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INTRODUCTION 

The Born-Oppenheimer electronically adiabatic basis provides the 
most convenient representation for obtaining molecular-structure and 
potential-energy-surface information for systems of chemical interest. 
In this representation the electronic Hamiltonian is diagonal, and 
the adiabatic energies may be defined and calculated accurately by 
the variational principle. For systems in which the adiabatic states 
are well separated in energy, the nuclear motion at chemical energies 
can be treated adequately using a single adiabatic potential energy 
surface. For systems in which the coupling of electronic states is 
important, the coupling can be included consistently in this 
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representation through matrix elements of the nuclear-motion deriva
tive operators. 

A diabatic representation is any representation in which the 
electronic Hamiltonian is not diagonal. As compared to adiabatic 
representations, suitably chosen diabatic basis sets may have the 
advantage of providing representations that are more uncoupled for 
high-energy collisions and narrowly avoided adiabatic curve crossings. 
These representations can also be used to define potential energy sur
faces which are more smoothly varying functions of internuclear coor
dinates than the adiabatic surfaces are. A further advantage of 
diabatic representations is that they may be chosen so that the 
coupling of electronic states is dominated by potential coupling 
terms rather than nuclear-motion derivative terms. 

Diabatic bases often provide the most convenient representation 
for performing scattering calculations in which the electronic states 
are coupled; however, as already mentioned, adiabatic bases are the 
most convenient for obtaining accurate potential energy surfaces. A 
review and discussion of selected aspects of the coupling of electron
ically adiabatic and diabatic states has been presented elsewhere. l 
In this article we examine one of the fundamental problems of obtain
ing accurate derivative coupling terms in adiabatic representations
the fact that the derivative coupling terms depend upon the location 
of the origin of the electronic coordinates. 2 A further complication 
is that for an arbitrary origin of the electronic coordinates the 
derivative coupling terms do not in general vanish at large inter
nuclear separations. Some methods for dealing with this long-range 
coupling are discussed in this article. 

To illustrate these considerations we consider atom-atom colli
sions; however, the fundamental problems are general ones, and 
similar considerations are required for atom-molecule scattering. 
The particular examples chosen for the present study are collisions 
of 39K with protium (lH) and with a fictitious heavy isotope of 
hydrogen (39H). For these examples the derivative coupling terms 
are examined, and scattering calculations for several different 
choices of electronic origin are compared. 

COUPLED-CHANNEL EQUATIONS 

General Theory 

A fundamental problem in defining the derivative coupling terms 
is their dependence upon the choice of origin for the electronic 
coordinates. 2 For collisions at energies of chemical interest of 
systems with narrowly avoided adiabatic curve crossings, the origin 
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dependence of the coupling terms is expected to have only a small 
effect on the calculated cross sections. However, for systems with 
weak coupling or nonlocalized interactions or for high collision 
energies, the origin dependence of the derivative coupling terms is 
more important. Although the choice of origin has been discussed in 
the context of high-energy ion-atom collisions,3 the effects of the 
origin dependence of the derivative coupling terms have not been 
tested for collisions at chemical energies. In this section we write 
the quantum mechanical coupled-channel equations for a general choice 
of origin for the electronic degrees of freedom, and we discuss some 
methods of correctly imposing asymptotic boundary conditions on the 
solutions of these equations. Further discussion of these topics is 
presented elsewhere. l 

We consider a system of two nuclei A and B of masses rnA and mB 
respectively and N electrons of mass me' with the center of mass at 
rest. Spin is neglected, the charges of A and B are assumed differ
ent, and ionization processes are excluded. We define the relative 
internuclear coordinate ~' in a space-fixed system as the vector from 
nucleus A to nucleus B. (We deonte coordinates in space-fixed 
systems with primes, and we will denote the magnitude of a vector x' 
by x'.) The vector from nucleus A to electron i is denoted ~i. ~ 
The origin for electron i can be redefined to any point along the 
internuclear axis by the definition 

r' . 
~n~ 

(1) 

where ni is an arbitrary number. For ni = 0 the origin of electron i 
is at nucleus A, whereas for ni = 1 the origin is at nucleus B. For 
the set of coordinates R' ,{r~i}~=l' which we will denote by the short
hand (~' ,~~), the total Hamiltonian for the electronic and nuclear 
degrees of freedom is 

H 
N 2 I-n. n. 
\' t (--~ - --..!:.) 'i/ • 'i/ 

.L m m "'R' ~r'. 
~=I A B ~n ~n~ 

N 

I 
i ,j=1 2 

t 2 (1-2n. +n.n.) n.n. 
[ ~ ~ ] + 2..l]'i/ • 'i/ 

mA m..... ~r'. ~r'. 
IS ~n~ ~n] 

where the electronic Hamiltonian is defined as 

H 
e 

N 

I 
i=l 

'i/2 + vex' R') r'. ~n'~ 
~n~ 

(2) 

(3) 
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and 

(4) 

R~ is the same as R', however ~R' denotes that {~' .}~ 1 are fixed 
'Juring the variati';k of JC'. ",11 111 1= . 

The Born-Oppenheimer electronically adiabatic space-fixed basis 
functions are the solutions of 

(5) 

where 11 denotes the collection of l1i values, a is a collective index 
for the electronic ~uantum numbers, and E~(R) is the adiabatic energy 
which depends only upon the magnitude of R (=R') of JC'. 

The coupled-channel scattering equations can be obtained by 
expanding the total wavefunction ~aO in the Born-Oppenheimer basis 
functions 

(6) 

and substituting this expansion into the Schroedinger equation where 
the Hamiltonian is given by equation (2). The index aO indicates the 
initial quantum state of the system. The coupled equations are then 
given by 

.. 2 N 1-211.-11.11. 11.11. S S 
+ E.-.-2 \' ( 1 1 J + ~)<<p a!'il' • 'il' !<p a> ] 

L rnA mB· l1a "'r. "'r. 11 S x' 
i ,j=l "'111 "'I1J "'11 

a 
x g (R') 

I1Sa O '" 
(7) 
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where the subscript on a matrix element denotes the variables inte
grated over. Equation (7) is general for any choice of origins for 
the electronic degrees of freedom. The terms on the right hand side 
of equation (7) are the nonadiabatic coupling terms; and we are free 
to use any choices of origin for these terms. A convenient choice is 
that which eliminates the cross terms between the nuclear and elec
tronic kinetic energy. This choice is the center of mass of the 
nuclei (CMN) and is specified by setting all ni to the value 

C (8) 

The first-derivative coupling term for any arbitrary choice of origin 
is related to the coupling term for the origin at the CMN by 

N 
~Saln I~Sa + \ (C ) 

< 't' na {,R I 't' n // x I L - n . 
~n ~n i=l 1 

(9) 

We emphasize that the or1g1n used in defining the first-derivative 
coupling matrices should be consistent with the origin used for the 
other terms in the coupled equations. 

The coupled equations (7) are useful for displaying how the 
choice of electronic origin affects the various coupling terms; how
ever, this form of the equations is impractical for computations. 
Computationally convenient scattering equations can be obtained using 
a body-fixed coordinate system (R,xn) in which the z-axis lies along 
the internuclear axis. (Body-fi~e~ coordinates are denoted without 
primes.) The total scattering wavefunction is expanded in coeffi
cients of the irreducible representations of the rotation group and 
the Born-Oppenheimer basis functions. 4 The coefficients of this 
expansion are the radial wavefunctions for relative motion of the 
nuclei. The details of this procedure as well as the dependence of 
the body-fixed coupled-channel radial equations upon electronic origin 
are given elsewhere. 1 We will present here approximate equations in 
which the mass polarization term [i.e., the cross terms in the elec
tronic kinetic energy, the last term of equation (7)] and the angular 
coupling terms are neglected. The effect of neglecting the angular 
coupling terms for collisions at thermal energies requires further 
study; in the present article we are not interested in obtaining 
totally converged cross sections for a specific problem but instead 
are interested in examining the importance of the origin dependence 
of the derivative coupling elements in physically realistic model 
systems. By neglecting angular coupling we neglect coupling ~ states 
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to IT states in atom-atom collisions; then the body-fixed radial equa
tions for E states, with the electronic origin at the CMN, are given 
by 

where 

a 
FcaS(R) 

o 

and x is xC. We have denoted the body-fixed electronic wavefunc
tion~ as ~~a(~,R), a special case of ~~a(~n,R). 

(10) 

(11) 

(12) 

(13) 

The simple form of equation (10) is a result of taking the ori
gin of the electronic degrees of freedom to be the center of mass of 
the nuclei; this removes the nuclear-electronic derivative cross 
terms. The analog of equations (10) for a different choice of elec
tronic origin can be obtained by re-introducing the inconvenient 
nuclear-electronic derivative cross terms and transforming the nuclear 
first- and second-derivative coupling terms ·to the new origin. For 
example, for a new electronic origin somewhere else on the inter
nuclear line, the required relation for the nuclear first-derivative 
term is 

(14) 

where zni is the internuclear-axis-component of ~ni. 

In this article, rather than actually calculating the matrix 
elements Ga oCR) from the electronic wavefunctions, we assume they 

nal-' 
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are given by the relation 

(15) 

This equation holds rigorously for an infinite basis set, but we apply 
it even though our matrices are only of order 3. Tests of this 
assumption have been made for the KH system;5 they show that it makes 
a negligible difference in the transition probabilities in low-energy 
collisions. 

Infinite-Range Coupling 

An important aspect of the coupled equations (10) is that the 
coupling does not necessarily go to zero for large internuclear 
separations. For example, consider the collision of two atoms in 
which all electronic excitations and deexcitations occur on one 
nucleus A. For the electronic origin located at A the first-deriva
tive coupling term is 

a 
FOas(R) 

and this vanishes at large R by the orthonormality of the atomic 
orbitals on A. For the electronic origin at the CMN, however, we 
get 

(16) 

(17) 

In (16) the nuclear displacement is carried out by moving B with A 
fixed, but in (17) the displacement must be carried out with the CMN 
fixed. Thus, at large R, the matrix element on the right side of (16) 
tends to an overlap of displaced atomic orbitals, and Fa S(R) does 

na not tend to caS. 

The infinite-range coupling of electronic states presents a 
problem in applying asymptotic boundary conditions to the scattering 
wavefunction. Bates and McCarrol1 6 have observed that imposing the 
usual scattering boundary conditions in the (R,x) coordinates using 
the usual adiabatic basis functions ~Ca (x,R) ~eglects the asymptotic 

a '" motion of the electrons with respect to the CMN. Therefore they pro-
posed including electron translation factors in the adiabatic basis 
to account for this asymptotic behavior. For some transitions, the 
infinite-range coupling can be eliminated by applying the asymptotic 

DERIVATIVE COUPLING ELEMENTS 381 

are given by the relation 

(15) 

This equation holds rigorously for an infinite basis set, but we apply 
it even though our matrices are only of order 3. Tests of this 
assumption have been made for the KH system;5 they show that it makes 
a negligible difference in the transition probabilities in low-energy 
collisions. 

Infinite-Range Coupling 

An important aspect of the coupled equations (10) is that the 
coupling does not necessarily go to zero for large internuclear 
separations. For example, consider the collision of two atoms in 
which all electronic excitations and deexcitations occur on one 
nucleus A. For the electronic origin located at A the first-deriva
tive coupling term is 

a 
FOas(R) 

and this vanishes at large R by the orthonormality of the atomic 
orbitals on A. For the electronic origin at the CMN, however, we 
get 

(16) 

(17) 

In (16) the nuclear displacement is carried out by moving B with A 
fixed, but in (17) the displacement must be carried out with the CMN 
fixed. Thus, at large R, the matrix element on the right side of (16) 
tends to an overlap of displaced atomic orbitals, and Fa S(R) does 

na not tend to caS. 

The infinite-range coupling of electronic states presents a 
problem in applying asymptotic boundary conditions to the scattering 
wavefunction. Bates and McCarrol1 6 have observed that imposing the 
usual scattering boundary conditions in the (R,x) coordinates using 
the usual adiabatic basis functions ~Ca (x,R) ~eglects the asymptotic 

a '" motion of the electrons with respect to the CMN. Therefore they pro-
posed including electron translation factors in the adiabatic basis 
to account for this asymptotic behavior. For some transitions, the 
infinite-range coupling can be eliminated by applying the asymptotic 



382 B. C. GARRETT ET AL. 

boundary conditions in a coordinate system in which electronic origins 
are at a nucleus and the internuclear distance is replaced by the dis
tance between the centers of mass of the two separated atoms. I ,7,8 
Unfortunately a coordinate system involving the atomic centers of mass 
makes the electronic part of the problem so much more difficult that 
it is apparently out of the question as a general computational tech
nique. A more practical, but still rigorously correct way of treating 
the infinite-range coupling problem is by a diagona1ization method. 9 
In this method the second order coupled equations are transformed 
into a set of equivalent first-order equations that can be diagona1-
ized. 

In this article we examine less rigorous, but easier ways to 
eliminate the infinite-range coupling. In the first method, sug
gested by Chen et a1.,ID we use equations (10) but we replace F~aB(R) 
by F~aa(R) - F~aa(oo). Although Chen et a1.ID tried to justify this 
by a semiclassical analysis, the method has been criticized by 
Thorson and coworkers. II Notice that since we always assume (15) for 
~~(R), it will vanish asymptotically if {~(R) vanishes. 

In the second method, we retain the convenient form of equation 
(10), with no nuclear-electronic derivative cross terms, but we 
replace F~aB(R) by F~aa(R) and G~(R) by values calculated using F~(R) 
and (15). FO(R) is computed wi~h the electronic origin on K. I~ this 
article we ~n1y consider excitations and de-excitations of K by 
ground-state H; thus an electronic origin on K makes the nuclear deri
vative coupling terms vanish at infinity. Notice the nature of the 
inconsistency involved in this method, namely it corresponds to using 
the CMN as electronic origin for the electronic-nuclear derivative 
cross terms but using the K as origin for the nuclear derivative 
coupling elements. This procedure is essentially the same as the one 
adopted by some workers for the semiclassical coupled equations for 
high-energy, ion-atom scattering prob1ems,3 but for the quanta1 case 
it can only by justified on an ad hoc basis. 

The third method is also an analog for the quanta1 coup1ed
channels equations of a method proposed for the semiclassical equa
tions for high-energy scattering. This method, proposed by one of 
the authors and Goddard (MG),12.13 is applicable to systems with only 
one active electron. In it, n becomes a function of a, a, and R, 
and F~aa(R) is replaced by F~ (R)aa(R) [= F~Gaa(R)], again without 
re-introducing the e1ectronic~Huclear derivative cross terms. ~G(R) 
is assumed to be given by (15) using ~G(R). Each naS(R) is chosen 
to make F~ (R)aa (R) vanish at R = 00, even for systems in which elec
tronic exc~~ation can occur at both nuclei and for systems in which 
charge exchange channels are open. Rather than specify naa(R). it 
is more convenient to specify the position zaa(R) of the new elec
tronic origin by its value in the CMN coordinate system. In this 
coordinate system, the MG origin is 
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tronic origin by its value in the CMN coordinate system. In this 
coordinate system, the MG origin is 
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<abs[~ca (x,R)]lzlabs[~CaQ(X,R)]> 
a'V IJ'V x 

'V 

a I a <abs[~C (x,R)] abs[~CQ(x,R)]> 
a'V IJ'V x 

'V 

(18) 

where abs(f) denotes the absolute value of f. Because of the compli
cated dependence of this electronic origin upon the internuclear 
coordinate it would be difficult to derive the appropriate coupled 
equations consistent with this choice of origin. 

CALCULATIONS 

The adiabatic potential curves for the lI+ states of KH were cal
culated by a one-electron model l4 ,lS for alkali hydrides using effec
tive core potentials to represent K+ and H. Further details of these 
calculations are presented elsewhere. S In review, the adiabatic 
energies are obtained by adding one-electron eigenvalues calculated 
with effective core potentials representing K+ and H, to the KH+ core 
energy. The KH+ core energy is approximated by a calculation of KH+ 
employing only a single H ls basis function. This is called method 
2H in previous work.S,lS The calculated adiabatic potential curves 
E~(R) are plotted in Fig. 1 for the three lowest lI+ curves of KH. 
Also shown are the RKR curves l6 ,l7 for the X and A states. 

The first-derivative coupling matrices F~a8(R) were calculated 
from the one-electron wavefunctions for two choices of electronic 
origin by using equations (16) and (17) with cS = o. 001 aO' For elec
tronic origins on the internuclear line the first-derivative coupling 
matrix depends linearly on the choice of origin. Because of this 
linear relationship the first-derivative coupling matrix element 
F~a8(R) for any other choice of origin could be and was obtained as 
a linear combination of F5a8(R) and F~a8(R). For discussion purposes 
we define the mass-independent matrix 

(19) 

The derivative coupling terms f~a8(R) are plotted in Figs. 2-4 
for four choices of origin: at the K, at the H, at the CMN for 
39Kl H, and at the MG origin. Recall that the MG origin depends on 
a, 8, and R. The CMN for 39K39H is the same as the geometrical 
center of the nuclei (GCN), i.e., the bond midpoint. Although the 
coupling matrices are not shown for the GCN origin, their shape is 
easily visualized since they are exactly halfway between the results 
shown for the origins at K and at H. 
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Adiabatic potential energy curves as a function of inter
nuclear distance for the thr~e lowest l~+ states of KH. The 
curves are the results of an ab initio pseudopotential calcu
lation as obcained by method 2H. The points are spectro
scopic RKR values for the X and A potential curves. 
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Fig. 2 . First-derivative coupling term between the X and A state of 
KH as a function of internuclear distance. The four curves 
are for four different choices of the origin for the elec
tronic coordinate. The solid curve is for the electronic 
origin at the K+ core, the dashed curve is for the electronic 
origin at the center of mass of the K+ core and IH atom, the 
long-short dashed curve is for the electronic origin at the 
IH atom, and the dash-dotted curve is for the Melius-Goddard 
prescription for the electronic origin. 
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Figure 2 shows the coupling f~12(R) between the X and A states. 
Figures 3 and 4 are similar plots for the X-C coupling and A-C 
coupling, respectively. First note the large variation in f~(R) 
obtained by shifting the origin from K to H. Because the C~N for 
39KIH is very near K the f~(R) curves for the origin at this CMN are 
very near to those with o~igin at K. At large R the coupling for the 
origin at either CMN does not vanish for the X-A and A-C coupling. 
The coupling terms with the MG electronic origins are qualitatively 
different from those with origins at K or at either CMN. When one or 
both of the interacting states has ionic character, the value of 
zaS(R) is shifted more towards the H core than the CMN for 39K1H. 
This occurs for the X-A coupling between 4 and 12 aO and in this 
region f MG12 (R) is intermediate to the results with the origin at K 
and those with the origin at H, but it is closer to the results for 
the origin at H than those for the origin at the 39KIH CMN. This 
same qualitative behavior is also seen for the A-C coupling between 
8 and 10 aO' 

Figures 2-4 illustrate an important general property of the 
first-derivative coupling matrices . Notice from (14) that the dif
ference between F~(R) for two choices of origin is proportional to 
the electric dip~le transition matrix. Thus, in the large-R limit, 
the different origins lead to the same results for the X-C coupling 
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o 
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_J 
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I \ / . / 
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30 

Fig. 3. Same as Fig. 2 except for coupling between the X and C states 
of KH as a function of internuclear distance. 
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because the 42S-5 2S transition is forbidden, but the origin choice 
does matter for the X-A and A-C couplings because the A state dis
sociates to the 42P state which is connected to both 42S and 52S by 
the electric dipole operator. 

It is interesting to examine how quantum scattering calculations 
of electronic transition probabilities are altered by changes in the 
electronic origin of the derivative coupling terms. If the calcula
tions were done correctly including a complete set of electronic 
states and all kinds of coupling terms with a consistent choice of 
electronic origin, then the results would be independent of the choice 
of electronic origin. We wish to examine the effect of using one set 
of radial equations, namely equations (10)-(13), but with several 
different choices for the derivative coupling terms as discussed 
above. We neglect angular coupling and the mass polarization term; 
however, the model problem studied here still allows a realistic 
assessment of the effect of using coupling terms with arbitrary choice 
of electronic origin upon the calculation of transition probabilities. 
All the derivative coupling matrices we use vanish asymptotically; 
thus the boundary conditions can be applied by standard methods. 

The scattering equations were solved using a R-matrix propagation 
method described in detail elsewhere. 5 In all cases we use a basis 
of the three lowest electronically adiabatic lE+ states: state 1 is 
the X state which dissociates to K(4 2S), state 2 is the A state which 
dissociates to K(4 2p), and state 3 is the C state which dissociates 
to K(5 2S). The excitation energies of the 42P and 52S states are 
1.61 and 2.55 eV, respectively. We neglect spin-orbit coupling. 

and 

We consider three processes: 

K(4 2S) + H(12S) + K(4 2P) + H(12S) 

K(4 2S) + H(12S) + K(5 2S) + H(12S) 

RESULTS 

We calculated the cross sections for two total energies, 

(1 + 2) 

(1 + 3) 

(2 + 3) 

1.6327 eV and 2.7212 eV. At the lower energy, two channels are open, 
and at the higher energy, three. Since 2/3 of the collisions of 
K(4 2P) with H(llS) occur in the IT manifold, and only 1/3 in the E 
manifold, we multiplied 02+3 by 1/3. With this factor the calculated 
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Table 1. Cross sections (a6) for excitation processes in 
39K + IH collisions 

E = 1.6327 eV E = 2.7212 eV 
Electronic 
origin 

0"1-+2 0"1-+2 0"1-+3 0"2-+3 

at K 1. 60(-5)a 9.24(-4) 1. 73(-6) 4.06(-1) 

at CMN 1.59(-5) 8.88(-4) 1.73(-6) 3.91(-1) 

Melius-Goddard 1.22(-5) 8.71(-4) 1. 70(-6) 4.04(-1) 

aNumbers in parentheses are powers of ten. 

cross sections satisfy detailed balance including the threefold 
degeneracy of P states but neglecting spin-orbit coupling. The 
factors of 1/4, because only 1/4 of all collisions occur in the 
singlet manifold, are not included. Thus, as in reference 5, the 
results are cross sections for singlet collisions only. The results 
are given in Table 1. 

As expected for 39K + IH, where the CMN lies so close to K, the 
cross sections for these two origins are very similar. The largest 
difference for the four cases in Table 1 is 4%. In contrast the 
physically motivated MG procedure leads to a much larger difference 
in one case; the difference is 30-31%. It is very interesting that 
alternative methods of coping with the formal problem of infinite
range nonadiabatic coupling terms can lead to such a difference even 
for the integral cross section of this reasonably simple case. We 
note that the difference between the results calculated with dif
ferent origins is greatest for the case where the initial and final 
states are connected by the greatest optical oscillator strength. 
In general one expects18 the effects to be largest in such cases for 
the reasons already dicussed in connection with Figs. 2-4. 

Instead of comparing the cross sections we could have compared 
the s-wave transition probabilities. (For the probabilities we do 
not include the 1/3 factor for multiple potential energy curves.) 
This comparison is shown in Table 2. The differences are larger 
than those in Table 1. This could be expected since the inelastic 
transition probabilities are oscillatory functions of orbital angular 
momentum l for this example. Thus there is a certain amount of can
cellation of errors in the integral cross sections. One would expect 
less cancellation in the differential cross sections. 
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rable 2. Inelastic s-wave transition probabilities for 
excitation processes in 39K + IH coliisions 

E=1.6327 eV E=2.72l2 eV 
Electronic 
origin 

P 1-+ 2 P 1-+ 2 PJ.-+3 P 2 -+ 3 

at K 1. 56(-6) 1. 84(-7) 5.70(-10) 2.15 (-3) 

at CMN 1. 57 (-6) 2.22(-7) 4.06(-10) 2.17(-3) 

Melius-Goddard 1.24(-6) 6.65(-7) 2.05(-9) 2.07(-3) 

In many systems, e.g., collisions of K with a particle heavier 
than itself in the absence of narrowly avoided curve crossings, we 
would expect a larger difference between the results calculated with 
origin at one of the nuclei and those calculated with the origin at 
the CMN. To illustrate this effect of the mass of the collision 
partner, we calculated the s-wave transition probabilities for the 
same potential curves but with the masses of both particles taken as 
38.964 amu. The f~(R) values were also the same for the cases of 
origin at K or MG~origin, but for the CMN origin, we must now use 
the results of origin at the GCN. The results we obtained for the 
s-wave transition probability PI 2 are shown as a function of energy 
. F' 5 -+ 1n 19. • 

For all three or1g1ns, the transition probability oscillates as 
a function of energy. In general, the oscillations of all three 
cases are reasonably well in phase (the most significant exceptions 
being for the energy range 2.0-2.3 eV). The magnitudes of the tran
sition probabilities at the maxima of the oscillations are in worse 
agreement than the phases of the oscillations. In general the 
results for the origin at K and those for the MG origin agree better 
with each other than either agrees with the GCN origin. A more 
detailed comparison of these results for energies near the maxima 
in the oscillatory curve is given in Table 3. The results for the 
K and MG choices agree within a factor of 2 or better for all cases 
in the table, but those for the K and GCN choices differ by more than 
a factor of 2 in .half the cases. Overall the K and GCN results 
differ by from 6% to a factor of 3.8 in thirteen of the cases, and 
in one case the difference is a factor of 190. Of course the per
centage deviations may be much larger if we make the comparisons near 
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Table 3. Ratios of s-wave inelastic transition probabilities 
for excitations from ground to first excited state 
in 39K + 39H collisions using different electronic 
origins 

Energy (eV) a b 
PI + 2 (MG ) Ip 1 + 2 (K ) 

1. 6490 0.64 

1. 6898 1.21 

1. 7225 0.58 

1. 7633 0.73 

1. 8123 1.16 

1. 8449 0.59 

1.8776 0.66 

1. 9266 1.00 

1. 9756 0.92 

2.0409 1.16 

2.1062 0.95 

2.1769 0.94 

2.2994 0.98 

2.3946 0.95 

~elius-Goddard electronic origin. 

bElectronic origin at K nucleus. 

c b 
Pl + 2 (GCN )/Pl + 2 (K ) 

0.27 

0.28 

0.26 

0.42 

0.56 

0.0053 

0.31 

0.57 

0.43 

1.77 

0.73 

0.92 

0.94 

0.93 

cElectronic origin at geometric center of the nuclei. 

the mlnlma of the oscillatory curve. Returning again to the energies 
near the maxima, the typical difference of the K and MG results is 
25% but the typical difference of the K and GCN results is a factor 
of 2-3. These differences are especially noteworthy because it has 
been stated in the literature19 that the infinte-range coupling due 
to the expansion in Born-Oppenheimer functions not satisfying the 
correct boundary conditions does not cause significant difficulties 
in low-energy collisions.* More recently a contrary opinion has 

*Consistent with this widely held opinion, the infinite-range coupling 
effect has also been neglected in low-energy atom-molecule collision 
studies. 20 
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been stated in the 1iterature,21 but to our knowledge the present cal
culations are the first numerical test of this effect for low-energy 
collisions. 

SUMMARY 

We have performed numerical comparisons of three different ways 
of treating the first-derivative coupling terms in the quantum mechan
ical coupled-channel equations for atom-atom scattering in an adia
batic representation. We have shown that different ways of handling 
the formal problems with the derivative coupling operators can lead 
to errors of 25% to a factor of 2 or 3 in computed transition proba
bilities and inelastic cross sections. We even found a case where 
the predictions of two of the methods differ by a factor of 190 even 
for an energy near a maximum in the oscillatory curve of transition 
probability vs. energy. 
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