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I. INTRODUCTION

Electron scattering by molecules is important from a funda-
mental point of view as well as for many applications to practical
concerns. An electron is the most elementary possible probe of a
target. An electron scattering experiment can yield both struc-
tural and spectral information. From the chemist's point of view
the spectral information obtainable this way is often invaluable
because the selection rules of photon spectroscopy are inoperative.
In particular, at impact energies up to about 100 eV, many optically
forbidden transitions appear very strongly in electron impact
spectroscopy.l’2 The energy range from 10-100 eV is thus a very
important one for chemistry, and it is often called the intermediate
energy range for electron scattering.3 Data on electron scattering
cross sections at energies below 100 eV are also required for under-
standing electron mobilities, discharges, flames, radiation
chemistry and radiation biology, electron-impact laser initiation,
magnetohydrodynamic power generators and other devices containing
plasmas, the atmosphere of the planets (especially the upper atmos-
phere of the earth), the interstellar medium, and stars (including
the sun).Ys5

The present article is concerned with modelling the effective
interaction potential between a scattering electron and a molecule
for collision energies of about 100 eV or less. This is the first
step in the effective-potential approach to calculating the transi-
tion probabilities and scattering cross sections. The effective
potential is much more complicated for low and intermediate energy
than for the very high energies used for electron diffraction
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studies. Electron diffraction studies are typically carried out at
10-50 keV, and they can be analyzed to yield not only geometries but
also (unperturbed) molecular electronic densities.® At these very
high energies the scattering electron comes and goes so rapidly that
the target does not have time to respond appreciably. Thus the
electrostatic potential, which is the interaction energy of a point
charge with the unperturbed target, plays a very direct role in these
experiments. At low and intermediate energy, however, target
response cannot be neglected. Anothér complication at these energies
is that exchange of the scattering electron and the target electrons
cannot be neglected. Electrons are always indistinguishable but a
large difference in kinetic energy renders them effectively classi-
cally distinguishable. According to the virial theorem, the kinetic
energy of a target electron is about equal to its ionization poten-
tial. Thus if the kinetic energy of the scattering electron is not
too much longer than this, electron exchange is very important.

For purposes of computation, it is convenient to break up the
effective potential for electron-molecule scattering into the
electrostatic potential, an exchange potential, and the rest. For
electron scattering, the electrostatic potential is usually called
the static potential, and the sum of the static and exchange
potentials is called the static-exchange potential. The third part
is the difference between the true effective potential and the
static-exchange potential; it is called the polarization potential
because it would be zero if the charge distribution of the target
were not polarized (Z.e., perturbed) by the scattering electron.

In practice the polarization potential is not obtained by subtrac-
tion. There are two reasons. First, the calculation of the true
effective potential is equivalent to the complete solution of the
scattering problem but even electron-hydrogen atom scattering cannot
be solved exactly. Second, the exchange potential and the true
effective potential are nonlocal. Whereas a local potential acting
on a wave functiog_can be written V(r)y(r), a nonlocal potential
takes the form Sdr'V(r,r')y(r'). 1In general a nonlocal potential
can be written as a potential that depends on the position and

local momentum; the connection to the previous statement is that

the probability amplitude for momentum involves an integral over

the coordinate-representation wave function. The local momentum can
be approximated semiclassically, however, in terms of the asymptotic
kinetic energy and the local effective potential. Such an approach
allows one to approximate the effective potential as a function of
position and asymptotic kinetic energy of the scattering electron.
Such a potential will be said to be energy-dependent but local in
the coordinate representation; examples will be given below.

Having obtained the effective potential one must perform
scattering calculations to obtain cross sections. The target has
three kinds of degrees of freedom. Its electronic degrees of
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freedom are included by means of the effective potential; vibrational
and rotational degrees of freedom must be included explicitly in the
scattering calculation. The effective collision time (time during
which the scattering electron is in strong interaction with the
target) is hard to define precisely but a working value for
intermediate-energy scattering is on the order of the time required
for a 50 eV electron to move 10 ag. This requires 3 X 1016 s, which
is comparable to the time constant for bound orbital motion of the
valence electrons. The similarity of these time scales is one reason
why electronic charge polarization of the target is hard to estimate
at intermediate energy; with respect to the collisional perturba-
tion, the electronic coordinates of the target change neither com-
pletely suddenly nor completely adiabatically during the collision.
The vibrational and rotational time scales are much longer though,
about 10~1% s and 107!2 s, respectively, for N,. Thus we can treat
the target as a rigid asymmetric potential during the scattering
event, and obtain transition matrix elements by a coupled-channels
calculation in a target-fixed frame of reference where the scatter-
ing electron has a definite molecule-frame symmetry, e.g., I, or I,.
One can of course also use a laboratory-fixed frame of reference and
sometimes this is more convenient. For high orbital angular momentum
of the scattering electron and polar targets it is necessary to
average the charge-dipole interactions over target rotational motion
to get finite cross sections; this is done most conveniently in the
laboratory-frame coordinates. In this chapter the initial state of
the target is always the ground state. To perform vibrational
averaging we simply average over a set of calculations at various
internuclear distances; the effect is small. The same set of calcu-
lations can also be used to calculate vibrationally inelastic cross
sections by the vibrational sudden approximation. The various
rotational transitions are not usually resolved experimentally so

we define rotationally summed cross sections by summing over all
possible final rotational states for a given final vibrational

level and electronic state. Integral cross sections may be obtained
either by summing the partial cross sections for various symmetries
of the scattering electron or by integrating the differential cross
sections over scattering angle. Further details of the scattering
calculations are given in the original papers.

In the rest of this chapter we will discuss the three components
(static, exchange and polarization) of the effective potential one
at a time. We will compare various calculations to each other, and
we discuss how the calculated cross sections compare to experimental
results.

All equations in this chapter are in hartree atomic units,
which are discussed in the preface of this book.
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ITI. STATIC POTENTIAL

The classical coulombic interaction between the incident elec—
tron at a given position and the unperturbed target charge distribu-
tion is the static potential, which is the unifying element in all
the chapters in this book. In the rest of the present chapter we
follow the usual conventions of the electron scattering literature
and call it the static potential rather than the electrostatic
potential. 1In this chapter we define it for the probe charge being
negative, which differs from the convention followed in most of the
other chapters in this book.

Any of the methods used to calculate the static potential for
other applications, as discussed for example by Politzer and Daiker’
or used by the other authors in this book, could also be applied for
applications to electron scattering. In fact, however, some special
methods have been developed in the electron scattering context.

One difference between the electron scattering calculations and
other classes of applications is that for electron scattering one
often uses a single-center expansion of the static potential, t.e.,
it is expressed in spherical polar coordinates with the origin at
the center of mass of the molecule. For example, consider a linear
molecule with fixed internuclear dlstances and its internuclear axis
along the unit vector R, and let ¥ (with magnitude r and direction
T) be a vector from the center of mass of the molecule to the
electron. Then we can write the static potential as

s> S
Vo (r,R) = ) V (r)P, (cos x) D)
A A
A
where cos y = ? « R. nNotice that equation (1) can be and is used at
all r, not just at large r where it becomes a multipole series. One
way to evaluate V%(r) is to expand the molecular electronic density
(r R) around the molecular center of mass

PR = [ a ()P, (r + R) (2)
A

and calculate the Vx(r) from the ak(r) 8=10  Another approach, the
one we usually use, is to evaluate Vs(r R) as a one-electron property
of the (unreexpanded) molecular charge distribution by standard
quantum chemical technlques for a set of x values at a given r, then
to solve for the VA(r) by solving linear equations (when results are
available for only a few evenly spaced x) or by Gaussian integration
(when results can be generated at the nodes of a Gauss-Legendre grid
in cos x). To generate the Vy(r) for scattering calculations by the
Gaussian integration method, we have used 20-32 y values for N,,
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20 for C,H, and 32 for symmetric COy. In these cases one uses
symmetry and all the points are located in the (0,m/2) interval.
For CO and asymmetrically stretched CO,, the points are spread
over (0,m), and we used 48 y values for these calculations.

These numbers of x values are large enough to converge V,y (r) even
for A > 30. The above congiderations are easily extended to nonrigid
molecules, for which VS, V; and ay all depend on internuclear dis-
tance R for a diatomic or on all the vibrational coordinates for a
triatomic or larger. For nonlinear molecules one can expand in
spherical harmonics about the center of mass or one can use a
symmetry-adapted expansion basis.ll

Since the electrostatic potential must be calculated at many
points (r,x) for each set of internuclear distances used for
scattering calculations, its computation can be time-consuming.

For this reason, and because we wish to develop methods well suited
to polyatomic molecules, we have explored the validity of semi-
empirical molecular orbital theory for this quantity. We have
studied N, and CO at their equilibrium geometries in the most detail.
Table 1 compares three ab initio calculations of Vy(r) to two calcu-
lations employing semiempirical molecular orbital theory. The
calculations denoted by numbers in brackets are ab initio matrix
Hartree-Fock calculations, and the numbers in the brackets are the
number of contracted-basis-functions subshells of each symmetry at
each nucleus. The calculation denoted [432] is for an extended
basis set including two d subshells at each nucleus. These results

. S > a
Table 1. Spherical average of V' (r) for N,

V§(r) (eV)

(ag) [432] 1531 I21] INDO/1s INDOXI/1s
0.0 -51 -57 -66 -64 -48

1.0 -88 -90 -95 -91 -83

1.6 =22 -23 =25 =21 -19

2.0 -8.3 -8.5 -9.4 -7.2 -6.2
2.2 -5.0 -5.1 -5.8 -4.0 -3.5

R = 2.068 aj. Reference 12.
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are very accurate and serve as a standard. The [53] basis is better
than "double-zeta' quality but has no d functions, and the [21]
basis is a minimum basis set of atomic SCF functions (a "minimum
basis set" for C, N or O consists of two s subshells and one p sub-
shell at each nucleus). The INDO/ls calculation is a semiempirical
molecular orbital calculation by the intermediate-neglect-of-
differential-overlap valence-shell SCF method of Pople and

coworkers (INDO),!3 but augmented after the SCF stage to explicitly
include atomic 1s orbitals in the charge density. The result may

be considered an approximate minimum~basis-set matrix Hartree-Fock
calculation. The INDOXI/1ls result is similar except that the
intra-atomic 2s-2p element of the INDO density matrix is neglected
in calculating the static potential; this exclusion was originally
suggested12 as a way to make the static-potential calculation more
consistent with the INDO approximations made in the SCF calculations.
The main point illustrated by Table 1 is that, at least at small r,
there is no advantage in ab initio calculations over the semi-
empirical ones unless one uses an extended basis set including d
functions in the former.

Table 2 includes two additional methods and shows some values
for Vg(r) and Vﬁ(r) as well as Vg(r). For A > 0, V?(r = 0) is
zero and V%(r) is strongly peaked at r = *%R,, where R, is the N,
bond distance (2.068 ay); see, e.g., Figure 1. At large r, the
V;(r) for A > 0 are dominated by the permanent multipole moments of
the target. E.g.,

Vo () e -8/r® = —Q/(2r3) (3)

where 6 and Q are two ways to define the quadrupole moment. The
multipole expansion is valid when the scattering electron is far
from the target so that the electron-electron and electron-nucleus
interactions largely cancel. £E.g., Table 3 gives the electronic
and nuclear contributions to the quadrupole moment 6, as calculated
from two ab initio electronic wave functions: the Cade-Sales-Wahl
(CSW) wave function with a basis set near the Hartree-Fock limit
and another, the [53] wave function, with a better-than-double-zeta
basis set. Although the electronic contributions differ by only 57,
the net quadrupole moments differ by a factor of 1.9. This illus-
trates that a quantity involving extensive cancellation like the
quadrupole moment is hard to calculate accurately; thus neither
INDO/1ls nor INDOXI/1ls is expected to lead to an accurate value.

As a result, Table 2 shows that these methods do not yield accurate
V5 (r) at large r although they do yield reasonably accurate Vg(r)
and V§(r) at small r. In the INDOX/1ls rnethod,ls’16 we multiply the
2s-2p intra-atomic density matrix element, neglected in INDOXI/ls,
by a constant X and determine X to make the quadrupole moment come
out right. This yields X = 0.19, and Table 2 shows that it yields
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Table 2. Legendre components of the static potential for N,
for r = 0.8, 1.6, 2.2 and 4.0 ay?

Vi) (eV)

A [a32]® INDO/1sP INDOXI/1s” INDOX/1s® ssal
0 -74¢ -80 -70 -72 -72
22 ~21 -19 -19 -20
5.0 ~4.0 -3.5 -3.6 -4.4
-0.03 -0.01 -0.01 -0.01 -0.03
2 -149 ~146 -148 -148 -146
-47 -40 -46 -45 46
-8.2 ~2.6 7.4 6.4 8.5
0.31 1.15 0.15 0.34 -0.05
4 -99 =99 ~100 -99 -99
-26 -25 ~27 -27 -27
-2.6 -1.9 -3.2 -2.9 -3.7
0.13 0.17 0.05 0.07 0.01
%R = 2.068 ag.
b

Reference 12.
“Reference 16.
dReference 18.

eTop value is for r = 0.8 ap; successive values are for r = 1.6,
2.2 and 4.0 ap, respectively.
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Figure 1.

Table 3.
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Some Legendre components of the static potential for N,

at R = 2.068 a; as calculated by the INDOXI/ls method
(references 12, 77 and 78). The spherical average

(A = 0) and the X = 6 components are solid and dashed
curves, respectively; the A = 12 component is a dotted
curve.

Contributions to the N, quadrupole moment (in atomic
units) as calculated from two ab initio wave
functions®

Wave function Electronic Nuclear Total
cswP ~15.9160 14.9682 ~0.9478
[531¢ -16.7581 14.9682 -1.7899
¥R = 2.068 ag.

bCade, Sales, Wahl (reference 14).

CReference 12.



EFFECTIVE POTENTIALS FOR ELECTRON SCATTERING 131

a reasonably accurate static potential, although Vg(r) does decrease
too rapidly at large r. That problem can be traced to the use of
Slater's values for the exponential parameters in the INDO orbital
basis.!3 One way to incorporate the more accurate orbital tails is
to use a minimum basis set with optimized exponential parameters.17
The SSA method in Table 2 is in this spirit but even simpler. It
stands for sum of scaled atoms and it corresponds to a sum of two
scaled atomic static potentials.18 A distribution of spherical
densities centered at the atoms has no permanent multipole moments
so Vy(r) calculated this way decreases too rapidly at large r for

A > 0, but Table 2 shows that the small-r static potentials obtained
by this method are of useful accuracy.

To converge the scattering calculations one must use very high
values of A, e.g., for Ny, A > 28 is necessary, with the precise
upper limit depending on the incident energy and the symmetry of
the scattering-electron wave function.29521 For A > 14, however,
the electron-electron contribution is negligible compared to the
electron-nuclear contribution, which may be obtained analyti-
cally.lz’20 Furthermore, it causes negligible error in the
scattering results if the A = 6-14 contributions are evaluated by
the INDO/ls method, as long as the 0-4 contributions are evaluated
accurately.?! These considerations are illustrated by Figure 1
which shows that the higher-)A components of VS(r) for N, are well
localized near r = R/2, where R/2 is the distance of a nucleus from
the center of mass.

Thus the simpler methods of calculating the static potential
give realistic values for A < 4 and are entirely adequate for
A > 4, Table 4 illustrates how much the quantitative errors in the
static potential effect the partial cross sections. In this table,
calculations are shown for two different ways of calculating the
effective potential. In both cases it is the sum of a static, an
exchange, and a polarization part; the exchange part is calculated
by the semiclassical exchange approximation discussed below; and
the polarization part is the semiempirical polarization potential
of Morrison and Collins.?? TFor both sets of 13.6 eV calculations,
15 coupled channels were retained in the scattering calculations
for each symmetry, and for all 30 eV calculations 24 coupled
channels were retained. Thus the only difference between the two
sets of calculations is in the source of the electronic density
for calculation of the static and exchange potentials: for one
set it is obtained from the accurate wave function of Cade, Sales
and Wahl;1%»20 for the other it is obtained by the INDO/ls
method.%521 Thus the table is a test of how the scattering
results are affected by the errors in the INDO/ls density. At an
impact energy of 13.6 eV, roughly on the borderline between low
and intermediate energy, there is a large error in the INDO/ls
partial cross section for Hg symmetry, which is resonant at low
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Table 4. Partial cross sections for electronically elastic
scattering of rigid N, by electrons in the static-
exchange-plus-polarization approximation? at two
impact energies with two different target wave

functions
MP b
(a$)
13.6 ev® 30 ev?

Symmetry CSW INDO/1s CSW INDO/1s

zg 12.0 12.6 6.2 6.3

ng 1.4 8.4 3.1 5.5

Ag 9.4 .8 6.4 6.8

¢g 0.1 0.1 0.4 0.4

z. 8.6 11.7 6.9 10.4

I 6.2 8.2 11.7 11.3

5 1.3 0.8 3.0 2.2

o, 0.8 1.2 1.3 1.6
SUM 39.8 52.8 39.0 44 .6

8A11 calculations use semiclassical exchange and the Morrison-
Collins (reference 20) polarization potential. R is 2.068 ag.

b, . . . . .
Vibrationally, electronically elastic cross section summed over
final rotational states.

cReference 21.

dReference 22.
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energy, and there are 30-50% errors for I,, M,, A, and ¢,. As a
result the INDO/ls integral cross section, summed through M = 4, is
too large by 33%.21 At 30 eV the errors in the Hg and II, partial
cross sections are much smaller and the integral cross sections,
summed through M = 4, is overestimated by only 14%.22 This is an
acceptable error, especially considering the uncertainties in the
polarization potential and the considerable gain in simplicity
obtained by using the INDO/ls method. These results give us confi-
dence that reliable calculations could be performed using the
INDO/1ls method for large polyatomics where more accurate ab initio
calculations would be prohibitively difficult or expensive.

In conclusion the above comparisons show that one can obtain
the qualitative features of the static potential from very simple
models of the molecular charge distribution. Basically the static
potential is a set of screened coulomb potentials centered at the
atoms, and it can be obtained realistically for small r if the
screening orbitals have a realistic size. Similar accuracy was
obtained for CO as for N,, with the region of good quantitative
accuracy being r < 2.3 aj in both cases.!? At large r there is
extensive cancellation, and accurate multipole moments must be used
if the weak long-range anisotropic tails on the potential are to be
realistic. The scattering results at low energy, especially for
resonant symmetries, are very sensitive to the quantitative accuracy
of the potential; but the simple methods of calculating the
scattering potential can give good accuracy for the scattering
results at intermediate energy.

III. EXCHANGE POTENTIAL

The Hartree-Fock exchange potential is a direct consequence of
antisymmetrizing the wave function and asking for the variationally
best orbitals. The equations for the variationally best orbitals
contain and thereby define the Hartree-Fock exchange potential.
Because this is a nonlocal potential it greatly increases the
expense of solving the coupled-channels scattering equations, and
until recently the Hartree-Fock exchange potential was not included
properly in any electron-molecule scattering calculations for
targets larger than Hy. Nevertheless exchange interactions are
very important at low and intermediate energy. Thus there is great
interest in approximate exchange potentials that are local and
hence easier to use.

The most popular exchange potential for bound-state electronic
structure calculations on molecules and solids is the free-electron-
gas exchange (FEGE) approximation, which has its origin in Thomas-
Fermi-Dirac theory. The FEGE exchange potential is
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VECERy = - 2k r(n) “*)
m F
where
_1 1 - 12 1 +n
F() = 5 + = 1n ’1 * [ 5)
-
n = K/K,(F) ©)

K is the local momentum of the electron under consideration and KF
is the Fermi momentum

N L 1/3
KF(r) = [3n2p(r)] (7)

Slater?3 derived an average exchange potential for a bound system by
averaging F(n) over the Fermi sphere. This yields equation (4) with
F(n) repl??%d by 3/4, and the resulting potential is proportional

to [p(r) . GasparzL+ and Kohn and Sham?® gave alternate deriva-
tions in which F(n) is replaced by its value at the surface of the
Fermi sphere. This gives the same form as used by Slater with 3/4
replaced by 1/2. For bound-state calculations this constant is
often replaced by a variable parameter, called % %.26  Although the
pl/3 potential has been used for scattering calculations, it is
really inappropriate for that purpose because the scattering elec-
tron is not an average electron in the Fermi sea. Rather it has a
particular higher energy exceeding that at the surface of the Fermi
sphere by the ionization potential I plus the scatterlng kinetic
energy i k2. This was first pointed out by Hara?? who suggested
determining K in equation (6) by

K2 () = K%(}’) + 21 + K2 (8)

Other procedures have also been suggested20’28_31 for determining
K2 (%), but equation (8) has been the most widely used. Equations
(4) - (8) define the Hara free-electron-gas exchange (HFEGE) poten-
tial. It clearly has a complicated dependence on p(r)

Local exchange potentials can also be derived by expanding the
Hartree-Fock exchange kernel. 28,32,33 Here we review the derivation
of reference 28. Consider the nonlocal exchange operator VlJJ
defined by

> >
VL E D = EDe @)D ©)
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where f. (r ) is a scattering wave function, ¢J(r ) is a bound

orbital),
1 ->
s G o

3 . . . -
and the Dirac notation is used for an integral over r,. Assume

13

M. . (¥)

> ->
1] Alj (r)fj (r) (11)

where Aij(?l) is slowly varying so that

1]

> > > o2 Y
v Mij(r) Alj(r)V fj(r) (12)

This is a semiclassical approximation equivalent to assuming that
the scattering electron has a small deBroglie wavelength on the
atomic scale. This approximation and the identity

vzmij (%) = =4n ¢i(¥)fj () (13)

yield a functional relationship of the form

= V[ @) (14)
where K§ is the local momentum defined by
2 2 > _
[v1 +R2ED]EED = 0 15)
and p(rl) is the electron dens1ty ]¢l(r1)l By assuming that vE

1s local, we can express K% (rl) as a function of the impact energy
the static potential V %rl) and the local exchange potentlal
E(rl) Then equation (14) becomes a quadratic equation for VE (ry)
which can be solved to yield what we call the semiclassical exchange
(SCE) potential.28 For closed-shell targets it becomes the follow-
ing attractive potential28

2
VW@ = 2 [E - vs(ﬁ)] - 3 [E - vs(?)] + 4o (F) (16)
By using Thomas-Fermi theory we can express the semiclassical

exchange potential fgr electron-rare gas scattering in the low-energy
limit in terms of p(r) alone. Although we do not do this for actual
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calculations, it makes for an interesting comparison with the

familiar p1/3 potential. We obtain?8
VE@) ~m it [0 ()13 17)
GrD)

E->O
>0

VEE@) ~—— [mp () ]1/2 (18)
E~>0
T

We can find the high-energy limit without using any Thomas-Fermi
relations.?8

SCE ~ mp ()
~

Vo (r) - (19)
Ero E - VO ()
The limit in equation (18) is called the high-energy exchange (HEE)
approximation;28 the HFEGE potential also tends to this limit.
Thus the two quite different methods lead to the same high energy
limit, and we expect in general that they become more similar and
more reliable as the impact energy increases. At even higher
energies where the denominator of equation (19) may be replaced by
E, the high-energy approximation becomes equivalent to the Fourier
transform of the high-energy limit of the exchange scattering
amplitude derived by Bonham3“ and Ochkur.3°

Table 5 gives some examples?8 of scattering phase shifts for
electron-~He and electron-Ar scattering calculated in the static-
exchange approximation. In these calculations, exchange is treated
by the Hartree-Fock nonlocal kernel36:37 and by the three different
local exchange potentials. For the cases shown, and for many other
cases for electron-atom scattering,za’30 the SCE potential is the
most accurate of the local approximations, but the HFEGE potential
and sometimes even the HEE potential also give useful accuracy.
There have now been several extensive tests of these and other
local exchange potentials against accurate exchange for electron-
atom scattering;28’30’38”40 the general conclusion from this work
is that local approximations are capable of representing the
exchange effect with good absolute accuracy at intermediate and
high energy and sometimes even at low energy. Our attitude,
however, is that nonlocal exchange should generally be used for
accurate nonempirical calculations at impact energies below about
10 eV.
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Table 5. Phase shifts for electron-He and electron-Ar scattering
calculated in the static-exchange approximation with
various approximations to exchange

ny (rad)
E Hartree-Fock
28 (eV) XE exchange® HFEGE sced need
He
0 16.46 1.36 1.80 1.69 1.77 1.84
54.42 1.08 1.28 1.24 1.26 1.27
1 16.46 0.07 0.21 0.14 0.22 0.27
54.42 0.20 0.33 0.27 0.32 0.33
Ar
0 21.26 7.10 7.46 7.47 7.46 7.50
54.42 6.42 6.72 6.69 6.66 6.68
1 21.26 0.51 1.39 1.17 1.32 1.47
54.42 1.50 1.84 1.87 1.84 1.86

a

b

No exchange.
“Exact exchange.

dLocal exchange.

References 36 and 37.

Reference 28.

Reference 28.

Orbital angular momentum of scattering electron.
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One advantage of the semiclassical exchange approximation and
the high-energy approximation, as compared to free-electron-gas
methods, is_that they can be applied to the nondiagonal exchange
operators vi'k that occur in calculations of electronically
inelastic scattering.ze’39’”Q This is illustrated in Table 6, which
shows partial cross sections for excitation of the 2s state of H.3?
The standard for comparison is a 2-state calculation (in a bound-
state context, this would generally be called a 2-configuration
calculation) with nonlocal exchange.”1 Again the local exchange
approximations are reasonably accurate, although the errors for
electronically inelastic scattering are somewhat larger than those
for electronically elastic scattering.

Local exchange potentials have also been tested against calcu-
lations?0542=%% employing nonlocal exchange kernels for electron-
molecule scattering, in particular for electronically elastic
scattering by H220’”5’“6 and N2.22 An example22 of the results is
given in Table 7. This table shows that the HFEGE potential yields
results very similar to Hartree~Fock treatment of exchange even at
an energy as low as 13.6 eV, with the biggest difference occurring
for Ag symmetry. The SCE potential does almost as well or better
for most symmetries but does very poorly for the Hg symmetry. As
already mentioned, the Hg scattering has a resonance at low energy,
and this reasonance causes a great sensitivity to approximations

Table 6. Partial cross sections for the 1ls-2s excitation of H
by electrons as calculated by 2-state close coupling
with various approximations to exchange at an impact
energy of 54.4 eV for the triplet spin coupling

2
91s-2s (ag)

Hartree-Fock

2 _XE? exchangeP S HEES
0 0.049 0.021 0.026 0.026
1 1 0.125 0.068 0.081 0.081
2 0.102 0.086 0.089 0.089

4o exchange; reference 39.
bNon—local exchange; reference 41.

“Local exchange; reference 39.
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Table 7. Partial cross sections for electronically elastic
scattering of electrons by Ny in the static-
exchange approximation? at 13.6 eV impact energy
with various approximations to exchange

OMP (ag)b
Hartree-Fock a d

Symmetry exchange® SCE HFEGE

Zg 11 13 12

ng 10 4 9

Ag 3.2 2.5 1.5

Zu 12 9 11

Hu 12 10 12

Au 0.1 0.15 0.1
SUM 48 38 46

8A11 calculations use the CSW wave function (reference 14) for the
target.

b, . , . . .
Vibrationally, electronically elastic cross section summed over
final rotational states.

CReference 44.

dReference 21.

even at 13.6 eV. A detailed study?? of the low-energy scattering
shows that the SCE is too attractive at low energy for N, and
apparently predicts the resonance to be a bound state. As the
energy is raised the HFEGE and SCE approximations are expected to
become more accurate and to agree better with one another. The
accuracy cannot be verified directly because there are no calcula-
tions including Hartree-Fock exchange for energies greater than
13.6 eV,* but the increasing similarity of the two approximate

*Later in this chapter we discuss the comparison of calculations to
experiment for energies greater than 13.6 eV, but this tests the
whole static-exchange-plus-polarization potential, not just the
exchange approximation.
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treatments of exchange is demonstrated by the differential cross
sections"”s%8 in Table 8. The differential cross sections in this
table are for 30 eV impact energy and are summed over all final
rotational states. The rotationally summed differential cross
sections computed with the SCE and HFEGE potentials agree very well
over the whole angular range, with the largest difference being

14% for forward scattering (6 = 0°). The rotationally summed
integral cross sections computed from the differential cross
sections in Table 8 are 39 a% for the SCE potential and 42 a% for
the HFEGE potential, differing by 7%Z. All state-to-state rotation-
ally inelastic differential cross sections agree within 13% or
better, and all state-to-state rotationally inelastic integral
cross sections agree to 10% or better.

Table 8. Differential cross sections as functions of scattering
angle for electronically elastic scattering of electrons
by rigid-rotor N, %n the static-exchange-plus-polariza-
tion approximation at 30 eV impact energy with two
different approximations to exchange.

do/dQ (a%/sr)b

8 (deg) sce® urEced
0 37 42
30 8.5 9.5
60 1.7 1.8
90 0.50 0.53
120 1.5 1.5
150 4.3 4.3
180 6.9 7.0

3A11 calculations use the INDOX/1ls wave function (reference 16)
for the target and the INDOX/AAP (reference 16) polarization
potential.

b . . . .
Vibrationally, electronically elastic cross section summed over
final rotational states.

CReference 47.

dReference 47 and 48.
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The electron-atom tests also showed that the SCE potential
sometimes becomes too attractive at low ene]_”g;y.28’3q’38 The HFEGE
potential works better at low energy, but free-electron-gas exchange
potentials have the incorrect functional form near the origin,
where they are too attractive.3? Yau et al."9 have suggested a new
potential, the joined semiclassical-Hara exchange (JSHE) potential,
which is formed by joining the SCE potential in the inner region
with the HFEGE potential in the outer region at their point of
intersection. Since the local kinetic energy is larger in the inner
region, this corresponds to using the SCE potential at high local
kinetic energy, where the semiclassical expansion of the nonlocal
exchange kernel is most valid. However, it is doubtful that the
JSHE potential will lead to overall improvement since the HFEGE
potential is not attractive enough at large r.22528 Algo the JSHE
potential is always less attractive than both the SCE and HFEGE
potentials, but the HFEGE potential itself is often insufficiently
attractive at both low and intermediate energy, and the SCE poten-
tial is often insufficiently attractive at intermediate energy.28
The problem with the HFEGE potential at large r can be corrected
by using the asymptotically adjusted free-electron-gas exchange
(AAFEGE) potential, but the AAFEGE potential is even more attractive
than the too attractive HFEGE potential at small r.2% Morrison and
Collins®? found that the AAFEGE potential is too strong for
electron-H, scattering at E < 3 eV, but that it is quite accurate
already at E = 5 eV. TFor electron-atom scattering, the AAFEGE
potential is more accurate than the HFEGE potential for high
enough 2.28 The HFEGE potential is insufficiently attractive at
high 2 for electron-atom scattering28 and at high M for electron-
molecule scattering.22

Another procedure that has been suggested is '"tuning" the free
electron gas potentials to predict a resonance energy position at
low energy where the scattering results are very sensitive to
exchange.20 This might be useful for studies over a limited energy
range, but the "tuned potentials' might well be less accurate than
the untuned ones at intermediate energy.

Even by conservative standards it is already clear that the
SCE potential is quite reliable for impact energies greater than
about 30 eV, but in some cases one or more of the local exchange
potentials is quite accurate down to much lower emergy. Further
work will be required to delineate the accuracy that can be expected
from the various local approximations for different targets, orbital
angular momenta and symmetries, and impact energies.

There is another promising method for conveniently including
the exchange effect in scattering calculations. Instead of
including the nonlocal operators from the beginning, one determines
radial wave functions for the scattering electron either by
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neglecting exchange or by a local approximation. Then these radial
wave functions are used to define a trial wave function which is
antisymmetrized and inserted into a variational functional. This
leads to exchange integrals but not to the more complicated situ-
ation, integrodifferential equations, which obtains if the anti-
symmetrization step is performed before determining the radial

wave functions. This idea has now been applied successfully to a
sequence of increasingly more complicated cases.>!

IV. ©POLARIZATION POTENTIAL

Next we consider the inclusion of charge polarization effects.
The rigorous way to include these in an effective potential is the
exact-optical-potential method, in which the optical potential is
defined so that the electronically elastic scattering amplitude is
exact.?275% The exact optical potential is energy-dependent, non-
local, and too hard to calculate; thus we shall be satisfied with
approximations. In particular we shall examine energy~dependent,
local approximations obtained by adding another term to the static-
exchange potentials already considered. 1In principle the new
term should be complex, Z.e., have a nonzero imaginary part. The
real part represents the effect of virtual charge polarization and
is called the polarization potential. The imaginary part accounts
for electronically inelastic scattering, Z.e., loss of flux from
channels corresponding to the initial electronic state, and is
called the absorption potential. The imaginary part of the optical
potential is thus rigorously zero at energies below the first
electronic~-excitation threshold but not at intermediate energy.
Recently several groups have applied complex, local optical-potential
models to electron-atom scattering at intermediate energy.32’33’55_59
There has also been some use of complex, nonlocal optical-potential
models for intermediate-~energy electron-atom scattering.®0762 At
Minnesota, we have applied optical-potential models to intermediate-
energy electron-molecule scattering. In this work, which is
discussed next, we have neglected the imaginary part of the optical
potential. At the end of this section we will discuss an approach,
called the matrix effective potential (MEP) mode1,63’6“ in which
the imaginary part is included implicitly by treating the optical
potential as a 2 x 2 real matrix.

As an important part of our program to develop more accurate
models of the polarization potential, we®5770 have been calculating
ab initio adiabatic polarization potentials for both electron-atom
and electron-molecule scattering. In the adiabatic approxima-~
tion,53’5“’71_76 the scattering electron is assumed distinguishable
from the bound electrons, and the target is assumed to respond com-
pletely to the scattering electron as if it were a fixed perturbing
charge. Thus the position of the scattering electron is treated as
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a slowly varying parameter in the target Hamiltonian. In this
approximation the scattering electron is treated on the same footing
that a nucleus is treated in the electronically adiabatic separation
of electronic and internuclear motion. To include polarization of
the target's charge distribution by the adiabatic approximation, we
fix the position of the scattering electron at r and recalculate the
wave function for the target in the presence of this fixed perturb-
ing charge. The difference between the energy calculated this way
and the energy of an isolated target system is the sum VSPa(r) of
the static and adlabgtlc polarization potentials. Subtract%ng the
static potential yS (r) or adding the exchange potential vE®) yields
the adiabatic polarization potential vP ér) or the static-exchange-
plus-adiabatic-polarization potential yS a(r) respectively.

As discussed elsewhere,68’70 to calculate accurate adiabatic
polarization potentials it is necessary to use extended basis sets
including both bond-polarization functions and diffuse functions.
The latter are necessary to represent the perturbation caused by
the scattering electron. The resulting adiabatic polarization
potential generally dominates the static potential for a wide range
of electron-molecule relative positions, especially at large
distances of approach. For example, for approach of a scatterlng
electron to N2 along the perpendicular bond-bisector, IV a(r)[
exceeds IV (¥)| from about r = 2 aj to r = 10 ag, and for_the same
direction of+approach of a scattering electron to Li,, ‘VPa(r)’
exceeds IV (r)| for all r less than about 17 ag. These and some
other cases are summarized in Table 9. The conclusion to be drawn
is that polarization effects, at least as calculated with the
adiabatic approximation, are often dominant over some range from
medium r to a large enough r that the interaction is negligible or
almost negligible. Furthermore, for large electron-target separa-
tions and intermediate-energy incident electrons, the perturbation
is small enough and the scattering electron is moving slow enough
that the adiabatic approximation might give realistic results.

The large-r interactions dominate the large-impact-parameter, small-
scattering-angle collisions and so we expect small-angle electron-
ically elastic scattering to be dominated by polarization effects

at intermediate impact energies. The small-r region is harder to
treat. The interaction of the scattering electron with the nuclei
is strong; this interaction is fully included in the static poten-
tial; thus the static potential dominates near the nuclei. In the
middle region where the static potential and polarization potential
are comparable and are both large, the polarization potential cannot
be neglected but it cannot be calculated with the adiabatic approxi-
mation (both because the interaction is larger and also because the
large static potential speeds up the scattering electron). We’7
have performed tests of the sensitivity of differential cross
sections to the small-r polarization potential. In particular we
examined the electronically elastic scattering by rigid N, and
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Table 9. Range of distances over which I Pa ; ]
exceeds ‘Vs(r)] for collinear (y = 0°)
and perpendicular-bisector (y = 90°)

approach of an electron to various

targets
Target x_(deg) Ar (ag)
Hza 0 2.2 - 7
90 0.9 - 11
. b
i, 90 0.0 - 17
Np© 0 2.5 - 7
90 2.0 - 10

aInterpolated from reference 66.
bInterpolated from reference 67.

CInterpolated from reference 68.

summed the cross sections over all final rotational states. This
yields what we call the electronically, vibrationally elastic,
rotationally summed cross section or, for short, the rotationally
summed cross section. For 30 eV incident electrons, the greatest
sensitivity of the rotationally summed differential cross section
to the small-r effective potential was found for scattering angles
6 near 85°, Z.e., for approximately sideways scattering. In the
example showing the greatest sensitivity, changing the polariza-
tion potential such that the maximum magnitude of its spherical
average increased from 4 eV to 18 eV changed the rotationally
summed differential cross section at 85° by a factor of 1.8.

Figure 2 compares three calculated differential cross sec-
tions"*7:69:78 for electron scattering by rigid N, at 30 eV to
experimental results.’2>80 A1l the differential cross sections in
this figure are for electronically, vibrationally elastic scatter-
ing but are summed over final rotational states. One calculation
is in the static-exchange approximation, Z.e., polarization is
neglected. In this calculation the differential cross section for
8 < 30° is seriously underestimated. This means that the large-r
effective potential, which controls the scattering at small
scattering angles, is seriously underestimated when polarization is
neglected. For another calculation in Figure 2, the polarization
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potential is the ab initio extended-basis-set adiabatic one.58:69
The spherical average of this polarization potential for N, has a
well depth of 13 eV. The figure shows that the differential cross
section for 6 = 60° - 100° is overestimated by a factor of about
1.4 - 2.2. The model studies’’ mentioned in the previous paragraph
show that this overestimate corresponds to too much attraction in
the small-r effective potential. Figure 2 also shows a curve that
is in good agreement with the experimental results for both near-
forward and near-sideways scattering. For this curve polarization
is treated in the INDOX/AAP model.l® The first step in this model
is to calculate the polarization by the adiabatic method using the
INDOX molecular orbital formalism with X adjusted to the static
potential. Since the INDOX formalism is a minimum-basis-set
method, it seriously underestimates the adiabatic polarization
potential; thus the well depth of the spherical average of the
INDOX polarization potential for N, is only 3 eV. The next step
is to expand the polarization potential

Xrlr)lax
VER = T V@ G- R (20)
A A
A=0
Notice that
)
V)\(r),\z - 5 A =0,2 (21)
>0
and
r“vA (r)~—— 0 A # 0,2 (22)
T

where o, is the spherical average of the static (Z.e., zero-fre-
quency) electric dipole polarizability, Oy is its anisotropy, and
all odd-) terms vanish at all r for homonuclear diatoms. As
discussed above on the theoretical grounds of the size of the per-
turbation and also on the empirical grounds of the comparison to
experiment of the differential cross section calculated from the
adiabatic model, we expect that the adiabatic approximation is
realistic at large r but that it overestimates the effective poten-
tial at small r. Thus we decided to create a hybrid potential
composed of the INDOX one at small r and the accurate adiabatic one
at large r. Although the INDOX method seriously underestimates Vga
and 0,, it is systematically more accurate for o,. Thus we defined
the INDOX/AAP polarization potential so that it is given by the
INDOX polarization potential for X = 0 at small r and for A > 0 at
all r but equals the accurate asymptotic adiabatic polarization
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Figure 2.
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Rotationally summed differential cross sections for elec-
tronically elastic scattering of electrons by rigid N, at
30 eV impact energy. The curve labelled SE is a static-
exchange result for the INDOXI/ls static potential and
density and the semiclassical exchange approximation.
This calculation is from Onda and Truhlar (reference 78).
The curve labelled SEP INDOX/1s/AAP/HFEGE is a static-
exchange~-plus-polarization result for the INDOX/1ls static
potential and perturbed density, the Hara free-electron-
gas exchange approximation, and the INDOX/AAP model for
the polarization potential. This is potential ix of Onda
and Truhlar (references 47 and 81), and the differential
cross section is an unpublished calculation of Onda and
Truhlar based on rotational-orbital basis set XX/2-6 of
Onda and Truhlar (references 48 and 81). Less well-
converged calculations of the differential cross section
for this potential were published in Truhlar et ql.
(reference 69) and Onda and Truhlar (reference 47). The
curve labelled SEPa is a static-exchange-plus-adiabatic-
polarization result in which the accurate static potential
of Rumble and Truhlar (reference 21), based on the Cade-
Sales-Wahl wave function, and the accurate adiabatic
polarization potential of Eades et al. (reference 68)

are substituted for the static and polarization parts of
the » = 0 and A = 2 terms in potential ix. The differen-
tial cross section is based on that in Truhlar et al.
(reference 69), where the potential is called potential
X. Since Jp,y for that calculation is only 20, the
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Figure 2 (continued)

differential cross section is not converged for 6 < 5°,
and the results are corrected for that in the present
figure (the correction is about 7% at 0°). The experi-
mental results are shown as symbols. The diamonds are
from the experimental results of Srivastava et al.
(reference 79), as re-analyzed by Onda and Truhlar
(reference 48). The circles are the experimental results
of Shyn and Carignan (reference 80).

potential for A = 0 for large r. Details of the joining are given
elsewhere.l® The physical motivation behind the choice of a minimum-
basis-set polarization potential for small r is that when the
scattering electron gets speeded up by the strongly attractive
static potential at small r, the target does not have time to
polarize into the full Hilbert space. Rather it gets polarized
only into 'mearby" regions of Hilbert space. Although this moti-
vates reducing the variational freedom for the small-r polarization
potential, it does not justify the precise choice of the INDOX
formalism. That choice, however, can be and has been tested
empirically by applications to several molecules,16-48,69,81-84
such as in Figure 2. TFigure 2 shows that the INDOX/AAP model pro-
vides a reasonable treatment of charge polarization effects for N,
at 30 eV.

A very commonly used form for the polarization potential is

P—>A_I-OLO &y > A
V (r,R) = |- 2%~ Ih P, (cos X)]f(r,R,rc) (23)

where f(?,ﬁ,r ) is a cutoff function containing a cutoff parameter
r.. This model has its historical roots in the Bates-Massey polari-
zation potential for electron-atom scattering. Bates and Massey®®
suggested that one need not know the form of the polarization poten-
tial at small r because polarization effects are relatively unimpor-
tant there. Thus for the electron-0 scattering, they used

P “ng
vV (xr) = - gl m (24)

where o is the contribution to the atomic static electric dipole
polarizability from the (n%) subshell and Thg is the subshell
radius. This procedure can now be better justified since it is
known more rigorously7l,72’86 that the true polarization potential
for electron-atom scattering at energies below the first electron-
ically inelastic threshold has the asymptotic form
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(25)

o = Z a0 (26)
nf

The result of equation (25) can also be obtained with the adiabatic
approximation, either variationally or by second order perturbation
theory; thus the adiabatic approximation is rigorously valid at
large r at energies below the first electronically inelastic
threshold. We have argued above that the adiabatic approximation
is reasonable at large r even at intermediate energies. We have
also shown that the form of the polarization potential is important
at small r for intermediate-energy electron-molecule scattering,t%>
and several other studies (see, e.g., references 5, 20 and 87 and
references therein) have shown that the low-energy electron-molecule
scattering processes, especially low-energy shape resonances, are
also sensitive to the small-r polarization potential. Nevertheless

the most popular model for the cutoff function has been to simplify
£(F,R,r,) t05>20722,65,87-89

f(r,rc) =1 - exp[—(r/rc)6] (27)

This model assumes that the cutoff function is spherically symmetric
and that VP vanishes at the center of the molecule. Neither of

these assumptions is strictly justifiable. Notice that the cutoff
function in equation (23) must serve a dual role. It must account

for deviations of the adiabatic polarization potential from its
asymptotic form, and it must account for deviations of the true
(nonadiabatic) polarization potential from the adiabatic one. It
might be easier to model the polarization potential as follows®5,69576

VP(?,ﬁ) = VPa(?,ﬁ)g(?,ﬁ,parameters) (28)

where VP is the true polarization potential, VPa is the adiabatic
one, and g is a nonadiabaticity function. In this case one would
expect g to depend primarily on the local kinetic energy and on the
magnitude of vPa, At small r the local kinetic energy is dominated
by the speedup caused by the static potential and depends only
secondarily on the incident kinetic energy.89 Thus one approach to
calculating g at small r is to neglect the dependence on the inci-
dent energy and to model g as the ratio of the polarization potential
calculated adiabatically with restricted variational freedom to the
full adiabatic polarization potential. This leads us back to the
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INDOX/AAP kind of model. This discussion illustrates one advantage
of this kind of model over the combination of equations (23) and
(27), namely, the INDOX/AAP model uses a physical model to avoid
more explicit assumptions about the dependence of VP(r,x) on r and
x at small r. This difference becomes even more important for the
calculation of vibrational-excitation cross sections, where the
dependence of vP on internuclear distances is required.l*a’el’sl+
Equations (23) and (27) require extra assumptions, e.g., that r

is independent of internuclear distances, whereas the INDOX/AAP
model can, if desired, be applied to additional geometries with no
additional assumptions and no new parametrization. Alternatively,
the parameter X may be readjusted at each new molecular geometry.S"

Another approach6”’90 to the nonadiabaticity function g in
equation (28) may be based on an extrapolation of the leading non-
adiabatic correction at low energy and large r. The static
electric dipole polarizability of an S-state atom may be calculated
by second order perturbation theory as?9l

o 2[u |2
oo 7 ml® @
n#l n

where the sum is over excited P states and it includes an integral
over the continuum, yp,; is a dipole transition matrix element from
the ground state, and w, is an excitation energy. In the average
energy approximation (wn 2 u for all important n), this becomes

28

o = = (30)
w
where
= 2 1
5 =1 lu,l (31)
n
Using the same average energy approximation, the dipole part of the
polarization potential has the form?2,93
P(di) s 38, 6sv?
\Y (r) —~ ';);’K + u)2r6 + m3r6 (32)

T >0

where v is the incident speed, which equals k in atomic units. The
third term is the leading nonadiabatic correction and the first term
is the leading term [compare equations (25) and (30)] in the
adiabatic polarization potential. Comparing these two terms shows
that
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2
v () NvPam/(l + 93—2—) (33)

r-o

The relation in equation (33) is an approximation based only on the
leading adiabatic and leading nonadiabatic term at large r; it
iénores for example the r—© quadrupole-polarizability term in
V:@(r). ©Nevertheless we made the ansatz that equation (33) can be
used to obtain an effective (nonadiabatic) polarization potential
from the adiabatic one at all r at low and intermediate energy.

The theory has been tested so far only for electronically elastic
electron-He scattering.6” The results are quite encouraging; see,
e.g., Table 10 where phase shifts calculated this way are called
SE/EDPP (static-exchange plus energy-dependent polarization poten-
tial). These phase shifts are compared to static—exchange (SE)
ones, for which polarization is neglected, to static-exchange-plus-
adiabatic-polarization (SEPa) ones, and to accurate? ones. (The
MEP method, for which results are also given in this table, will be
discussed below.) The exchange potential used for the SE, SE/EDPP,
SEPa and MEP calculations on electron-He is the semiclassical
exchange potential. A comparison to accurate calculations or to
experiment tests both the exchange and polarization potentials.
However, semiclassical exchange is accurate enough for He at the
energies considered here that we can discuss the results as if they
are a test of the polarization potential alone. The results are not
very sensitive to the parameter w; for Table 10 we set it equal to

Table 10. Calculated phase shifts for electron-He
scattering at two impact energies

n (rad)
£ a a a b
L (ev) sE? SEPa SE/EDPP MEP Accurate
0 19 1.70  1.97 1.73 2.13 1.80
100 1.05 1.2 1.05 1.15 + 0.114
1 19 0.24  0.45 0.29 0.44 0.32
100 0.34 0.51 0.34 0.45 £ 0.114
2 19 0.03  0.09 0.05 0.08 0.06
100  0.11  0.22 0.12 0.19 + 0.06i

aReference 64 (semiclassical exchange).
bReference 94.
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30 eV, which is 1.22 times higher than the ionization potential.BL+
A larger positive phase shift corresponds to a more attractive poten-
tial; thus Table 10 shows that the EDPP does reduce the attractive-
ness of the adiabatic polarization potential by about the right
amount at 19 eV impact energy. The differential cross section at

19 eV as calculated by the SE/EDPP model is in excellent agreement
with experiment.95 Unfortunately Table 10 shows that the SE/EDPP
model predicts results very close to the SE ones for s, p and d
waves at 100 eV impact energy. The effect of polarization is
greater for the higher partial waves in the SE/EDPP model and as a
consequence the differential cross section at 0° scattering angle

is increased from 1.0 a%/sr in the SE model to 1.5 ap/sr_in the
SE/EDPP one. However, the experimental value®® is 3.1 ap/sr. Thus
the non-adiabaticity function in this model decreases too rapidly
with increasing energy for He. The model could be applied to any
molecule for which an adiabatic polarization potential is available,
and it would be interesting to do so.

We conclude this section with a brief discussion of the matrix
effective potential (MEP) method. This is a dynamic method for
including polarization effects in electron scattering calculations.
One way to include charge polarization effects in electron scatter-
ing calculations is by a close coupling expansionw’98 of the
scattering wave function, where the radial wave functions f:(r) are
determined either by numerical integration or by some alternmative
method like R matrix theory or an algebraic variational calcula-
tion.3:55,87,99-103 fFor example, for electron-atom scattering we
may write

> > > 1 Ao
¥(r,x) = jzl by GO L ngmj (r) (34)

to illustrate the idea, although in practice one would generally
work in a total angular momentum representation and antisymmetrize.
In equation (34) the w.(g) are target eigenstate597_10O or pseudo-
statesl%! and the close coupling equations are

2 9, (15 + 1) ) N g
e 5 £.(r) = -2 jzl vij (r)fj (r) (35)

i=1,2, ..., N
To include the effect of antisymmetrization we replace the N x N

matrix VS by XSE, as discussed in section III; then the equation
for fl(r) becomes
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42 (R, + 1) N
“a2 T - ki]fl(r) -2 le v (r)f (r) (36)

To obtain accurate results one must converge the calculations with
respect to increasing N. In the optical potential approach we seek
to reglace the right side of equation (36) with a single term:

(r)f (r). In the matrix optical potential method (also called
the generallzed potential method), 3,104-108 we replace the N coupled
equations (36) by a small set of M coupled equations (M_< N) and we
modlfg all the potential terms, Z.e., replace all the Vi: by Wj JP
The WY should be chosen so that the solution to the M coupled
equatlons yields transition amplitudes among the M retained states
equivalent to those that would be obtained from equation (36) with
large N. If M = 1, the matrix optical potential reduces to the
original optical potential that we have been discussing in this
chapter. In the matrix effective potential method of references 63
and 64, we replace the N cqupled equations by a smaller number,
generally two, we retain Vll(r) unmodified, and we try to choose the
other elements of the potential matrix so that the elastic scatter-
ing in the first channel is approximately equivalent to what would
be calculated from equation (36) with large N. Thus the second
channel does not represent any one eigenstate or pseudostate of the
target; it is a pseudochannel but it does not represent a pseudo-
state, Z.e., there is in general no single r-independent state of
the target whose inclusion would accomplish what we try to accomplish
with one or a few pseudochannels.

In our work®3,6% we used second order perturbation theory and
the adiabatic polarization potential to obtain the matrix effec-
tive potential. In second order perturbation theory the adiabatic
polarization potential is given by53’5”’86’99

N IV ,(r)]
vy = 7 A (37)
T2 B

where o, is the excitation energy, Z.e.,
k2 = k2 - 24, (38)

We determine Vi, (r) such that a single term on the right side of
equation (37) yields the full (and assumed known) adiabatic polari-
zation potential. Thus the matrix effective potential is
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vSE () v°2 (r)w]

P2 myel®  viE(r)

where w is some average excitation energy (which we set equal to
the ionization potential for our applications). We call this the
MEP method. For simplicity we set Vgg(r) equal to V%%(r).

Table 10 shows that the MEP model predicts phase shifts that
are too large at 19 eV, Z.e., the effective potential is too
attractive at low energy. Thus the forward peak in the MEP differ-
ential cross section is about 15% too large at 19 eV.®* The
differential cross section calculated by this MEP model becomes
more accurate at high energy.®"

An interesting aspect of the MEP model is that the pseudo-
channel can have outgoing flux if E > w. Thus it is not necessary
to use complex potentials to mimic the loss of flux from the first
electronic channel. Since the pseudochannel is supposed to mimic
the total effect of all excited electronic states, the flux associ-
ated with it should be compared to the whole electronically
inelastic cross section. Table 11 compares this inelastic cross
section and the total (elastic plus inelastic) cross section to

Table 11. 1Inelastic and total cross sections
for electron-He scattering

Oinel (a%) Otot (a%)
E (ev) NLEP® MEP®  Experiment® NLEP® MEP®  Experiment®
30 1.00  0.99 0.82 8.59  9.96 8.80
50 1.82  2.13 1.53 6.35  7.65 6.47
100 1.10  2.47 1.89 3.15  4.93 4.07
200 0.46  1.98 1.65 1.38  3.05 2.63
400 - 1.37 1.16 — 1.85 1.61

8peference 62.
bReferences 63 and 64.

“Reference 109.
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experiment.®%>109  The agreement is very good, especially consid-
ering that the calculation involves no adjustable parameters. As

a standard of comparison, Table 11 also shows the prediction of the
recent effective potential formalism of Scott and Taylor.62 Their
effective potential, which is derived from the many-body Green's
function formalism of Schneider et al.,%2 is nonlocal, complex and
energy-dependent. In contrast the matrix effective potential is
local in the coordinate representation, real and independent of
energy. The table shows that the matrix effective potential
accounts more realistically for the energy dependence of the loss
of flux from the electronically elastic channel. The MEP model can
be applied to any system for which the adiabatic polarization
potential is known; it would be interesting to apply it to molecules.

Two promising ab initio methods for including charge polariza-
tion effects are R matrix theory including electronic pseudostates110
and the T matrix method including an optical potential obtained by
diagrammatic perturbation theory.111 So far these methods have only

been applied at low energy where only one electronic channel is
open. 110,111

V. FURTHER TESTS AGAINST EXPERIMENT

We have already mentioned some comparisons of our calculated
cross sections to experimental ones for He and Ny. In this section
we briefly summarize some other comparisons.

For most atoms and molecules, the static potential near the
nuclei is so strong that scattering calculations using plane wave
scattering states do not give very useful results at intermediate
energies. 1,112,113 gor H, the nuclear charge is small and plane
wave approximations are more useful. We have applied the Born
approximation (first order perturbation theory with plane wave
scattering states and a static interaction potential) and the
polarized Born approximation (plane wave scattering states and a
static-plus-polarization interaction potential) to electron-H,
scattering at 7-912 eV to calculate elastic scattering, rotational
excitation, and vibrational excitation cross sections.82,114-117
For these calculations the static potential was a sum of scaled
atomic potentials plus quadrupole terms, the exchange potential was
obtained from the Rudge modification of the Bonham-Ochkur expres-
sion, and the polarization potential was an analytic fit to the
nonadiabatic model of Lane and Henry.118 The results for the
rotationally summed vibrationally elastic and rotationally summed
vibrationally inelastic cross sections were found to be in generally
good agreement with experiment for all scattering angles (8) at
the lowest energies and for scattering angles less than about 90°
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at 30-100 eV. At even higher energies the plane wave approximation
begins to break down at even lower scattering angles.

When the plane wave approximation breaks down we must include
distortion of the scattering states caused by their interaction with
the effective potential. Possible ways to do this are by the
Glauber approximation119 and the multiple scattering method, 120
More complete treatments of the scattering by an anisotropic poten-
tial lead to coupled-channels equations. If rotation of the
molecule is neglected during the collisional event, which is an
excellent approximation for intermediate-energy electron-molecule
scattering, this leads to the fixed-nuclei coupled-channels
formalism in which various values of 2 (the orbital angular
momentum quantum number of the relative motion) are coupled
together, but molecule-frame symmetries, like M (the component of I3
along the molecular axis for a linear molecule) are conserved,®>11,87
The problem is block diagonal in the conserved symmetries. This
formalism was used for the calculations already presented in Tables
4 and 7. To calculate j = j' cross sections (where j is now the
rotational quantum number) we can make a transformation of the
molecule-frame results to a new representation,5’87 or we can include
rotational motion in the calculation all along. The latter procedure
leads to rotational close coupling.®287>121 Rotational close
coupling calculations are coupled-channels calculations for the
radial wave functions for the scattering electron in a representa-
tion where the angular wave functions are combinations of Y (r)
and Y. (R) Here the components m, and m; are defined alongza
laborat%ry frame axis, and the linear-combination basis functions
correspond to definite values of the total angular momentum quantum
number J. Since J is conserved, the problem is block diagonal in J.
The usual procedure is to limit the basis set to a maximum rota-
tional quantum number j .. and a maximum total angular momentum
quantum number J .. and then to include for all (J,3) pairs all the
% values allowed by parity conservation and the triangle inequality,
\J - ]l < % <J+ j. Another scheme for plcking the % values for
given (J,J) palrs has also been proposed and has been shown to
lead to convergence with few basis functions, Z.e., fewer coupled
channels.16>48 1In either scheme a converged calculation for a
system with a highly anisotropic interaction potential requires a
high value of j, ... The rotational close coupling method was used
for the calculations already discussed in Table 8 and Figure 2.

Hy, is the only molecule for which nonresonant rotational exci-
tation has been experimentally resolved from pure elastic scatter-
ing.122’123 The ratio of rotational excitation to pure elastic
scattering was found to increase by one order of magnitude as 6 was
increased from 20° to 120° at 10 eV and by two orders of magnitude
when 8 was increased from 10° to 135° at 40 eV. To compare with
these calculations we performed rotational close coupling
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calculations for a static-exchange-plus-polarization approxima-
tion."> The static potential was a sum of scaled atomic potentials
plus a quadrupole term (as used for the Born calculations), the
exchange potential was the semiclassical exchange potential, and
three different polarization potentials were tried. The various
polarization potentials were all obtained by applying various cutoff
functions to the accurate adiabatic asymptotic form, Z.e., by using
equation (23). The effect of the variations of polarization poten-
tial on the calculated cross sections was small. With no empirical
parameters, good agreement with experiment was obtained for the
angle dependences and magnitudes of the differential cross sections
for both pure elastic scattering and rotational excitation except
for elastic scattering for & < 30°, where the theoretical differen-
tial cross section is too large; at 40 eV and 10° the discrepancy
is about a factor of 2%.

For H, we included only rotational states up to j = 3 in the
rotational close coupling expansion. This effectively truncates
the Legendre expansion of the potential at Ap,, = 6. This is
apparently sufficient for qualitatively correct results for H,,
which is not very anisotropic. For N, we performed a series of
rotational-vibrational close coupling calculations with j .. = 2
for impact energies of 5, 10 and 30-70 ev.124-126  Thigs effectively
truncates the potential at Ay, = 4. TFor E > 30 eV this gave poor
agreement with the experimental rotationally summed, vibrationally
elastic differential cross sections for 6 > 30°. The large-angle
scattering is controlled by the short-range part of the effective
potential. This comparison to experiment indicates that the e =N,
interaction potential is too anisotropic at short range for a
Jmax = 2 truncation of the angular basis set of the scattering
calculation to yield to a correct dependence of the differential
cross section on scattering angle for 6 > 40°. These calculations
did, however, predict the magnitude of the vibrationally inelastic
integral cross sections within a factor of 2.3 at all seven energies
examined. Note, however, that the energy range 10-30 eV was not
included in this series of tests. This energy range will be dis-
cussed again below.

Based on the experience summarized above and in sections I-III,
we see that to obtain qualitatively accurate differential cross
sections for general molecules at intermediate energy, one requires
a certain minimum description of the scattering event. This con-
sists of using an effective potential containing static, exchange
and nonadiabatic polarization interactions and treating the
scattering by this potential with many coupled channels to handle
the high anisotropy. Onda, Thirumalai and I have recently imple-
mented this approach by performing converged or nearly converged
rotational close coupling calculations with nonadiabatic SEP
potentials for N2,16a“7’”8’69’77’78’81 CO,82 CQH2,83 and
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002.15a69’8” In parallel work Rumble and 121,22,127,128 haye studied
intermediate-energy electron-N, scattering by converged molecule-
frame coupled channels calculations, again including all three inter-
actions (static, exchange and polarization) in the effective poten-
tial. Some of the calculations for vibrationally elastic scattering
by N, were summarized in section III. We also performed calcula-
tions of the vibrationally inelastic cross sections for N, at 5, 10,
20, 25, 30, 35 and 50 ev.48581,128 (pe get of calculations™8,8!
used the INDOX/ls wave function to compute the charge density for
the static and exchange potentials and used the INDOX/AAP polariza-
tion potential. The other!?8 used ab initio charge densities and a
semiempirical polarization potential based on equations (23) and
(27). The following discussion refers to the former set of calcula-
tions since the latter ones are only partially analyzed at this
time. The results of the former set at 10 eV are in excellent
agreement with experiment.815126 1n fact they agree better than

the calculation of Chandra and Temkinl?? for which the polarization
potential contains a parameter adjusted to the low-energy II
resonance (this symmetry still dominates vibrational excitation at
10 eV). It is probable, however, that the difference of our
calculated cross section from theirs is caused by our better treat-
ment of exchange or our better convergence of the coupled-channels
expansion than by the difference in polarization potentials. Our
static potential differs from theirs too.

At 20-35 eV our calculated vibrational excitation cross
sections exhibit a resonance,“®:%9 as do the experimental cross
sections.112,125,130 gipce this resonance can be predicted by a
scattering calculation involving only the effective potential in a
single electronic state, it must be classified as a single-particle
resonance, popularly called a shape resonance. Our calculations
predict that the 0 » 6 rotational excitation will also exhibit this
shape resonance."® The shape resonance is characterized by J = & =
3 in our laboratory-frame calculations and by L, symmetry in
molecule-frame calculations. For the vibrational excitation case,
cross sections exhibiting the intermediate-energy shape resonance
have also been calculated by Dehmer et al.1205131  They used a
muffin-tin effective potential in which polarization is entirely
neglected inside in the muffins and the effective potential is
assumed constant in the inter-muffin regions.120 These muffin-tin
approximations affect the shape of the effective potential and the
magnitudes of the calculated partial cross sections in important
quantitative ways.127 To the extent though that the strong static-
exchange potentials near the nuclei dominate certain aspects of the
scattering, the muffin-tin method provides a useful semiquantitative
way to survey the qualitative features of the scattering cross
sections. Its success in explaining this intermediate-energy shape
resonance in N, shows that the static-exchange potential near the
nuclei does indeed sometimes dominate the scattering. In such
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cases the muffin-tin methed is especially useful as a survey tool

because the calculations are much less expensive than the coupled-
channels calculations required for a converged treatment of a non-
muffin-tin effective potential like ours.

Our calculated integral cross section for vibrational excita-
tion of N, at 50 eV exceeds the experimental one by a factor of
2.3.81 Both the calculated®! and the experimentall?5 yibrational-
excitation differential cross sections are flat to within a factor
of two for scattering angles 20° to 135°. The reason for the
discrepancy in the magnitudes is unknown.

CO and C,H, are interesting cases for comparison with N, since
the three molecules are isoelectronic. The rotationally summed
differential cross section calculated for CO at 10 eV82 isg very
similar to the one calculated for N,, in agreement with the experi-
mental finding132 that these cross sections are similar. The
rotationally summed cross sections for 10 eV scattering by CZH2,83
however, is much larger than for N,. In fact the calculated rota-
tionally summed integral cross section for Cgﬁz at 10 eV is 96 a%,
as compared to calculated®! and experimental?®>133 values of 53
a% for Ny at 10 eV. There is no experimental data available yet
for CoH,, although Newell and coworkers!3% have promised to present
some soon. Apparently the cross section is larger for C,H, than for
CO or N, because of the much greater spatial extent of the tetra-
atomic; this is a static potential effect. It is also clear that
the spatial-extent factor in C,H, has a larger effect than
asymmetry factor does in CO.

Figure 3 compares our calculated cross sections for CO, and
CO. In this case the theoretical cross sections®2,8% differ more
than the experimental ones!32,135,136 45, The difference is caused
by the calculations overestimating the differential cross section
for COp. The magnitude of the CO, cross section at 10 eV appears
to be very sensitive to details of effective potential,!37 and
Figure 3 presents a challenge for us to improve our effective
potential models. As discussed in section II, however, we expect
our models to be more accurate as we proceed from 10 eV, the bottom
of the intermediate-energy region, up to higher energies. The
angle dependence of the CO, cross section in Figure 3 provides an
interesting test of theory because the experimental angle depen-
dence is independent of any possible errors in putting the experi-
ment on an absolute scale. The theoretical and experimental angle
dependence agree very well for 6 = 15°-70°. The angle dependence
of an earlier CO, calculation!®>%? at 20 eV agreed well with an
unnormalized experimentl38 for 6 = 15°-60°.

This chapter has emphasized electronically elastic scattering.
As discussed in the first paragraph, though, electronically inelastic
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Figure 3.
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Rotationally summed differential cross sections for
electronically elastic scattering of electrons by rigid
CO and CO, at 10 eV impact energy. The curves for both
molecules are static-exchange-plus-polarization results
using the INDOX/ls static potential and perturbed density
and the INDOX/AAP model for the polarization potential.
The CO results are for Hara free-electron-gas exchange
and the CO, results are for semiclassical exchange. The
CO results are from Onda and Truhlar (reference 82) and
the CO, results are from Thirumalai et al. (reference 84).
The diamonds and +'s are respectively the experimental
results of Tanaka et gl. (reference 132) for CO and the
experimental results of Register et al. (reference 135)
for CO,. The circles are the experimental results of

the JPL group (reference 136) for CO. The last-named
measurements yield only relative values; they were
normalized to the calculation of reference 82 at 15° for
this figure.
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scattering in the intermediate-energy region is very important.

The potentials we have discussed so far are diagonal matrix elements
in the electronic quantum numbers of the target. To treat electron-
ically inelastic scattering we require transition potentials. These
are off-diagonal matrix elements in the electronic quantum numbers
of the target, and, just like the diagonal potentials, they can be
decomposed into static, exchange and polarization parts.3 The
simplest way to extend the present treatment to electronically
inelastic scattering is to treat the target asymmetry by the same
coupled-channels methods based on diagonal effective potentials,
thus yielding electronically elastic coupled-channels trial func-
tions for both the initial and final states of an electronically
inelastic collision. The coupling of these states can then be
treated to first order in the transition potential, Z.e., by the
distorted-wave Born approximation®°°°9 (usually called DWBA in
nuclear physics and DWA in molecular physics). The whole calcula-
tion just outlined is a coupled-channels approximation for rota-
tional and relative orbital motions and a distorted wave approxima-
tion only for electronic motions. Calculations involving this
approach are just now starting to appear in the literature for
intermediate-energy electron-molecule scattering.139_1“1 So far,
however, both diagonal and off-diagonal polarization effects have
been neglected in these calculations. To go beyond a DWBA treat-
ment of electronic motions, one can use electronic close coupling,
which has been applied to electronically inelastic electron-
molecule scattering by Lane and Lin and their coworkers.l%2>1%43

In these cases, as in the distorted wave calculations mentioned
above, polarization effects were neglected in both the diagonal
potentials and transition potentials. As one increases the number
of electronic states explicitly retained in the wave function
expansion, the polarization contributions to the matrix optical
potential become smaller, and in the 1limit they disappear. However,
in the applications to electron-molecule scattering that have been
made so far, only two electronic states were retained in each
calculation. There are several methods for treating electronically
inelastic scattering that have so far not been applied to electron-
molecule scattering. Two particularly promising approaches are R
matrix theory87’110’1““ including electronically excited open
channels and various versions of algebraic variational
methods.3>102,103,145-149 the fyrther development of off-diagonal
effective potentials and techniques for using them to calculate
electronically inelastic electron-molecule scattering cross
sections at intermediate nergies are research problems that we

hope will show more progress in the near future.
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