby suggested, a scattering
matrix HS is defined whose elements are related to the elements of 2BS by
Huby’s eq. (6), that is, by

BB s a= 1" S (89)
If we substitute this into (88), the phase factor cancels out and the Z
coefficients alone should be used with HS. Since the remaining angular
momentum eigenstates x,, in the representation of Huby are chosen to
satisfy a normal negative phase convention, conditions (1) and (2) will be
satisfied and HS will satisfy

Hs.lr[ _HsJH (90)

a's'l; asl— Paysl ojsl’

If « contains no nonneglectable class 11 (f’) variables, 1S is symmetric.
Our statements concerning the symmetry of S apply as well to the
reactance matrix R related to S by

S=(1—iR)_'(1+iR) (91)
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The formulas of Blatt and Biedenharn have been used to calculate the
differential cross-sections for the scattering of structureless particles (or
particles assumed to be structureless) from rotator-vibrators by Henry*
(e-H,). Sums of such differential cross-sections have been calculated by
Wagner and McKoy'*? (Ar-H,, He-0,, He-1,). Differential cross-sections
for a transition among the 3p 2P states of Na induced by collisions with He
have been calculated by Reid.”” Additional examples are cited in Sections
V.B and V.D. Wolken et al.'** and McGuire and Micha'> have calculated
differential cross-sections for the scattering of atoms (assumed structure-
less) from rotator-vibrators using a total-angular-momentum representa-
tion different from that used by Blatt and Biedenharn. They used the

helicity representation'® %9445 in which ¥ is quantized along k, and ¥ is
quantized along k..

B. Percival and Seaton; Smith

Percival and Seaton® have derived an expression for the differential
cross-section for scattering of electrons by atomic hydrogen under the
assumption (see Section II) that L and S are separately conserved. The
quantum numbers used by Percival and Seaton in labeling their represen-
tation are a, /, s, L, M;, and II, where the set a contains the principal
quantum number of the hydrogen atom, the total energy, the quantum
number S[see Section II and (80)], and the quantum number M
associated with the component S, of S on a space-fixed axis, and s is the
orbital-angular-momentum quantum number of the bound electron. Using
the ideas presented by Percival and Seaton, K. Smith*” has derived an
expression for the differential cross-section for the scattering of positrons
by atomic hydrogen. These expressions have been discussed elsewhere.*®
Here we summarize that discussion and relate it to the present chapter.

For all their angular momentum eigenstates |jm), Percival and Seaton
and K. Smith chose the spherical harmonics Y, that do not satisfy normal
positive or normal negative phase conventions but do satisfy condition (2).
Furthermore, using the fact® that I is (—1)’'** for this system and the
identity [eq. (3.5.17) of Ref. 254]

(acef|abcd)E(—l)e_a_c(ace—ﬂa—bc—d) (92)
we can show that condition (1) is satisfied with
eiy(aleM,_l'I)=H(_ l)L+ML (93)

Also, since H is rotationally invariant and L and S are good quantum
numbers in this approximation, *SS is diagonal in L, M ., S, and Mg and
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independent of both M, and M by a theorem’>® used in Section IV.B.
Thus even though a contains the class IT (7') variable S, and the Percival-
Seaton representation is not a total-angular-momentum representation, S,
is a neglectable variable, and the proof of Section IV.B may be modified
with L and M, replacing J and M to show that PSS is symmetric. This is
an example of something pointed out in Section IV and Ref. 46—namely,
that the usual rule'®7¢% 28 requiring normal positive or normal negative
phase conventions is not a necessary condition for a symmetric scattering
matrix.

Since Percival and Seaton and K. Smith chose the same |/m;) as did
Blatt and Biedenharn, the correct expressions for the differential cross-
section in terms of their scattering matrices *>S are identical to the one
given by Blatt and Biedenharn. Burke and co-workers*’* have used the
phase conventions of Percival and Seaton to calculate the reactance matrix
for electron-hydrogen-atom collisions in a series of successively improved
approximations. Equation (91) and the formulas of Blatt and Biedenharn
have been used to calculate the differential cross-sections from these
reactance matrices; the results are published elsewhere.*®*® The equations
of Blatt and Biedenharn have also been used to calculate differential
cross-sections for electron scattering from larger atoms.!

If we apply the Huby phase convention to these problems-that is, if we
use i/ Y, for all |jm>, except those for spin—we find that the new
representation satisfies conditions (1) and (2) [with (J,M) replaced by
(L,M,)], and the scattering matrix in this representation HS can be shown
to be symmetric. The correct formula to use in calculating the differential
cross-section from S in these cases is Huby’s formula.

If X represents one of the matrices S, R, or V, where ¥ is the interaction
potential, the elements of "X are related to the elements of PSX by %

Hy LIl  _ :/—0I'+s—sPSy LIl

Xa's'l’;asl_l e Xa’s'i'; asl (94)
Note that i’~“+5~% is real by conservation of total system parity;*® thus
applying the Huby phase convention does not affect the reality of the
matrix elements.

C. Lane and Thomas

A. M. Lane and Thomas® have derived an expression for the differential
cross-section for nuclear reactions. They correctly phased their representa-
tion to satisfy conditions (1) and (2) by using a normal negative phase
convention and the scattering matrix TS defined by them is symmetric for
systems for which a does not contain any nonneglectable class II (T)
variables. Since their representation used i ’Y,ml for |Im;, their differential
cross-section formula is identical to Huby’s formula and correctly uses the
Z coefficients with LTS.

),



TIME-REVERSAL INVARIANCE 335

D. Arthurs and Dalgarno; Micha

Arthurs and Dalgarno'? have derived an expression for the differential
cross-section for the scattering of particles by rigid rotators with rotational
angular momentum quantum number s. In this case the set of quantum
numbers a includes only the total energy. Like Percival and Seaton, they
chose Y, for all |jm), therefore their representation does satisfy condition
(1), with J, M replacing L, M, in (93). Thus “PS is symmetric by the proof
given in Section IV.B, as well as by the more general proof of Section
IV.A. Their formula for the differential cross-section in terms of their 4PS
is identical to the one given by Blatt and Biedenharn. By arguments similar
to those used in discussing the formulas of Percival and Seaton, it can be
seen that their formula is correct for this problem. Micha!® applied Huby’s
phase convention to this problem (i.e., he used ij)’}m for |jm)), and his
scattering matrix MS is symmetric by the proof given by Huby, as well as
by the more general proofs of Sections IV.A and IV.B. His differential
cross-section formula is identical to Huby’s and uses the Z coefficients
with his MS; MX is related to APX by (94), with L replaced by J just as HX
is related to PSX in Section V.B.

The formulas of Blatt and Biedenharn and Arthurs and Dalgarno have
been used to calculate the differential cross-section do,,,,/d for a transi-
tion from rotational state s to rotational state s’ (s—s’) many times.
For scattering of an atom or molecule (assumed structureless) from a rigid
rotator they have been used by Roberts®? (0—2), Allison and Dalgarno®
(0—2), Munn and Monchick® (1-1), Erlewein et al.>® (0—2), Johnson and
Secrest®® (0—2, 1-3), Miller'®? (0—2), Hayes et al.”’ (0—0,0—2), Heukels
and van de Ree®® (0-0,1-1,2-2, 0-1,152,0-2), and two of the
present authors and R. L. Smith®* (0—2,2—2). For scattering of an
electron by a rigid rotator, they have been used by Henry and N. F. Lane*
(“elastic,” 1-3,2—4,3-5), N. F. Lane and Geltman® (1-1,1-3),
Itikawa® (0—0,0—1), Crawford and Dalgarno® (0—0,0—1,0—2), and
Sams et al.®® (1-1,1-3). Sums of such differential cross-sections have
been calculated by Burke and Chandra.%

E. Davison

Davison®® has derived an expression for the differential cross-section for
the scattering of two rigid rotators, one with rotational angular momentum
quantum number / and the other with rotational angular momentum
quantum number i. In this case the set of quantum numbers « is (1,i, E),
where E is the total energy. Davison 'also used Y,, for the angular
momentum eigenfunctions. Since Davison used the same |/m,» chosen by
Blatt and Biedenharn, his expression for the differential cross-section
correctly involves the Z coefficients with his scattering matrix PS. Also the
total system parity, which is (—1)’*7*7 for this system is again conserved.
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Once more both conditions (1) and (2) are satisfied, as they were in the
Sections V.B and V.D. Since a contains no class 11 (7') variables, both our
proofs may be used to show PS is symmetric. By arguments similar to
those given previously in this section, if we apply the Huby phase conven-
tion to this problem, we get another symmetric S to be used with Huby’s
formula for the differential cross-section: HX is related to PX by (94) but
with i*~% and L replaced by i/**~7'~" and J, respectively.

Davison’s formulas were used to compute differential cross-sections for
inelastic scattering by Roberts.>?

F. Alder and Winther Phase Conventions

Alder and Winther? have given a phase convention for angular
momentum eigenfunctions that may be very convenient because it will
make all the single-particle matrix elements of the electromagnetic multi-
pole operators®® real. Using (65) it is clear that u(asl/MII) obtained with
these phase conventions satisfies (93), with J, M replacing L, M, in (93).
Thus condition (1) is satisfied. Condition (2) is also satisfied. Thus if «
contains no nonneglectable class II (7T') variables, both proofs of Section
IV show that S is symmetric for this phase convention.

Two examples of the Alder-Winther phase convention for |/m;) are Y,
and (— l)IY,mI. If either of these phase conventions is used in defining S,
the Z coefficient of Blatt and Biedenharn®? should again be used in the
differential cross-section formula.

G. Summary

In general, the answer to whether to use the differential cross-section
formula of Blatt and Biedenharn®? (involving Z coefficients?) or that of
Huby?® and A. M. Lane and Thomas® (involving Z coefficients®®) is
strictly a function of which of the choices Y,,, (—1)'Y,,, or i'Y,, is made
for the angular basis function for relative motion. The first choice implies
that the formula of Blatt and Biedenharn®? should be used. The second
choice is also consistent with the formula of Blatt and Biedenharn. The
third choice is consistent with the formula of Huby®® or the identical
formula of A. M. Lane and Thomas.*® Specific choices of representation
and phase convention for ¥, and Xy, (the wavefunctions for the
separated reagents and products, respectively, in the notation of Blatt and
Biedenharn??) will determine whether (86) and (90) are valid, as discussed
earlier, but will not determine whether to use the Z or Z coefficients.
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APPENDIX A

Proof that the Nontotal-Angular-Momentum Quantum
Numbers in a Total-Angular-Momentum Representation may
be Taken to Consist Entirely of Scalar Variables.

That the quantum numbers 4 (defined near the beginning of Section
III.LE) can be chosen to be scalars is simply shown as follows:

We choose our states to have quantum numbers J, M, 1, E, and enough
other quantum numbers to completely specify the states where J, M, and
IT have the meaning indicated in Section III and near the beginning of
Section IV, and E is the eigenvalue of some hamiltonian (either exact or
approximate) that is invariant under rotations. If there are no two states
with the same values of all four of these quantum numbers, our task of
specifying our states by J, M, II, and scalar quantum numbers is complete
(since E is of course a scalar).

Suppose, however, that there are two or more states with the same J, M,
I1, and E. Choose one of them (with M = M|, say), and arbitrarily denote
it by |4,,J, M, 11, E>. By applying angular momentum raising and lower-
ing operators to this state, we generate (2J + 1) states all with the same J,
I1, and E, which we denote by |4,,J, M,I1,E>, with M=—J, —-J+1,...,J.
Now let |4,,J,M,IL,E> be a state with the quantum numbers J, My 11,
and E but orthogonal to |4,,J,M,,1I,E). By hypothesis, such a state
exists. Again applying raising and lowering operators, we generate the
states |4,,J,M,II,E), which are orthogonal to the |4,,J,M,TLLE). We
continue this process until all the states with quantum numbers J, M,, 11,
and E are used up. If we think of 4,,4,, and so on, as different values of
some quantity A, we can say that a state is completely specified by
specifying J, M, 11, E, and A. The quantity 4 is a physical property of the
system, since different values of 4 correspond in general to physically
different states. Moreover, by construction it is invariant under rotations
about the z-axis (since it is diagonal simultaneously with J,) as well as
those about the x- and y-axes (since it is left unaltered by the raising and
lowering operators J, *iJ,, hence commutes with them). It also commutes
with parity, since it is simultaneously diagonal with it. It follows that A4 is a
scalar, which is what was to be proved.

This result is a special case of a more general group theoretic resul
Using this more general result, we may show that any vector components
included in the complete commuting set of variables in addition to J, must
be a scalar times J,. Thus we can use the scalar as the additional
dynamical variable.

t.66
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APPENDIX B

The Time-Reversal-Invariance Property of the Scattering
Matrix

In this appendix, we use the following known properties of the time-
reversal operator T (see ref. 21 and Section III):

1. T is antilinear. That is, for any state functions ¢, and ¢, and complex
numbers a, and a,, we have

T(a1¢1+a2¢2) a; T¢1+a To, (B-1)
2. If the total spin of the system is integral, S=n, then
T2¢=¢  for all state functions ¢ (B-2)

In this case, if the hamiltonian H is time-reversal invariant, the arguments
of Section II1.C.3 show that its eigenfunctions ¢, may be chosen to be also
eigenfunctions of T with eigenvalues *+ 1:

To=ke, hk==1 (B-3)

Actually Section I11.C.3 shows that we could always choose k;= +1, but
we shall not need to do so.
3. If the total spin is half-odd integral S=n+ 3, we have

7:2ql>= —¢ for all¢ (B-4)

In this case, the eigenfunctions of H cannot be eigenfunctions of TA", but
they can be grouped into degenerate pairs ¢; and ¢; with the properties

To, = (B-5)
Té,=—9 (B-6)

Notice that the phase conventions of (53), (56), and (59) yield

72 jmy=(—1)*|jm) (B-7)

which is compatible with (B-2) and (B-4).

We now consider the matrix element of the time-displacement operator
G(t) exp(— it /H) between an initial state u and a final state u’, which
we compare with the matrix element of the same operator between Tu' and
Tu.
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First, in the case S=n, we can expand « and «’ in the simultaneous
eigenfunctions of H and T

u=3a¢; (B-8)
and
u'=Z2bie, (B-9)
Obviously,
G (Nu=5,ae =™ ¢, (B-10)

where Aw; is the jth eigenvalue of H. Using orthonormality of the {¢;} (see
Section III.C.3), we find

|G ()| uy=S;bF a0 (B-11)

To study the time-reversed situation, we use (B-1) and (B-3) to obtain

Tu=Za" k¢, (B-12)
and
Tuw'=Z2b*k, (B-13)

Applying G(?) to (B-13) yields

G ()Tw =Z,brke =™,
and we obtain

(TulG (1) Tu'y=2,ab*e = ™" (B-14)
Comparing (B-11) and (B-14) yields
{TulG (0)| Tu'y=u'| G ()|u) (B-15)

To prove that (B-15) also holds for S=n+ 3, we proceed analogously.
We expand u and «’ in eigenfunctions of H chosen to satisfy (B-5) and
(B-6):

u=3{as,+25) 16

=384+ 53) (-0

Using these expansions and the degeneracy of the states ¢, 5,-, we im-
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mediately obtain

G (Nu=3[ap,+ap)e ™" (B-18)
and

|G (uy==(bra + bra)e= ™" (B-19)

For the time-reversed situation, (B-1), (B-5), and (B-6) give

Tu=3(4',- 3'¢) (B-20)
Fur=3,(57%,~ 51%) (B21)
Equation (B-21) yields
G (O(Tu')=Z,(bfd — br¢,)e =™ (B-22)
and
(TulG (1) Tu'y =5 (ab? + G b)e ™" (B-23)

Comparing (B-19) and (B-23) yields (B-15) again.
Equation (B-15) shows that the time-displacement operator G(t) pos-

sesses the symmetry claimed for the scattering operator S in Section IV.A.
But'4

S Hy |\ H,
S=,2’E_I’i‘}°w expli—=1y G (1,—t))exp —i—=t

Thus, if u,u’ are eigenfunctions of the zero-order hamiltonian H, with
eigenvalues Aiw, hw’, respectively, we have

W|Sluy=" lim expli(w't,~wi)[w|G (1~ )y (B-24)

IH— — 0

The passage to infinite time causes the matrix element (B-24) to vanish
unless u,u’ are “on the energy shell” (i.e., unless w=w’). In this case,
however, the phase factor on the right-hand side of (B-24) becomes

exp[iw(1,~1,)]

Because of the degeneracy between u, T u, as well as between u’, T u, it
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follows that this phase factor will be the same for <fu|.§| Tu'>, from which
we conclude that '%

<f"u|§|fu/>=<u’|§|u> (B-25)

This result is independent of representation. In particular total-angular-
momentum representations (B-25) becomes (75) and (82). It is important to
point out that our proofs of (B-25), (75), and (82) are independent of phase
convention, except that the representation must be compatible with

T (lg)+|r>)=Tlg>+ T|r>
[see (3)].

APPENDIX C
For fixed D, J an arbitrary state |®)> may be expanded as

I®>=§¢M'D’J’M>+

Applying (56) we find

Tioy= 3 (= 1) "Mox|D,J, — M),
M

and
ol= (DJ M|T|®y=(—1) Me* (C-1)

Although (C-1) looks similar to (59), they really correspond to different
phase conventions (for half-odd-integral spin). Possible ambiguity in the
sign of B for spin 4 can be caused by failure to be explicit as to whether
(59) or (C-1) is meant®” or by changing from one to the other without
warning.®®
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