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Fragment methods have been widely studied for computing energies and forces, but less attention

has been paid to nonenergetic properties. Here we extend the electrostatically embedded many-

body (EE-MB) method to the calculation of cluster dipole moments, dipole moments of molecules

in clusters, partial atomic charges, and charge transfer, and we test and validate the method by

comparing to results calculated for the entire system without fragmentation. We also compare to

calculations carried out by the conventional many-body (MB) method without electrostatic

embedding. Systems considered are NH3(H2O)11, (NH3)2(H2O)14, [Cl(H2O)6]
�, (HF)4, (HF)5,

(HF)2H2O, (HF)3H2O, and (HF)3(H2O)2. With electrostatic embedding, we find that even at the

pairwise additive level a quantitatively accurate description of a system’s dipole moment and

partial charge distribution and a qualitatively accurate description of the amount of

intermolecular charge transfer can often be obtained.

1. Introduction

Fragment methods constitute one of the most powerful

methods for modeling large and complex chemical systems.1–34

To date, most fragment models have been developed for the

purpose of calculating energies. However there is also a need

to calculate other properties, such as the charge distribution.

In this article we consider how well the electrostatically

embedded many-body (EE-MB) approximation7,25 can predict

charge distributions in extended clusters, in particular cluster

dipole moments, dipole moments of individual molecules in

clusters, partial atomic charges, and charge transfer. The

inclusion of charge transfer in our study is of particular

interest because it is usually considered a shortcoming of

fragment methods that they do not include charge transfer

between fragments (for a recent study showing one way to

overcome this restriction, see the work of Isegawa et al.35).

There has been considerable interest in devising quantum

mechanical methods for calculating molecular dipole moments

in condensed-phase materials. For example, much work has

been done using maximally localized Wannier functions

(MLFW) to estimate dipole moments of individual molecules,

charge distributions, and bond orders in aqueous solutions

and crystalline solids with defects.36–46 These methods require

the user to perform an electronic structure calculation using

a plane wave basis set; the final molecular orbitals obtained

in the plane wave basis are then transformed into localized

functions that can be assigned to a specific molecule or

fragment and used to calculate molecular dipole moments

and charge distributions. The computational cost of MLWF-

based calculations therefore scales asymptotically with system

size in the same way that the chosen electronic structure method

does. The difficulties of calculating partial atomic charges in

condensed phases have also been recently discussed.47,48

In this work, we investigate the ability of the EE-MB

method to predict charge distributions in molecular clusters.

We examine several aspects: (i) modeling the full-system

system dipole moments of clusters directly (that is, without

using the concept of partial atomic charges charges), (ii)

modeling partial atomic charges, (iii) using the partial atomic

charges to calculate dipole moments of individual molecules in

a cluster, and (iv) using the partial atomic charges to calculate

net charges on individual molecules in a cluster. We note that

we are working with concepts (partial atomic charges in (ii),

subsystem dipole moments in (iii), and subsystem net charges

in (iv)) that are not uniquely defined by quantum mechanics,

but they are broadly used modeling constructs whose meaning

is rather intuitively obvious and is widely understood.

The EE-MB calcuations have the advantage that the asymp-

totic scaling of their computational cost with system size

ultimately is not dependent on the chosen level of electronic

structure theory but rather on the level to which one chooses

to take the EE-MB expansion.7 Also, the EE-MB approximation

is relatively easy to implement because it does not require
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minimization procedures and matrix transformations of

molecular orbitals; rather, the EE-MB approximation requires

only linear combinations of fragment properties. Therefore, it

is worthwhile to investigate the ability of various levels of the

EE-MB approximation to predict charge distributions in

noncovalently interacting molecular clusters.

2. Theory

The EE-MB method has been formulated for predicting

energies of an entire system from the energies of its constituent

monomers, dimers, and trimers, each embedded in the electro-

static field of the other monomers.7 The monomers of which

the dimers and trimers are composed are nonbonded frag-

ments, e.g., water molecules in a water cluster or water liquid.

Here we develop the EE-MB approximations to molecular

dipole moments and partial atomic charges. From the latter

we can also calculate interfragment charge transfer.

2.1. Dipole moments

The EE-MB approximation to the magnitude of the full-

system dipole moment (m) is calculated as follows: (1) the x,

y, and z components of the dipole moment are calculated from

the electron densities of the various electrostatically embedded

oligomers (monomers, dimers, or trimers) in the system,

(2) each of the three components of the full-system dipole

moment (mp, where p = x, y, or z) is calculated as a linear

combination of the corresponding components of the oligomer

dipoles (the linear combination used is the same as that used

for the many-body approximation of the system’s potential

energy), and (3) the magnitude of the vector resulting from

step (2) is taken to be m. Let N be the total number of

monomers into which the system has been divided. Let p be

set equal to x, y, or z, let mip indicate the p-component of the

dipole moment vector of electrostatically embedded monomer

i, let mijp indicate the p-component of the dipole moment vector

of electrostatically embedded dimer ij, and let mijkp indicate the

p-component of the dipole moment vector of electrostatically

embedded trimer ijk. Let us define m(1)p , m(2)p , and m(3)p according

to eqn (1a)–(1c), respectively:

mð1Þp �
XN
i¼1

mip ð1aÞ

mð2Þp �
X
ioj

ðmijp � mip � mjpÞ ð1bÞ

mð3Þp �
X

iojok

½mijkp � ðmijp � mip � mjpÞ � ðmikp � mip � mkpÞ

� ðmjkp � mjp � mkpÞ � mip � mjp � mkp�
ð1cÞ

Then we may write the electrostatically embedded one-body

(EE-1B), two-body (or pairwise additive, EE-PA), and three body

(EE-3B) approximations to mp (the p-component of the full-system

dipole moment vector) according to eqn (2a)–(2c), respectively:

mp E mEE-1Bp = m(1)p (2a)

mp E mEE-PAp = m(1)p + m(2)p (2b)

mp E mEE-3Bp = m(1)p + m(2)p + m(3)p (2c)

Finally, we can approximate the magnitude of the full-system

dipole moment vector, m, using the EE-1B, EE-PA, or EE-3B

approximation according to eqn (3a), (3b) or (3c), respectively:

m � mEE-1B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðmEE-1Bx Þ2 þ ðmEE-1By Þ2 þ ðmEE-1Bz Þ2�

q
ð3aÞ

m � mEE-PA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðmEE-PAx Þ2 þ ðmEE-PAy Þ2 þ ðmEE-PAz Þ2�

q
ð3bÞ

m � mEE-3B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðmEE-3Bx Þ2 þ ðmEE-3By Þ2 þ ðmEE-3Bz Þ2�

q
ð3cÞ

The origin and orientation of each oligomer are kept the

same as its origin and orientation in the full cluster to ensure

that the EE-MB approximation of the total dipole moment

vector retains its intended physical meaning even for charged

clusters.

One can also find the ‘‘pure’’ many-body (MB) approxima-

tions to the full-system dipole moment using eqn (1)–(3) with-

out electrostatic embedding; in this case one uses the

components of the dipole moments of monomers, dimers,

and trimers that are not surrounded by some representation

of the electrostatic potential of the rest of the system.

2.2. Point charges

Assume that we have a system that has been divided into N

monomers. If we had the wave function or electron density of

the entire system, we could use one of several available charge

analysis methods (such as Mulliken population analysis,49

CHelpG electrostatic potential fitting,50 or Natural Popula-

tion Analysis51) to assign a partial charge to each atom in the

system. This set of partial charges could in turn be used as a

rough approximation of the entire system’s electron density.

Let us now assume that we do not wish to expend the

computational resources necessary to calculate the electron

density of the entire system directly but that we do have

enough computational resources to calculate the wave func-

tions of the individual monomers, dimers, and trimers in the

system. Our objective is to show here that from the wave

functions of the electrostatically embedded monomers, dimers,

and trimers we may obtain a set of partial charges that

represents the electron density of the entire system. As an

example, let us focus on the partial charge that we would like

to assign to atom A; call this partial charge qA. Let us say that

atom A belongs to monomer i; that is, A A i. We may then

approximate qA (the charge on atom A from the electron

density of the entire system) according to the EE-1B, EE-PA,

or EE-3B approximations according to eqn (4)–(6), respec-

tively. In the EE-1B approximation we have

qA E qEE-1BA = qiA (4)

where qiA is the partial charge assigned to atom A from

the wave function or electron density of electrostatically

embedded monomer i. In the EE-PA approximation we have

qA � qEE-PAA ¼ qiA þ
X
jai

ðqijA � qiAÞ ð5aÞ

¼
X
jai

qijA � ðN � 2ÞqiA ð5bÞ
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where qijA is the partial charge assigned to atom A from the

wave function or electron density of electrostatically embedded

dimer ij (which is composed of monomers i and j). The EE-3B

approximation yields

qA � qEE-3BA ¼ qEE-PAA

þ
XN
jai

XN

kai
k4j

½qijkA � ðq
ij
A � qiAÞ � ðqikA � qiAÞ � qiA�

ð6aÞ

¼
XN
jai

XN

kai
k4j

qijkA � ðN � 3Þ
XN
jai

qijA þ
ðN � 2ÞðN � 3Þ

2
qiA ð6bÞ

where qijkA is the partial charge assigned to atom A from the

wave function or electron density of electrostatically embedded

trimer ijk (which is composed of monomers i, j, and k).

As with the dipole moments, one can calculate the pure MB

approximations to the atomic partial charge distribution of

the entire system by using the partial charge distributions of

the isolated monomers, dimers, and trimers.

In addition to calculating the partial atomic charges for

their own sake, one can also use them to calculate dipole

moments of individual molecules in the cluster.

3. Systems

Several configurations of seven different systems were chosen

for this study: forty-four configurations of (NH3)(H2O)11
(Fig. 1), forty-four configurations of (NH3)2(H2O)14 (Fig. 2),

six configurations of [Cl(H2O)6]
� (Fig. 3 and 4), six configu-

rations of (HF)4 (Fig. 5), ten configurations of (HF)5 (Fig. 5),

six configurations of (HF)3(H2O) (Fig. 6), and two configura-

tions of (HF)3(H2O)2 (Fig. 7). The EE-MB (and in some cases

the MB) approximations of the dipole moment of each

configuration are compared below to the conventionally

calculated dipole moment of that configuration using

the M06-2X52 density functional and the cc-pVTZ+53

basis set. MB and EE-MB approximations of the full-system

M06-2X/cc-pVTZ+ CHelpG50 point charge distributions
Fig. 1 The starting configuration used for a Monte Carlo simulation

of (NH3)(H2O)11.

Fig. 2 The starting configuration used for a Monte Carlo simulation

of (NH3)2(H2O)14.

Fig. 3 [Cl(H2O)6]
�: Interior structures.
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are compared below to the conventional M06-2X/cc-pVTZ+

CHelpG point charge distributions of the microhydrated

chloride, hydrogen fluoride, and microhydrated hydrogen

fluoride systems described in Sections 3.2 and 3.3.

3.1. Aqueous ammonia droplets

The configurations of both of the water–ammonia systems

were obtained as follows: a short Monte Carlo (MC)

simulation with the SPC/E water model54 and the OPLS

ammonia model55 was run using the configurations shown

in Fig. 1 and 2 as the starting points. The configurations

generated during the first 44 steps of these simulations

(including the starting configuration and rejected moves as

well as accepted ones) were chosen as the test cases of the EE-MB

method for dipoles. A conventional (a.k.a. ‘‘full-system’’)

M06-2X/cc-pVTZ+ single-point energy and dipole calcula-

tion was run on each configuration of each system using

Gaussian 09.56 EE-PA and EE-3B dipole moment calculations

were performed on each configuration by the M06-2X/

cc-pVTZ+ method using a modified version of MBPAC

2007-2.57 The M06-2X/cc-pVTZ+ method was used to calcu-

late CM4M58 charges of the equilibrium gas-phase water and

ammonia monomers, and these CM4M charges were used as

the embedding charges in the EE-MB calculations of the

water–ammonia systems.

3.2. Microhydrated chloride ions

The water–chloride systems were also taken from an MC

simulation at 250 K with the SPC/E water model and the

CHARMM parameters for Cl�.59,60 Three of the water–chloride

structures (int1, int2, and int3 in Fig. 3) were selected because

they represent an ‘‘interior’’ chloride ion in liquid water. Each

of the ‘‘interior’’ structures contains at least four hydrogen

bonds to the chloride ion where the O–Cl distance is less than

3.7 Å and where the O–H–Cl angle is greater than 1501. The

other three water–chloride structures (surf1, surf2, and surf3

in Fig. 4) represent a ‘‘surface’’ chloride ion in liquid water.

Each ‘‘surface’’ structure contains fewer than two hydrogen

bonds to the chloride ion, where in this case a hydrogen bond

is defined as having an O–Cl distance of less than 4.7 Å and

an O–H–Cl angle greater than 1451.

Conventional full-system M06-2X/cc-pVTZ+ dipole

moment and CHelpG partial atomic charge calculations were

run on each configuration of each water–chloride system using

Gaussian 09. EE-1B, EE-PA, EE-3B, 1B, PA, and 3B dipole

moment and CHelpG point charge calculations were also

Fig. 4 [Cl(H2O)6]
�: Surface structures.

Fig. 5 (HF)m Clusters, m = 4–5.
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performed for each configuration by the M06-2X/cc-pVTZ+

method using a modified version of MBPAC 2007-2.

For the MB and EE-MB calculations of the water–chloride

structures, two different fragmentation schemes were used: in

fragmentation Scheme 1 (S1), the chloride ion is considered a

separate monomer and a point charge of �1 e is used as its

embedding charge. In fragmentation Scheme 2 (S2), the

chloride ion is paired with the water molecule containing the

atom nearest to the chloride ion and the resulting [Cl�H2O]�

group is considered a single monomer. In Fig. 3 and 4, the

water molecule that contains the atom closest to the chloride

ion is always labeled ‘‘A’’, so that in S2 the fragmentation

scheme is always ACl�, B, C, D, E, F (yielding six monomers)

whereas in S1 the fragmentation scheme is always Cl�, A, B,

C, D, E, F (yielding seven monomers). The CHelpG charges of

the equilibrium gas-phase water molecule and the equilibrium

gas-phase Cl� (S1) or [Cl(H2O)]� (S2) system were used as the

embedding charges in the EE-MB calculations of the

water–chloride clusters.

3.3. Hydrogen fluoride clusters and microhydrated hydrogen

fluoride clusters

The (HF)m clusters (m = 4–5) shown in Fig. 5 were con-

structed in the following way: (1) A partial geometry optimi-

zation at M06-2X/cc-pV(T+d)Z+ was attempted on each

cluster with the constraints that the molecules must lie in a

plane and that the molecules retain their initial orientations

relative to one another. (2) After performing step 1, it was

noted that the geometries of structures that had two fluorine

atoms next to each other never converged to a minimum;

rather, the molecules with the adjacent fluorine atoms kept

drifting farther away from one another. (3) Therefore, a

second partial geometry optimization of each (HF)m cluster

was performed with both of the constraints described in step 1

but also with the constraint that the distance between adjacent

fluorine atoms be fixed at 3.4 Å. This distance was chosen after

performing a quick scan of a slice of the (HF)2 potential

energy surface (PES) where the two fluorine atoms are forced

to be adjacent to one another. Of the distances used in this

scan, 3.4 Å is the distance where the dimer binding energy

(the energy of the infinitely separated monomers minus the

energy of the dimer) is closest to �1.0 kcal mol�1.

The (HF)3(H2O) clusters in Fig. 6 began with the M06-2X/

cc-pV(T+d)Z+-optimized isolated gas-phase HF and H2O

molecules; the geometries of these molecules are given in

Table 1. In each (HF)m(H2O) cluster, the H2O molecule

(frozen in its optimized geometry) is placed in the center and

mHFmolecules (also frozen in their optimized geometries) are

placed around it. HF molecule A is always placed so that the

H, the F, and the O (of water) form a straight line perpendi-

cular to the line through the two H atoms of water. If the F

atom of A is closest to the O atom of water, then the F atom is

placed RvdW(F–O) Å away from the O of water; otherwise, the

H atom of A is placed RvdW(H–O) Å away from the O of

water, where RvdW(F–O) and RvdW(H–O) are given in Table 2.

HF molecules B and C are always placed so that the H, F, the

nearest H of water and the O of water form a straight line.

If the F atom of B or C is closet to the nearest H atom of

water, then F is placed RvdW(F–H) Å away from the nearest

Fig. 6 (HF)3(H2O) clusters.

Fig. 7 (HF)3(H2O)2 clusters.

Table 1 Geometric parameters of the M06-2X/cc-pV(T+d)Z+
optimized gas-phase water and hydrogen fluoride molecules

Molecule Parameter Value

HF RHF 0.9194 Å
H2O ROH 0.9592 Å
H2O yHOH 105.21
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H atom of water. Otherwise, the H atom of B or C is placed

RvdW(H–H) Å away from the nearest H atom of water.

The (HF)3(H2O)2 clusters are shown in Fig. 7. The structure

called w2hf3_a was constructed in exactly the same way as

structure whf3_AaBaCa of Fig. 6: the HF and H2O molecules

were kept in their M06-2X/cc-pV(T+d)Z+-optimized isolated

gas-phase geometries and were placed at the appropriate RvdW

distance away from one another. In w2hf3_a, all molecules lie

in the same plane. The w2hf3_a structure was then used

as a starting point for an M06-2X/cc-pV(T+d)Z+ geometry

optimization of the entire cluster. The result of this geometry

optimization is the structure named w2hf3_opt. This structure

(w2hf3_opt) is a minimum-energy structure on the M06-2X/

cc-pV(T+d)Z+(HF)3(H2O)2 PES; it contains no imaginary

frequencies.

The dipole moment and CHelpG partial charge distribution

of each hydrogen fluoride and microhydrated hydrogen

fluoride cluster were calculated conventionally and within

the EE-1B, EE-PA, EE-3B, 1B, PA, and 3B approximations

using the M06-2X density functional and the cc-pV(T+d)Z+

basis set. For the EE-MB calculations, the M06-2X/

cc-pV(T+d)Z+ CHelpG charges of the equilibrium gas-

phase hydrogen fluoride or water molecule were used as the

embedding charges.

4. Results

In order to assess the accuracy of the EE-MB and MB approxi-

mations for the calculation of full-system dipole moments, partial

atomic charges, and partial charge transfer between fragments,

the EE-MB and MB approximations of these values are com-

pared to the conventionally calculated values at the same level of

electronic structure theory (which, for all results shown, is the

M06-2X density functional with the cc-pVTZ+ basis set). The

errors summarized in the tables described in this section are

calculated as the EE-MB (or MB) approximate values minus the

conventionally calculated values.

Next we describe the results in Tables 2–6; the results will be

discussed in Section 5. First we note that Tables 3–5 each

include the number, n, of configurations over which each

average is taken and the number, N, of monomers into which

each configuration of each system is divided.

4.1. Full-system dipole moments

For simplicity, throughout the remainder of this paper we will refer

to the magnitude of the dipole moment as the dipole moment.

Table 2 Van der Waals radii of atoms and combined van der Waals
radii of atom pairs

Radius Value (Å) Ref.

RvdW(F) 1.47 62
RvdW(H) 1.10 62
RvdW(O) 1.52 62
RvdW(F–F) 2.94 RvdW(F) + RvdW(F)
RvdW(F–H) 2.57 RvdW(F) + RvdW(H)
RvdW(F–O) 2.99 RvdW(F) + RvdW(O)
RvdW(H–H) 2.20 RvdW(H) + RvdW(H)
RvdW(H–O) 2.62 RvdW(H) + RvdW(O)
RvdW(O–O) 3.04 RvdW(O) + RvdW(O)

Table 3 Average cluster dipole moments and mean unsigned errors in
cluster dipole moments (in debyes)a

Ensemble n N h|m|i

h|mMB � m|i

1B PA 3B

EE-MB
NH3(H2O)11 44 12 13.89 1.02 0.10 0.08
(NH3)2(H2O)14 44 16 17.97 0.50 0.18 0.08
[Cl(H2O)6]

� 6 7 6.36 0.42 0.10 0.04
[Cl�H2O(H2O)5]

� 6 6 6.36 0.33 0.07 0.04
(HF)4–5 16 4–5 3.198 0.003 0.001 0.000
(HF)3(H2O)1–2 8 4–5 5.262 0.164 0.009 0.003
MB
[Cl(H2O)6]

� 6 7 6.36 1.60 0.17 0.08
[Cl�H2O(H2O)5]

� 6 6 6.36 1.13 0.17 0.06
(HF)4–5 16 4–5 3.198 0.125 0.002 0.000
(HF)3(H2O)1–2 8 4–5 5.262 0.613 0.023 0.005

a n is the number of configurations in the ensemble, N is the number of

fragments, m is the dipole moment from a conventional calculation

on the entire system, and mMB is the dipole moment calculated by the

EE-MB or MB method.

Table 4 Mean unsigned errors (MUEs) in partial atomic charges
(in atomic units)a

Ensemble n N h|q|i

MUE

1B PA 3B

EE-MB
[Cl(H2O)6]

� 6 7 0.56 0.06 0.06 0.04
[Cl�H2O(H2O)5]

� 6 6 0.56 0.06 0.04 0.03
(HF)4–5 16b 4–5c 0.438 0.004 0.003 0.002
(HF)3(H2O)1–2 8d 4–5e 0.452 0.033 0.023 0.005
MB
[Cl(H2O)6]

� 6 7 0.56 0.10 0.04 0.04
[Cl�H2O(H2O)5]

� 6 6 0.56 0.09 0.03 0.03
(HF)4–5 16 4–5 0.438 0.014 0.002 0.002
(HF)3(H2O)1–2 8 4–5 0.452 0.036 0.014 0.009

a n is the number of configurations in the ensemble and N is the

number of fragments. b The average is over 148 partial atomic

charges. c Six cases with N = 4 and ten with N = 5. d The average

is over 78 partial atomic charges. e Six cases with N = 4 and two with

N = 5.

Table 5 Average fragment charges and mean unsigned errors in
fragment charges (in atomic units)a

Ensemble n N h|Q|i

h|QMB � Q|i

1B PA 3B

EE-MB
[Cl(H2O)6]

� 6 7 0.15 0.09 0.04 0.03
[Cl�H2O(H2O)5]

� 6 6 0.15 0.08 0.03 0.03
(HF)5

b and (HF)3(H2O)2 3 5 0.036 0.036 0.023 0.006
MB
[Cl(H2O)6]

� 6 7 0.15 0.09 0.03 0.02
[Cl�H2O(H2O)5]

� 6 6 0.15 0.07 0.03 0.02
(HF)5

b and (HF)3(H2O)2 3 5 0.036 0.036 0.010 0.012

a n is the number of configurations in the ensemble, N is the number of

fragments, Q is the net fragment charge from a conventional calcula-

tion on the entire system, and QMB is the net fragment charge

calculated by the EE-MB or MB method. b Only one configuration

of (HF)5 is included in the calculation of these averages: hf5_fhhhf

(see Fig. 5).
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Table 3 shows the mean unsigned errors (MUEs) of the

EE-MB calculations of cluster dipole moments (and, in some

cases, MB calculations of these dipole moments) over all of the

configurations of each type of system studied in this work.

Table 3 also shows, to help put these values in perspective, the

average, hmi, of the conventionally calculated cluster dipole

moments over all configurations of each type of system; note

that this is the same as h|m|i.

4.2. Partial atomic charges

Table 4 shows the MUEs in the EE-MB and MB approxima-

tions of the CHelpG partial atomic charge distributions of the

microhydrated chloride, hydrogen fluoride, and micro-

hydrated hydrogen fluoride clusters used in this work.

Table 4 also shows the average, h|q|i, of the absolute values

of the conventionally calculated atomic charges over all atoms

in all configurations of each type of system.

4.3. Partial charge transfer

Table 5 shows the MUEs in the EE-MB and MB approxima-

tions of the net fragment charges, Q, of the microhydrated

chloride, hydrogen fluoride, and microhydrated hydrogen

fluoride clusters considered in this work. The net charge on

a fragment (in this case, on a monomer in the cluster) is

calculated as the sum of the CHelpG charges of the atoms that

constitute the given fragment. Additionally, Table 5 shows the

average, h|Q|i, of the absolute values of the conventionally

calculated net fragment charges over all configurations of each

type of system.

4.4. Molecular dipole moments

The full-system dipole moment is well defined, but fragment

dipole moments are model quantities. Despite their model

character, molecular dipole moments of molecules in clusters

and liquids are widely used for interpretative purposes, and

here we show that we can compute them by the EE-MB

method. Table 6 shows the average water fragment dipole

moments for the Cl(H2O)� clusters and also the average

deviation from those calculated by CHelpG analysis of full-

system density functional calculations.

5. Discussion

5.1. Dipole moments

Table 3 shows that, as expected, the EE-MB full-system dipole

moment becomes more accurate as the order of the EE-MB

approximation increases. However, even for larger clusters,

the EE-PA approximation is able to get the full-system dipole

moment quantitatively correct. This is good news because of

the more favorable scaling of the cost of the EE-PA approxi-

mation with system size than that of the EE-3B approxi-

mation. The mean unsigned percentage error (MUPE) over

all configurations of all aqueous ammonia droplets is 5.0% in

the EE-1B approximation, 0.9% in the EE-PA approximation,

and 0.5% in the EE-3B approximation. Table 3 also shows

that electrostatic embedding significantly improves the

accuracy of the one-body approximation and slightly improves

the accuracies of the two- and three-body approximations.

5.2. Partial atomic charges

The [Cl(H2O)6]
� system provides an interesting challenge

to many-body methods. The charge on Cl� is of course

�1.0 atomic units (a.u.), and the average partial atomic charge

and standard deviation on Cl in Cl�(H2O)� in the six configu-

rations (where we always consider the H2O that contains the

atom closest to Cl� in the overall cluster) is �0.91 � 0.01 a.u.,

and when the Cl�(H2O)� fragment is embedded in fifteen

embedding charges representing the rest of the cluster,

the average charge and its standard deviation on Cl become

�0.94 � 0.04 a.u. However the average charge (and standard

deviation) of Cl� in the entire cluster is �0.70 � 0.07 a.u. We

find that the EE-PA and EE-3B methods account for the

reduction of this partial atomic charge from �1.0, �0.91, or
�0.94 to �0.70 a.u. quite well. By definition, the EE-1B and

1B approximations cannot predict this reduction in charge

because these methods do not allow charge transfer between

monomers. However, the EE-PA and EE-3B approximations

are able to account for this reduction in the charge assigned to

Cl: using the simpler fragmentation scheme where the Cl� ion

is considered a monomer (S1; see Section 3.2), the average

charge (and standard deviation) on Cl is �0.78 � 0.05 a.u.

using the EE-PA approximation and is�0.75� 0.05 a.u. using

the EE-3B approximation. Using the fragmentation scheme

where the Cl� is paired with the closest water molecule to

form a single monomer (S2), both the EE-PA and EE-3B

approximations do a little better: the average charge

(and standard deviation) on Cl is �0.75 � 0.06 a.u. using

the EE-PA approximation and is �0.74 � 0.07 a.u. using the

EE-3B approximation.

Table 4 shows trends in partial atomic charges similar to

those noticed with the dipole moments: again, the accuracy of

the EE-MB or MB approximation generally increases with the

order to which the MB expansion is taken and, again, in most

cases (except for the microhydrated hydrogen fluoride clusters)

the PA-level approximation is already capable of yielding

quantitative accuracy in the partial charge distribution relative

to the conventionally calculated CHelpG charge distribution

of the entire cluster. However, unlike the trend seen in the

dipole moment calculations, the accuracy of the many-body

Table 6 Averagea water monomer dipole moment (in debyes) calcu-
lated from CHelpG charges in [Cl(H2O)6]

� clustersb

Conventional 1B PA 3B EE-1B EE-PA EE-3B

int1 3.030 2.117 3.294 2.747 2.563 2.896 2.701
int2 2.897 2.102 3.266 2.744 2.525 2.955 2.740
int3 2.862 2.085 3.269 2.772 2.541 2.994 2.846
surf1 2.912 2.000 3.152 2.803 2.475 3.008 2.764
surf2 2.865 2.014 3.224 2.631 2.459 3.058 2.726
surf3 3.052 2.113 3.298 2.849 2.641 3.284 2.917
MUEc 0.864 0.314 0.178 0.402 0.141 0.154

a Averages are taken over the six water monomer dipole moments in

each cluster. b Fragmentation scheme 1 is used in all MB and EE-MB

calculations shown in this table. c MUE=mean unsigned error in the

average water monomer dipole moment from MB or EE-MB CHelpG

charge distributions relative to the average water monomer dipole

moment from the conventional CHelpG charge distribution using the

M06-2X/cc-pV(T+d)Z+ method.
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approximations for the prediction of partial charge distributions

depends strongly on whether or not electrostatic embedding

is included only in the one-body case; in the pairwise additive

and three-body cases, the accuracy of the MB approximation

is similar to that of the EE-MB approximation of the

same order.

An interesting point to consider is that as the size of a cluster

increases, more and more atoms become ‘‘buried’’ within the

cluster. Charge analysis methods that are based on finding a

set of partial atomic charges that most closely reproduces the

electrostatic potential due to the charge density of the entire

system (like CHelpG) often have difficulty assigning stable

physical charges to buried atoms. Using the EE-PA or the

EE-3B method to calculate partial atomic charge distributions

of large clusters could be a way to obtain stable physical

charges on buried atoms without requiring the imposition

of empirical constraints on the magnitudes of the charges

assigned to various atoms.

5.3. Partial charge transfer

Partial charge transfer is ubiquitous in liquid-phase systems,

nanoparticles, and clusters, but it is notoriously hard to treat

by fragment methods.

The net charge on a fragment (calculated as the sum of the

partial charges assigned to the atoms that compose the frag-

ment) is an indication of how much charge transfer has

occurred to or from that fragment when it moves from being

in an isolated state to the state of being a member of a given

cluster: for example, an isolated gas-phase water molecule has

a net charge of zero a.u., but if it is placed in a cluster

containing a negatively-charged ion, its net charge might be

�0.20 a.u., which shows that some of the electron density from

the anion has been transferred to that water molecule, and

molecules with net charges in the range of �0.2 a.u. were also

observed in simulations for liquid water which allowed for

inter- and intramolecular charge equilibration.61 The MUEs in

net fragment charges shown in Table 5 are therefore a measure

of how well the EE-MB approximations are able to capture

the amount charge transfer occurring between the molecules in

the clusters studied.

The one-body approximations are incapable of predicting

charge transfer between molecules, so for systems containing

all neutral fragments the EE-1B and 1B approximations

necessarily have errors of 100% in the calculation of net

monomer charges. Moving to the PA or EE-PA approxi-

mation reduces the error in net monomer charges to between

20 and 30% in most cases. Using the 3B or EE-3B approxi-

mation generally reduces the error in net monomer charges to

between 13 and 20%. As with the partial charge calculations, a

strong dependence on whether or not electrostatic embedding

is used is not seen in the accuracy of the MB net monomer

charge calculations.

Although neither the EE-MB nor the MB approximations

were capable of quantitatively accurate predictions of net

monomer charges for the cases chosen in this work, the

PA- and 3B-level approximations were able to qualitatively

describe the amount of charge transfer between fragments

most of the time.

5.4. Molecular dipole moments

The mean, median, minimum, and maximum molecular dipole

moments for water are 2.19, 2.18, 2.03, and 2.34 D respectively,

in the (NH3)(H2O)11 clusters, 2.51, 2.53, 2.12, and 2.76 D,

respectively, in the [Cl(H2O)6]
� clusters, and 2.47, 2.47, 2.20,

and 2.72 D, respectively, in the [Cl�(H2O)(H2O)5]
� clusters.

A histogram showing the distribution of the EE-1B water

dipole moments over all forty-four (NH3)(H2O)11clusters is

shown in Fig. 8.

As a further illustration of the application of the EE-1B

method of the computation of molecular dipole moments, we

note that the mean molecular dipole moment of individual

water molecules (1B approximation) is 2.07 D in [Cl(H2O)6]
�

but these values change when one considers the clusters. In

fact, if the molecular dipole moments are calculated from the

CHelpG charges of the full-system calculations, the mean

water monomer dipole moment changes by 46% (the new

mean is 2.93 D). Table 6 shows that the EE-PA and EE-3B

approximations give similar accuracy for the average molecular

dipole moments in the chloride–water clusters, and they both

agree better than the 3B approximation with the average

molecular dipole moments calculated from full-system density

functional calculations. The performance of the EE-PA

method is very encouraging.

6. Summary

Our first set of tests using the EE-MB method for predicting

charge distributions was concerned with full-system dipole

moments. We compared the EE-MB results to the one-body

(1B) approximation, in which one simply carries out vectorial

addition of the dipole moments of the noninteracting consti-

tuents, and to the EE-1B approximation, in which one vecto-

rially adds the dipole moments of the electrostatically

embedded monomers. Both of these approximations led to

large errors, but the MUEs of EE-1B were reduced by factors

of 3 to 18 by the EE-PA approximation and by factors of 6 to 55

by the EE-3B approximation, and the MUEs of the 1B approxi-

mation were reduced by factors of 7 to 63 by the PA approxi-

mation and by factors of 19 to 123 by the 3B approximation.

The second set of tests using the EE-MB method for

predicting charge distributions was concerned with full-system

partial atomic charge distributions. The 1B approximation of a

particular atom’s partial charge is simply that atom’s partial charge

Fig. 8 Distribution of EE-1B water monomer dipole moments in

forty-four configurations of (NH3)(H2O)11.
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when it is in an isolated monomer; the EE-1B approximation

of an atom’s partial charge is that atom’s partial charge

when its monomer is surrounded by embedding charges. On

average, electrostatic embedding reduces the MUE of the 1B

approximation by a factor of two. Including the pairwise

additive terms usually reduces the MUEs of the 1B approxi-

mation by factors of 3 to 7, and using the 3B approximation

also reduces the MUEs by factors of 3 to 7. The EE-PA

approximation does not improve upon the EE-1B approxi-

mation by as large an amount for this quantity: the MUEs are

reduced by factors of 1.0 to 1.5 in going from the EE-1B to the

EE-PA approximation. A more significant improvement is

seen in going from the EE-1B approximation to the EE-3B

approximation: in this case, the MUEs are reduced by factors

of 2 to 7.

A more difficult set of tests using the EE-MB method for

predicting charge distributions was concerned with the

amount of intermolecular charge transfer. The EE-1B and

1B approximations (and many other linear-scaling fragment

based methods) do not allow any charge transfer to occur

between monomers at all, so even being able to get a qualita-

tive picture of the amount of intermolecular charge transfer

occurring in a system using the EE-PA or EE-3B approxima-

tions is an improvement. We find that in going from the EE-1B

approximation to the EE-PA approximation the MUEs are

reduced by factors of 2 to 3 and in going from the EE-1B

approximation to the EE-3B approximation the MUEs are

reduced by factors of 3 to 6. Similarly, in going from 1B to PA

the errors are reduced by factors of 2 to 4 and in going from 1B

to 3B the errors are reduced by factors of 3 to 5.

Finally we showed that the EE-MB approximation can also

be used to calculate dipole moments of fragments in the

cluster.

We conclude that the EE-PA and EE-3B approximations

are capable of yielding accurate descriptions of full-system

charge distributions through dipole moment and atomic par-

tial charge distribution calculations. The EE-PA and EE-3B

approximations are also capable of qualitatively describing the

amount of intermolecular charge transfer occurring in a

system, which is a difficult task for fragment-based methods.
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